
Classical Control
and Quantum Circuits
in Enriched Category Theory
Mathys Rennela (Radboud University)
Sam Staton (Oxford University)
MFPS XXXIII
Wednesday 14 June 2017

Page 1 of 14 Rennela 13/05/17 Embedding quantum circuits

Where we are, sofar

Introduction to EWire: a language for embedded circuits

How to compose circuits

How to handle computational effects

How to use classical outcomes of circuits in the host language

Categorical models of EWire

Conclusion

Programming quantum circuits

b X y

a •

−; a, b : qubit ` C
def
=x ← gate meas a;

(x , y)← gate (bit-control X) (x , b);

()← gate discard x ; output y : qubit

I Problem: not all quantum protocols are that simple...

Page 2 of 14 Rennela 13/05/17 Embedding quantum circuits
Introduction to EWire: a language for embedded circuits

Programming quantum circuits

b X y

a •

−; a, b : qubit ` C
def
=x ← gate meas a;

(x , y)← gate (bit-control X) (x , b);

()← gate discard x ; output y : qubit

I Problem: not all quantum protocols are that simple...

Page 2 of 14 Rennela 13/05/17 Embedding quantum circuits
Introduction to EWire: a language for embedded circuits

Embedding as enrichment

I Circuit language: symmetric monoidal category C
I Wire type W : object W of C

I Program = Circuit of entry type W1 and output type W2:
C-homomorphism W1 →W2

I Host language: cartesian closed category H
I “General purpose” language
I Host type: object of H

I What if we add types Circ(W1,W2) to the host language?
I Requirement: C(W1,W2) is an object of H.
I Composition of circuits: host language program which combines

programs from the circuit language.

Embedding a circuit language in the host language is an
instance of enriched category theory

Page 3 of 14 Rennela 13/05/17 Embedding quantum circuits
Introduction to EWire: a language for embedded circuits

Embedding as enrichment

I Circuit language: symmetric monoidal category C
I Wire type W : object W of C
I Program = Circuit of entry type W1 and output type W2:

C-homomorphism W1 →W2

I Host language: cartesian closed category H
I “General purpose” language
I Host type: object of H

I What if we add types Circ(W1,W2) to the host language?
I Requirement: C(W1,W2) is an object of H.
I Composition of circuits: host language program which combines

programs from the circuit language.

Embedding a circuit language in the host language is an
instance of enriched category theory

Page 3 of 14 Rennela 13/05/17 Embedding quantum circuits
Introduction to EWire: a language for embedded circuits

Embedding as enrichment

I Circuit language: symmetric monoidal category C
I Wire type W : object W of C
I Program = Circuit of entry type W1 and output type W2:

C-homomorphism W1 →W2

I Host language: cartesian closed category H
I “General purpose” language
I Host type: object of H

I What if we add types Circ(W1,W2) to the host language?
I Requirement: C(W1,W2) is an object of H.
I Composition of circuits: host language program which combines

programs from the circuit language.

Embedding a circuit language in the host language is an
instance of enriched category theory

Page 3 of 14 Rennela 13/05/17 Embedding quantum circuits
Introduction to EWire: a language for embedded circuits

Embedding as enrichment

I Circuit language: symmetric monoidal category C
I Wire type W : object W of C
I Program = Circuit of entry type W1 and output type W2:

C-homomorphism W1 →W2

I Host language: cartesian closed category H
I “General purpose” language
I Host type: object of H

I What if we add types Circ(W1,W2) to the host language?
I Requirement: C(W1,W2) is an object of H.
I Composition of circuits: host language program which combines

programs from the circuit language.

Embedding a circuit language in the host language is an
instance of enriched category theory

Page 3 of 14 Rennela 13/05/17 Embedding quantum circuits
Introduction to EWire: a language for embedded circuits

Embedding as enrichment

I Circuit language: symmetric monoidal category C
I Wire type W : object W of C
I Program = Circuit of entry type W1 and output type W2:

C-homomorphism W1 →W2

I Host language: cartesian closed category H
I “General purpose” language
I Host type: object of H

I What if we add types Circ(W1,W2) to the host language?
I Requirement: C(W1,W2) is an object of H.
I Composition of circuits: host language program which combines

programs from the circuit language.

Embedding a circuit language in the host language is an
instance of enriched category theory

Page 3 of 14 Rennela 13/05/17 Embedding quantum circuits
Introduction to EWire: a language for embedded circuits

EWire: a language for embedded circuits

I Circuit language = first order typed language.
I Wire types, such as a type for qubits.
I Linear type system (think about no-cloning)

I Host language = higher order language (computational
lambda-calculus, Haskell, Coq, ...)

I Special host type Circ(W1,W2)

QWire is an instance of EWire with:
I one classical wire type, bit
I one circuit-only wire type, qubit
I basic gates such as meas ∈ G(qubit, bit) and new ∈ G(bit, qubit).
J. Paykin, R. Rand, and S. Zdancewic. QWIRE: a core language for quantum circuits. POPL’17.

J. Egger, R. E. Møgelberg, and A. Simpson. The enriched effect calculus: syntax and semantics. J. of Logic and

Computation, 2012.

Page 4 of 14 Rennela 13/05/17 Embedding quantum circuits
Introduction to EWire: a language for embedded circuits

EWire: a language for embedded circuits

I Circuit language = first order typed language.
I Wire types, such as a type for qubits.
I Linear type system (think about no-cloning)

I Host language = higher order language (computational
lambda-calculus, Haskell, Coq, ...)

I Special host type Circ(W1,W2)

QWire is an instance of EWire with:
I one classical wire type, bit
I one circuit-only wire type, qubit
I basic gates such as meas ∈ G(qubit, bit) and new ∈ G(bit, qubit).
J. Paykin, R. Rand, and S. Zdancewic. QWIRE: a core language for quantum circuits. POPL’17.

J. Egger, R. E. Møgelberg, and A. Simpson. The enriched effect calculus: syntax and semantics. J. of Logic and

Computation, 2012.

Page 4 of 14 Rennela 13/05/17 Embedding quantum circuits
Introduction to EWire: a language for embedded circuits

EWire: a language for embedded circuits

I Circuit language = first order typed language.
I Wire types, such as a type for qubits.
I Linear type system (think about no-cloning)

I Host language = higher order language (computational
lambda-calculus, Haskell, Coq, ...)

I Special host type Circ(W1,W2)

QWire is an instance of EWire with:
I one classical wire type, bit
I one circuit-only wire type, qubit
I basic gates such as meas ∈ G(qubit, bit) and new ∈ G(bit, qubit).
J. Paykin, R. Rand, and S. Zdancewic. QWIRE: a core language for quantum circuits. POPL’17.

J. Egger, R. E. Møgelberg, and A. Simpson. The enriched effect calculus: syntax and semantics. J. of Logic and

Computation, 2012.

Page 4 of 14 Rennela 13/05/17 Embedding quantum circuits
Introduction to EWire: a language for embedded circuits

EWire: a language for embedded circuits

I Circuit language = first order typed language.
I Wire types, such as a type for qubits.
I Linear type system (think about no-cloning)

I Host language = higher order language (computational
lambda-calculus, Haskell, Coq, ...)

I Special host type Circ(W1,W2)

QWire is an instance of EWire with:
I one classical wire type, bit
I one circuit-only wire type, qubit
I basic gates such as meas ∈ G(qubit, bit) and new ∈ G(bit, qubit).
J. Paykin, R. Rand, and S. Zdancewic. QWIRE: a core language for quantum circuits. POPL’17.

J. Egger, R. E. Møgelberg, and A. Simpson. The enriched effect calculus: syntax and semantics. J. of Logic and

Computation, 2012.

Page 4 of 14 Rennela 13/05/17 Embedding quantum circuits
Introduction to EWire: a language for embedded circuits

Where we are, sofar

Introduction to EWire: a language for embedded circuits

How to compose circuits

How to handle computational effects

How to use classical outcomes of circuits in the host language

Categorical models of EWire

Conclusion

Boxing/Unboxing

C
def
= b X y

a •

t
def
= box (a, b)⇒ C (a, b) : Circ(qubit⊗qubit,qubit)

Γ ` t : Circ(qubit⊗ qubit, qubit) Ω =⇒ p : qubit⊗ qubit

Γ; Ω ` unbox t p : W2

unbox t w reduces to C

Page 5 of 14 Rennela 13/05/17 Embedding quantum circuits
How to compose circuits

Boxing/Unboxing

C
def
= b X y

a •

t
def
= box (a, b)⇒ C (a, b) : Circ(qubit⊗qubit,qubit)

Γ ` t : Circ(qubit⊗ qubit, qubit) Ω =⇒ p : qubit⊗ qubit

Γ; Ω ` unbox t p : W2

unbox t w reduces to C

Page 5 of 14 Rennela 13/05/17 Embedding quantum circuits
How to compose circuits

Composition of circuits

C1 C2
w1 w2 w3

comp def
= λ(C1,C2). box w1 ⇒(
w2 ← unbox C1w1;w3 ← unbox C2w2; output w3

)
comp : Circ(W1,W2)× Circ(W2,W3)→ Circ(W1,W3)

Wi type of the wire wi for i ∈ {1, 2, 3}

The embedding of the circuit language in the host language is an
instance of enriched category theory

Page 6 of 14 Rennela 13/05/17 Embedding quantum circuits
How to compose circuits

Composition of circuits

C1 C2
w1 w2 w3

comp def
= λ(C1,C2). box w1 ⇒(
w2 ← unbox C1w1;w3 ← unbox C2w2; output w3

)
comp : Circ(W1,W2)× Circ(W2,W3)→ Circ(W1,W3)

Wi type of the wire wi for i ∈ {1, 2, 3}

The embedding of the circuit language in the host language is an
instance of enriched category theory

Page 6 of 14 Rennela 13/05/17 Embedding quantum circuits
How to compose circuits

Composition of circuits

C1 C2
w1 w2 w3

comp def
= λ(C1,C2). box w1 ⇒(
w2 ← unbox C1w1;w3 ← unbox C2w2; output w3

)
comp : Circ(W1,W2)× Circ(W2,W3)→ Circ(W1,W3)

Wi type of the wire wi for i ∈ {1, 2, 3}

The embedding of the circuit language in the host language is an
instance of enriched category theory

Page 6 of 14 Rennela 13/05/17 Embedding quantum circuits
How to compose circuits

Enriched category theory

I H category with finite products ×

I A category C enriched in H is given by a collection of objects
together with
• for each pair of objects A and B in C, an object C(A,B) of H;
• for each object A of C, a morphism 1→ C(A,A) in H;
• for objects A, B, C of C, a morphism

C(A,B)× C(B,C)→ C(A,C) in H
such that composition satisfies the identity and unit laws.

I Example: a locally small category is Set-enriched category.
Max Kelly. Basic concepts of enriched category theory, volume 64. CUP Archive, 1982.

Page 7 of 14 Rennela 13/05/17 Embedding quantum circuits
How to compose circuits

Enriched category theory

I H category with finite products ×

I A category C enriched in H is given by a collection of objects
together with
• for each pair of objects A and B in C, an object C(A,B) of H;
• for each object A of C, a morphism 1→ C(A,A) in H;
• for objects A, B, C of C, a morphism

C(A,B)× C(B,C)→ C(A,C) in H
such that composition satisfies the identity and unit laws.

I Example: a locally small category is Set-enriched category.
Max Kelly. Basic concepts of enriched category theory, volume 64. CUP Archive, 1982.

Page 7 of 14 Rennela 13/05/17 Embedding quantum circuits
How to compose circuits

Enriched category theory

I H category with finite products ×

I A category C enriched in H is given by a collection of objects
together with
• for each pair of objects A and B in C, an object C(A,B) of H;
• for each object A of C, a morphism 1→ C(A,A) in H;
• for objects A, B, C of C, a morphism

C(A,B)× C(B,C)→ C(A,C) in H
such that composition satisfies the identity and unit laws.

I Example: a locally small category is Set-enriched category.
Max Kelly. Basic concepts of enriched category theory, volume 64. CUP Archive, 1982.

Page 7 of 14 Rennela 13/05/17 Embedding quantum circuits
How to compose circuits

Where we are, sofar

Introduction to EWire: a language for embedded circuits

How to compose circuits

How to handle computational effects

How to use classical outcomes of circuits in the host language

Categorical models of EWire

Conclusion

How to flip a fair coin in quantum computing

I Constraint: we work with a linear type system for circuits
I Why? Because it is impossible to create an identical copy of an

arbitrary unknown quantum state!

flip def
= a← gate init0 (); a′ ← gate H a; b ← gate meas a′; output b

Page 8 of 14 Rennela 13/05/17 Embedding quantum circuits
How to handle computational effects

How to flip a fair coin in quantum computing

I Constraint: we work with a linear type system for circuits
I Why? Because it is impossible to create an identical copy of an

arbitrary unknown quantum state!

flip def
= a← gate init0 (); a′ ← gate H a; b ← gate meas a′; output b

Page 8 of 14 Rennela 13/05/17 Embedding quantum circuits
How to handle computational effects

Embedding circuits produce computational effects

flip def
= a← gate init0 (); a′ ← gate H a; b ← gate meas a′; output b

Let’s toss a coin!
` run

(
flip

)
: T (bool)

I Probabilistic computational effects are required.

I Deterministic/pure programs = morphisms in H

I Probabilistic/effectful programs = Kleisli morphisms X → T (Y) in
H

E. Moggi. Computational lambda-calculus and monads. LICS’89.

Page 9 of 14 Rennela 13/05/17 Embedding quantum circuits
How to handle computational effects

Embedding circuits produce computational effects

flip def
= a← gate init0 (); a′ ← gate H a; b ← gate meas a′; output b

Let’s toss a coin!
` run

(
flip

)
: T (bool)

I Probabilistic computational effects are required.

I Deterministic/pure programs = morphisms in H

I Probabilistic/effectful programs = Kleisli morphisms X → T (Y) in
H

E. Moggi. Computational lambda-calculus and monads. LICS’89.

Page 9 of 14 Rennela 13/05/17 Embedding quantum circuits
How to handle computational effects

Embedding circuits produce computational effects

flip def
= a← gate init0 (); a′ ← gate H a; b ← gate meas a′; output b

Let’s toss a coin!
` run

(
flip

)
: T (bool)

I Probabilistic computational effects are required.

I Deterministic/pure programs = morphisms in H

I Probabilistic/effectful programs = Kleisli morphisms X → T (Y) in
H

E. Moggi. Computational lambda-calculus and monads. LICS’89.

Page 9 of 14 Rennela 13/05/17 Embedding quantum circuits
How to handle computational effects

Where we are, sofar

Introduction to EWire: a language for embedded circuits

How to compose circuits

How to handle computational effects

How to use classical outcomes of circuits in the host language

Categorical models of EWire

Conclusion

How to use classical outcomes of circuits
in the host language

I Classical wire types exist in both circuits and host terms.
I Example: bits.

I Lifting : classical wire type 7→ first-order host type
Dynamic lifting allows to use the classical outcomes of

circuits as parameters in the host language

I Copower: generalization of an n-fold coproduct.
I Copower n�A = n fold coproduct A+ · · ·+A (n ∈ N, A ∈ Obj(C)).

To give a morphism n � A→ B
is to give a family of n morphisms A→ B.

I More generally: C(h � A,B) ∼= H(h,C(A,B))
B. Jacobs. On block structures in quantum computation. MFPS’13.

Page 10 of 14 Rennela 13/05/17 Embedding quantum circuits
How to use classical outcomes of circuits in the host language

How to use classical outcomes of circuits
in the host language

I Classical wire types exist in both circuits and host terms.
I Example: bits.

I Lifting : classical wire type 7→ first-order host type
Dynamic lifting allows to use the classical outcomes of

circuits as parameters in the host language

I Copower: generalization of an n-fold coproduct.
I Copower n�A = n fold coproduct A+ · · ·+A (n ∈ N, A ∈ Obj(C)).

To give a morphism n � A→ B
is to give a family of n morphisms A→ B.

I More generally: C(h � A,B) ∼= H(h,C(A,B))
B. Jacobs. On block structures in quantum computation. MFPS’13.

Page 10 of 14 Rennela 13/05/17 Embedding quantum circuits
How to use classical outcomes of circuits in the host language

How to use classical outcomes of circuits
in the host language

I Classical wire types exist in both circuits and host terms.
I Example: bits.

I Lifting : classical wire type 7→ first-order host type
Dynamic lifting allows to use the classical outcomes of

circuits as parameters in the host language

I Copower: generalization of an n-fold coproduct.
I Copower n�A = n fold coproduct A+ · · ·+A (n ∈ N, A ∈ Obj(C)).

To give a morphism n � A→ B
is to give a family of n morphisms A→ B.

I More generally: C(h � A,B) ∼= H(h,C(A,B))
B. Jacobs. On block structures in quantum computation. MFPS’13.

Page 10 of 14 Rennela 13/05/17 Embedding quantum circuits
How to use classical outcomes of circuits in the host language

Where we are, sofar

Introduction to EWire: a language for embedded circuits

How to compose circuits

How to handle computational effects

How to use classical outcomes of circuits in the host language

Categorical models of EWire

Conclusion

Categorical models of EWire

A categorical model of EWire (H,H0,C,T) is given by the following
data:

(1) A cartesian closed category H with a strong monad T on H.

(2) A small full subcategory j : H0 ⊆ H for classical wire types

(3) An H-enriched symmetric monoidal category (C,⊗, I).

(4) C has copowers by the objects of H0, inducing J : H0 → C defined
by J(h) = h � I .

(5) Copower-preserving functor A⊗− : C→ C for every A ∈ Obj(C)

(6) Enriched relative monad morphism runh : C(I , J(h))→ T (j(h))
T. Altenkirch, J. Chapman, and T. Uustalu. Monads need not be endofunctors. FOSSACS’10.

C. Berger, P.-A. Melliès, and Mark Weber. Monads with arities and their associated theories. J. Pure Appl.

Algebra 2012.

Page 11 of 14 Rennela 13/05/17 Embedding quantum circuits
Categorical models of EWire

Categorical models of EWire

A categorical model of EWire (H,H0,C,T) is given by the following
data:
(1) A cartesian closed category H with a strong monad T on H.

(2) A small full subcategory j : H0 ⊆ H for classical wire types

(3) An H-enriched symmetric monoidal category (C,⊗, I).

(4) C has copowers by the objects of H0, inducing J : H0 → C defined
by J(h) = h � I .

(5) Copower-preserving functor A⊗− : C→ C for every A ∈ Obj(C)

(6) Enriched relative monad morphism runh : C(I , J(h))→ T (j(h))
T. Altenkirch, J. Chapman, and T. Uustalu. Monads need not be endofunctors. FOSSACS’10.

C. Berger, P.-A. Melliès, and Mark Weber. Monads with arities and their associated theories. J. Pure Appl.

Algebra 2012.

Page 11 of 14 Rennela 13/05/17 Embedding quantum circuits
Categorical models of EWire

Categorical models of EWire

A categorical model of EWire (H,H0,C,T) is given by the following
data:
(1) A cartesian closed category H with a strong monad T on H.

(2) A small full subcategory j : H0 ⊆ H for classical wire types

(3) An H-enriched symmetric monoidal category (C,⊗, I).

(4) C has copowers by the objects of H0, inducing J : H0 → C defined
by J(h) = h � I .

(5) Copower-preserving functor A⊗− : C→ C for every A ∈ Obj(C)

(6) Enriched relative monad morphism runh : C(I , J(h))→ T (j(h))
T. Altenkirch, J. Chapman, and T. Uustalu. Monads need not be endofunctors. FOSSACS’10.

C. Berger, P.-A. Melliès, and Mark Weber. Monads with arities and their associated theories. J. Pure Appl.

Algebra 2012.

Page 11 of 14 Rennela 13/05/17 Embedding quantum circuits
Categorical models of EWire

Categorical models of EWire

A categorical model of EWire (H,H0,C,T) is given by the following
data:
(1) A cartesian closed category H with a strong monad T on H.

(2) A small full subcategory j : H0 ⊆ H for classical wire types

(3) An H-enriched symmetric monoidal category (C,⊗, I).

(4) C has copowers by the objects of H0, inducing J : H0 → C defined
by J(h) = h � I .

(5) Copower-preserving functor A⊗− : C→ C for every A ∈ Obj(C)

(6) Enriched relative monad morphism runh : C(I , J(h))→ T (j(h))
T. Altenkirch, J. Chapman, and T. Uustalu. Monads need not be endofunctors. FOSSACS’10.

C. Berger, P.-A. Melliès, and Mark Weber. Monads with arities and their associated theories. J. Pure Appl.

Algebra 2012.

Page 11 of 14 Rennela 13/05/17 Embedding quantum circuits
Categorical models of EWire

Categorical models of EWire

A categorical model of EWire (H,H0,C,T) is given by the following
data:
(1) A cartesian closed category H with a strong monad T on H.

(2) A small full subcategory j : H0 ⊆ H for classical wire types

(3) An H-enriched symmetric monoidal category (C,⊗, I).

(4) C has copowers by the objects of H0, inducing J : H0 → C defined
by J(h) = h � I .

(5) Copower-preserving functor A⊗− : C→ C for every A ∈ Obj(C)

(6) Enriched relative monad morphism runh : C(I , J(h))→ T (j(h))
T. Altenkirch, J. Chapman, and T. Uustalu. Monads need not be endofunctors. FOSSACS’10.

C. Berger, P.-A. Melliès, and Mark Weber. Monads with arities and their associated theories. J. Pure Appl.

Algebra 2012.

Page 11 of 14 Rennela 13/05/17 Embedding quantum circuits
Categorical models of EWire

Categorical models of EWire

A categorical model of EWire (H,H0,C,T) is given by the following
data:
(1) A cartesian closed category H with a strong monad T on H.

(2) A small full subcategory j : H0 ⊆ H for classical wire types

(3) An H-enriched symmetric monoidal category (C,⊗, I).

(4) C has copowers by the objects of H0, inducing J : H0 → C defined
by J(h) = h � I .

(5) Copower-preserving functor A⊗− : C→ C for every A ∈ Obj(C)

(6) Enriched relative monad morphism runh : C(I , J(h))→ T (j(h))
T. Altenkirch, J. Chapman, and T. Uustalu. Monads need not be endofunctors. FOSSACS’10.

C. Berger, P.-A. Melliès, and Mark Weber. Monads with arities and their associated theories. J. Pure Appl.

Algebra 2012.

Page 11 of 14 Rennela 13/05/17 Embedding quantum circuits
Categorical models of EWire

Categorical models of EWire

A categorical model of EWire (H,H0,C,T) is given by the following
data:
(1) A cartesian closed category H with a strong monad T on H.

(2) A small full subcategory j : H0 ⊆ H for classical wire types

(3) An H-enriched symmetric monoidal category (C,⊗, I).

(4) C has copowers by the objects of H0, inducing J : H0 → C defined
by J(h) = h � I .

(5) Copower-preserving functor A⊗− : C→ C for every A ∈ Obj(C)

(6) Enriched relative monad morphism runh : C(I , J(h))→ T (j(h))
T. Altenkirch, J. Chapman, and T. Uustalu. Monads need not be endofunctors. FOSSACS’10.

C. Berger, P.-A. Melliès, and Mark Weber. Monads with arities and their associated theories. J. Pure Appl.

Algebra 2012.

Page 11 of 14 Rennela 13/05/17 Embedding quantum circuits
Categorical models of EWire

Example: quantum circuits

I C def
= FdC∗-Algop

CPU: opposite category of the category of
finite-dimensional C*-algebras and completely positive unital maps

I H def
= Set: cartesian closed category of sets and functions

I H0
def
= N: skeleton of the category of finite sets and functions

I T
def
= D : Set→ Set, probability distribution monad

1
def
= C bit

def
= C⊕ C qubit

def
= M2

u
def
= u† − u (for every unitary u ∈ U)

meas : C⊕ C→ M2 : (a, b) 7→ (a 0
0 b)

new : M2 → C⊕ C :
(
a b
c d

)
7→ (a, b)

Page 12 of 14 Rennela 13/05/17 Embedding quantum circuits
Categorical models of EWire

Example: quantum circuits

I C def
= FdC∗-Algop

CPU: opposite category of the category of
finite-dimensional C*-algebras and completely positive unital maps

I H def
= Set: cartesian closed category of sets and functions

I H0
def
= N: skeleton of the category of finite sets and functions

I T
def
= D : Set→ Set, probability distribution monad

1
def
= C bit

def
= C⊕ C qubit

def
= M2

u
def
= u† − u (for every unitary u ∈ U)

meas : C⊕ C→ M2 : (a, b) 7→ (a 0
0 b)

new : M2 → C⊕ C :
(
a b
c d

)
7→ (a, b)

Page 12 of 14 Rennela 13/05/17 Embedding quantum circuits
Categorical models of EWire

Example: quantum circuits

I C def
= FdC∗-Algop

CPU: opposite category of the category of
finite-dimensional C*-algebras and completely positive unital maps

I H def
= Set: cartesian closed category of sets and functions

I H0
def
= N: skeleton of the category of finite sets and functions

I T
def
= D : Set→ Set, probability distribution monad

1
def
= C bit

def
= C⊕ C qubit

def
= M2

u
def
= u† − u (for every unitary u ∈ U)

meas : C⊕ C→ M2 : (a, b) 7→ (a 0
0 b)

new : M2 → C⊕ C :
(
a b
c d

)
7→ (a, b)

Page 12 of 14 Rennela 13/05/17 Embedding quantum circuits
Categorical models of EWire

Example: quantum circuits

I C def
= FdC∗-Algop

CPU: opposite category of the category of
finite-dimensional C*-algebras and completely positive unital maps

I H def
= Set: cartesian closed category of sets and functions

I H0
def
= N: skeleton of the category of finite sets and functions

I T
def
= D : Set→ Set, probability distribution monad

1
def
= C bit

def
= C⊕ C qubit

def
= M2

u
def
= u† − u (for every unitary u ∈ U)

meas : C⊕ C→ M2 : (a, b) 7→ (a 0
0 b)

new : M2 → C⊕ C :
(
a b
c d

)
7→ (a, b)

Page 12 of 14 Rennela 13/05/17 Embedding quantum circuits
Categorical models of EWire

Example: quantum circuits

I C def
= FdC∗-Algop

CPU: opposite category of the category of
finite-dimensional C*-algebras and completely positive unital maps

I H def
= Set: cartesian closed category of sets and functions

I H0
def
= N: skeleton of the category of finite sets and functions

I T
def
= D : Set→ Set, probability distribution monad

1
def
= C bit

def
= C⊕ C qubit

def
= M2

u
def
= u† − u (for every unitary u ∈ U)

meas : C⊕ C→ M2 : (a, b) 7→ (a 0
0 b)

new : M2 → C⊕ C :
(
a b
c d

)
7→ (a, b)

Page 12 of 14 Rennela 13/05/17 Embedding quantum circuits
Categorical models of EWire

Example: ‘generalized quantum circuits’

I Let’s add sums!
e.g. in1 ∈ G(W1,W1 ⊕W2)

I Let’s add recursive types!

foldµX .W ∈ G(W [X 7→ µX .W], µX .W)

unfoldµX .W ∈ G(µX .W ,W [X 7→ µX .W])

I C def
= W∗-Algop

CPSU (‘domain-theoretic’ C*-algebras)

I H def
= Dcpo⊥: pointed dcpos and Scott-continuous maps

I W∗-Algop
CPSU is Dcpo⊥-enriched and can be used to denote

recursive types (via algebraic compactness).
Mathys Rennela. Towards a quantum domain theory. MFPS’13.

I What do we get? A semantics for the Quantum Fourier Transform!

Page 13 of 14 Rennela 13/05/17 Embedding quantum circuits
Categorical models of EWire

Example: ‘generalized quantum circuits’

I Let’s add sums!
e.g. in1 ∈ G(W1,W1 ⊕W2)

I Let’s add recursive types!

foldµX .W ∈ G(W [X 7→ µX .W], µX .W)

unfoldµX .W ∈ G(µX .W ,W [X 7→ µX .W])

I C def
= W∗-Algop

CPSU (‘domain-theoretic’ C*-algebras)

I H def
= Dcpo⊥: pointed dcpos and Scott-continuous maps

I W∗-Algop
CPSU is Dcpo⊥-enriched and can be used to denote

recursive types (via algebraic compactness).
Mathys Rennela. Towards a quantum domain theory. MFPS’13.

I What do we get? A semantics for the Quantum Fourier Transform!

Page 13 of 14 Rennela 13/05/17 Embedding quantum circuits
Categorical models of EWire

Example: ‘generalized quantum circuits’

I Let’s add sums!
e.g. in1 ∈ G(W1,W1 ⊕W2)

I Let’s add recursive types!

foldµX .W ∈ G(W [X 7→ µX .W], µX .W)

unfoldµX .W ∈ G(µX .W ,W [X 7→ µX .W])

I C def
= W∗-Algop

CPSU (‘domain-theoretic’ C*-algebras)

I H def
= Dcpo⊥: pointed dcpos and Scott-continuous maps

I W∗-Algop
CPSU is Dcpo⊥-enriched and can be used to denote

recursive types (via algebraic compactness).
Mathys Rennela. Towards a quantum domain theory. MFPS’13.

I What do we get? A semantics for the Quantum Fourier Transform!

Page 13 of 14 Rennela 13/05/17 Embedding quantum circuits
Categorical models of EWire

Example: ‘generalized quantum circuits’

I Let’s add sums!
e.g. in1 ∈ G(W1,W1 ⊕W2)

I Let’s add recursive types!

foldµX .W ∈ G(W [X 7→ µX .W], µX .W)

unfoldµX .W ∈ G(µX .W ,W [X 7→ µX .W])

I C def
= W∗-Algop

CPSU (‘domain-theoretic’ C*-algebras)

I H def
= Dcpo⊥: pointed dcpos and Scott-continuous maps

I W∗-Algop
CPSU is Dcpo⊥-enriched and can be used to denote

recursive types (via algebraic compactness).
Mathys Rennela. Towards a quantum domain theory. MFPS’13.

I What do we get? A semantics for the Quantum Fourier Transform!

Page 13 of 14 Rennela 13/05/17 Embedding quantum circuits
Categorical models of EWire

Example: ‘generalized quantum circuits’

I Let’s add sums!
e.g. in1 ∈ G(W1,W1 ⊕W2)

I Let’s add recursive types!

foldµX .W ∈ G(W [X 7→ µX .W], µX .W)

unfoldµX .W ∈ G(µX .W ,W [X 7→ µX .W])

I C def
= W∗-Algop

CPSU (‘domain-theoretic’ C*-algebras)

I H def
= Dcpo⊥: pointed dcpos and Scott-continuous maps

I W∗-Algop
CPSU is Dcpo⊥-enriched and can be used to denote

recursive types (via algebraic compactness).
Mathys Rennela. Towards a quantum domain theory. MFPS’13.

I What do we get? A semantics for the Quantum Fourier Transform!

Page 13 of 14 Rennela 13/05/17 Embedding quantum circuits
Categorical models of EWire

Example: ‘generalized quantum circuits’

I Let’s add sums!
e.g. in1 ∈ G(W1,W1 ⊕W2)

I Let’s add recursive types!

foldµX .W ∈ G(W [X 7→ µX .W], µX .W)

unfoldµX .W ∈ G(µX .W ,W [X 7→ µX .W])

I C def
= W∗-Algop

CPSU (‘domain-theoretic’ C*-algebras)

I H def
= Dcpo⊥: pointed dcpos and Scott-continuous maps

I W∗-Algop
CPSU is Dcpo⊥-enriched and can be used to denote

recursive types (via algebraic compactness).
Mathys Rennela. Towards a quantum domain theory. MFPS’13.

I What do we get? A semantics for the Quantum Fourier Transform!

Page 13 of 14 Rennela 13/05/17 Embedding quantum circuits
Categorical models of EWire

Example: ‘generalized quantum circuits’

I Let’s add sums!
e.g. in1 ∈ G(W1,W1 ⊕W2)

I Let’s add recursive types!

foldµX .W ∈ G(W [X 7→ µX .W], µX .W)

unfoldµX .W ∈ G(µX .W ,W [X 7→ µX .W])

I C def
= W∗-Algop

CPSU (‘domain-theoretic’ C*-algebras)

I H def
= Dcpo⊥: pointed dcpos and Scott-continuous maps

I W∗-Algop
CPSU is Dcpo⊥-enriched and can be used to denote

recursive types (via algebraic compactness).
Mathys Rennela. Towards a quantum domain theory. MFPS’13.

I What do we get? A semantics for the Quantum Fourier Transform!

Page 13 of 14 Rennela 13/05/17 Embedding quantum circuits
Categorical models of EWire

Where we are, sofar

Introduction to EWire: a language for embedded circuits

How to compose circuits

How to handle computational effects

How to use classical outcomes of circuits in the host language

Categorical models of EWire

Conclusion

Conclusion

comp : Circ(W1,W2)× Circ(W2,W3)→ Circ(W1,W3) in the host language

◦ : C(W1,W2)× C(W2,W3)→ C(W1,W3) in H

Embedding a first-order language for circuits into a general
purpose host language is an instance of enriched category theory

Next step: Implementation in Agda or Coq, with dependent types.
R. Rand, J. Paykin, S. Zdancewic. QWIRE Practice:Formal Verification of Quantum Circuits in Coq. QPL’17

THANK YOU!

Page 14 of 14 Rennela 13/05/17 Embedding quantum circuits
Conclusion

Conclusion

comp : Circ(W1,W2)× Circ(W2,W3)→ Circ(W1,W3) in the host language

◦ : C(W1,W2)× C(W2,W3)→ C(W1,W3) in H

Embedding a first-order language for circuits into a general
purpose host language is an instance of enriched category theory

Next step: Implementation in Agda or Coq, with dependent types.
R. Rand, J. Paykin, S. Zdancewic. QWIRE Practice:Formal Verification of Quantum Circuits in Coq. QPL’17

THANK YOU!

Page 14 of 14 Rennela 13/05/17 Embedding quantum circuits
Conclusion

Conclusion

comp : Circ(W1,W2)× Circ(W2,W3)→ Circ(W1,W3) in the host language

◦ : C(W1,W2)× C(W2,W3)→ C(W1,W3) in H

Embedding a first-order language for circuits into a general
purpose host language is an instance of enriched category theory

Next step: Implementation in Agda or Coq, with dependent types.
R. Rand, J. Paykin, S. Zdancewic. QWIRE Practice:Formal Verification of Quantum Circuits in Coq. QPL’17

THANK YOU!

Page 14 of 14 Rennela 13/05/17 Embedding quantum circuits
Conclusion

Conclusion

comp : Circ(W1,W2)× Circ(W2,W3)→ Circ(W1,W3) in the host language

◦ : C(W1,W2)× C(W2,W3)→ C(W1,W3) in H

Embedding a first-order language for circuits into a general
purpose host language is an instance of enriched category theory

Next step: Implementation in Agda or Coq, with dependent types.
R. Rand, J. Paykin, S. Zdancewic. QWIRE Practice:Formal Verification of Quantum Circuits in Coq. QPL’17

THANK YOU!
Page 14 of 14 Rennela 13/05/17 Embedding quantum circuits
Conclusion

	Introduction to EWire: a language for embedded circuits
	How to compose circuits
	How to handle computational effects
	How to use classical outcomes of circuits in the host language
	Categorical models of EWire
	Conclusion

