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The theory of causal independence is frequently used to facilitate the assessment of the probabilistic
parameters of discrete probability distributions of complex Bayesian networks. Although it is
possible to include continuous parameters in Bayesian networks as well, such parameters could
not, so far, be modeled by means of causal-independence theory, as a theory of continuous causal
independence was not available. In this paper, such a theory is developed and generalized such
that it allows merging continuous with discrete parameters based on the characteristics of the
problem at hand. This new theory is based on the discovered relationship between the theory of
causal independence and convolution in probability theory, discussed in detail for the first time
in this paper. Furthermore, the new theory is used as a basis to develop a relational theory of
probabilistic interactions. It is also illustrated how this new theory can be used in connection with
special probability distributions. © 2014 Wiley Periodicals, Inc.

1. INTRODUCTION

During the past two decades, probabilistic graphical models, and in particular
Bayesian networks, have become popular methods for building applications involv-
ing uncertainty in many domains such as biology,'> medicine,*~ and engineering.®’
Bayesian networks can be developed manually, e.g., by acquiring relevant knowl-
edge from experts in a domain, and learnt from data, whereas mixing manual design
and learning is also possible.® As a Bayesian network consists of a graph repre-
sentation and an associated probability distribution, it is common to split up the
task of developing a Bayesian network for a problem into two steps: (1) deter-
mining the graph or structure and (2) assessing the parameters of the probability
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distribution once the structure is known. In particular, this second step, estimation
of the associated probabilistic parameters, is often challenging.

As these parameters of a Bayesian network have the form of conditional proba-
bility distributions P(E | Cy, ..., C,), it has been beneficial to look upon the inter-
action between the associated random variables E, on the one hand,and Cy, ..., C,,
on the other hand, as the interactions between causes Cy and an effect E. Although
not all Bayesian networks are causal networks,” causal knowledge is crucial in
designing and interpreting Bayesian networks in particular problem domains. This
insight has driven much of the early work on Bayesian networks, as is reflected in
the seminal work by Pearl!!' and is still one of the main principles used to construct
Bayesian networks for actual problems.

Causal principles have also been exploited in situations where the number of
causes n becomes large, as the number of parameters needed to assess a family of
conditional probability distributions for a variable E grows exponentially with the
number of its causes. The theory of causal independence is frequently used in such
situations, basically to decompose a probability table in terms of a small number
of causal factors.'®!3 It should be noted that in causal independence models the
causes are not necessarily independent, but rather that the causes act independently
on E. For this reason, the theory of causal independence is also called “intercausal
independence” or “independence of causal interaction”.!* For historical reasons, we
will use the term “causal independence.”

So far, the theory of causal independence was restricted to modeling of dis-
crete probability distributions, where in particular three types of interaction are
in frequent use: the noisy-OR and the noisy-MAX—in both cases, the interaction
among variables is being modeled as disjunctive'®!!"'>—and the noisy-AND.® In-
teractions among continuous cause variables are usually modeled using standard
statistical techniques, such as logistic regression and probit regression, typically by
using iterative numerical methods that estimate the weight vector maximizing the
likelihood of the data given the model.!” Thus, these regression models resist man-
ual construction based on a good understanding of a problem domain; the fact that
Bayesian networks can be constructed using a mixture of background knowledge
and data, depending on the availability of knowledge and data for the problem at
hand, is seen as one of the key benefits of the technique. Finally, it is not possible to
combine regression models with (discrete) causal-independence models.

In this paper, a new framework of causal-independence modeling is proposed.
It builds upon the link we discovered between the theory of causal independence and
the convolution theorem of probability theory. More in particular, the paper offers
the following contributions:

® anew generalization of the theory of causal independence by offering support for the rep-
resentation of discrete, continuous, and mixtures of discrete and continuous probabilistic
interactions;

® arelational algebra that supports the modeling of relational interactions in a meaningful
way.

We illustrate how the theory can be used for a number of different special
probability distributions. By means of examples, we show how it can be deployed

International Journal of Intelligent Systems DOI 10.1002/int



CAUSAL INDEPENDENCE IN BAYESIAN NETWORKS 211

to solve actual problems. The developed theory can also be used in the context
of probabilistic logic.'® However, in this paper the focus is on exploitation in the
context of Bayesian networks.

The structure of the paper is as follows. In Section 2, we provide a motiva-
tion why a relational theory of continuous and discrete probability distributions is
needed. Section 3 offers the necessary background on Bayesian networks, causal
independence, convolution, and the relationship between causal independence and
convolution. Then, in Section 4, we prove that causal independence is equivalent to
convolution, which allows us to generalize causal independence to the continuous
case. This acts as a basis for the introduction of a relational language that provides
extra expressive power for modeling interactions, which we introduce in Section 5.
We then show how to use this language with different types of probability distri-
butions in Section 6. In Section 7, we compare the research ideas explored in this
paper to other work. Finally, in Section 8, we summarize what has been achieved
and some future directions of research are mentioned.

2. MOTIVATING EXAMPLE

In biomedical modeling, one often has to deal with a mixture of discrete and
continuous causes that give rise to an effect. For example, the amount of fat storage
in the human body is determined by the energy balance, i.e., the balance between
energy intake and expenditure. A decrease in fat storage usually occurs whenever
the energy intake is less than the energy expenditure. The energy expenditure is
determined by the internal heat produced, which is mainly the basal metabolic rate
(BMR), plus external work estimated by physical activity. Besides altering the energy
balance, the storage can be decreased by means of liposuction. The energy variables
are naturally represented as continuous variables, whereas “Liposuction” is discrete.

The causal model is presented in Figure 1, and the conditional probability
distributions of fat loss are represented by P(L | C, B, Y, S). To accurately estimate
this distribution, we may consider the underlying physiological mechanism that
the causes induce, expressed by the intermediate causal variables I, H, W, and
R. In addition, there are deterministic interactions between the intermediate causal
variables, for example, we may want to model that

A= <(H+W))

(energy intake is less than or equal to heat production plus external work), with A
standing for an appropriate energy balance. Furthermore, the binary (Boolean) effect
variable fat loss L is defined as L = (A V R) (fat loss L is due to a change in the
energy balance A or fat removal R). While existing methods may be geared toward
representing the same distribution, for example by adding an additional node A and
using other representational tricks, none of the existing methods provide support to
represent this knowledge directly and to reason about its properties. The techniques
developed in this paper will allow one to exploit such information in building a
Bayesian network in a general way.
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Figure 1. Causal factors that affect fat loss in humans.

3. PRELIMINARIES

This section provides a review of the basics underlying the research of this
paper.

3.1. Probability Theory and Bayesian Networks

In this paper, we are concerned with both discrete and continuous probability
distributions P, defined in terms of functions f, called a probability mass function for
the discrete case and density function for the continuous case. When we use Boolean
expressions to define probability distributions, we also use P. We sometimes use
the notation f, to indicate that a function g is associated with a probability function.
Associated with a mass and density function, respectively, are distribution functions,
denoted by F, and defined in terms of mass and density functions as usual.'” Random
variables are denoted by upper case, e.g., X, I, etc. Instead of X = x, we will
frequently write simply x. This is also the notation used to vary over values in
summation and integration and to indicate that a binary variable X has the value
“true.” The value “false” of a binary variable X is denoted by x. We will denote sets
of random variables by X, i.e., X = {Xy,..., X,,},n > 1 or X = &. Finally, free
variables are denoted by uppercase, e.g., X or X. From the context, it will become
apparent which meaning is intended.

A Bayesian network is a concise representation of a joint probability distribution
on a set of random variables.!! It consists of an acyclic directed graph G = (V, A),
where each node V € V corresponds to a random variable and A CV x V is a
set of arcs. The absence of arcs in the graph G models independences between
the represented variables. Informally speaking, we take an arc V — V’ between
the nodes V and V' to represent an influential relationship between the associated
variables of V and V’. If this arc is given a causal reading, the arc’s direction marks
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Figure 2. Causal-independence model.

V’ as the effect of the cause V. In the following, causes will often be denoted by C;
and their associated effect variable by E. The distinction between cause and effect
is only meant to support Bayesian network modeling in collaboration with domain
experts.

Associated with the qualitative part of a Bayesian network are numerical pa-
rameters from the encoded probability distribution. With each variable V in the
graph is associated with a set of conditional probability distributions P(V | w(V)),
describing the joint influence of values for the parents 7 (V') of V on the probabilities
of the variable V’s values. These sets of probabilities constitute the quantitative part
of the network. A Bayesian network represents a joint probability distribution of its
variables and thus provides for computing any probability of interest.

3.2. Causal Modeling

One popular way to specify interactions among statistical variables in a compact
fashion is offered by the notion of causal independence.'> The global structure
of a causal-independence model is shown in Figure 2; it expresses the idea that
causes C = {Cy, ..., C,} influence a given common effect E through intermediate
variables I = {I, ..., I,} and a Boolean, or Boolean-valued, function b, called the
interaction function. The influence of each cause C; on the common effect E is
independent of each other cause C;, j # k. The function b represents in what way
the intermediate effects I, and indirectly also the causes Cy, interact to yield the
final effect E. Thus, the function b is defined such that when a relationship between
I, k=1,...,n,and E = 1 (true) is satisfied, then it holds that b(Iy, ..., I,) = 1
(true), denoted for ease of understanding by b(/y, ..., I,) = e.

In terms of probability theory, the notion of causal independence can be
formalized for the occurrence of effect E as follows: By standard probability
theory,

PE|Cy,...,Cyp = ZP(E|i1,...,in,Cl,...,Cn)P(il,...,in|C1,...,Cn)

Ilyeny In

)]
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meaning that the causes C = {Cy, ..., C,} influence the common effect E through
the intermediate effects /1, ..., I,. The deterministic probability distribution P(E |
Iy, ..., I,) corresponds to the Boolean function b, where b(1y, ..., I,) = e if P(e |

L, ..., 1I,) = 1; otherwise, b(Iy,...,1,) =¢eif P(e| I,,...,1,) = 0. To ease the
notation in the remainder of this paper, we will from now on always consider the
case where E = 1 denoted by e; the case for ¢ can be derived from the positive case.
Note that the effect variable E is conditionally independent of Cy, ..., C, given the
intermediate variables /i, ..., I,, and that each variable /; is only dependent on its
associated variable Cy; hence, it holds that

P(e|I],...,In,C],...,Cn):P(e|I],...,In)

and

n
P(Iy, ... Iy | Croo, Gy =[] PU | Co)
k=1

Formula (1) can now be simplified to

Pe|©)= Y []PGrlcCo )

Bi1s..yin)=e k=1

Formula (2) is practically speaking not very useful, because the size of the spec-
ification of the function b is exponential in the number of its arguments. The resulting
probability distribution is therefore in general computationally intractable for large
values of n, both in terms of space and time requirements. An important subclass of
causal-independence models, however, is formed by models in which the determin-
istic function b can be defined in terms of separate binary functions g, also denoted
by gx(Ix, Ir+1). Such causal-independence models have been called decomposable
causal-independence models;'? these models are of significant practical importance.
Often, all functions g, (I, Ix+) are identical for each k; a function g; (Iy, I;+1) may
therefore be simply denoted by g(I, I’), and the function b is obtained by recursive
application of g. Typical examples of decomposable causal-independence models
are the noisy-OR!""'? and noisy-MAX!'%!5 models, where the function g represents
a logical OR and a MAX function, respectively. Decomposable functions are nor-
mally defined in terms of algebraic expressions,”® where in particular unary and
binary operators are used—Boolean operators for Boolean expressions.’!

In the case of continuous causal factors with a discrete effect variable, there are
two main proposals for the conditional distribution of the discrete node.!” Suppose
we have a binary effect variable E and continuous parents Cy, ..., C,. If E is
modeled using a logistic function, then

Pe|C C)— exp(wo + w’ ¢(C))
P T exp(wo + wTo(C))
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where wy is called the intercept, w’ = (wy, ..., w,) is a weight vector ,and ¢(C)
is a, possibly nonlinear, basis function applied to the causes C. The other option is
to use the probit model, with

Pe|Ci,...,Cp) = P(® < (wy + w' ¢(C))) “)

where ® ~ N(0, 1), i.e., ® is distributed following a standard Gaussian distribution
with mean O and variance 1. The logistic model has certain advantages compared
to the probit model,?* e.g., it can easily be generalized to multivalued discrete
variables. Although both types of model are flexible, it is very hard to come up with
sensible weight vectors w and basis functions ¢ based only on available domain
knowledge of the relations between causes. Instead, these models are typically used
in regression analysis, where the parameters are estimated from data.

4. CONVOLUTION-BASED CAUSAL INDEPENDENCE

In this section, we start to systematically explore the relationship between the
convolution theorem of probability theory and the theory of causal independence.

4.1. Causal Independence as Convolution

A classical result from probability theory that is useful when studying sums
of variables is the convolution theorem. The following theorem'? is central to the
research reported in this paper, and is used for deriving the convolution theorem as
a special case (see below).

THEOREM 1. Let [ be a joint probability mass function of the random variables
X and Y, such that X +Y = z. Then it holds that P(X +Y = z) = fx+y(2) =

Zx f(X,Z—.X).

Proof. The (X, Y) space determined by X + Y = z can be described as the union
of disjoint sets (for each x): |, ({X = x} N {Y = z — x}), and the sets {X = x} N
{Y = z — x} are mutually disjoint for each x. Thus,

P(X+Y=z)=P<U({X=x}ﬂ{Y=z—x}))
=Y PX=x,Y=z-1x)

ZZf(X,Z—X),

from which the result follows. O

If X and Y are independent, then, in addition, the following corollary holds.
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COROLLARY 1. Let X and Y be two independent random variables, then it holds that
P(X+Y =2)= fx1r(2)
=) PX=x)P(Y =z—x)
X

=" fx@) frz —x)

=Y fx@ =) )
-

The probability mass function fx.y defined by the sum of random variables
X and Y is called the convolution of fx and fy, and it is commonly denoted as

Sx+y = fx * fr.

This convolution theorem is very useful, as sums of random variables occur very
frequently in probability theory and statistics. The convolution theorem can also be
applied recursively, i.e.,

fxiprx, = fx, %% fx, (6)

as follows from the recursive application of Equation 5:

P+ Xy ==Y Y Y > fr,(x)fx,(yn — x1) -+

Yn—-2 Yn-3 yioooXxi

Sx0iVn—2 = Yn-3)fx,(2 — Yn—2) @)
where we use the following equalities:

=X +X
=Y +X;

Yi3=Y, 4+ X,
Yan = Ynf3 + anl

Thus, ¥, »=X;+---+ X,—1 and X,, =z — Y,,_». As addition is commutative
and associative, any order in which the Y¥;s are determined is valid.

From now on, we will use the term convolution in its general sense describing
virtually any operation on random variables, not just addition. This is how it is
used by Williamson?® where other arithmetical operations on random variables, i.e.,
subtraction, multiplication, and division, are discussed. In particular, it turns out
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that the convolution theorem does not only hold for the addition of two random
variables but also for Boolean functions of random variables. However, in contrast
to the field of real numbers where a value of a random variable X, is uniquely
determined by a real number z and y,_, through X,, = z — y,_», in Boolean algebra
values of Boolean variables only constrain the values of other Boolean variables.
These constraints may yield a set of values, rather than a single value, which is
still compatible with the convolution theorem. In the following, we use the notation
b(X, y) = z for such constraints, where the Boolean values y and z constrain X to
particular values. For example, for (X Vv y) = z, where y, z stand for Y = 1 (Y has
the value “true”) and Z = 1 (Z has the value “true”), it holds that X € {0, 1}.

THEOREM 2. Let f be a joint probability mass function of independent random,
Boolean variables 1 and J and let b be a Boolean function defined on I and J, then
it holds that

PO, J)=e) =) fi(i)P(b(, J) = e)

Proof. The proof is almost identical to that of Theorem 1. The (1, J) space defined
by b(I, J) = e can be decomposed as follows: | J.{I =i} N{J = j | b(i, j) = e},
where the expression b(i, j) = e should be interpreted as a logical constraint
on the Boolean values of the variable J. As in Theorem 1, the individual sets
{I =i}N{J =j|b(, j) = e} are mutually exclusive. O

This result is illustrated by the following example.

Example 1. Consider the example given in Figure 1 as discussed in Section 2, and
the Boolean relation A v R = L, which expresses that fat loss L is due to changes
in the energy balance A or fat removal R. By applying Theorem 2, the following
results:

PAVR=1)=)_ fa@P@vR=I)

= fa(a) (fr(r) + fr(F)) + fa(@) fr(r)
= fa(@) fr(r) + fala) fr(F) + fa(@) fr(r),

where the term (fr(r) + fr(7)) results from the logical constraint thata vV R = [,
i.e., R € {0, 1}. Note that this is exactly the same result as for the noisy-OR model
with the causal variables C marginalized out:

Py =) fa@fr(r)

avr=l

= fa(a) fr(r) + fa(a) fr(F) + faa)fr(r)
— P(AVR=1).
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4.2. Generalizing Causal Independence

The idea now is that we can use any Boolean-valued function, as long as
the function is decomposable, to model causal interaction using the convolution
theorem. Then, the hypothesis is that a discrete causal independence model can also
be written as follows:

Pye | C)= PO, ..., I,)=¢e]| C)

where the right-hand side can be determined as follows:

Py, ..., L) =e[C)y=) > - > 3" filir | C1) Pi(bi(ir, b) = ji | C2)

Jn=2 Jn—3 Ji
< P (bp—1(ju-1, L) =€ | Cy) 3)

and the Boolean random variables J; are defined in terms of /;’s dependent on
the constraints imposed by the Boolean operators b;. Equation 8 can be proven by
an inductive argument over all the cause variables using Theorem 2. In particular,
if we use a single operator b, = © that is commutative and associative, then the
order of evaluation does not matter and we can ignore parentheses: b([y, ..., I,) =
I, ® - © I,."*°" However, if the single operator used to define the Boolean function
b is not commutative or associative, then the order in which the Boolean expression
is evaluated matters, and one should use parentheses.

THEOREM 3. Let Py(e | C) be defined as a causal-independence model in terms of
the Boolean function b on Boolean random variables 1, . . ., I, then it holds that

Py(e | C)=P(ly,...,I,)=¢€]C)

Proof. The proof is by induction on n, the number of cause variables. The essence of
the proof is that a probability distribution P; (b;(ji, Ix) = j, | Ci) is always equal
to c; P, (Iy = 1| Cy) 4+ 2P, (I =0 | Cy), with ¢y, c; € {0, 1}, i.e., the Boolean
constraint function b; determines whether or not P; (I = 1| Cy), or P, (I =0 |
Cy), or both, or none of these are entered into the equation. This is exactly what

b(ly, ..., I,) does in the formula for causal independence; in fact, it holds that
ci=blly,...,i,..., I, for certain values of {/y, ..., I,}\{l;} and likewise for
C). O

The principles discussed above carry over to the continuous case. The con-
volution theorem for continuous variables X, Y, and Z, with Z = X + Y, has the
following form:

AH@=/ Fe) fy(z — x)dx

where fy.y, fx,and fy are probability density functions and the variables X and Y
are assumed to be independent. As for discrete probability distributions, convolution
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can be used recursively. Thus, in the context of the theory of causal independence, we
use convolution to compute the conditional probability density function f,(e | C),
in a way very similar to the discrete case, where b is the causal interaction function.

4.3. Decomposition with Continuous Variables

Moving to the continuous case, consider the Boolean-valued decomposable
functions b, i.e., functions b : I — {0, 1}, such that constraints on some variables
I' C I imposed by b are measurable sets of values for I'. We now wish to use the
theory of causal independence to decompose the probability mass of e given C, i.e.,

fo(e | C).

First observe that Theorem 3 also holds for the continuous case. The represen-
tation of e is thus fully determined by P(b(ly, ..., I,) = e | C). The decomposition
of this distribution now follows a similar pattern as the discrete case.

THEOREM 4. Let f be a joint probability density function of independent random,
continuous intermediate variables J and K and the related continuous variables
C ={Cy, Ck}, and let b be a Boolean function, then it holds that

P(b(J,K)=e| C)=/ FiGICHP®(, K) =e|Ck)dj
Proof.

P, K)=e | C) = / FGBGLK) = ¢ | ©)dj

=/ b(j, K) f,(GIC) fx(K|Ck)dj

e e]

=[ [ s
—o00 Jb(j,k)=e

=f f1G 1Cy) fx(k|Cg)dkdj
—o0 b(jJ)=e

= / JiGICHPD(), K) =e|Ck)dj

Note that the constraint b(j, K) = e determines a subspace of the real numbers for
variable K over which the density function fx is integrated. (]

For a general n-ary Boolean-valued function b of continuous variables, we can
apply this equation recursively, which gives
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Figure 3. Illustration of a generalized convolution with continuous and discrete variables.

fole | )= PO, I, ... 1) =e | C)

o0
=/ frG | Cy) NIAGHE Cz)"'/ f1.Gn | Cp)diy, - - - diy
—00 b(l‘l,iQ,.“,l‘”)=L) h(ll

,,,,, in)=e

©))

If b is defined on both discrete and continuous variables, then this yields a mix of
sums and integrals by repeated application of Theorems 2 and 4.

To illustrate this, consider Figure 3, where a continuous variable J is combined
with a binary variable K using a Boolean function b such that

0<J<1 ifk(K=1
b(J,K)= )
otherwise
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In this case, by applying Theorem 4, we obtain P(b(J,K)=e¢|c¢c) = fol fr( |
c))P(k | cg)dj=PO<J <1]|cy)- P(k]| ck),asillustrated in Figure 3.

5. A RELATIONAL PROBABILISTIC LANGUAGE

We consider various operators for continuous variables, which will build up
a rich language for modeling causal independence in terms of relations between
continuous variables.

5.1. Boolean-Valued Continuous Operators

Analogously to the convolution notation (6), we define an operator (v) for
denoting this decomposition for any Boolean function such that

1)@ = file ] ©)

.....

where the superscripts C and Cy, ..., C, represent conditioning of the mass or
density functions on the corresponding superscript variables. This allows us to deal
with complex combinations of such operators in a compact fashion. If b is binary,
we use an infix notation:

(fjc'/@ f1?> ©) = fyi0.50(€) = fosx (e | ©)

e.g., ® denotes the decomposition of two densities f; and fx using a logical OR.
Returning to the fat loss problem (denoted by the variable L with / standing for
L = true) of Example 1, we have

(£20 fo)l) =Y fa@P(aV R)=1)

which is again the noisy-OR operator for discrete random variables.

In the following section, a language that supports Boolean combinations of
relations is developed and studied. This language will be built up using well-known
algebraic operators. Their algebraic properties in fact carry over to the convolution-
based decomposition as shown by the following proposition.

PROPOSITION 1. Given a set of interaction variables 1 with {I, ..., I,} C 1 and
{1{,..., I} €I and its associated causal variables C for each I; and C, for each
I1 <j<n1<k<mifbl,...,1,)isaBoolean expression that is equivalent
to the Boolean expression b'(1{, ..., 1)), then

O (£ ) =@ (i 1)
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Proof. Take a value for the effect variable E. By definition, () (f ]C‘, o f ,f” )e) =
fo(e | C). By Theorem 3, this is equal to P(b(Iy, ..., I,) = e | C). Owing to the
equivalence of the Boolean expressions, we have P(b'(1{, ..., I)) = e | C), which
again implies f(e | C). g

While it is a trivial proof, the property is very useful in practice as it allows for
algebraic manipulations of the convolution operator based on the properties of the
Boolean function. For example, since the Vv operator is commutative, i.e., it holds

that I, v I, iff I, v I} for all I; and I,, the proposition states that flf'@ f,fz =
f ISZCD f ,f '. Also for continuous Boolean operators, this can be used, e.g., it directly

follows that fJC" = fjc". We study some of these operators in more detail
next, in particular when we use this to build causal independence models.

5.2. Relational Operators

The relational operators are treated similarly to convolutions and Boolean
operators by viewing a relation and a value of a random variable as a constraint
on the other variables. First, basic relational operators, such as =, <, <, >, ..., to
build up our relational language are studied. Consider <:

PlO=PU = =c1O=[[  fi.nl0dd a0
If I; and I, are independent, then the following equality results:
P_(e| C) = /Z fri | COP(( = b) =e| C)di,
= /_Z S| Cl)[oo f(2 | Cp)disr diy

A similar expression can be derived for >, whereas P((I/; =) =¢e¢ | C) =0 as
P((I; =i, | C;) = 0 for continuous variables /; and I,. This expression implies
that, in case /| and I, are independent, the relation can be decomposed. As a result,
we can use the notation as introduced earlier to obtain operators (x):

(7@ 1) @ = frte 1 ©
= P(R(I;, b)) =¢| C)
where R is one of the basic relational operators.
Subsequently, we look at the extension of this language with convolutions of

density functions of the interaction between variables and constants. For conve-
nience, we ignore in the subsequent derivations that we are dealing with conditional
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density functions. A constant k can be described by a uniform probability distribution
with a density function
1/6 ifjek—6/2,k+6/2]

0 otherwise

f1(j) = {
for § € RT very small, then

k
P < J)y=e)=(fiO fi)e) =/ fi@)di = P(I < k)

as one would expect. For convenience, we have written f; for this density function
S and will do so in the following.

For modeling the probabilistic interaction between variables, let I. be a set of
continuous random variables and K be a set of constants. Then, a linear-equations
relation is a Boolean-valued function b such that

b(Ic)ZR i:CiX,',i:dej
i=1 j=1

suchthat X = {Xy,..., X,}, Y={Y1,...,Y,}, X, Y CI. UK, ¢; and d; are real
numbers, and R is a relational operator.

If the sets X and Y are disjoint with respect to variables in I, whereas overlap
for constants is allowed, the sums of X and Y are independent. In that case, the
relation can be decomposed using Equation 9, yielding the following proposition.

PROPOSITION 2. The causal-independence model of a linear-equations relation

R ZC,’X;,ZCZJ'Y/‘
i=1 j=1

with continuous interaction variables 1. can be written as

PbUI)=e)=P|R|D XY di¥; | =e
i=1 j=1

= (fo,xi4ter X, @ favi4tdy v, )(€)

X, YCIL.andXNY =@.

Example 2. Recall the example in Figure 1 as discussed in Section 2. The causal
independence model of the energy balance A can be written as
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P H+W =alC.BY) = (O 1))@

= (fFO UL+ fi) @

where * is the (sum) convolution operator.

5.3. Boolean Combinations of Relations

Linear-equations relations can now be combined in a uniform manner using
Boolean functions, which allows us to complete the relational language. Let again
I, be a set of continuous causal random variables, I4 a set of discrete causal random
variables, and I = I, U I4. A Boolean combination bc is a Boolean-valued function
defined on I as follows:

be = bRy (X', YD, ..., R.(X",Y), L)

where b is a Boolean function if all variables in I4 are Boolean (binary), and
otherwise a Boolean-valued function, and {Ry, ..., R,} a set of r linear-equations
relations given I, and some set of constants K.

If the set of continuous variables is partitioned into disjoint sets, then we
have ensured that each of the relations in the Boolean combination is independent
of each other. To see that independence is not generally the case for nondisjoint
sets, consider, for example, the relations I, < I, and I, < I5 and assume that I is
normally distributed with mean 1 and arbitrary variance, Furthermore, assume that
I, =1and I5 = 0,1i.e., I| and I3 are constant random variables. Then P(I; < I,) =
Phb=1)=1/2#0=P,>1|L <0)= P, <L, | I, < I3). It follows that
the relation /; < I, is indeed dependent of the relation I, < I.

If the continuous variables in the Boolean combinations of relations are parti-
tioned, Equation § can be applied to obtain the following proposition.

PROPOSITION 3. The causal-independence model of a Boolean combination of linear-
equations relations b(R(X',Y"), ..., R.(X",Y"), 1), where X' and Y/ are sets
of continuous variables and constants, and 1q = {I,11, ..., I;} a set of discrete
variables, can be written as

P((Ri(X', Y"),...,RX",Y),Ig) =e | C)
C C, Cry Cy
= @ (fl\’ I(XI’Yl)a sy fRV(X”Y")s f[r+41r 93 e ey f[s ) (e)

1

if all pairs of X and Y/ are mutually disjoint.

Example 3. Again, consider the example in Figure 1 as discussed in Section 2.
We are now in the position to decompose the full causal-independence function
representing fat loss L.
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P(I<H+W)VR) =1|C,B.,Y,S)
=P(RVUI<H+W)=I1]|C,B,Y,S)
= frotr 2w ®
= (f2O fL-Hew) O
= (f20 (fFO (fE = f)) O

6. SPECIAL PROBABILITY DISTRIBUTIONS

In this section, the theory developed in the preceding sections is illustrated by
actually choosing special probability distributions to model problems.

6.1. Bernoulli Distribution

As an example of discrete distributions, we take the simplest one: the Bernoulli
distribution. This distribution has a probability mass function f such that f(0) =
1 —p and f(1) = p. Let P(I; | Cx) be Bernoulli distributions with parameters
pr where k = {1, 2}. Suppose the interaction between C; and C, is modeled by
<, then the effect variable E also follows a Bernoulli distribution with parameter
p1 — p1p2 + 1, since

P(e|C)=(f'O f)e)
=Y [l [ COP(h < h)=e| Cy)

i
={1=-p)1—=p)+A—-p1)p2+pip2
=pi—pipp+1

Of course, the parameters may depend on whether Cy is true or false.

6.2. [Exponential Distribution

To model the time it takes for the effect to take place due to the associated
cause, we use the exponential probability distribution with distribution function
Fit)y=1—¢, where t € R(T is the time it takes before the effect occurs. The
associated probability density function is f(¢) = F'(t) = Ae~*'. Now, let I; and I,
stand for two of such temporal random variables such that /; < I,, meaning that
intermediate effect /; does not occur later than /,. Suppose we model the delay
between C| and C; by §. Then, for example, if all C; are true, then the density of
effect E is as follows:

fras=n(e | ©) = (f;,1,0 fi,)(e)
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= / SrG ) frL,(i1+06=Dh)=-e]c)diy

o0 . .
— / )\le‘*”‘kge_“(”“)dil

o0

0 .
— / )Ll)\ze*()w%»)nz)ll e M0 di;

o0

o0
_[_ e e—()»1+)»2)i1i| o8
A+ Ao

0
A28

AL+ A2

where § > 0. For § = 0 only the rate parameters A; and X, affect the probability
density fr,4s5=5,. If also A = Ay, then fi,4s5-1,(e | C) = A /2. The probability mass
of I} < I, is obtained by integrating out possible delays & between I} and I:

o0

Pp<pn(e ] C) = Jr+s=p(e | C)dé
0

— |:_ )\'l e)‘zs]oo = )\'l
A+ A 0 A+ Ao

It follows that if A} = A,, then f,<,(e | C) = 1/2.

6.3. Geometric Distribution

A geometric distribution is the discrete analogue of the exponential distribution
and models the number of Bernoulli trials needed to get one success where the
success probability of the trial is given by a parameter p. The probability mass
function of this distribution is P(k) = (1 — p)*p, with k > 0. Let I, be a geometric
random variable with parameter p; and I, is a geometric random variable with
parameter p,. First note that ), (1 — p)p =1 (since it is a distribution) implies
that ), (1 — pk = % Similarly, for the parameter 1 — (1 — p;)(1 — p,) it holds

> —=pn - )k = m Then we have the following derivation:

fre=n(e] €)=Y (1=p)'piP(ih < b)=e|c)

i

=> (U=p)'p1 Yy Ph=k=> (1—p)ip Yy (1-p)p

k=i, k=i,
=> (1= p)'pi(1 = p)" (Z(l - Pz)k) P
i k
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. 1 . .

= D20 P i1 = 2 pr = 30 = ) (1= )’
P1

== p(—p2)

=pi Yy (A =p)d—p))' =

i

The probability that less trials are needed to get a success for /; compared to /, is
thus the probability that the Bernoulli trials of /; succeed relative to the probability
that at least one of the two types of trials succeed.

6.4. Conditional Gaussian Distribution

The most common hybrid distribution for Bayesian networks is the conditional
Gaussian distribution.>* We illustrate the theory for the case when a continuous
interaction variable J has a continuous cause variable C;. The distribution of J is
given in this model by f(j | C;) = N(a + BC;, c?). Let I, and I, be two such
random variables with causal variables C; and C,. It is well known that variable E
with f7,_p(e | C) is distributed Gaussian with mean o) + 8,C; — o, — $2C; and
variance o7 + o . Similarly, the convolution of two Gaussian variables is a Gaussian
variable with the sums of means and variances.

Here we illustrate the relational operator <. The probability P-(e | C) can be
obtained by

P(e|C)= Py <,(I1 =h)=¢|CO)
= f[,Cl@ f]z2
= (1O £)O0=F©

:1 |+ orf —(a1 + Bi1C1 —ay — BrC)

2 202 +02)

PO <wy+ w,Cy + waC?)

where wy = 2=y, = —L_ y, = L and ® ~ N(0, 1), which is a
0 0’12+0’22’ 1 m’ 2 \/m» ( ) )s

probit model (cf. Section 3.2).

Example 4. Consider the energy balance A as decomposed in Example 2. Suppose
all causal and interaction variables are conditionally Gaussian. Suppose the balance
is negative, i.e., a is true, then, (f,_‘j * fv{,)(a) represents a distribution N(«y + aw +
BuCpr + BwCy, o}, + 07, i.e., the sum of the mean and variance. Using the above,
it follows that the probability of a is

P(a) = (fFO (fE « f)a)
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Figure 4. Example distributions, where, from left to right, the first figure shows the density
of C ~ N(2800, 700); the second figure shows the density of B + Y ~ N (2300, 200); the third
figure shows the probability distributions P(A | C, B+ Y) with A =1 < (H + W) where I ~
N(0.9-C,200) and H + W ~ N(1.1-(B +Y), 300); finally, the figure on the right shows the
joint density of {A, C, B+ Y}.

whichis a probit model withb = («; — ay — aw)/o’,wec = B;/0’',wg = —Bg/o’,
and wy = —Bw/o’, where o' = \/0} + 0} + of.

In Figure 4 a number of plots are given to illustrate this model for some realistic
parameters. Note that the energy balance distributions depicted in the third figure are

split up into O (too much intake), 1 (too much energy expenditure), and an uncertain
band in the middle.

7. RELATED WORK

In this section, we discuss related work with respect to the types of models that
can be handled by the relational language introduced in this paper. Furthermore, it is
discussed how the work presented in this paper relates to previous research on causal
independence models. Although our paper puts emphasis on theory, the last part of
this section also indicates how the algebraic framework presented in this paper can
be seen as a generalization of an existing method for improving the efficiency of
probabilistic inference in causal independence models.

7.1. Mixtures of Truncated Functions

Mixtures of truncated exponentials, MTEs for short, were originally proposed
to approximate continuous distributions.”> They are closed on marginalization and
conditioning, and thus efficient algorithms to reason with MTEs exist.2¢ In addition,
methods for parameter learning of MTEs have been developed.?”-?® In principle, the
method is powerful enough for hybrid Bayesian networks, containing both discrete
and continuous variables at the same time.>” Recently, the idea to approximate
probability distributions by mixtures of truncated exponential has been extended
toward mixtures of polynomials,*® and finally the method has been generalized to
mixtures of truncated basis function, MTBF for short, that unifies all the different
approaches.?!

Where the algebraic framework presented in this paper is primarily meant for
modeling conditional probability distributions in terms of relationship, the theory
of mixtures of truncated functions is primarily meant to approximate probability
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distributions. Thus, both foundation and purpose of the two approaches are differ-
ent. Understandably, a relational algebra to model relationships between random
variables is not an integral part of the MTBF method.

7.2. Stress-Strength Models

In statistics, the probability distribution P(X < Y) has been studied since the
1970s under the name of stress-strength model and it has attracted considerable
attention;>? it is an important special case of the framework presented in this paper.
The name stress-strength model comes from engineering, where the assessment of
the reliability of a component is described in terms of some “stress” X experienced
by the component and Y representing the “strength” of the component to overcome
that stress.>” For example, if X represents the maximum chamber pressure by
ignition in a rocket engine and Y the strength of the rocket chamber, then P(X < Y)
represents the probability of successful firing of the engine. Also, for medical
applications this model has received considerable interest. In particular, it is the
basis for the nonparametric Wilcoxon—-Mann—Whitney test, which is very often
used in medicine.** For example, when comparing two treatments, X and Y could
represent remission times for each treatment. For the medical decision maker, it is
then of interest to know the probability P(X < Y), although in this case the name
“stress-strength” is, of course, not appropriate.

Much of the work in statistics has focused on the construction of efficient and
reliable estimators of parameters of R = P(X < Y) based on different assumptions
on the distributions of X and Y, whereas in the present paper the focus is on a more
general modeling method for Bayesian networks. Typically, X and Y are chosen
from the same family of distributions and independence of X and Y is assumed,
similar to what is done in this paper. For a general overview of estimation methods,
we refer to a review paper in The Handbook of Statistics.>*

7.3. Related Causal-Independence Models

Modeling causal independence has a relatively long tradition. In early work
on causality, Good? showed that under certain assumptions, causal influences to a
variable combine in a way that is now called the noisy-OR. More than two decades
later, the noisy-OR and noisy-AND were defined by Pearl in the context of Bayesian
network as a canonical method to express interactions between causal influences.*®
At exactly the same time, Peng and Reggia discovered the same principles indepen-
dently in the context of probabilistic abductive reasoning, extensively described in
their book.?’ Pearl also showed how to exploit this structure to speed up probabilis-
tic inference in singly connected networks. Later, this was extended for bipartite
graphs with a noisy-OR interaction.’®3° The noisy-OR gate was then generalized
in several ways'®!34? and was also used to speed up inference in general Bayesian
networks, 154142

General causal independence was first described by Heckerman and
colleagues.**** This early work discusses the noisy-OR, noisy-MAX, and a
noisy-ADD for discrete variables as special cases. The last paper also considers
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a continuous version of causal independence, namely the linear Gaussian model.
General properties of causal independence, in particular decomposable causal
independence, are also introduced; decomposability has acted as a foundation for
further generalization. Algebraic properties of general causal independence were
later further studied by Lucas'® and Van Gerven et al.*> Since then, other specific
causal-independence models have been studied, for example, causal independence
combined with temporal information.'® Furthermore, there are a number of
approaches specifically designed to model the undermining of different causes to an
effect. In many of the standard models, such as the noisy-AND and noisy-OR, this
undermining cannot be modeled as in these models the causes are collectively as
effective in causing the effect as some by acting by themselves. In general causal in-
dependence, however, this can be modeled by a Boolean expression that incorporates
negation. The recursive noisy-OR model*® is an approach to represent positive and
negative influences, but these cannot be combined within the same model. A more
general approach related to this work is the nonimpeding noisy-AND tree (NIN-
AND),*” which can be seen as a noisy-AND with negations. A similar approach is by
Maaskant and Druzdzel,*® where gates are modeled by a conjunctive normal form.

For general Bayesian networks, there have been two approaches to exploit
causal independence for speeding up inference by changing the network structure,
namely the parent-divorcing method*® and the temporal transformation method.*
Other approaches use the insight that efficient probabilistic inference is made pos-
sible by working with a factorization of the joint probability distribution, rather
than working with the joint probability distribution itself. As causal independence
models allow decomposition of the probability distribution beyond the factorization
implied by the conditional independences derived from the associated graph, this
insight can be exploited in algorithms that work with these factorizations directly
such as symbolic probabilistic inference®® and variable elimination.>

Right from the beginning, causal-independence models were not only used
to improve probabilistic inference (by approximating the actual model) but also to
facilitate the manual construction of Bayesian networks, as the number of parameters
in, for example, noisy-OR models that has to be estimated is proportional rather than
exponential in the number of parents.'®*>3! This is the main reason why causal-
independence models are considered as important canonical models for knowledge
engineering. For a comprehensive analysis and overview of applying such models
in practice, we refer to the review paper by Diez and Druzdzel.'*

7.4. Exploiting Algebraic Properties for Efficient Probabilistic Inference

Zhang and Poole™ introduced a combination function ® that can be used to

further factorize a discrete joint probability distribution when there is causal inde-
pendence with Boolean operators which are associative and commutative (Lucas'?
analyzes such algebraic properties in his work). Zhang and Poole show that such
algebraic properties can be successfully employed to speed up variable elimination
in exact inference procedures. This combination function is in some sense a spe-
cial case of the (o) operator introduced in the present paper, which we will show
next.
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Consider two functions g; and g», which both represent conditional probability
distributions. Let Ey, ..., E, be effect variables, called convergent variables by
Zhang and Poole,* that appear in both g; and g>, and let A be the set of nonconver-
gent variables appearing in both g; and g,, B the set of (all) variables that appears
only in g, and C be the set of (all) variables that appears only in g,. Then, Zhang
and Poole define

(gl ®82)(6’l’ -'-9enaAaBa C)

— Z Z gl(El=i11,...,En:inlaA’B)

bi(irn,in)=e by (in1,in2)=ey

X gZ(El = i127 ey En = in2» Av C)

The intuition behind this definition is that the intermediate variables I have the same
domain as the effect variables E and the function g;(e, C;) = P(I; = ¢ | C;), with
i € {1, 2}. In general, it then holds for causal independence models that

P(e|Ci,....C) = Q) gile. C))

i=1
Whenn = 2,

P(e| C1,C) =g ®ge, C1,C) = Y gilir, C)galia, C)
b(i|,i2):€

In the type of Bayesian network considered in this paper, the density f| ,]C‘ corresponds

to the function g;(/;, C) and the density f Ifz corresponds to the function g>(1>, C,).
We thus obtain the following equality:

g1 ®&(e,Cl,C)= Y g1, C)galiz, C2)
]’)(il,ig):(f

=Y [ POl ) =e| C) = (f1'® fr)e)

thereby showing the equivalence of the two operators for this specific (discrete)
case. This result easily generalizes to n causal variables. Properties, such as the
commutativity and associativity of the ® operator, as proved by Zhang and Poole,>
follow directly from the more general Proposition 1.

8. CONCLUSIONS

We presented a new algebraic framework for causal-independence modeling
of Bayesian networks that goes beyond what has been available so far. In contrast
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to other approaches, the framework supports the modeling of discrete as well as of
continuous variables, either separately or mixed, and there are no restrictive require-
ments with respect to algebraic properties such as associativity or commutativity.
The algebraic properties that hold simply follow from the operators that the Bayesian
network developer wishes to employ.

The design of the framework was inspired by the convolution theorem of prob-
ability theory, and it was shown that this theorem easily generalizes to convolution
with Boolean-valued functions. We also studied a number of important modeling
operators. Contrary to the commonly used regression models, we were thus able to
model interactions between variables using knowledge at hand. Furthermore, the
theory was illustrated by a number of typical probability distributions that might be
useful when eventually building Bayesian network models for actual problems.

For inference in networks containing these causal-independence structures, one
can resort to the use of approximate inference, such as discretization (e.g., using a
dynamic discretization approach)®? or sampling (e.g., using BUGS?). For normal
distributions with the class of continuous operators as introduced in this paper, a
variational approximation seems feasible, as the distribution containing relational
operators is of a sigmoid shape, i.e., the probit model. Murphy??> observed that
the product of a sigmoid and a Gaussian can be approximated well by a Gaussian
distribution, so the joint factorization of the probability distribution could be ap-
proximated in this way. Ideas explored by Lerner et al.>* could also be applied to
obtain an efficient variant of the join tree algorithm.

There are several other directions to extend this work. Besides approximating
the distribution for the general case as discussed above, in some cases standard
methods for solving the inference problem can be used, such as the probit model
for the conditional Gaussian distribution. Furthermore, the algebraic manipulations
could be used as a preprocessing step to simplify the inference or to further factorize
the joint probability.’® Another question is how to estimate the probabilities of
the models that have been discussed in this paper. For certain models, this has
been explored earlier in the context of causal independence'* or in context of stress-
strength models,** but a general approach is lacking. In particular, when considering
the model based on a relational operator, the stress-strength literature has focused on
estimating the marginal of the effect variable E based on partial information about
the interacting variables, whereas in a Bayesian network approach we are typically
interested in the underlying probabilities of the interacting variables. Finally, it
should be noted that many bounds can be given on the probability distribution of
the effect variable. These include confidence bounds when estimating the effect
variable, but also bounds when approximating the marginal probability in different
ways. In future research, we will address some of these issues further.
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