Axiomatizing models of reversible computing

Robin Kaarsgaard (University of Copenhagen) Mathys Rennela (Radboud University) QCLS Seminar
February 1st, 2017

Outline

Reversible computing: What? Why?

Reversible programming primer

Join inverse category theory

Categorical semantics of Rfun

Where we are, sofar

Reversible computing: What? Why?

Reversible programming primer

Join inverse category theory

Categorical semantics of Rfun

What is reversible computing?

- Reversible computing: The study of time invertible computations.
- Deterministic in both forward and backward directions.

- Reversible functions are injective.
- Totality is not required in order to guarantee reversibility.

Why reversible computing?

- Originally motivated by the potential to reduce power consumption of computing processes.
- Landauer's principle: Irreversibility costs energy (Landauer, 1961).
- Plays a role in quantum computing and parallel computing.
- Example of reversible programming language: RFun.

Where we are, sofar

Reversible computing: What? Why?

Reversible programming primer

Join inverse category theory

Categorical semantics of Rfun
iCIS | Digital Security
Radboud University

RFun

$$
\begin{aligned}
& f i b n \triangleq \text { case } n \text { of } \\
& \qquad \begin{aligned}
Z \quad & \rightarrow\langle S(Z), S(Z)\rangle \\
S(m) \rightarrow & \text { let }\langle x, y\rangle=f i b \text { m in }
\end{aligned} \\
& \quad \text { let } z=\text { plus }\langle y, x\rangle \text { in } z
\end{aligned} \quad \begin{aligned}
& \text { plus }\langle x, y\rangle \triangleq \text { case } y \text { of } \\
& Z \quad \rightarrow\lfloor\langle x\rangle\rfloor \\
& S(u) \rightarrow \text { let }\left\langle x^{\prime}, u^{\prime}\right\rangle=\text { plus }\langle x, u\rangle \text { in }\left\langle x^{\prime}, S\left(u^{\prime}\right)\right\rangle
\end{aligned}
$$

- Untyped first-order reversible functional programming language.
- Patterns are linear: All variables defined by a pattern must be used exactly once.
- Results of all function calls must be bound in a let-expression.

RFun: linearity

- Linearity is essential!
- Explicit duplication via the duplication/equality operator $\lfloor\cdot\rfloor$

Invalid

$$
d b l x \triangleq \text { case } x \text { of }
$$

$$
h: t \rightarrow h: h: t
$$

Well-formed
$d b l x \triangleq$ case x of
$h: t \rightarrow$ case $\lfloor\langle h\rangle\rfloor$ of

$$
\left\langle h_{1}, h_{2}\right\rangle \rightarrow h_{1}: h_{2}: t
$$

RFun: Recursion

- Recursion in RFun is based on a call stack, as in irreversible functional programming.
- Recursive functions are inverted by inverting the body of the let, and replacing the recursive call with a call to the inverse.

RFun: More restrictions

- Function and variable identifiers do not belong to the same sort.
- Programs $=$ sequences of (function) definitions.
- Definitions must have (pairwise) distinct functional identifiers.
- In a left expression, a variable must appear exactly once.
- Domains of substitutions are (pairwise) disjoint.
- Theorem [Yokoyama et al.]:

RFun can simulate any reversible Turing machine.

RFun: study of an example

$$
\begin{aligned}
& f i b n \triangleq \text { case } n \text { of } \\
& \qquad \begin{aligned}
Z \quad & \rightarrow\langle S(Z), S(Z)\rangle \\
S(m) & \rightarrow \\
& \text { let }\langle x, y\rangle=f i b m \text { in } \\
& \text { let } z=\text { plus }\langle y, x\rangle \text { in } z
\end{aligned}
\end{aligned}
$$

$$
\text { plus }\langle x, y\rangle \triangleq \text { case } y \text { of }
$$

$$
Z \quad \rightarrow\lfloor\langle x\rangle\rfloor
$$

$$
S(u) \rightarrow \text { let }\left\langle x^{\prime}, u^{\prime}\right\rangle=\text { plus }\langle x, u\rangle \text { in }\left\langle x^{\prime}, S\left(u^{\prime}\right)\right\rangle
$$

$$
f i b^{-1} x_{1} \triangleq \text { case } x_{1} \text { of }
$$

$$
\langle S(Z), S(Z)\rangle \rightarrow Z
$$

$$
x_{2} \quad \rightarrow \operatorname{let}\langle y, x\rangle=\text { plus }^{-1} x_{2} \text { in }
$$

$$
\text { let } m=f i b^{-1}\langle x, y\rangle \text { in }
$$

$$
S(m)
$$

$$
\text { plus }^{-1} z \triangleq \text { case } z \text { of }
$$

$$
\lfloor\langle x\rangle\rfloor \quad \rightarrow\langle x, Z\rangle
$$

$$
\left\langle x^{\prime}, S\left(u^{\prime}\right)\right\rangle \rightarrow \operatorname{let}\langle x, u\rangle=\text { plus }^{-1}\left\langle x^{\prime}, u^{\prime}\right\rangle \text { in }\langle x, S(u)\rangle
$$

Where we are, sofar

Reversible computing: What? Why?

Reversible programming primer

Join inverse category theory

Categorical semantics of Rfun

Inverse categories

- A restriction category is a category where each $f: A \rightarrow B$ has a restriction idempotent $\bar{f}: A \rightarrow A$ (subject to axioms such as $f \circ \bar{f}=f$, and others).
- Partial order enriched; for parallel morphisms f and g,

$$
f \leq g \quad \text { iff } \quad g \circ \bar{f}=f
$$

- Partial isomorphism: A morphism $f: A \rightarrow B$ with a partial inverse $f^{\dagger}: B \rightarrow A$ such that $f^{\dagger} \circ f=\bar{f}$ and $f \circ f^{\dagger}=\overline{f^{\dagger}}$.
- Inverse category: Restriction category with only partial isomorphisms.

Join inverse categories

An inverse category is a join inverse category if it has

- a restriction zero, specifically all zero morphisms $0_{A, B}: A \rightarrow B$,
- a partial operation \bigvee on all compatible subsets of all hom-sets, satisfying

$$
g \leq \bigvee_{f \in F} f \text { if } g \in F, \text { and if } f \leq h \text { for all } f \in F \text { then } \bigvee_{f \in F} f \leq h
$$

and other coherence axioms.
"Join inverse categories = inverse categories with joins of countable homsets'

The bimonoidal structure

In a (symmetric) monoidal \dagger-category, a \dagger-Frobenius semialgebra is a pair $\left(X, \mu_{X}: X \rightarrow X \otimes X\right)$ of an object X and a map μ_{X} such that the diagrams below commute.

Where we are, sofar

Reversible computing: What? Why?
Reversible programming primer
Join inverse category theory
Categorical semantics of Rfun

Denotational semantics

- Left expressions: $I::=x \mid c\left(I_{1}, \ldots, I_{n}\right)$
- \mathcal{S} : denumerable object of symbols
- $T \mathcal{S}$: object of Rfun terms
- Rfun term as nonempty finite tree with values in \mathcal{S}

Categorical models of reversible computing

－A categorical model of reversible computing is a bimonoidal join inverse category（with decidable equality for $T \mathcal{S}$ ）．
－Decidable equality：the equality of two elements is decidable（from a computability－theoretic PoV）．
－Decidable equality for $T \mathcal{S}$ guarantees that there is a map dupeq $_{T \mathcal{S}}: T \mathcal{S} \oplus(T \mathcal{S} \otimes T \mathcal{S}) \rightarrow T \mathcal{S} \oplus(T \mathcal{S} \otimes T \mathcal{S})$ to denote the duplication／equality operator．

