
Axiomatizing models of
reversible computing
Robin Kaarsgaard (University of Copenhagen)
Mathys Rennela (Radboud University)
QCLS Seminar
February 1st, 2017

Page 1 of 14 Rennela 1/2/17 Reversible computing



Outline

Reversible computing: What? Why?

Reversible programming primer

Join inverse category theory

Categorical semantics of Rfun

Page 2 of 14 Rennela 1/2/17 Reversible computing



Where we are, sofar

Reversible computing: What? Why?

Reversible programming primer

Join inverse category theory

Categorical semantics of Rfun



What is reversible computing?

I Reversible computing: The study of time invertible computations.

I Deterministic in both forward and backward directions.

I Reversible functions are injective.

I Totality is not required in order to guarantee reversibility.

Page 3 of 14 Rennela 1/2/17 Reversible computing
Reversible computing: What? Why?



Why reversible computing?

I Originally motivated by the potential to reduce power consumption
of computing processes.

I Landauer’s principle: Irreversibility costs energy (Landauer, 1961).

I Plays a role in quantum computing and parallel computing.

I Example of reversible programming language: RFun.

Page 4 of 14 Rennela 1/2/17 Reversible computing
Reversible computing: What? Why?



Where we are, sofar

Reversible computing: What? Why?

Reversible programming primer

Join inverse category theory

Categorical semantics of Rfun



RFun20 T. Yokoyama, H.B. Axelsen, and R. Glück

fib n ! case n of

Z → ⟨S(Z), S(Z)⟩
S(m) → let ⟨x, y⟩ = fib m in

let z = plus ⟨y, x⟩ in z

(12)

plus ⟨x, y⟩ ! case y of

Z → ⌊⟨x⟩⌋
S(u) → let ⟨x′, u′⟩ = plus ⟨x, u⟩ in ⟨x′, S(u′)⟩

(13)

Fig. 4. Fibonacci-pair function fib and addition plus⟨x, y⟩ = ⟨x, x + y⟩2

Because of the symmetric semantics of case-expressions, we can compute the
increment function from above both forward and backward:

{n !→ Z} ⊢q inc n ↪→ S(Z) (11)

where q is a program which includes the function definition of inc in Eq. 1.
Without the symmetric first-match policy, the value S(Z) could be a consequence
of two different instances of the CaseExp rule because S(Z) matches both of the
underlined left-expressions S(Z) and S(n′′), and we would thus have to search
deeper in the derivation tree to decide which was the right instance. However,
the policy ensures that inverse interpretation is locally deterministic and, in this
example, selects the first branch and never the second.

If a function terminates with an output for a given input, inverse computation
of the function terminates for that output and returns the original input, and
vice versa.

Example program. Given a number n, the Fibonacci-pair function [9] com-
putes a tuple containing the (n + 1)-th and (n + 2)-th Fibonacci number. The
functions fib and plus are defined for Peano numbers in Fig. 4. Note the use of
the ⌊·⌋-operator on the right-hand side of the first branch of plus to duplicate
x in forward computation and to check equality of a pair of values in backward
computation. We can relate numbers to the corresponding Fibonacci pairs via
an expression judgment. For example, for the second pair we have:

{n !→ S(S(Z))} ⊢q fib n ↪→ ⟨S(S(Z)), S(S(S(Z)))⟩ (14)

2.4 Reversibility and Semantics

In this section, we show in what sense the functional language defined above
is reversible. We first examine the matching operation (left-expression judg-
ments) and then continue with the rules of the operational semantics (expression
judgments).

2 For simplicity, x + y represents the Peano number for the sum of x and y.

I Untyped first-order reversible functional programming language.

I Patterns are linear: All variables defined by a pattern must be used
exactly once.

I Results of all function calls must be bound in a let-expression.

Page 5 of 14 Rennela 1/2/17 Reversible computing
Reversible programming primer



RFun: linearity

I Linearity is essential!

I Explicit duplication via the duplication/equality operator b·c

Page 6 of 14 Rennela 1/2/17 Reversible computing
Reversible programming primer



RFun: Recursion

I Recursion in RFun is based on a call stack, as in irreversible
functional programming.

I Recursive functions are inverted by inverting the body of the let,
and replacing the recursive call with a call to the inverse.

Page 7 of 14 Rennela 1/2/17 Reversible computing
Reversible programming primer



RFun: More restrictions

I Function and variable identifiers do not belong to the same sort.

I Programs = sequences of (function) definitions.

I Definitions must have (pairwise) distinct functional identifiers.

I In a left expression, a variable must appear exactly once.

I Domains of substitutions are (pairwise) disjoint.

I Theorem [Yokoyama et al.]:

RFun can simulate any reversible Turing machine.

Page 8 of 14 Rennela 1/2/17 Reversible computing
Reversible programming primer



RFun: study of an example20 T. Yokoyama, H.B. Axelsen, and R. Glück

fib n ! case n of

Z → ⟨S(Z), S(Z)⟩
S(m) → let ⟨x, y⟩ = fib m in

let z = plus ⟨y, x⟩ in z

(12)

plus ⟨x, y⟩ ! case y of

Z → ⌊⟨x⟩⌋
S(u) → let ⟨x′, u′⟩ = plus ⟨x, u⟩ in ⟨x′, S(u′)⟩

(13)

Fig. 4. Fibonacci-pair function fib and addition plus⟨x, y⟩ = ⟨x, x + y⟩2

Because of the symmetric semantics of case-expressions, we can compute the
increment function from above both forward and backward:

{n !→ Z} ⊢q inc n ↪→ S(Z) (11)

where q is a program which includes the function definition of inc in Eq. 1.
Without the symmetric first-match policy, the value S(Z) could be a consequence
of two different instances of the CaseExp rule because S(Z) matches both of the
underlined left-expressions S(Z) and S(n′′), and we would thus have to search
deeper in the derivation tree to decide which was the right instance. However,
the policy ensures that inverse interpretation is locally deterministic and, in this
example, selects the first branch and never the second.

If a function terminates with an output for a given input, inverse computation
of the function terminates for that output and returns the original input, and
vice versa.

Example program. Given a number n, the Fibonacci-pair function [9] com-
putes a tuple containing the (n + 1)-th and (n + 2)-th Fibonacci number. The
functions fib and plus are defined for Peano numbers in Fig. 4. Note the use of
the ⌊·⌋-operator on the right-hand side of the first branch of plus to duplicate
x in forward computation and to check equality of a pair of values in backward
computation. We can relate numbers to the corresponding Fibonacci pairs via
an expression judgment. For example, for the second pair we have:

{n !→ S(S(Z))} ⊢q fib n ↪→ ⟨S(S(Z)), S(S(S(Z)))⟩ (14)

2.4 Reversibility and Semantics

In this section, we show in what sense the functional language defined above
is reversible. We first examine the matching operation (left-expression judg-
ments) and then continue with the rules of the operational semantics (expression
judgments).

2 For simplicity, x + y represents the Peano number for the sum of x and y.

Page 9 of 14 Rennela 1/2/17 Reversible computing
Reversible programming primer



Where we are, sofar

Reversible computing: What? Why?

Reversible programming primer

Join inverse category theory

Categorical semantics of Rfun



Inverse categories

I A restriction category is a category where each f : A→ B has a
restriction idempotent f : A→ A (subject to axioms such as
f ◦ f = f , and others).

I Partial order enriched; for parallel morphisms f and g ,

f ≤ g iff g ◦ f = f

I Partial isomorphism: A morphism f : A→ B with a partial inverse
f † : B → A such that f † ◦ f = f and f ◦ f † = f †.

I Inverse category: Restriction category with only partial isomorphisms.

Page 10 of 14 Rennela 1/2/17 Reversible computing
Join inverse category theory



Join inverse categories

An inverse category is a join inverse category if it has

I a restriction zero, specifically all zero morphisms 0A,B : A→ B,

I a partial operation
∨

on all compatible subsets of all hom-sets,
satisfying

g ≤
∨
f∈F

f if g ∈ F , and if f ≤ h for all f ∈ F then
∨
f∈F

f ≤ h

and other coherence axioms.

‘‘Join inverse categories = inverse categories
with joins of countable homsets”

Page 11 of 14 Rennela 1/2/17 Reversible computing
Join inverse category theory



The bimonoidal structure

In a (symmetric) monoidal †-category, a †-Frobenius semialgebra is a pair
(X , µX : X → X ⊗ X ) of an object X and a map µX such that the
diagrams below commute.

X ⊗ (X ⊗ X ) (X ⊗ X )⊗ X

X ⊗ X X ⊗ X

X

α

X ⊗ µX µX ⊗ X

µX µX

X

X ⊗ X

X ⊗ X

X ⊗ (X ⊗ X )

(X ⊗ X )⊗ X

µ†X
µX

α ◦ (µX ⊗ X )

α−1 ◦ (X ⊗ µX ) X ⊗ µ†X

µ†X ⊗ X

Page 12 of 14 Rennela 1/2/17 Reversible computing
Join inverse category theory



Where we are, sofar

Reversible computing: What? Why?

Reversible programming primer

Join inverse category theory

Categorical semantics of Rfun



Denotational semantics

I Left expressions: l ::= x | c(l1, . . . , ln)

I S: denumerable object of symbols

I TS: object of Rfun terms

I Rfun term as nonempty finite tree with values in S

Page 13 of 14 Rennela 1/2/17 Reversible computing
Categorical semantics of Rfun



Categorical models of reversible computing

I A categorical model of reversible computing is a bimonoidal join
inverse category (with decidable equality for TS).

I Decidable equality: the equality of two elements is decidable (from a
computability-theoretic PoV).

I Decidable equality for TS guarantees that there is a map
dupeqTS : TS ⊕ (TS ⊗ TS)→ TS ⊕ (TS ⊗ TS) to denote the
duplication/equality operator.

Page 14 of 14 Rennela 1/2/17 Reversible computing
Categorical semantics of Rfun


	Reversible computing: What? Why?
	Reversible programming primer
	Join inverse category theory
	Categorical semantics of Rfun

