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Abstract

Diagnosing ventilator-associated pneumonia in mechanically ventilated patients in intensive care units is seen as a clinical challenge.
The difficulty in diagnosing ventilator-associated pneumonia stems from the lack of a simple yet accurate diagnostic test. To assist cli-
nicians in diagnosing and treating patients with pneumonia, a decision-theoretic network had been designed with the help of domain
experts. A major limitation of this network is that it does not represent pneumonia as a dynamic process that evolves over time. In this
paper, we construct a dynamic Bayesian network that explicitly captures the development of the disease over time. We discuss how prob-
ability elicitation from domain experts served to quantify the dynamics involved and how the nature of the patient data helps reduce the
computational burden of inference. We evaluate the diagnostic performance of our dynamic model for a number of real patients and

report promising results.
© 2007 Published by Elsevier Ltd.
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1. Introduction

Many patients admitted to an intensive care unit (ICU)
need respiratory support by a mechanical ventilator; in
addition, many of these patients are affected by severe dis-
ease which may result in depression of their immune sys-
tem. Both conditions promote the development of
ventilator-associated pneumonia (VAP) in these patients.
Because of the wide-spread dissemination of multiresistant
bacteria at the ICU, effective and fast treatment of VAP is
seen as an issue of major significance. The difficulty of the
diagnosis of VAP is in the lack of a gold standard; VAP is
therefore diagnosed by taking a number of clinical features
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into account (Schurink, 2003). To support ICU clinicians
in diagnosing and treating VAP, a probabilistic and deci-
sion-theoretic network, representing the uncertainties and
preferences involved, was constructed by Lucas, de Bruijn,
Schurink, and Hoepelman (2000). The network was devel-
oped with the help of two infectious disease experts, who
assessed both its qualitative structure and its numerical
part. The goal of the network was to prescribe an optimal
antimicrobial therapy for treating patients with VAP.
Two stochastic processes play a prominent role in the
domain of pneumonia: the colonisation of the laryngotra-
cheobronchial tree by pathogens and the onset and devel-
opment of pneumonia. Although both processes evolve
dynamically, these dynamics were not explicitly modelled
by means of temporal transitions in the network of Lucas
et al. Instead, the dynamics of the processes were modelled
implicitly by additional interactions between the duration
of hospital stay and the duration of mechanical ventilation
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of a patient with the colonisation by pathogens. The main
motivation for this simplification was the large amount of
data needed to specify the probability distribution underly-
ing the stochastic processes and the increase in computa-
tional requirements. The network of Lucas et al. thus
constitutes a static simplification of the domain. The static
network was used for every patient for each day on the
ICU separately, without taking into account the patient’s
characteristics from earlier days. Consequently, its diag-
nostic performance was suboptimal and even confusing
for patients without VAP. As the development of VAP is
a dynamic process, we feel that time needs to be modelled
in a more explicit way to improve the diagnosis.

In this paper, we alleviate the problems associated with
the static representation of the domain by modelling VAP
as a dynamic process. More specifically, we develop a
dynamic Bayesian network (DBN) that explicitly captures
the temporal relationships between the variables (Murphy,
2002); our focus thereby is initially on the diagnostic part
of the network. We use the method of van der Gaag, Ren-
ooij, Witteman, Aleman, and Taal (1999, 2002) for the elic-
itation, from domain experts, of the probability
distribution of the underlying stochastic process. This
method transcribes probabilities and uses a scale with both
numerical and verbal anchors that allows experts to assess
many probabilities in little time. Moreover, we discuss how
the computational burden of inference with our model can
be eased by exploiting the nature of the observations
involved and the properties of the transitional relationships
of the model with just a small loss in accuracy.

We evaluated our dynamic network on a group of
patients, drawn from the files of the ICU of the University
Medical Center Utrecht in the Netherlands. Our results
indicate that the dynamic model is capable of distinguish-
ing between patients with VAP and without VAP. By
exploiting all available past information of a patient, it in
fact yields at least as good or even better predictions than
the static model. Specifically for patients without VAP, we
noticed that the use of previous information leads to lower
estimates for VAP than the ones obtained from the static
network.
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The paper is organised as follows. In Section 2, we
briefly describe the static decision-theoretic network that
had been developed before for the management of VAP.
In Section 3, we discuss the construction of a dynamic net-
work for VAP and present computational methods for per-
forming efficient inference with the model. In Section 4 we
present the results of an experimental evaluation of our
network. Conclusions and directions for further research
are given in Section 5.

2. A static network for VAP

Ventilator-associated pneumonia is a low-prevalence
disease occurring in mechanically ventilated patients in
critical care and involves infection of the lower respiratory
tract (Bonten, 2004). In contrast to infections of more fre-
quently involved organs (such as the urinary tract), for
which mortality is low, ranging from 1% to 4%, the mortal-
ity rate for VAP ranges from 24% to 50% and can reach
76% for some high-risk pathogens. VAP therefore has been
associated with increased morbidity, attributable mortality
and increased health care costs. Important causes related to
the development of VAP include the duration of hospital-
isation and of mechanical ventilation of the patient; impor-
tant symptoms that indicate the presence of VAP include
an increased body temperature, an abnormal amount of
coloured sputum, signs on the chest X-ray, an abnormal
ratio between the amount of oxygen in the arterial blood
and the fractional inspired oxygen concentration, that is,
pO,/Fi0O,, and an abnormal number of leukocytes.

As diagnosing VAP and deciding upon treatment can be
a hard task for clinicians, a decision-theoretic network was
constructed as part of a decision-support system to assist
clinicians in their task in the ICU (Lucas et al., 2000,
2003). Fig. 1 (left) illustrates the global structure of the net-
work, which we call the static VAP network, or sVAP net-
work for short. Dashed arcs denote temporal probabilistic
relationships; solid arcs represent stochastic dependency
without a special temporal meaning. Boxes in the figure
indicate collections of stochastic variables; the collection
of therapy variables is shown by thick lines; ellipses indi-
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Fig. 1. (left) Global structure of the sVAP network. The dotted box indicates the network’s diagnostic part. (right) Symptoms and signs of pneumonia.
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cate single stochastic variables. Clear shapes refer to hid-
den variables, while shaded shapes mark observable ones.
As an example, colonisation by pathogens is modelled as
a biological process, in which it is assumed that colonisa-
tion by different pathogens occurs independently. The rela-
tionship between the colonisation by different pathogens
and the development of pneumonia is captured in the
sVAP network as shown in Fig. 2. The seven groups of
microorganisms that appear most frequently in critically
ill patients and cause colonisation, are modelled in the
diagnostic part of the network. Only a small percentage
of pathogens colonising a patient can cause an actual infec-
tion. Therefore, there exists a relation in the network
between colonisation and pneumonia. The figure now
depicts the probabilistic relation between the seven groups
of microorganisms from colonisation to pneumonia. Infor-
mation about which bacterium or bacteria are currently
present in a patient in combination with the current signs
and symptoms constitute the basis for choosing optimal
antimicrobial treatment and is considered best practice.

The signs and symptoms included in the sVAP network
are shown in more detail in Fig. 1 (right). In the sVAP net-
work, the temporal nature of the processes is expressed by
the interaction between the duration of the stay (hospitali-
sation) at the ICU and the duration of the mechanical ven-
tilation: both the duration of the stay and the duration of
the ventilation are correlated to the process of colonisation
by pathogens. Hence, time is modelled implicitly by these
two variables; for example, the mechanical ventilation var-
iable can take one of the six values {0,0-24,24-48, 48—
96,96-144,>144} which indicate the number of hours that
the patient has been mechanically ventilated. The model
thus hides the temporal nature of the development of the
processes of colonisation and pneumonia in conditioning
variables, instead of handling time explicitly.

colonisation PA pneumonia PA

colonisation AC pneumonia AC

colonisation co!ag:ﬁhon pneumonia Ent1
: culoé\:‘s;llon pneumonia Ent2
pneumonia colonisation SA pneumonia SA

colonisation HI pneumonia HI

colonisation SP pneumonia SP

Fig. 2. Detailed structure of the influence of colonisation on pneumonia.
Abbreviations: PA: Pseudomonas aeruginosa, AC: Acinetobacter, Entl:
Enterobacteriaceael, Ent2: Enterobacteriaceae2, SA: Staphylococcus
aureus, HI: Haemophilus influenzae, SP: Streptococcus pneumoniae.

In the present sVAP network, no history is captured and
possible changes in a patient’s condition cannot be taken
into consideration. Since the network constitutes a rough
representation of time, only rough estimates can be
obtained upon diagnostic evaluation. For a patient without
VAP for instance, a positive symptom observed at a specific
day can increase the probability of VAP significantly even
though on the previous days only negative symptoms were
observed. A fine-grained and meticulous representation of
the processes underlying the development of pneumonia
can considerably improve the diagnostic performance of
the network, as will be demonstrated in the next section.

3. A dynamic network for VAP

In this section, we describe the construction of a DBN
that explicitly represents the development of pneumonia
in mechanically ventilated patients.

3.1. Preliminaries

A DBN is a graphical model that encodes a joint prob-
ability distribution on a set of stochastic variables, explic-
itly capturing the temporal relationships between them.
More formally, let V, = (V!,...,¥™), m > 1, denote the
set of variables at time n. Then, a DBN is a tuple
(B, B,), where B is a Bayesian network that represents
the prior distribution for the variables at the first time slice
4", and B, defines the transitional relationships between
the variables in two consecutive time slices, so that for
every n = 2

m

p(Vu [ Var) =[] oV | (V)

i=1

where n(V!) denotes the set of parents of V', for
i=1,...,m.

We distinguish between two types of relationship in a
DBN: transitional relations that capture a dependence
among variables between different time slices, and local
relations that capture a dependence between variables
within the same time slice. If a relationship exists between
the same variable over different time slices, this variable is
called persistent. Based on the two types of relationship,
per time slice, the set of variables V, is split into three
mutually exclusive and collectively exhaustive sets
I,,X,,Y,, where the sets I,,Y, constitute the input and
observable variables and X, consists of the hidden vari-
ables for the time slice under study. Usually, I, includes
observable variables that affect the probability distribution
of X, while Y, includes observable variables whose prob-
ability distribution is affected by X,. The set X, includes
the variables that represent the stochastic processes of the
network and whose values are never observed. Later in
the paper, we will need the notion of forward interface of
a dynamic network, which is the set of variables at time n
that affect some variables at time n + 1.
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DBNs are usually assumed to be time invariant, which
means that the topology and the parameters of the network
per time slice and across time slices do not change. More-
over, the Markov property for transitional dependence is
assumed, which means that 7(V’) can include variables
either from the same time n or from the previous time
n— 1, but not from earlier time slices (Murphy, 2002).
Then, by unrolling B, for N time slices, a joint probability
distribution p(Vy,...,Vy) is defined for which the follow-
ing decomposition property holds:

PV, | =(V,)

1

p(Vl,...,VN):H‘

n=1 i=
Applying a DBN usually amounts to computing the mar-
ginal probability distributions of the hidden variables at
different times. The computations involved constitute the
inference. Three types of inference are distinguished. Mon-
itoring is the task of computing the probability distribution
for X,, at time n given the observations that are available up
to and including time n. Smoothing is the task of comput-
ing the marginal probability distribution for X, at time n
given the observations available up to time N where
N > n. Finally, forecasting is the task of predicting the
probability distribution of X, at time n given the observa-
tions that are available about the past up to time N where
N < n.

For inference purposes, we use the interface algorithm
with the dVAP network (Murphy, 2002). The interface
algorithm is an extension of the junction-tree algorithm
for inference with Bayesian networks in general (Cowell,
Dawid, Lauritzen, & Spiegelhalter, 1999), efficiently
exploiting the forward interface of a dynamic network.
The complexity of the algorithm is exponential in the num-
ber of variables belonging to the forward interface and can
thus be infeasible for large networks. Furthermore, the
algorithm is linear in the total number of time slices and
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for large time scopes, the computation time can prove to
be prohibitive for practical purposes.

3.2. Constructing the dynamic network

A natural extension of the diagnostic part of the sVAP
network is a network that represents time explicitly (Lucas
et al., 2000). Fig. 3 gives an overview of the structure of the
dynamic network that we constructed for the diagnosis of
VAP, which we call the dVAP network. The major differ-
ence with the sVAP network is the explicit representation
of two processes that evolve over time. The dVAP network
includes two interacting dynamic hidden processes, mod-
elled by the compound variables colonisation and pneumo-
nia. There are no transitional influences between these
variables, but both are persistent and hence belong to the
forward interface of dVAP. The process of colonisation is
influenced by three input variables, hospitalisation,
mechanical ventilation and previous antibiotics, which in
essence control its dynamics. The process of pneumonia
is influenced by the hidden yet not persistent variable aspi-
ration and by the input compound variable immunological
status that is persistent and represents the current condi-
tion of the patient. We note that both the variables hospi-
talisation and mechanical ventilation are observed for a
period that is longer than the transition interval of the
model. The variables thus are modelled as affecting adja-
cent time slices. The variable previous antibiotics is an
additional variable with respect to the sVAP network and
represents the effect of previous medication to the patient
on the process of colonisation. Finally, similarly to the
sVAP network, the compound variable symptoms-signs
represents the observable variables whose values probabi-
listically influence the two hidden processes.

The model includes 30 variables per time slice, 6 of
which are input variables, 16 are hidden variables and 8

aspiration

A 4

symptoms signs

colonisation  |= »  colonisation
immunological : ; / \\ : immunological
status : : : I status
pneumonia / \ pneumonia

symptoms signs

Fig. 3. The dVAP network for the diagnosis of VAP; clear nodes are hidden, shaded nodes are observable. The dotted boxes indicate the hidden processes

of the network.
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Table 1
The variables and compound variables (boldface) per time slice, with their
number of variables included in parenthesis for the latter, of the dVAP
network

Hidden variables X,, Observable variables
YI’[

Input variables I,

Hospitalisation
Mechanical ventilation
Previous antibiotics
Immunological status” (3)

Aspiration
Colonisation” (7)
Pneumonia” (8)

Symptoms-signs (8)

The variables marked with an asterisk "~ belong to the forward interface.

are observable variables; the model thus includes one addi-
tional variable (previous antibiotics) per time slice in com-
parison to the diagnostic part of the sVAP network. Table
1 gives an overview of the variables. The number of values
per variable ranges between two and thirty, with an aver-
age of 3.2. The number of incoming arcs per variable
ranges between zero and eight with an average of 2.6. In
total, the model includes 1637 parameter probabilities,
1044 of which concern the transitional relationships.

One of the first difficulties in constructing the dVAP net-
work was to define the length of the transition interval. It
may seem trivial in general to decide upon an interval
length, but in our case it proved to be rather difficult since
there was no a priori commonly acknowledged interval
length that appropriately represents the evolution of the
unobserved disease. Also, there was not a standard interval
over which observations were collected in our data files.
The latter can be attributed to most of the measurements
being collected by nurses; for example, observable variables
such as body temperature and sputum colour were mea-
sured frequently (approximately every 2 or 3 h), while vari-
ables such as radiological signs and leucocytosis were
measured once per day. In cooperation with the expert,
we decided to use a transition interval of one day (24 h)
for the dVAP network. Within this interval, the network
aggregates the observations in a way similar to the previ-
ously constructed static network. For each observable var-
iable, the value most frequently observed during the day
was chosen as representative for that day; in cases where
there was no prevalent value in the data, the worst value
observed for the patient was chosen, to allow for conserva-
tive conclusions from the network. The chosen transition
interval appeared to be compatible with the application
characteristics and admissible by the domain experts.

A subsequent issue in building the dVAP network was
the acquisition of all conditional probabilities required.
We recall that the difficulty in acquiring all probabilities
involved was one of the reasons that Lucas et al. initially
chose to build a static model (Lucas et al., 2000). Although
the three ICUs that acted as a setting for this study used the
same shared computer-based patient record system, it
appeared very hard to select relevant patient cases from
the collected data. The main reason was that VAP is always
a concomitant disease. As a consequence, clinicians tend to

not report the presence of VAP in a patient. We thus found
that only in a very small proportion of cases, a patient was
reported as having VAP. Also, for the same reason, hardly
any results reported in the literature were usable for our
model. Since we could not exploit the data for estimating
the probabilities for our network, the single remaining
source of probabilistic information was the knowledge
and personal clinical experience of the domain expert
involved in this study.

Compared to the sVAP network, the new parameters to
be assessed for the dVAP network concerned the dynamics
of the stochastic processes of colonisation and pneumonia.
To estimate those probabilities from the domain expert we
used the elicitation method proposed by van der Gaag et al.
(1999, 2002). This method is tailored to eliciting a large
number of probabilities in a short time. Its main character-
istic is the idea of presenting conditional probabilities as
fragments of text and of providing a scale for marking
assessments with both numerical and verbal anchors; for
every conditional probability that needs to be assessed
the domain expert is provided with a separate figure with
the text and associated scale. Fig. 4 shows, as an exam-
ple, the figure pertaining to the conditional probability

p(pneum.aureus = yes | pneum.aureus = yes, mech.ventilation
= no, colonisation.aureus = yes, phagocytes.

dys function = yes)

for the dVAP network. On the left of the figure is a fragment
of text that transcribes the conditional probability to be
assessed. Using a fragment of text to denote a probability
circumvents the need to use mathematical notation. The
fragment is stated in terms of likelihood rather than in terms
of frequency to forestall difficulties with the assessment of a
conditional probability for which the conditioning text
is quite rare. To facilitate the assessment of a required

certain — 100
(almost)
probable - 8
Suppose a patient has been mechanically ven- T 75
tilated for 48 hours and now has pneumo- expected
nia caused by s.aureus. If this patient after
24 hours is not mechanically ventilated, but
is colonized with s.aureus and has phago- fifty-fifty -+ 50
cyte dysfunction, then how likely is it that the
patient will still have pneumonia caused by
s.aureus? .
uncertain
4 25
improbable 1 45
(almost)
impossible 4 0

Fig. 4. The fragment of text and probability scale for the assessment of a
conditional probability.
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probability, a vertical scale is depicted to the right of the
text fragment. Indicated on this scale are various different
numerical and verbal anchors. With this method, we elicited
in a few hours from the domain expert the conditional prob-
abilities required for the part of the dVAP network that per-
tains to the transitional relations of the two hidden
processes.

3.3. Computational issues

The practicability of the dVAP network depends to a
large extent on the computational burden of inference with
the network. For diagnosing patients with VAP, we moni-
tor them at each time slice. In total, there are 17 variables
that belong to the forward interface of the model and there
are also 17 binary hidden variables per time slice. The run-
time complexity of the interface algorithm for exact infer-
ence can therefore be quite time consuming if not
infeasible. We recall that this problem was one of the rea-
sons why Lucas et al. (2000) preferred to use a static model
instead of a dynamic one. In our application, however, and
in fact in many other applications, the nature of the obser-
vations obtained may help reduce the computational
requirements involved. More specifically, in case consecu-
tive similar observations are obtained, the probability dis-
tribution of the hidden process converges to a limit
distribution within a given level of accuracy (Charitos, de
Waal, & van der Gaag, 2007). After some number of time
slices, therefore, there is no need for further inference as
long as similar observations are obtained. The phenome-
non of consecutive similar observations was particularly
evident for several patients in the ICU files. For example,
for many patients we found that the same combination
of values was observed for all or almost all of the observa-
ble variables for a number of consecutive days.

As an example, we consider a patient who has been
mechanically ventilated for six days and is observed with
a high body temperature, an abnormal amount of sputum,
an abnormal ratio pO,/FiO,, and a normal number of leu-
kocytes. These observations cause the probability of VAP
to be, at that day, p(VAPs) = 0.4321. The same values
for these observable variables are obtained for the next
three days. According to our model, we have that
p(VAP;) = 0.5516, p(VAPg) = 0.7301, p(VAPy) = 0.8341.
If we continue to obtain similar observations for the
following three days we find that p(VAP;,) = 0.8658,
p(VAP,;) = 0.8734, p(VAP,) = 0.8751. We notice that
the probability distribution for VAP does not change much
after a number of time slices and further inference can be
forestalled.

Using the relative entropy distance measure for distribu-
tions, we can show that it suffices to use just the most
recent data for monitoring (Charitos & van der Gaag,
2006). Based upon this result, we define the backward
acceptable window w?_ for the present time n given a spec-
ified level of accuracy e, to be the minimal number of time
slices that we need to use from the past to compute the

probability distribution of the hidden variable at the pres-
ent time within the level of accuracy e. The scheme below
illustrates the concept of the backward acceptable window:
{1,...,n4,...,n} = {ng,...,n}

total time scope

(4
U)ﬂ.f

We now perform inference for time n by considering only
the backward acceptable window ?, without losing too
much in accuracy. Note that by doing so, we perform infer-
ence for n — ny time slices instead of for the n slices that
would be taken into consideration by an exact algorithm.
In the next section we report promising results from apply-
ing the backward acceptable window to speed up inference
with our model. The main conclusion from the above con-
siderations is that monitoring in the dVAP network can be
eased considerably by exploiting the characteristics of the
observations for a patient and by using the backward
acceptable window.

4. Diagnostic performance

Monitoring a patient on an ICU ward is performed as
follows. The clinician examines the results of diagnostic
tests and the symptoms observed during the day and, tak-
ing into account the number of days the patient is hospita-
lised and mechanically ventilated, assesses whether or not
the patient has VAP. Based on this assessment, the clini-
cian can prescribe antibiotic treatment for a series of days,
while continuing to monitor the patient. The primary goal
of the dVAP network is to assist the clinician in this process
by explicitly considering the history of the patient. The cli-
nician can of course be aware of the past diagnostic obser-
vations, but the effect of those observations on the current
diagnosis is hard to assess. The dVAP network serves to
explicitly model this effect via its transition probabilities.

We evaluated the performance of the dVAP network,
focusing on its diagnostic prediction per day. At our dis-
posal we had a temporal database with data from 2410
patients. Each record contains data collected for a patient
during a one day stay in the ICU. The source of these data
is the clinical management system used at the Intensive
Care Units of the University Medical Center Utrecht in
the Netherlands. The conclusions obtained from the dVAP
network were examined on a group of 20 patients in total, 5
of which were diagnosed with VAP as established by two
infectious-disease specialists. This group of patients was
chosen from a total of 487 patients who were admitted
for a period of 10 days or longer. For these 5 patients we
used the data from the day of admission to the ICU until
the day they were diagnosed with VAP, which was con-
firmed to be at day 10. For each of these 5 patients, we
selected from the database three patients for whom it was
known that they did not develop VAP over time. These
patients were matched on three criteria: gender, number
of mechanically ventilated days, and ICU ward. Table 2
summarises the data for the 5 patients with VAP and for
the 15 patients without VAP on the 10th day of admission.
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Table 2
Data summary
Symptoms VAP No VAP
n=>5 n=15
Abnormal temperature 60% 7%
Mechanical ventilation (mean) 10d 10d
Abnormal leukocytes 80% 53%
Abnormal pO,/FiO, 60% 27%
Abnormal sputum 80% 73%
Coloured sputum 60% 60%
Colonised 40% 13%
Antipyretic drugs 100% 87%
Positive X chest 40% 0%

To compare the diagnostic performance of the dVAP
network to that of the original sVAP network, we used
the Brier score best known from the field of statistical fore-
casting (Panofsky & Brier, 1968, 2003). We illustrate the
Brier score for our dVAP network. For each patient i,
the network yields a probability distribution p;, over the
two values j = 1,2 (yes, no) of VAP. The Brier score B;
for this distribution is defined as

B; = Z(pij - Si/’)z

=12

where s; = 1 if the medical record of the patient states the
value j, and s;; = 0 otherwise. If the network would yield
the correct value with certainty for a patient, then the asso-
ciated Brier score would be equal to 0. Conversely, if the
network would yield an incorrect value for a patient, then
the associated Brier score would be equal to 2. For the
probability distribution computed for any patient, there-
fore, the Brier score ranges between 0 and 2, and the better
the prediction is, the lower the score. The Brier scores for
all patients on day 10, for the dVAP and the sVAP net-
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works respectively, are shown in Table 3. We note that
for 15 patients of the total of 20, the computed Brier score
was lower with the dVAP network than with the sVAP net-
work. The overall quality of the two networks can be ex-
pressed in an overall score

1
By 2B

where m is the number of patients. The overall Brier score
for the sVAP network can be readily computed from Table
3 and equals 0.3370, while the overall Brier score for the
dVAP network is 0.2376. Although the lower score sug-
gests that the dVAP network is better informed, the num-
ber of patients is too small to arrive at valid statistical
conclusions concerning which of the two models performs
better. One way to gain additional insight into the compar-
ative quality of the two networks is to apply bootstrapping.
The bootstrap technique performs sampling with replace-
ment from the original data set to create replicates of this
data set (Efron & Tibshirani, 1993). We generated different
patient groups by bootstrapping, computed the overall
Brier score for each one of these groups for both models
and subsequently computed equi-tailed 95% confidence
intervals. Using 100 replicates, the confidence interval for
the sVAP network was computed to be [0.026,0.680]; for
the dVAP network, it was [0,0.517]. This result now dem-
onstrates the ability of the dVAP network to obtain on
average lower Brier scores than the sVAP network.

To further compare the performance of both models, we
computed their accuracy in distinguishing between patients
with VAP and without VAP, using various threshold prob-
abilities. More formally, if the probability of VAP for a
patient is greater than a specific threshold probability, we
decide that this patient has VAP; otherwise we decide that
this patient does not have VAP. A patient who has been

Table 3
Brier scores for the sVAP network and for the dVAP network, respectively
Patient VAP sVAP sBrier dVAP dBrier
1 Yes 0.9969 1.9059 x 1073 0.9987 3.3801 x 107¢
2 No 0.0203 8.2432 x 107 0.1395 0.0389
3 No 0.1672 0.0559 0.0558 0.0062
4 No 0.0028 1.5276 x 1073 0.0002 8.0002 x 108
5 Yes 0.0097 1.9613 0.0002 1.9992
6 No 0.4309 0.3713 0.0316 0.0019
7 No 0.0203 0.0008 0.0003 1.8002 x 107’
8 No 0.1934 0.0748 0.0309 0.0019
9 Yes 0.9999 3.3620 x 107° 0.9987 3.3801 x 107°
10 No 0.0227 0.0010 0.0015 4.5001 x 107°
11 No 0.0457 0.0042 0.0005 5.0001 x 1077
12 No 0.2977 0.1772 0.0325 0.0021
13 Yes 0.0348 1.8632 0.0033 1.9868
14 No 0.0203 0.0008 0.0005 5% 1077
15 No 0.4364 0.3809 0.099 0.0196
16 No 0.0099 2.2231 x 107° 7.0001 x 1078 9.8001 x 1071
17 Yes 0.9966 22231 x 107° 0.9035 0.0186
18 No 0.1752 0.0614 0.0218 0.0009
19 No 0.0740 0.0109 0.0013 3.3801 x 107°
20 No 0.9421 1.7750 0.5810 0.6751
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actually diagnosed with VAP and is classified as having
VAP, then is called a true positive (TP); a patient who
has been diagnosed as not having VAP and is also classified
as being negative for VAP, then is a true negative (TN).
Similarly, patients can be classified as false positives (FP)
or false negatives (FN). Based upon the counts TP, TN,
FP and FN, a two-by-two confusion matrix can be com-
puted (Fawcett, 2004) as shown in Fig. 5. The accuracy
now for each model can be computed as

TP + TN
TP + FP + TN + FN

accuracy =

Using again 100 replicates and various thresholds, we com-
puted the average accuracy for each threshold for both
models. Fig. 6 illustrates the results. We observe that the
accuracy of the dVAP network is higher than the one of
the sVAP network for all thresholds except for threshold
0.5 where both models show the same performance. Final-
ly, using 200 replicates we plotted the averaged receiver
operating characteristics (ROC) curve for both models as
shown in Fig. 7. These results again support the observa-
tion that the dVAP network is more informed than the
sVAP network and can arrive at relatively good estimates
for diagnosing VAP.

Observing in more detail the results from Table 3, we
notice that for the patients 6, 12, 15, 18 and 20 for example,
who were diagnosed not to have VAP, the dVAP network
derived small probabilities for the presence of VAP. It
arrived at these small probabilities by exploiting all previ-
ous information. The sVAP network, in contrast, used just
the current information and produced much higher proba-

True class
yes no
. yes True False
Hypothesized Positives | Positives
class False True
Negatives | Negalives

Fig. 5. A confusion matrix.
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Fig. 6. Accuracy vs threshold for the dVAP and sVAP networks.
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Fig. 7. Averaged ROC curves for the dVAP and sVAP networks.

bilities. For the patients diagnosed with VAP, the two
models behave more or less similarly, with the highest
absolute discrepancy observed in patient 17, to whom the
sVAP network assigned a probability of VAP of 0.997
and the dVAP network assigned a probability of VAP of
0.904.

To study the performance of the dVAP network over
time, we computed the probability of VAP for each day
and compared it to the respective probability established
from the sVAP network. In Fig. 8 we plot, for two separate
groups of four related patients, the probability of VAP for
patient 9 and the mean probability of VAP for the matched
patients 10, 11, 12 (left), and for patient 17 with VAP and
matched patients 18, 19, 20 (right), from both networks.
We observe in the first group that for the patient with
VAP the trend in both networks is more or less the same
for all days considered. However, for the second group
the trend is similar only after the fifth time slice; in fact,
we notice that the dVAP network assigns a small probabil-
ity of VAP for the first five time slices for patient 17 and
then assigns a higher probability of VAP confirming the
diagnosis by the expert. In contrast, the sSVAP network
assigns a high probability of VAP throughout the whole
period of ten days. Although it may be argued that for this
patient the sVAP network outperforms the dVAP network,
a plausible explanation is as follows. This specific patient
was diagnosed by the expert as having VAP at the 10th
day of observation. The findings for the first days do not
advocate the presence of VAP, which was developed later
and finally diagnosed. We see that the dVAP network actu-
ally confirms this scenario by assigning a small probability
of VAP in the first days; in contrast, the sVAP network
performed wrongly for these time slices. Concerning the
patients without VAP, we note that the dVAP network
assigns consistently smaller probabilities than the sVAP
network for both groups.

A preliminary conclusion from our experiments is that
the dVAP network is better able to distinguish between
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Fig. 8. The dVAP and sVAP performance over time for two groups of matched patients; dnVAP and snVAP represent the average performance for the

three patients without VAP.

VAP and non-VAP patients. In the dVAP network, the
transition model carries the information of the patient
from previous time slices into the current time slice, where
diagnosis is performed. For a patient who has constantly
been monitored throughout time not to have VAP, the
dVAP network will reduce the effect of new positive find-
ings on the current diagnosis. On the other hand, if a
patient has been monitored to have VAP with high proba-
bility, then he/she will continue to do so but with smaller
probability even if new observations are negative. The
dynamic nature of the model is thus responsible for con-
veying the history of the patient to the present and thereby
increases the diagnostic performance of the model. In the
sVAP network, in contrast, diagnosis is merely performed
on the current observations of the patient disregarding past
knowledge from previous time slices.

To conclude, we performed the computations in the
dVAP network using different values for the backward
acceptable window wfﬁe. For a particular group of matched
patients, the computed exact and approximate probabilities
of VAP are shown in Table 4. We conclude that instead of
using the observations for all 10 days in the ICU to com-
pute the probability of VAP, we can use the observations
for just the last five days with an average error for all
patients smaller than e = 0.003. We can thus use this back-
ward acceptable window to decrease the computational
burden involved in inference and obtain results with an
almost negligible error.

Table 4
Exact and approximate probabilities for VAP for a group of matched
patients

Patient 9 10 11 12
Exact 0.9987 0.0015 0.0005 0.0325
%) 0003 0.9987 0.0013 0.0005 0.0347

5. Discussion

In this paper, we discussed the construction of a prob-
abilistic model that is aimed at assisting ICU clinicians in
diagnosing ventilator-associated pneumonia. In contrast
to previous approaches that used a static decision-theo-
retic network for this low-prevalence disease (Lucas
et al., 2000, 2003), we focused on its dynamic evolution
and used a dynamic Bayesian network as the primary tool
for representation and inference. We detailed various
modelling steps in the construction of our dynamic net-
work and described the use of an efficient procedure for
expert elicitation of the probabilities required. We further
argued that a number of convergence properties of
dynamic Bayesian networks can be exploited to arrive at
feasible algorithms that restrict the computational burden
of inference with such a model. In this way, we amelio-
rated two important problems that were considered
impervious in the past (Lucas et al., 2000): the specifica-
tion of the probabilities underlying the stochastic process
modelled in the network and the computational burden of
inference.

In the past, a number of dynamic models have been
developed for medical applications, that accord with the
basic theoretical framework underlying the dVAP network.
Examples of such models include a dynamic network for
insulin adjustment by Andreassen, Hovorka, Benn, Olesen,
and Carson (1991), an influence diagram for diagnosis and
treatment of acute abdominal pain by Provan (1993), and a
decision-theoretic network for therapy planning in the
domain of paediatric cardiology by Peek (1999). The refer-
enced articles focus primarily on the structure of the model
and its performance but do not address in detail such issues
as the determination of the transition interval to be used,
the estimation of the transition probabilities, and the devel-
opment of algorithms for inference that exploit various
characteristics of the model at hand. In developing the
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dVAP network, we found that these issues also needed
careful attention.

We evaluated our dVAP network on a set of ICU
patients to examine its diagnostic performance. The lower
overall Brier score of the dynamic network in comparison
to the static one, indicated that representing time explicitly
and taking into consideration the history of the patient,
increases diagnostic performance. In our experiments, the
dynamic network proved to exhibit better performance at
distinguishing between VAP and non-VAP patients than
the static network, especially by assigning smaller probabil-
ities of VAP to the non-VAP patients. Future research
includes improvement of the dVAP network by use of the
available data for parameter learning of the conditional
tables for the observable variables of the model, and an
extensive evaluation study using data from more patients.
The overall aim is to ultimately embed it in the clinical
information system of the ICU.
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