Classical Control and Quantum Circuits in Enriched Category Theory

Mathys Rennela (Radboud University) Sam Staton (Oxford University)

MFPS XXXIII Wednesday 14 June 2017

Where we are, sofar

Introduction to EWire: a language for embedded circuits

- How to compose circuits
- How to handle computational effects
- How to use classical outcomes of circuits in the host language
- Categorical models of EWire
- Conclusion

Programming quantum circuits

$$-; a, b: qubit \vdash C \stackrel{\text{def}}{=} x \leftarrow \text{gate meas } a;$$
$$(x, y) \leftarrow \text{gate (bit-control } X)(x, b);$$
$$() \leftarrow \text{gate discard } x; \text{output } y \qquad : qubit$$

Page 2 of 14 Rennela 13/05/17 Embedding quantum circuits Introduction to EWire: a language for embedded circuits

Programming quantum circuits

$$-; a, b: qubit \vdash C \stackrel{\text{def}}{=} x \leftarrow \text{gate meas } a;$$
$$(x, y) \leftarrow \text{gate (bit-control } X)(x, b);$$
$$() \leftarrow \text{gate discard } x; \text{output } y \qquad : qubit$$

Problem: not all quantum protocols are that simple...

Page 2 of 14 Rennela 13/05/17 Embedding quantum circuits Introduction to EWire: a language for embedded circuits

- Circuit language: symmetric monoidal category C
- ▶ Wire type *W*: object *W* of **C**

- Circuit language: symmetric monoidal category C
- ▶ Wire type *W*: object *W* of **C**
- Program = Circuit of entry type W_1 and output type W_2 :

 $\textbf{C}\text{-homomorphism } \textit{W}_1 \rightarrow \textit{W}_2$

- Circuit language: symmetric monoidal category C
- ▶ Wire type *W*: object *W* of **C**
- ▶ Program = Circuit of entry type W_1 and output type W_2 : **C**-homomorphism $W_1 \rightarrow W_2$
- ► Host language: cartesian closed category H
- "General purpose" language
- Host type: object of H

- Circuit language: symmetric monoidal category C
- ▶ Wire type *W*: object *W* of **C**
- ▶ Program = Circuit of entry type W_1 and output type W_2 : C-homomorphism $W_1 \rightarrow W_2$
- Host language: cartesian closed category H
- "General purpose" language
- Host type: object of H
- ▶ What if we add types Circ(W₁, W₂) to the host language?
- **Requirement:** $C(W_1, W_2)$ is an object of **H**.
- Composition of circuits: host language program which combines programs from the circuit language.

- Circuit language: symmetric monoidal category C
- ▶ Wire type *W*: object *W* of **C**
- ▶ Program = Circuit of entry type W_1 and output type W_2 : C-homomorphism $W_1 \rightarrow W_2$
- **Host language:** cartesian closed category **H**
- "General purpose" language
- Host type: object of H
- ▶ What if we add types Circ(W₁, W₂) to the host language?
- **Requirement:** $C(W_1, W_2)$ is an object of **H**.
- Composition of circuits: host language program which combines programs from the circuit language.

Embedding a circuit language in the host language is an instance of enriched category theory

- Circuit language = first order typed language.
- Wire types, such as a type for qubits.
- Linear type system (think about no-cloning)

- Circuit language = first order typed language.
- Wire types, such as a type for qubits.
- Linear type system (think about no-cloning)
- Host language = higher order language (computational lambda-calculus, Haskell, Coq, ...)

- Circuit language = first order typed language.
- Wire types, such as a type for qubits.
- Linear type system (think about no-cloning)
- Host language = higher order language (computational lambda-calculus, Haskell, Coq, ...)
- Special host type Circ(W₁, W₂)

- Circuit language = first order typed language.
- Wire types, such as a type for qubits.
- Linear type system (think about no-cloning)
- Host language = higher order language (computational lambda-calculus, Haskell, Coq, ...)
- Special host type Circ(W₁, W₂)
- QWire is an instance of EWire with:
- one classical wire type, bit
- **•** one circuit-only wire type, qubit
- ▶ basic gates such as meas $\in \mathcal{G}(\text{qubit}, \text{bit})$ and $\text{new} \in \mathcal{G}(\text{bit}, \text{qubit})$.
- J. Paykin, R. Rand, and S. Zdancewic. QWIRE: a core language for quantum circuits. POPL'17.
- J. Egger, R. E. Møgelberg, and A. Simpson. The enriched effect calculus: syntax and semantics. J. of Logic and Computation, 2012.

Where we are, sofar

Introduction to EWire: a language for embedded circuits

How to compose circuits

How to handle computational effects

How to use classical outcomes of circuits in the host language

Categorical models of EWire

Conclusion

Boxing/Unboxing

 $t \stackrel{\text{def}}{=} \mathbf{box} (a, b) \Rightarrow C(a, b) : Circ(qubit \otimes qubit, qubit)$

Boxing/Unboxing

 $t \stackrel{\text{def}}{=} \mathbf{box} (a, b) \Rightarrow C(a, b) : Circ(qubit \otimes qubit, qubit)$

 $\mathsf{\Gamma} \vdash t: \mathsf{Circ}(\mathsf{qubit} \otimes \mathsf{qubit}, \mathsf{qubit}) \quad \Omega \implies p: \mathsf{qubit} \otimes \mathsf{qubit}$

 Γ ; $\Omega \vdash$ **unbox** $t p : W_2$

unbox *t w* reduces to *C*

Composition of circuits

Composition of circuits

$$\begin{array}{ll} \mathsf{comp} & \stackrel{\mathsf{def}}{=} & \lambda(C_1, C_2). \ \mathbf{box} \ w_1 \Rightarrow \\ & \left(w_2 \leftarrow \mathbf{unbox} \ C_1 w_1; w_3 \leftarrow \mathbf{unbox} \ C_2 w_2; \mathbf{output} \ w_3\right) \end{array}$$

$$\mathsf{comp} \ : \ \operatorname{Circ}(\mathit{W}_1, \mathit{W}_2) \times \operatorname{Circ}(\mathit{W}_2, \mathit{W}_3) \to \operatorname{Circ}(\mathit{W}_1, \mathit{W}_3)$$

 W_i type of the wire w_i for $i \in \{1, 2, 3\}$

Composition of circuits

comp
$$\stackrel{\text{def}}{=} \lambda(C_1, C_2)$$
. box $w_1 \Rightarrow$
 $(w_2 \leftarrow \text{unbox } C_1 w_1; w_3 \leftarrow \text{unbox } C_2 w_2; \text{output } w_3)$

$$\mathsf{comp} \ : \ \operatorname{Circ}(\mathit{W}_1, \mathit{W}_2) \times \operatorname{Circ}(\mathit{W}_2, \mathit{W}_3) \to \operatorname{Circ}(\mathit{W}_1, \mathit{W}_3)$$

 W_i type of the wire w_i for $i \in \{1, 2, 3\}$

The embedding of the circuit language in the host language is an instance of enriched category theory

Enriched category theory

 \blacktriangleright H category with finite products \times

Enriched category theory

- **H** category with finite products \times
- A category **C** enriched in **H** is given by a collection of objects together with
 - for each pair of objects A and B in C, an object C(A, B) of H;
 - for each object A of C, a morphism $1 \rightarrow C(A, A)$ in H;
 - for objects A, B, C of C, a morphism $C(A, B) \times C(B, C) \rightarrow C(A, C)$ in H

such that composition satisfies the identity and unit laws.

Enriched category theory

- ► H category with finite products ×
- ► A category C enriched in H is given by a collection of objects together with
 - for each pair of objects A and B in C, an object C(A, B) of H;
 - for each object A of C, a morphism $1 \rightarrow C(A, A)$ in H;
 - for objects A, B, C of C, a morphism $C(A, B) \times C(B, C) \rightarrow C(A, C)$ in H

such that composition satisfies the identity and unit laws.

• Example: a locally small category is **Set**-enriched category.

Max Kelly. Basic concepts of enriched category theory, volume 64. CUP Archive, 1982.

Where we are, sofar

Introduction to EWire: a language for embedded circuits

How to compose circuits

How to handle computational effects

How to use classical outcomes of circuits in the host language

Categorical models of EWire

Conclusion

How to flip a fair coin in quantum computing

- Constraint: we work with a linear type system for circuits
- Why? Because it is *impossible* to create an identical copy of an arbitrary unknown quantum state!

How to flip a fair coin in quantum computing

- Constraint: we work with a linear type system for circuits
- Why? Because it is *impossible* to create an identical copy of an arbitrary unknown quantum state!

 $\mathsf{flip} \stackrel{\mathsf{def}}{=} a \leftarrow \mathsf{gate} \ \mathrm{init}_0 \ (); a' \leftarrow \mathsf{gate} \ \mathrm{H} \ a; b \leftarrow \mathsf{gate} \ \mathrm{meas} \ a'; \mathsf{output} \ b$

Embedding circuits produce computational effects

 $\mathsf{flip} \stackrel{\mathsf{def}}{=} a \leftarrow \mathbf{gate} \ \mathrm{init}_0 \ (); a' \leftarrow \mathbf{gate} \ \mathrm{H} \ a; b \leftarrow \mathbf{gate} \ \mathrm{meas} \ a'; \mathbf{output} \ b$

Embedding circuits produce computational effects

$$\mathsf{flip} \stackrel{\mathsf{def}}{=} \textit{a} \leftarrow \textbf{gate} \ \mathrm{init}_0 \ (); \textit{a}' \leftarrow \textbf{gate} \ \mathrm{H} \ \textit{a}; \textit{b} \leftarrow \textbf{gate} \ \mathrm{meas} \ \textit{a}'; \textbf{output} \ \textit{b}$$

Let's toss a coin!

 \vdash **run**(flip) : *T*(bool)

Embedding circuits produce computational effects

flip $\stackrel{\text{def}}{=} a \leftarrow \text{gate init}_0$ (); $a' \leftarrow \text{gate H} a$; $b \leftarrow \text{gate meas } a'$; output b Let's toss a coin! ⊦

$$-$$
 run(flip) : T (bool)

- Probabilistic computational effects are required.
- Deterministic/pure programs = morphisms in \mathbf{H}
- Probabilistic/effectful programs = Kleisli morphisms $X \to T(Y)$ in н
- E. Moggi, Computational lambda-calculus and monads, LICS'89,

Where we are, sofar

Introduction to EWire: a language for embedded circuits

How to compose circuits

How to handle computational effects

How to use classical outcomes of circuits in the host language

Categorical models of EWire

Conclusion

How to use classical outcomes of circuits in the host language

- Classical wire types exist in both circuits and host terms.
- Example: bits.

How to use classical outcomes of circuits in the host language

- Classical wire types exist in both circuits and host terms.
- Example: bits.
- ▶ Lifting : classical wire type → first-order host type
 Dynamic lifting allows to use the classical outcomes of circuits as parameters in the host language

How to use classical outcomes of circuits in the host language

- Classical wire types exist in both circuits and host terms.
- Example: bits.
- ► Lifting : classical wire type → first-order host type
 Dynamic lifting allows to use the classical outcomes of circuits as parameters in the host language
- Copower: generalization of an *n*-fold coproduct.
- Copower $n \odot A = n$ fold coproduct $A + \cdots + A$ ($n \in \mathbb{N}$, $A \in Obj(\mathbf{C})$).

To give a morphism $n \odot A \rightarrow B$ is to give a family of *n* morphisms $A \rightarrow B$.

• More generally:
$$C(h \odot A, B) \cong H(h, C(A, B))$$

B. Jacobs. On block structures in quantum computation. MFPS'13.

Where we are, sofar

Introduction to EWire: a language for embedded circuits

How to compose circuits

How to handle computational effects

How to use classical outcomes of circuits in the host language

Categorical models of EWire

Conclusion

A categorical model of EWire (H,H_0,C,\mathcal{T}) is given by the following data:

A categorical model of EWire $(\textbf{H},\textbf{H}_0,\textbf{C},\mathcal{T})$ is given by the following data:

(1) A cartesian closed category H with a strong monad T on H.

A categorical model of EWire $(\textbf{H},\textbf{H}_0,\textbf{C},\mathcal{T})$ is given by the following data:

- (1) A cartesian closed category \mathbf{H} with a strong monad \mathcal{T} on \mathbf{H} .
- (2) A small full subcategory $j : \mathbf{H}_0 \subseteq \mathbf{H}$ for classical wire types

A categorical model of EWire $(\textbf{H},\textbf{H}_0,\textbf{C},\mathcal{T})$ is given by the following data:

- (1) A cartesian closed category H with a strong monad T on H.
- (2) A small full subcategory $j : \mathbf{H}_0 \subseteq \mathbf{H}$ for classical wire types
- (3) An **H**-enriched symmetric monoidal category (\mathbf{C}, \otimes, I) .

A categorical model of EWire $(\mathbf{H}, \mathbf{H}_0, \mathbf{C}, \mathcal{T})$ is given by the following data:

- (1) A cartesian closed category \mathbf{H} with a strong monad \mathcal{T} on \mathbf{H} .
- (2) A small full subcategory $j : \mathbf{H}_0 \subseteq \mathbf{H}$ for classical wire types
- (3) An **H**-enriched symmetric monoidal category (\mathbf{C}, \otimes, I) .
- (4) **C** has copowers by the objects of \mathbf{H}_0 , inducing $J : \mathbf{H}_0 \to \mathbf{C}$ defined by $J(h) = h \odot I$.

A categorical model of EWire $(\mathbf{H}, \mathbf{H}_0, \mathbf{C}, \mathcal{T})$ is given by the following data:

- (1) A cartesian closed category \mathbf{H} with a strong monad \mathcal{T} on \mathbf{H} .
- (2) A small full subcategory $j : \mathbf{H}_0 \subseteq \mathbf{H}$ for classical wire types
- (3) An **H**-enriched symmetric monoidal category (\mathbf{C}, \otimes, I) .
- (4) **C** has copowers by the objects of \mathbf{H}_0 , inducing $J : \mathbf{H}_0 \to \mathbf{C}$ defined by $J(h) = h \odot I$.
- (5) Copower-preserving functor $A \otimes -: \mathbf{C} \to \mathbf{C}$ for every $A \in Obj(\mathbf{C})$

A categorical model of EWire $(\mathbf{H}, \mathbf{H}_0, \mathbf{C}, \mathcal{T})$ is given by the following data:

- (1) A cartesian closed category \mathbf{H} with a strong monad \mathcal{T} on \mathbf{H} .
- (2) A small full subcategory $j : \mathbf{H}_0 \subseteq \mathbf{H}$ for classical wire types
- (3) An **H**-enriched symmetric monoidal category (\mathbf{C}, \otimes, I) .
- (4) **C** has copowers by the objects of \mathbf{H}_0 , inducing $J : \mathbf{H}_0 \to \mathbf{C}$ defined by $J(h) = h \odot I$.
- (5) Copower-preserving functor $A \otimes -: \mathbf{C} \to \mathbf{C}$ for every $A \in Obj(\mathbf{C})$
- (6) Enriched relative monad morphism $\operatorname{run}_h : \mathbf{C}(I, J(h)) \to T(j(h))$ T. Altenkirch, J. Chapman, and T. Uustalu. Monads need not be endofunctors. FOSSACS'10. C. Berger, P.-A. Melliès, and Mark Weber. Monads with arities and their associated theories. J. Pure Appl.

Algebra 2012.

► C ^{def} = FdC*-Alg^{op}_{CPU}: opposite category of the category of finite-dimensional C*-algebras and completely positive unital maps

- ► C ^{def} = FdC*-Alg^{op}_{CPU}: opposite category of the category of finite-dimensional C*-algebras and completely positive unital maps
- $H \stackrel{\text{def}}{=} \mathbf{Set}$: cartesian closed category of sets and functions

- ► C ^{def} = FdC*-Alg^{op}_{CPU}: opposite category of the category of finite-dimensional C*-algebras and completely positive unital maps
- $\mathbf{H} \stackrel{\text{def}}{=} \mathbf{Set}$: cartesian closed category of sets and functions
- ▶ $H_0 \stackrel{\text{def}}{=} \mathbb{N}$: skeleton of the category of finite sets and functions

- ► C ^{def} = FdC*-Alg^{op}_{CPU}: opposite category of the category of finite-dimensional C*-algebras and completely positive unital maps
- $\mathbf{H} \stackrel{\text{def}}{=} \mathbf{Set}$: cartesian closed category of sets and functions
- ▶ $H_0 \stackrel{\text{def}}{=} \mathbb{N}$: skeleton of the category of finite sets and functions
- ▶ $T \stackrel{\text{def}}{=} \mathcal{D} : \textbf{Set} \rightarrow \textbf{Set}$, probability distribution monad

- ► C ^{def} = FdC*-Alg^{op}_{CPU}: opposite category of the category of finite-dimensional C*-algebras and completely positive unital maps
- $\mathbf{H} \stackrel{\text{def}}{=} \mathbf{Set}$: cartesian closed category of sets and functions
- ▶ $H_0 \stackrel{\text{def}}{=} \mathbb{N}$: skeleton of the category of finite sets and functions
- ▶ $T \stackrel{\text{def}}{=} \mathcal{D} : \textbf{Set} \rightarrow \textbf{Set}$, probability distribution monad

$$1 \stackrel{\text{def}}{=} \mathbb{C} \quad \text{fit} \stackrel{\text{def}}{=} \mathbb{C} \oplus \mathbb{C} \quad \text{qufit} \stackrel{\text{def}}{=} M_2$$
$$\mathfrak{u} \stackrel{\text{def}}{=} u^{\dagger} - u \text{ (for every unitary } u \in \mathcal{U}\text{)}$$
$$\text{meas} : \mathbb{C} \oplus \mathbb{C} \to M_2 : (a, b) \mapsto \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$$
$$\text{new} : M_2 \to \mathbb{C} \oplus \mathbb{C} : \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto (a, b)$$

Let's add sums!

e.g. in₁ $\in \mathcal{G}(W_1, W_1 \oplus W_2)$

Let's add sums!

e.g. in₁
$$\in \mathcal{G}(W_1, W_1 \oplus W_2)$$

Let's add recursive types!

$$\mathsf{fold}_{\mu X.W} \in \mathcal{G}(W[X \mapsto \mu X.W], \mu X.W)$$
$$\mathsf{unfold}_{\mu X.W} \in \mathcal{G}(\mu X.W, W[X \mapsto \mu X.W])$$

Let's add sums!

e.g. in_1 $\in \mathcal{G}(W_1, W_1 \oplus W_2)$

Let's add recursive types!

$$\mathsf{fold}_{\mu X.W} \in \mathcal{G}(W[X \mapsto \mu X.W], \mu X.W)$$
$$\mathsf{unfold}_{\mu X.W} \in \mathcal{G}(\mu X.W, W[X \mapsto \mu X.W])$$

•
$$\mathbf{C} \stackrel{\text{def}}{=} \mathbf{W}^*$$
- $\mathbf{Alg}_{\text{CPSU}}^{\mathbf{op}}$ ('domain-theoretic' C*-algebras)

Let's add sums!

e.g. in_1 $\in \mathcal{G}(W_1, W_1 \oplus W_2)$

Let's add recursive types!

$$\mathsf{fold}_{\mu X.W} \in \mathcal{G}(W[X \mapsto \mu X.W], \mu X.W)$$
$$\mathsf{unfold}_{\mu X.W} \in \mathcal{G}(\mu X.W, W[X \mapsto \mu X.W])$$

Let's add sums!

e.g. in₁
$$\in \mathcal{G}(W_1, W_1 \oplus W_2)$$

Let's add recursive types!

$$\mathsf{fold}_{\mu X.W} \in \mathcal{G}(W[X \mapsto \mu X.W], \mu X.W)$$
$$\mathsf{unfold}_{\mu X.W} \in \mathcal{G}(\mu X.W, W[X \mapsto \mu X.W])$$

Mathys Rennela. Towards a quantum domain theory. MFPS'13.

Let's add sums!

e.g. in₁
$$\in \mathcal{G}(W_1, W_1 \oplus W_2)$$

Let's add recursive types!

$$\mathsf{fold}_{\mu X.W} \in \mathcal{G}(W[X \mapsto \mu X.W], \mu X.W)$$
$$\mathsf{unfold}_{\mu X.W} \in \mathcal{G}(\mu X.W, W[X \mapsto \mu X.W])$$

What do we get? A semantics for the Quantum Fourier Transform!

Where we are, sofar

Introduction to EWire: a language for embedded circuits

How to compose circuits

How to handle computational effects

How to use classical outcomes of circuits in the host language

Categorical models of EWire

Conclusion

 $\mathsf{comp}: \mathrm{Circ}(\mathit{W}_1, \mathit{W}_2) \times \mathrm{Circ}(\mathit{W}_2, \mathit{W}_3) \to \mathrm{Circ}(\mathit{W}_1, \mathit{W}_3) \text{ in the host language}$

 $\circ: C(W_1, W_2) imes C(W_2, W_3)
ightarrow C(W_1, W_3)$ in H

 $\mathsf{comp}: \mathrm{Circ}(\mathit{W}_1, \mathit{W}_2) \times \mathrm{Circ}(\mathit{W}_2, \mathit{W}_3) \to \mathrm{Circ}(\mathit{W}_1, \mathit{W}_3) \text{ in the host language}$

 $\circ: \textbf{C}(\textit{W}_1,\textit{W}_2)\times \textbf{C}(\textit{W}_2,\textit{W}_3)\rightarrow \textbf{C}(\textit{W}_1,\textit{W}_3) \text{ in } \textbf{H}$

Embedding a first-order language for circuits into a general purpose host language is an instance of enriched category theory

 $\mathsf{comp}: \mathrm{Circ}(\mathit{W}_1, \mathit{W}_2) \times \mathrm{Circ}(\mathit{W}_2, \mathit{W}_3) \to \mathrm{Circ}(\mathit{W}_1, \mathit{W}_3) \text{ in the host language}$

 $\circ: \textbf{C}(\textit{W}_1,\textit{W}_2)\times \textbf{C}(\textit{W}_2,\textit{W}_3)\rightarrow \textbf{C}(\textit{W}_1,\textit{W}_3) \text{ in }\textbf{H}$

Embedding a first-order language for circuits into a general purpose host language is an instance of enriched category theory

Next step: Implementation in Agda or Coq, with dependent types. R. Rand, J. Paykin, S. Zdancewic. QWIRE Practice:Formal Verification of Quantum Circuits in Coq. QPL'17

 $\mathsf{comp}: \mathrm{Circ}(\mathit{W}_1, \mathit{W}_2) \times \mathrm{Circ}(\mathit{W}_2, \mathit{W}_3) \to \mathrm{Circ}(\mathit{W}_1, \mathit{W}_3) \text{ in the host language}$

 $\circ: \textbf{C}(\textit{W}_1,\textit{W}_2)\times \textbf{C}(\textit{W}_2,\textit{W}_3)\rightarrow \textbf{C}(\textit{W}_1,\textit{W}_3) \text{ in }\textbf{H}$

Embedding a first-order language for circuits into a general purpose host language is an instance of enriched category theory

Next step: Implementation in Agda or Coq, with dependent types. R. Rand, J. Paykin, S. Zdancewic. QWIRE Practice:Formal Verification of Quantum Circuits in Coq. QPL'17

THANK YOU!

