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Abstract

The assessment of a probability distribution associated with a Bayesian network is a challenging task, even if its topology is sparse. Special

probability distributions based on the notion of causal independence have therefore been proposed, as these allow defining a probability

distribution in terms of Boolean combinations of local distributions. However, for very large networks even this approach becomes

infeasible: in Bayesian networks which need to model a large number of interactions among causal mechanisms, such as in fields like

genetics or immunology, it is necessary to further reduce the number of parameters that need to be assessed. In this paper, we propose using

equivalence classes of binomial distributions as a means to define very large Bayesian networks. We analyse the behaviours obtained by

using different symmetric Boolean functions with these probability distributions as a means to model joint interactions. Some surprisingly

complicated behaviours are obtained in this fashion, and their intuitive basis is examined.

q 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Bayesian networks offer an appealing language with

associated set of tools for building models of domains with

inherent uncertainty. However, a significant bottleneck in

constructing Bayesian networks, whether done manually or

by learning from data, is the size of their underlying

probability tables. Even though adopting a sound design

methodology may render the resulting graph representation

of the Bayesian network relatively sparse, typically, real-

world Bayesian networks include some probability tables

which are really large. There are several proposals in the

literature which may help reducing the size of the tables.

One of the more systematic ways to cope with large

probability tables is offered by the theory of causal

independence; it allows decomposing a probability distri-

bution in terms of Boolean interactions among local

parameters.
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As a consequence of the success of Bayesian networks in

solving realistic problems, increasingly complicated situ-

ations are being tackled. We are in particular interested in

the modelling of biomedical knowledge, for example in

fields such as genetics and immunology; in these fields

hundreds to thousands of interactions between variables

may need to be captured in a probabilistic model. Clearly,

such models cannot be handled without exploiting

(potentially hypothetical) knowledge about underlying

causal mechanisms and associated simplifying assumptions.

The aim of the present work was to develop a theory on

top of the theory of causal independence which allows

defining interactions between a huge number of causal

factors. This is done by assuming that the parameters in

terms of which the probability distribution is defined are

members of an equivalence class. We apply symmetric

Boolean functions to combine first the causal factors inside

an equivalence class and subsequently the effects of the

equivalence classes. The probabilistic behaviour obtained in

this fashion is analysed in detail.

The practical significance of such an analysis becomes

clear if one realises that many practical Bayesian network

models use causal independence assumptions. A well-

known example is the probabilistic reformulation of the

Quick Medical Reference (QMR), called QMR-DT, a very
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large diagnostic knowledge-based system in the area of

internal medicine, in which causal independence was used

to manage the complexity of the underlying Bayesian

network model [7].

The remainder of this paper is organised as follows. In

the following section, the basic properties of Bayesian

networks, Boolean functions, and the notion of causal

independence are introduced. A mathematical analysis of

the behaviour of various models is given in Sections 3 and 4.

The paper is rounded off by a summary of what has been

achieved and by plans for future research.
2. Preliminaries
Fig. 2. Example Bayesian network, modelling the interaction among

cancer, chemotherapy and survival.

Fig. 1. Example Bayesian network, modelling the interaction between the

antimicrobial agents penicillin and chlortetracyclin on infection.
2.1. Bayesian networks and causal modelling

A Bayesian network BZ(G,Pr) represents a factorised

joint probability distribution on a set of variables V. It

consists of two parts: (1) a qualitative part, represented as an

acyclic directed graph (ADG) GZ(V(G), A(G)), whose

vertices V(G) correspond to the random variables in V, and

arcs A(G) represent the conditional (in)dependencies

between the variables; (2) a quantitative part Pr consisting

of local probability distributions Pr(Vjp(V)), for each vertex

V2V(G) given its parents p(V). The joint probability

distribution Pr is factorised according to the structure of the

graph, as follows:

PrðVðGÞÞ Z
Y

V2VðGÞ

PrðVjpðVÞÞ:

Each variable V2V has a finite set of mutually exclusive

states. In this paper, we assume all variables to be binary; as

an abbreviation, we will often use y to denote VZu(true)

and �v to denote VZt(false). Variables V can either act as

free variables, in which case their binding is arbitrary, or

they can act as bound variables, where bindings are

established by associated operators. Furthermore, an

expression such asX
jðI1;.;InÞZe

gðI1;.; InÞ

stands for summing over all possible values of g(I1,.,In) for

all possible values of the variables Ik for which the

constraint j(I1,.,In)Ze holds.

Even though it is acknowledged by researchers that

Bayesian networks are excellent tools for the modelling of

uncertain causal mechanisms, the question remains in what

way different causal mechanisms can be best modelled. Let

us look at two real-world examples, which provide

motivation for the approach developed in this paper.

Consider the interaction between bactericidal antimicro-

bial agents, i.e. drugs that kill bacteria by interference with

their metabolism, resulting, for example, in fragile cell

walls, and bacteriostatic antimicrobial agents, i.e. drugs that
inhibit the multiplication of bacteria, for example by

suppressing the production of necessary proteins. Penicillin

is an example of a bactericidal drug, whereas chlortetracy-

clin is an example of a bacteriostatic drug. It is well known

among medical doctors that the interaction between

bactericidal and bacteriostatic drugs can have antagonistic

effects; e.g. the drug combination penicillin and chlorte-

tracyclin may have as little effect against an infection as

prescribing no antimicrobial agent at all, even if the bacteria

are susceptible to each of these drugs. The depiction of the

causal interaction of the relevant variables is shown in

Fig. 1.

As a second example, consider the administration of

chemotherapy to patients. If a patient has cancer,

chemotherapy increases the chances of survival; however,

if the patient does not have cancer, chemotherapy reduces

the chances of survival. Clearly, the causal interaction

between chemotherapy, cancer and survival has some

underlying logic. This is shown schematically in Fig. 2.



Fig. 3. Causal independence model.
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Although the Bayesian networks shown in Figs. 1 and 2

have a very similar structure, their underlying interaction

semantics is very different as we will see.
Table 1

The truth tables for the n-ary symmetric Boolean functions; here we have

that kZ
Pn

jZ1 nðIjÞ, with n(Ij) equal to 1 if Ij is equal to true and 0 otherwise

I1n/nIn I1o/oIn I15/5In I14/4In

kR1 kZn odd(k) even(nKk)
2.2. Probabilistic representation

Causal independence [9], also called noisy functional

dependence [5], is a popular way to specify interactions

among cause variables. The global structure of a causal

independence model is shown in Fig. 3; it expresses the idea

that causes C1,.,Cn influence a given common effect E

through intermediate variables I1,.,In and a deterministic

function f, called the interaction function. The impact of

each cause Ck on the common effect E is independent of

each other cause Cj, jsk. The function f represents in which

way the intermediate effects Ik, and indirectly also the

causes Ck, interact to yield the final effect E. Hence, the

function f is defined in such a way that when a relationship,

as modelled by the function f, between Ik, kZ1,.,n, and

EZu is satisfied, then it holds that eZf(I1,.,In). It is

assumed that Pr(ejI1,.,In)Z1 if f(I1,.,In)Ze, and

Pr(ejI1,.,In)Z0 if f Z ðI1;.; InÞZ �e.

The conditional probability of the occurrence of the

effect E given the causes C1,.,Cn, i.e. Pr(ejC1,.,Cn), can

be obtained from the conditional probabilities Pr(IkjCk) as

follows [6,9]:

PrðejC1;.;CnÞ Z
X

f ðI1;.;InÞZe

Yn

kZ1

PrðIkjCkÞ: (1)

It is assumed that absent causes do not contribute to the

effect, i.e. Prðikj �ckÞZ0.

An important subclass of causal independence models is

formed by models in which the deterministic function f can

be defined in terms of separate binary functions gk, also

denoted by gk(Ik, IkC1). Such causal independence models

have been called decomposable causal independence

models [4]; these models are of significant practical

importance. Usually, all functions gk(Ik, IkC1) are identical

for each k; a function gk(Ik, IkC1) may therefore be simply

denoted by g(I, I 0).

Well-known examples of causal independence models

are the noisy-OR and noisy-AND models, where the

function f represents a logical OR and a logical AND

function, respectively [1].
2.3. Symmetric Boolean functions

The function f in Eq. (1) is actually a Boolean function.

However, there are 22n

different n-ary Boolean functions

[2,8]. Consequently, the potential number of causal

interaction models is huge. However, in the case of causal

independence it is usually assumed that the function f is

decomposable to identical, binary functions. In addition, it

is attractive to assume that the order of the cause variables

does not matter; thus, it makes sense to restrict causal

independence models to symmetric Boolean functions,

where the order of arguments is irrelevant [8].

There are eight symmetric binary Boolean functions, of

which six commutative and associative, which we will take

as a basis for defining Boolean functions of n arguments [6].

The advantage of this choice is that the order of arguments is

irrelevant, as for any symmetric Boolean function, and that

the resulting functions are also decomposable. Logical truth

and falsity are constants, and act as the global extremes in a

partial order among Boolean functions. As such they give

rise to trivial causal independence models. The remaining

four causal independence models are defined in terms of the

logical OR, AND, XOR and bi-implication.

We use * to denote a commutative, associative binary

operator. A Boolean function can then also be expressed as

an expression: f*(I1,.,In)ZI1*/*In. Table 1 gives the truth

tables for the n-nary Boolean functions of interest. From

now one, the following notation is adopted: n(OR),

o(AND), 5(exclusive OR), 4(bi-implication).

We return to our example Bayesian-network models

shown in Figs. 1 and 2. The interaction between penicillin

and chlortetracyclin as depicted in Fig. 1 can be described

by means of an exclusive OR, 5, as presence of either of

these in the patient’s body tissues leads to a decrease in

bacterial growth, whereas if both are present or absent, there

will be little or no effect on bacterial growth. The interaction

between cancer and chemotherapy as shown in Fig. 2 can be

described by means of a bi-implication, 4, as chances of

survival are large in the case of cancer if it is being treated

by chemotherapeutics, and also in the absence of cancer

without treatment.
2.4. Symmetric causal independence models

Recall that the function fn(I1,.,In) yields the value true

if there is at least one variable Ij with the value true.

Therefore, the probability distribution for the OR causal
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independence model is defined as follows:

PrnðejC1;.;CnÞ Z 1 K 1 K
X

I1n/nIn

Yn

kZ1

PrðIkjCkÞ

 !

Z 1 K
Yn

kZ1

Prð�ıkjCkÞ: (2)

The probability distribution for the AND causal

independence model is defined similarly:

ProðejC1;.;CnÞ Z
Yn

kZ1

PrðikjCkÞ: (3)

The function f5(I1,.,In) yields the value true if there are

an odd number of variables Ij with the value true. Therefore,

in order to determine the probability of the effect variable E,

Pr(ejC1,.,Cn), the probabilities for all cause variable

combinations with an odd number of present causes have

to be added. We have:

Pr5ðejC1;.;CnÞ Z
X

I15//5In

Yn

kZ1

PrðIkjCkÞ

Z Prð�i1jC1Þ/Prð�injCnÞ
X

1%k%n
oddðkÞ

X
j

PrðijjCjÞ

Prð�ijjCjÞ

 !k

Z Prð�i1jC1Þ/Prð�injCnÞ
X

1%k%n

oddðkÞ

XnKkC1

j1Z1

.
XnKkCt

jtZjtK1C1

.

0
BB@

Xn

jkZjkK1C1

Prðij1 jCj1
Þ

Prð�ij1 jCj1
Þ
/

Prðijk jCjk
Þ

Prð�ijk jCjk
Þ

1
CA: ð4Þ

The function f4(I1,.,In) gives the value true if there are

an even number of variables Ij with the value false. Thus, to

determine Pr(ejC1,.,Cn) the probabilities for all cause

variable combinations with an even number of absent causes

have to be added:

Pr4ðejC1;.;CnÞ Z
X

I14/4In

Yn

kZ1

PrðIkjCkÞ

Z Prði1jC1Þ/PrðinjCnÞ 1 C
X

1%k%n

evenðkÞ

X
j

Prð�ijjCjÞ

PrðijjCjÞ

 !k

0
BB@

1
CCA

Z Prði1jC1Þ/PrðinjCnÞ 1 C
X

1%k%n

evenðkÞ

XnKkC1

j1Z1

.
XnKkCt

jtZjtK1C1

.

0
BB@

Xn

jkZjkK1C1

Prð�ij1
jCj1

Þ

Prðij1 jCj1
Þ

.
Prð�ijk

jCjk
Þ

Prðijk
jCjk

Þ

1
CA: ð5Þ
The following proposition establishes the relationship

between the probability distribution obtained when taking

the XOR and the bi-implication, respectively, as a basis for

a causal interaction model (the proofs can be found in

Appendix A):

Proposition 1. Pr5(ejC1,.,Cn)ZPr4(ejC1,.,Cn), for

odd(n), and Pr5ðejC1;.;CnÞZPr4ð �ejC1;.;CnÞ, for

even(n).

The XOR and bi-implication causal interaction models

are very sensitive to changes in the probabilities of the cause

variables. If at least one cause variable is equally likely to be

absent or present, the probability of the effect variable E is

also equally likely to be absent or present, as is shown in the

following proposition:

Proposition 2. Let XOR and bi-implication be the Boolean

functions of two causal independence models. If at least one

cause variable is equally likely to be present or absent, i.e.

PrðikjCkÞZPrð�ıkjCkÞ, the probabilities of the effect E to be

present or absent are also equal:

Pr�ðejC1;.;CnÞ Z Pr�ð �ejC1;.;CnÞ Z
1

2

where *2{5,4}.

The proposition indicates that the probability for one

cause variable can completely dominate the probability of

the effect variable E. However, the situation changes if this

particular cause variable is instantiated. This property is

invalid for OR and AND causal interaction models: in these

models one cause variable cannot completely dominate the

probability distribution for the effect variable E.
3. Grouping probabilistic information

Even if we use the theory of causal independence as a

tool to simplify estimating a conditional probability

distributions Pr(EjC1,.,Cn) if n is very large, the entire

process becomes rapidly infeasible. However, the larger n

becomes, the more likely it becomes that parameters

Pr(IkjCk) of a causal independence model become arbitrary

close to each other. Hence, one way to simplify the

estimation of the probability distribution is to group

parameters in particular equivalence classes, and to assume

that the class representative Pr(IkjCk) follows a particular

statistical law. In the remainder of the paper, we study the

various probability distributions that are obtained in this

fashion. In the case of a Bayesian network with discrete

variables, taking the binomial distribution as a basis for

estimation purposes seems to offer a good starting point.

3.1. The binomial distribution

The binomial distribution is one of the most commonly

used discrete probability distributions. In an experiment
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which follows a binomial distribution, trials are independent

and identical, with possible outcomes ‘success’ and

‘failure’, and with a probability of success that is constant.

The probability distributions of a causal independence

model can be interpreted as representing a sequence of

results of an experiment of n identical trials, where n is

equal to the number of cause variables. From the definition

above we can see that cause variables can be treated as trials

of an experiment satisfying the requirements of a binomial

distribution, as the number of cause variables n is known in

advance, all cause variables have two states, are indepen-

dent, and the probability of occurrence of each cause is the

same.
3.2. Equivalence classes of binomial distributions

We organise the intermediate variables I1,.,In and their

associated variables C1,.,Cn by their influence on the

common effect E, in accordance to the increasing order of

the associated probabilistic parameters Pr(IkjCk). Next, we

choose a small positive number 32RC, which determines

how much the probabilities may vary inside an equivalence

class. An intermediate variable Ik belongs to the tth

equivalence class if its probability of success Pr(ikjCk)

falls into the interval [2(tK1)3,2t3). The number of

equivalence classes is equal to rZ 1
2

3. Further, we assume

that all intermediate variables from the same equivalence

class have the same probability of success Pr(itjCt) and

apply the concepts of the binomial distribution to estimate

the probability distribution of the tth equivalence class

X
Imt

�/�ImtCntK1

YmtCntK1

kZmt

PrðIkjCkÞ;

where Cmt
;.;CmtCntK1 are the cause variables that belong

to the tth equivalence class, mt and nt respectively are the

index of the first variable and the number of variables in the

equivalence class where
Pr

kZ1 nk Zn. In this paper we

assume the class representative to be Pr(itjCt)Z(2tK1)3;

however, there are other possible ways to define the

probability of success inside an equivalence class, e.g.

PrðitjCtÞ Z
1

nt

XmtCntK1

kZmt

PrðikjCkÞ:

To determine the probability distribution of the effect

variable E based on the probability distributions of

contributing equivalence classes, exactly the same combin-

ing functions are employed as when combining single

probability distributions Pr(IkjCk) associated with cause

variables Ck.

Dependent on the Boolean function employed, the

probability distribution inside an equivalence class is then

determined by one of the following equations:

PrnðejC1;.;CnÞ Z 1 KPrð�ıtjCtÞ
n (6)
ProðejC1;.;CnÞ Z PrðitjCtÞ
n (7)

Pr5ðejC1;.;CnÞ Z
X

1%k%n

oddðkÞ

n

k

 !
PrðitjCtÞ

kPrð�ıtjCtÞ
nKk (8)

Pr4ðejC1;.;CnÞ Z
X

0%k%n

evenðkÞ

n

k

 !
Prð�ıtjCtÞ

kPrðitjCtÞ
nKk (9)
4. Analysis of probabilistic behaviour

In this section, we study the properties of the causal

independence models introduced above, and in particular

we examine patterns in the resulting probability distribution

as a function of the number of contributing causes. This will

give us insight into the global probabilistic characteristics of

large causal independence models.

Section 3 mentioned a scheme to combine the effects of

the individual equivalence classes. Here it is therefore

permitted to restrict the mathematical analysis to one

equivalence class of binomial distributions only as the

analysis for the other equivalence classes is identical. The

basis of the analysis is provided by the mathematical theory

of sequences and series.

Let S�
1 ; S

�
2 ;. be a sequence, abbreviated to hS�

n i;

throughout this section, a member S�
n of this sequence

represents a sum of products of probability distribution in an

equivalence class of binomial distributions, i.e.:

S�
n Z

X
I1�/�In

Yn

tZ1

PrðItjCtÞ:

We assume the probability Pr(itjCt) to be constant, i.e.

pZPr(itjCt).

In our treatment we combine various causal indepen-

dence models based on similarity in behaviour. For

example, the OR and AND causal independence models

possess similar behaviours, which in most cases appear to be

each other opposites. Analogous remarks can be made for

the two other types of causal independence models. The

following propositions show that OR and AND causal

independence models yield first-order behaviour, which is

monotonic for any probability p with the exception of the

bounds p2{0,1}.

Proposition 3. Let hS�
n i be a sequence as defined above. For

each member S�
n of the sequence it holds that:

† if p2(0,1) then

— S�
n 2½p; 1Þ for *Zn, and

— S�
n 2ð0; p	 for *Zo.
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Fig. 4. The patterns of the OR causal independence model.
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† otherwise, if p2{0,1} then S�
n Zp for both *Zn and

*Zo.

Proposition 4. If p2(0,1) then a sequence hS�
n i is

† strictly monotonically increasing for *Zn, and

† strictly monotonically decreasing for *Zo.

It appears that the sequences converge to one of their

bounds. As we try to understand the behaviour of large

causal independence models, the rate of convergence is

clearly also relevant. The first derivative of the function F,

used to generate the sequence S�
nC1ZFðS�

n Þ, can serve as a

basis for this. If *Zn then FðS�
n ÞZ1K ð1KpÞS�

n ; thus

the larger the value of p, the faster the sequence

converges to 1. If *Zo then FðS�
n ÞZpS�

n ; thus the

smaller the value of p, the faster the sequence converges

to 0. Figs. 4 and 5 illustrate the results above by means of

plots.

So far the study of the OR and AND causal models;

the nature of the monotonic behaviour revealed by
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Fig. 5. The patterns of the AND causal independence model.
the propositions above and the associated plots are

presumably consistent with the expectations of the reader.

However, the study of the properties of the causal

independence models with XOR and bi-implication inter-

actions revealed surprisingly complicated behaviours. In

addition to the expected bounds of 0 and 1, the sequences

have an additional bound at 1
2
.

Proposition 5. Let hS�
n i be a sequence as defined above. For

each member S�
n of the sequence it holds that:

† if p2½0; 1
2
Þ then

— S�
n 2½p; 1

2
Þ for *Z5, and

— S�
n 2½p; 1

2
Þg ð1

2
; p2C ð1KpÞ2	 for *Z4.

† otherwise, if p2ð1
2
; 1	 then

— S�
n 2½2pð1KpÞ; 1

2
Þg ð1

2
; p	 for *Z5, and

— S�
n 2ð1

2
; p	 for *Z4.

Proof. (Sketch) As the proof is by induction, we express

S5
nC1 in terms of S5

n. Using the theory of binomial

coefficients it follows that

S5
nC1 Z

X
1%k%nC1;oddðkÞ

n C1

k

 !
pkð1 KpÞnC1Kk

Z ð1 KpÞS5
n Cpð1 KS5

nÞ Z S5
nð1 K2pÞCp (10)

We have used the fact that

1 KS5
n Z

X
0%k%n;evenðkÞ

n

k

 !
pkð1 KpÞnKk

In a similar way, we obtain the results for the bi-

implication:

S 4
nC1 Z S 4

n ð2p K1ÞC1 Kp (11)

,

Proposition 6. A sequence hS�
n i is

† strictly monotonically increasing if p2(0,1
2
) and *Z

5,

† strictly monotonically decreasing if p2(1
2
,1) and *Z

4,

† constant S�
n Zp if

— p2{0,1
2
} and *Z5,

— p2{1
2
,1} and *Z4,

† non-monotonic if

— p2(1
2
,1] and *Z5

— p2[0,1
2
) and *Z4.

The propositions above yield insight into the behaviour

of the sequences but raise questions about the behaviour

non-monotonic sequences will show, i.e. when p2(1
2
,1],

*Z5, and p2[0,1
2
), *Z4. Let the sequence hS�

n i be

divided into two sequences: S�
1 ; S

�
3 ;., denoted by hS�

oddðnÞi,

and S�
2 ; S

�
4 ;., denoted by hS�

evenðnÞi. We have the following

proposition:
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Proposition 7. Let hS�
oddðnÞi and hS�

evenðnÞi be sequences as

defined above. For each member of the sequences it holds

that:

† if *Z5 and p2(1
2
,1] then

— S�
oddðnÞ 2ð1

2
; p	,

— S�
evenðnÞ 2½2pð1KpÞ; 1

2
Þ,

† if *Z4 and p2[0,1
2
) then

— S�
oddðnÞ 2½p; 1

2
Þ,

— S�
evenðnÞ2, ð1

2
; p2C ð1KpÞ2	.

Proposition 8. Let hS�
oddðnÞi and hS�

evenðnÞi be sequences as

defined above. Then it holds that:

† if p2(1
2
,1] and *Z5

— hS�
oddðnÞi is strictly monotonically decreasing

— hS�
evenðnÞi is strictly monotonically increasing

† if p2[0,1
2
) and *Z4

— hS�
oddðnÞi is strictly monotonically increasing

— hS�
evenðnÞi is strictly monotonically decreasing
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Fig. 7. The patterns of the bi-implication causal independence model.
From the propositions above we conclude that despite

their complicated behaviours, the sequences converge to 1
2
.

Once again we will employ the first derivative of the

function F, with S�
nC1ZFðS�

n Þ, to determine the conver-

gence rate. From the previous results (10) and (11) we know

that FðS�
n ÞZ ð1K2pÞS�

n Cp if *Z5 and FðS�
n ÞZS�

n ð2pK
1ÞC1Kp if *Z4. As F 0ðS�

n ÞZ j1K2pj for *2{5, 4}

the rate of convergence depends on the value of p; the closer

the value of p is to 1
2
, the faster the sequence converges to 1

2
.

Figs. 6 and 7 illustrate this behaviour.
5. Discussion

In this paper, we addressed the problem of probability

distribution estimation in very large Bayesian networks.

Quite naturally, the theory of causal independence served

as a starting point for such networks. As was argued,

even if resorting to this theory, it quickly becomes infeasible

to assess probability distributions for such networks.

Our solution was to group local probability distributions

into equivalence classes using probability intervals, and

to use a suitably defined probability distribution as a basis

for assessment.

The basic tools used for probability estimation were

symmetric Boolean functions, which appeared to offer a

natural choice as they provide a logical description of

interactions between cause variables where the order

between variables does not matter, and the binomial

distribution, which is a standard choice in discrete

probability distributions. As far as we know, this is the

first paper offering a systematic analysis of the global

probabilistic patterns that occur in large Bayesian networks

based on the theory of causal independence. As was shown,

these types of Bayesian networks reveal surprisingly rich

probabilistic patterns.

Even though the results achieved in this paper are

theoretical, it should be stressed that the theory of causal

independence is being used in practice in building Bayesian

networks. The theory developed in this paper can be used as

a basis for the construction of very large Bayesian networks,

for example, in fields such as medicine, in particular internal

medicine, and genetics. Although Bayesian networks have

been explored in the early 1990s such fields as part of

research projects, it is only now that Bayesian networks are

being adopted as tools for solving biomedical problems [3].

The theory developed in this paper could enhance the

practical usefulness of the formalism.
Appendix

Proof of proposition 1. The truth table for the function

f4(I1,.,In) can be reframed depending on the value of n:
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† if n is odd then even(nKk)0odd(k),

† if n is even then even(nKk)0even(k),

with kZ0,.,n.

Therefore, we see that Pr5(ejC1,.,Cn)ZPr4(ejC1,.,

Cn), for odd(n). If n is even we sum up the probabilities of

the remaining combinations of cause variables, i.e. all the

probabilities that are not included in the estimation of

Pr5(ejC1,.,Cn); thus it holds that Pr4ðejC1;.;CnÞZ1K
Pr5ðejC1;.; CnÞZPr5ð �ejC1;.;CnÞ. ,

Proof of proposition 2. Without loss of generality, let us

assume that the variable Ij has the same probability of being

present or absent, i.e. PrðijjCjÞZPrð�ıjjCjÞ. As the function

f*(I1,.In), with * denoting a commutative, associative

operator, is decomposable it follows that:

Pr5ðejC1;.;CnÞ

Z Prð�ijjCjÞ
X

I15/5IjK15IjC15/5In

Y
1%k%n

ksj

PrðIkjCkÞ

CPrðijjCjÞ 1 K
X

I15/5IjK15IjC15/5In

Y
1%k%n

ksj

PrðIkjCkÞ

0
BB@

1
CCA

and

Pr4ðejC1;.;CnÞ

Z PrðijjCjÞ
X

I14/4IjK14IjC14/4In

Y
1%k%n

ksj

PrðIkjCkÞ

CPrð�ıjjCjÞ 1 K
X

I14/4IjK14IjC14/4In

Y
1%k%n

ksj

PrðIkjCkÞ

0
BB@

1
CCA

Therefore, as PrðijjCjÞZPrð�ijjCjÞZ
1
2

we get Pr5ðejC1;

.;CnÞZ
1
2

and Pr4ðejC1;.;CnÞZ
1
2
. ,

Proof of proposition 3. It is proved by induction using the

expression of S�
nC1 in terms of S�

n , derived from Formulas 6

and 7:

† S�
nC1Z1K ð1KpÞS�

n for *Zn,

† S�
nC1ZpS�

n for *Zo.

,

Proof of proposition 4. This follows from the expression of

S�
nC1 in terms of S�

n in Proposition 3, and the defined range of

the probability p. ,

Proof of proposition 5. As the proof is by induction, we

express S�
nC1 in terms of S�

n . Using the following identity
from the theory of binomial coefficients

n C1

k

 !
Z

n

k

 !
C

n

k K1

 !

it follows that:

S5
nC1 Z

X
1%k%nC1

oddðkÞ

n C1

k

 !
pkð1 KpÞnC1Kk

Z
X

1%k%nC1

oddðkÞ

n

k

 !
pkð1 KpÞnC1Kk

C
X

1%k%nC1

oddðkÞ

n

k K1

 !
pkð1 KpÞnC1Kk

Z ð1 KpÞS5
n Cpð1 KS5

nÞ Z S5
nð1 K2pÞCp

We have used the fact that:

1 KS5
n Z

X
0%k%n

evenðkÞ

n

k

 !
pkð1 KpÞnKk

In a similar way, we obtain the results for the bi-

implication:

S 4
nC1 Z S 4

n ð2p K1ÞC1 Kp

The rest of the proof is by induction on k. First, consider

the case that *Z5.

Basis Let kZ1, then it holds that:

S5
1 Z

1

1

 !
p1ð1 KpÞ1K1 Z p

Clearly, it holds that:

† S5
1 2½0; 1

2
Þ if p2[0,1

2
), and

† S5
1 2ð1

2
; 1	 if p2(1

2
,1].

Induction hypothesis. Let us assume that the statement

in the proposition holds for S5
k for kZ1,.,n.

Induction step Let kZnC1.

† For the case that p2[0,1
2
) it follows that

p%S5
nð1K2pÞCp! 1

2
, i.e.

S5
nð1 K2pÞR0

S5
n K

1

2

� 

ð1 K2pÞ!0

8><
>:
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As 1K2pO0 we get S5
n 2½0; 1

2
Þ, which proves the first

part of the proposition.

† For the case that p2(1
2
,1] it follows that 2pð1KpÞ%

S5
nð1K2pÞCp! 1

2
and 1

2
!S5

nð1K2pÞCp%p, i.e.

ðS5
n KpÞð1 K2pÞR0

S5
n K

1

2

� 

ð1 K2pÞ!0

8><
>:
and

S5
n K

1

2

� 

ð1 K2pÞO0

S5
nð1 K2pÞ%0

8<
:

As 1K2p!0 we get S5
n 2½0; 1

2
Þg ð1

2
; p	, which proves

the second part of the proposition.

The proof is analogous for *Z4. ,

Proof of proposition 6. We provide the proof only for *Z
5 as it is analogous for *Z4. The expression of S5

nC1 in

terms of S5
n, derived in Proposition 3 (Formula 10) is used in

the proof.

† For the case p2(0,1
2
) we need to prove that

S5
nC1KS5

nO0, i.e. pð1K2S5
nÞ. As pO0 the inequality

holds if S5
n! 1

2
. From Proposition 5 we know that this

inequality holds true.

† For the case pZ{0,1
2
} we already know that S5

1 Zp, thus

we need to prove only that S5
nC1KS5

nZ0. As S5
nC1K

S5
nZpð1K2S5

nÞ the sequence is constant for pZ0 or

S5
nZpZ 1

2
.

† For the case p2(1
2
,1] we give a counter-example

showing that the sequence is not monotonic. We do

this by comparing the first three members of the

sequence. We already know that S5
1Zp, thus we need

to determine S5
2 and S5

3:

S5
2 Z

2

1

 !
p1ð1 KpÞ2K1 Z 2pð1 KpÞ

S5
3 Z

3

1

 !
p1ð1 KpÞ3K1 C

3

3

 !
p3ð1 KpÞ3K3

Z 3pð1 KpÞ2 Cp3

It follows that S5
2KS5

1Zpð1K2pÞ!0 as pO0 and 1K
2p!0, i.e. the sequence strictly decreases. However, the

sequence strictly increases for the next two elements, i.e.

S5
3KS5

2Zpð2pK1Þ2O0 as pO0 and (2pK1)2O0. There-

fore, the sequence hS5
ni is non monotonic if p2(1

2
,1]. ,

Proof of proposition 7. We provide the proof only for *Z
5 as the proof is analogous for *Z4. We combine the

proofs for the even and odd cases.
Basis Let kZ1, then S5
1Zp is the first member of the

sequence S5
oddðnÞ.

Let lZ2, then S5
2 Z2pð1KpÞ is the first member of the

sequence S5
evenðnÞ.

Induction hypothesis. Let us assume that the statement

in the proposition holds for S5
k for kZ1,3,.,n, and for S5

l

for lZ2,4,.,nK1.

Induction step Let kZnC2. Using the result from

Formula 10 we have that:

S5
nC2 Z S5

nC1ð1 K2pÞCp

Z ðS5
nð1 K2pÞCpÞð1 K2pÞCp

Z S5
nð1 K2pÞ2 C2pð1 KpÞ

We need to prove that 1
2
!S5

nð1K2pÞ2C2pð1KpÞ%p,

i.e.

S5
n K

1

2

� 

ð1 K2pÞ2O0

ð1 K2pÞðS5
nð1 K2pÞCpÞ%0

8<
:

As 1K2p!0 it follows that S5
n 2ð1

2
; p

2pK1
	. We know

that p=ð2pK1ÞRp, thus the statement in the proposition

definitely holds for S5
n 2ð1

2
; p	.

Let lZnC1. We need to prove that

2pð1KpÞ%S5
nK1ð1K2pÞ2 C2pð1KpÞ! 1

2
, i.e.

S5
nK1ð1 K2pÞ2R0

S5
nK1 K

1

2

� 

ð1 K2pÞ2!0

8><
>:

It follows that S5
nK1 2½0; 1

2
Þ. We know that 2p(1Kp)R0,

thus the statement in the proposition definitely holds for

S5
nK1 2½2pð1KpÞ; 1

2
Þ. ,

Proof of proposition 8. We provide the proof only for *Z
5 as the proof is analogous for *Z4. We combine the

proofs for the even and odd cases.

Basis Let kZ1. We need to prove that S5
1 OS5

3, i.e. pO
3p(1Kp)2Cp3. It follows that 2p(1Kp)(1K2p)!0. The

inequality holds for p2(0,1
2
).

Next, let lZ2. We need to prove that S5
2!S5

4. The

following result is obtained:

S5
4 Z

4

1

 !
p1ð1 KpÞ4K1 C

4

3

 !
p3ð1 KpÞ4K3

Z 4pð1 KpÞ3 C4p3ð1 KpÞ

It follows that 2p(1Kp)!4p(1Kp)3C4p3(1Kp)

02p(1Kp)(1K2p)2O0. The inequality holds for

p2(0,1).
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Induction hypothesis. Let us assume that the statement

in the proposition holds for S5
k for kZ1,3,.,n, and for S5

l

for lZ2,4,.,nK1.

Induction step Let kZnC2. We need to prove that

S5
nC2!S5

n, i.e S5
nð1K2pÞ2C2pð1KpÞ!S5

n. It follows

that:

2pðp K1Þð2S5
n K1Þ!0

As p2(1
2
,1) we get that 2S5

n K1O00S5
n O1=2. From

Proposition 7 it follows that this is correct.

Let lZnC1. We need to prove that S5
nC1 OS5

nK1, i.e.

S5
nK1ð1K2pÞ2C2pð1KpÞOS5

nK1. It follows that:

2pðp K1Þð2S5
nK1 K1ÞO0

As p2(1
2
,1) we get that 2S5

nK1 K1!00S5
nK1! 1

2
. From

Proposition 7 it follows that this is correct. ,
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