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Programming quantum circuits

b X y

a •

−; a, b : qubit ` C
def
=x ← gate meas a;

(x , y)← gate (bit-control X ) (x , b);

()← gate discard x ; output y : qubit

I Problem: not all quantum protocols are that simple...
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Embedding as enrichment

I Circuit language: symmetric monoidal category C
I Wire type W : object W of C

I Program = Circuit of entry type W1 and output type W2:
C-homomorphism W1 →W2

I Host language: cartesian closed category H
I “General purpose” language
I Host type: object of H

I What if we add types Circ(W1,W2) to the host language?
I Requirement: C(W1,W2) is an object of H.
I Composition of circuits: host language program which combines

programs from the circuit language.

Embedding a circuit language in the host language is an
instance of enriched category theory
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EWire: a language for embedded circuits

I Circuit language = first order typed language.
I Wire types, such as a type for qubits.
I Linear type system (think about no-cloning)

I Host language = higher order language (computational
lambda-calculus, Haskell, Coq, ...)

I Special host type Circ(W1,W2)

QWire is an instance of EWire with:
I one classical wire type, bit
I one circuit-only wire type, qubit
I basic gates such as meas ∈ G(qubit, bit) and new ∈ G(bit, qubit).
J. Paykin, R. Rand, and S. Zdancewic. QWIRE: a core language for quantum circuits. POPL’17.

J. Egger, R. E. Møgelberg, and A. Simpson. The enriched effect calculus: syntax and semantics. J. of Logic and

Computation, 2012.
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Boxing/Unboxing

C
def
= b X y

a •

t
def
= box (a, b)⇒ C (a, b) : Circ(qubit⊗qubit,qubit)

Γ ` t : Circ(qubit⊗ qubit, qubit) Ω =⇒ p : qubit⊗ qubit

Γ; Ω ` unbox t p : W2

unbox t w reduces to C
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Composition of circuits

C1 C2
w1 w2 w3

comp def
= λ(C1,C2). box w1 ⇒(
w2 ← unbox C1w1;w3 ← unbox C2w2; output w3

)
comp : Circ(W1,W2)× Circ(W2,W3)→ Circ(W1,W3)

Wi type of the wire wi for i ∈ {1, 2, 3}

The embedding of the circuit language in the host language is an
instance of enriched category theory
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Enriched category theory

I H category with finite products ×

I A category C enriched in H is given by a collection of objects
together with
• for each pair of objects A and B in C, an object C(A,B) of H;
• for each object A of C, a morphism 1→ C(A,A) in H;
• for objects A, B, C of C, a morphism

C(A,B)× C(B,C )→ C(A,C ) in H
such that composition satisfies the identity and unit laws.

I Example: a locally small category is Set-enriched category.
Max Kelly. Basic concepts of enriched category theory, volume 64. CUP Archive, 1982.
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How to flip a fair coin in quantum computing

I Constraint: we work with a linear type system for circuits
I Why? Because it is impossible to create an identical copy of an

arbitrary unknown quantum state!

flip def
= a← gate init0 (); a′ ← gate H a; b ← gate meas a′; output b
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Embedding circuits produce computational effects

flip def
= a← gate init0 (); a′ ← gate H a; b ← gate meas a′; output b

Let’s toss a coin!
` run

(
flip

)
: T (bool)

I Probabilistic computational effects are required.

I Deterministic/pure programs = morphisms in H

I Probabilistic/effectful programs = Kleisli morphisms X → T (Y ) in
H

E. Moggi. Computational lambda-calculus and monads. LICS’89.
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How to use classical outcomes of circuits
in the host language

I Classical wire types exist in both circuits and host terms.
I Example: bits.

I Lifting : classical wire type 7→ first-order host type
Dynamic lifting allows to use the classical outcomes of

circuits as parameters in the host language

I Copower: generalization of an n-fold coproduct.
I Copower n�A = n fold coproduct A+ · · ·+A (n ∈ N, A ∈ Obj(C)).

To give a morphism n � A→ B
is to give a family of n morphisms A→ B.

I More generally: C(h � A,B) ∼= H(h,C(A,B))
B. Jacobs. On block structures in quantum computation. MFPS’13.
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Categorical models of EWire

A categorical model of EWire (H,H0,C,T ) is given by the following
data:

(1) A cartesian closed category H with a strong monad T on H.

(2) A small full subcategory j : H0 ⊆ H for classical wire types

(3) An H-enriched symmetric monoidal category (C,⊗, I ).

(4) C has copowers by the objects of H0, inducing J : H0 → C defined
by J(h) = h � I .

(5) Copower-preserving functor A⊗− : C→ C for every A ∈ Obj(C)

(6) Enriched relative monad morphism runh : C(I , J(h))→ T (j(h))
T. Altenkirch, J. Chapman, and T. Uustalu. Monads need not be endofunctors. FOSSACS’10.

C. Berger, P.-A. Melliès, and Mark Weber. Monads with arities and their associated theories. J. Pure Appl.

Algebra 2012.
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Example: quantum circuits

I C def
= FdC∗-Algop

CPU: opposite category of the category of
finite-dimensional C*-algebras and completely positive unital maps

I H def
= Set: cartesian closed category of sets and functions

I H0
def
= N: skeleton of the category of finite sets and functions

I T
def
= D : Set→ Set, probability distribution monad

1
def
= C bit

def
= C⊕ C qubit

def
= M2

u
def
= u† − u (for every unitary u ∈ U)

meas : C⊕ C→ M2 : (a, b) 7→ ( a 0
0 b )

new : M2 → C⊕ C :
(
a b
c d

)
7→ (a, b)
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I H0
def
= N: skeleton of the category of finite sets and functions

I T
def
= D : Set→ Set, probability distribution monad

1
def
= C bit

def
= C⊕ C qubit

def
= M2

u
def
= u† − u (for every unitary u ∈ U)

meas : C⊕ C→ M2 : (a, b) 7→ ( a 0
0 b )

new : M2 → C⊕ C :
(
a b
c d

)
7→ (a, b)
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Example: ‘generalized quantum circuits’

I Let’s add sums!
e.g. in1 ∈ G(W1,W1 ⊕W2)

I Let’s add recursive types!

foldµX .W ∈ G(W [X 7→ µX .W ], µX .W )

unfoldµX .W ∈ G(µX .W ,W [X 7→ µX .W ])

I C def
= W∗-Algop

CPSU (‘domain-theoretic’ C*-algebras)

I H def
= Dcpo⊥: pointed dcpos and Scott-continuous maps

I W∗-Algop
CPSU is Dcpo⊥-enriched and can be used to denote

recursive types (via algebraic compactness).
Mathys Rennela. Towards a quantum domain theory. MFPS’13.

I What do we get? A semantics for the Quantum Fourier Transform!
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Introduction to EWire: a language for embedded circuits

How to compose circuits

How to handle computational effects

How to use classical outcomes of circuits in the host language

Categorical models of EWire
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Conclusion

comp : Circ(W1,W2)× Circ(W2,W3)→ Circ(W1,W3) in the host language

◦ : C(W1,W2)× C(W2,W3)→ C(W1,W3) in H

Embedding a first-order language for circuits into a general
purpose host language is an instance of enriched category theory

Next step: Implementation in Agda or Coq, with dependent types.
R. Rand, J. Paykin, S. Zdancewic. QWIRE Practice:Formal Verification of Quantum Circuits in Coq. QPL’17

THANK YOU!
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