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Abstract

First-order predicate logic essentially is a language to express knowledge concerning ob-
jects and relationships between objects in a domain. Many medical problems can be cast
naturally in such terms. In this paper the suitability of logic as a knowledge-representation
formalism in building medical expert system is investigated. In particular, we investi-
gate the logical representation of three typical reasoning models in medicine: diagnostic,
anatomical and causal reasoning. It turns out that each of these models has its own
characteristic logical structure. Furthermore, the pragmatics of using theorem-proving
techniques in consulting such logic-based medical expert systems is discussed. In partic-
ular, attention is paid to the use of a meta-level architecture to improve the applicability
of theorem-proving techniques in building expert systems.

Keywords € Phrases: logic programming in medicine, medical knowledge representation,
expert systems, theorem proving.

1 Introduction

In building medical expert systems, several obstacles may be encountered. Omne of these,
the difficulty of collecting knowledge in the process of constructing an expert system, has
drawn much attention [3, 21, 31, 32]. At the other end of the development cycle we have the
validation of an expert system, which recently has been reviewed in several journals [30, 29].
However, only slow progress is being made in clarifying the potentials and limitations of
representation formalisms for the actual encoding of medical knowledge. The present article
attempts to shed some light on applying logic as a language for the representation of medical
knowledge.

Logic is frequently taken as a language to which other, more specialized, languages for
the representation of knowledge are mirrored. It is not hard to see why logic takes such
a prominent position. Firstly, logic, in particular first-order predicate logic, is essentially a
language to express knowledge concerning objects and relationships between objects. Many
real-world problems can naturally be described in these terms. Secondly, the language has
a well-defined syntax and a clean mathematical semantics. There can be no misunderstand-
ing whatsoever what the precise meaning of a sentence in first-order predicate logic is. As
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a knowledge-representation language, logic is one of the few languages taking such a firm
position.

The author views logic as one of the major candidates as a knowledge-representation
language in future-generation expert systems. The reasons for this are two-fold:

e Most other knowledge-representation languages exist in many different flavours; almost
none of these languages is completely understood.

e Logic is the unifying framework for integrating expert systems and database systems.

In particular, databases based on the relational data model may be viewed as a set of formulas
in first-order logic. Much work is now being done on extending the expressive power of
database systems, moving the capabilities of these systems towards those of expert systems.
DATALOG is a recent example of such a language [5]. The integration of medical database
systems and expert systems is without doubt one of the most important challenges in medical
informatics.

Interestingly, logic has seldom been used as a knowledge-representation formalism in build-
ing expert systems. Although there seems to be ample reasons to study the suitability of logic
as a knowledge-representation language for building expert systems, only few researchers have
actually investigated expert systems from this perspective [15, 18, 34]. The only expert sys-
tems having a basis akin to logic are those developed in the field of logic programming, usually
applying PROLOG. It should, however, be noted that logic programming is only concerned
with a subset of first-order logic (Horn clause logic), and that PROLOG is a programming
language, still far removed from being a completely declarative knowledge-representation lan-
guage.

In this paper, we investigate several common reasoning models in medicine, familiar from
the artificial intelligence literature, and discuss the mappings of those models to a logical
representation. The purpose of the translation is to obtain a representation that permits
automated interpretation by a logic-based theorem prover. Our two working hypotheses are
that the use of a logical language may be a means to reveal the underlying structure of
a given medical problem, and that standard first-order logic is sufficiently flexible for the
representation of a significant fragment of medical knowledge. The treatment of every model
includes an example taken from a medical textbook, and we show some results produced by
the theorem prover OTTER [28]. Finally, some results from our research aimed at making
logic a practical language for building expert systems are presented. We start with a brief
review of the most important principles of first-order logic.

2 The language of first-order logic

In this section, we briefly review the syntax and semantics of first-order predicate logic.
Furthermore, some of the considerations to make logic a practical language for building expert
systems are discussed. Only the notions required for understanding the remainder of this
paper are discussed here (cf. [11, 24, 41]).

2.1 Syntax and semantics

First-order predicate logic essentially is a language to express knowledge concerning the re-
lationship between individual objects and classes of object. Syntactically, each relation is



expressed using a predicate symbol, such as P; the objects in the relation are denoted by
terms t;, which function as arguments to a predicate symbol thus yielding atomic formulas,
or atoms for short, of the form P(tq,ta,...,t,). A term either denotes an individual object,
in which case it is called a constant, a class of objects, then called a variable, or expresses
dependencies upon other objects, in which case we speak of a function term. These dependen-
cies are expressed by means of a function symbol, denoting a mathematical function, having
as arguments terms that again denote objects in the domain of discourse. In this paper,
variables usually will be denoted by the letters x,y, z, u, v, w; the type of the other symbols
can be determined from their position in the atom. Atoms are the user-defined building
blocks from which, together with the logical connectives such as V (universal quantifier) and
— (implication), formulas in first-order logic may be constructed.

In logic-based theorem-proving programs, one often restricts the syntax of formulas to
clausal form. A clause is a sentence consisting of a finite disjunction of literals, where a literal
is an atom (positive literal) or a negation of an atom (negative literal). A Horn clause is a
clause that contains at most one positive literal. A clause having null literals is called the
empty clause, and will be denoted by O.

By convension, we assume that a collection of formulas Fy,F5,...,F,, stands for the
conjunction Fy A Fo A --- A F,,. We shall frequently refer to such a collection of formulas as a
logical theory T

As mentioned in the introduction to this paper, one of the distinguishing features of first-
order logic is its clean mathematical semantics. Assigning meaning to a formula in first-order
logic amounts to interpreting its constituting symbols in a mathematical structure of relations
S. Basically, a domain of discourse D, for example medicine, is chosen and predicates and
functions defined on this domain D are associated with the predicate and function symbols,
repectively, appearing in the logical theory. The interpretation of a formula ¢ starts with
determining which of the atoms in ¢ are true and which are false in the structure S; next, the
truth values obtained are combined using the meanings of the logical connectives. The empty
clause O is false by definition. We are mainly interested in formulas in which every occurring
variable is bound by a quantifier (then called sentences), since the meaning of such formulas
is completely determined by the problem domain in which the formula is interpreted, and
not by the particular fill-in for the variables. A sentence ¢ being satisfied (i.e. true) within a
structure S will be denoted by s ¢. It is said that a sentence ¢ is a semantic consequence
of a theory T' = {01,09,...,0,}, denoted by T |= ¢, if we have that for every structure S,
Es (o1 ANoa A--- A oy,) implies =5 ¢. We call the formula ¢ a theorem of T. The notion
of semantic consequence corresponds to the intuitive idea of determining what is true given
some initial information, such as concerning a patient.

Finally, we call a sentence ¢ inconsistent iff it is falsified in every structure S, denoted by

7 o

2.2 Logical data representation in medicine

In medical problem-solving usually some form of reasoning is carried out with regard to the
complaints and signs, physiological states, etcetera of the patient. So, the precise represen-
tation of such medical data is of fundamental importance. In every medical domain, the
following aspects can be distinguished:

1. A number of individual objects (e.g. patients, substances), which simply can be repre-
sented as constants in first-order predicate logic;



2. Properties of these objects (e.g. physiological states, levels of substances) which can be
represented using predicate symbols or function symbols of the same name.

We now distinguish two types of properties of an object:

e Properties that are unique at a certain point in time, such as the age of a patient; we
call such properties singlevalued properties.

e Properties for which several fill-ins may occur at the same time, such as complaints and
signs of a patient; we call such properties multivalued properties.

If a singlevalued property is used to describe a physiological process we shall refer to such a
property as a parameter. To express knowledge concerning multivalued properties of objects,
we use atoms of the form P(tq,ts,...,t,), for example

Sign(johnson, jaundice)
Sign(johnson, spider_angiomas)

expresses that a patient named Johnson has jaundice and spider angiomas at the same time.
Notice that we can enumerate specific properties of an object, signs of a patient here, simply
by means of a collection of atoms. To express knowledge concerning singlevalued properties
of objects, we use atoms of the form f(¢,ta,...,t,) ot where o is the equality predicate, =,
or one of the ordering predicates, such as < (less-than ordering in number theory), specified
in infix position as this is normal mathematical practice. For example, the fact that someone
named Johnson is 30 years old, can be expressed by the following formula:

age(johnson) = 30
Note that adding a new fact concerning the age of Johnson, for example
age(johnson) = 40

would lead to an inconsistency. The reason for this is that equality = is a reflexive, symmetric
and transitive binary relation. Using these properties, it is possible to derive that the formula
30 = 40 should hold, which, however, is inconsistent with the basic axioms of number theory.
(One should observe that without the availability of these axioms to a theorem-proving pro-
gram, equality is not handled in a satisfactory way.) Among others, atoms with the equality
predicate will be used for the logical specification of values of parameters; such atoms will be
referred to as states.

2.3 Logical deduction and reasoning strategy

One of the pleasant aspects of logic is that logical formulas may be manipulated to yield new
formulas by syntactic operations, called inference rules, that can be completely understood in
terms of the semantics introduced in Section 2.1. One of the inference rule frequently applied
in logic-based theorem-proving programs is binary resolution [37]. Repeatedly applying an
inference rule leads to a derivation or deduction. The formula ¢ being derived from a theory
T is denoted by T'F ¢. If we have that if T'F ¢ then T |= ¢, the inference rules are called
sound. Only sound inference rules derive meaningful results. On the other hand, if we have
that if T = ¢ then T F ¢, the collection of inference rules is called complete, i.e. they are
capable of deriving all semantic consequences of a theory T'.



Resolution is usually only applied to derive a contradiction, the empty clause O, because
resolution is only complete for deriving contradictions (refutation completeness). This is not
an important limitation, since we have that T |= ¢ is equivalent to T'U {—¢} = O, i.e. any
theorem that follows from the theory 7" may simply be added as a negation to 7" yielding a
contradiction.

The binary resolution rule is only the most basic inference rule in theorem-proving pro-
grams. This rule can be very inefficient, since it may generate many redundant formulas, i.e.
formulas not relevant with respect to the theorem to be proved. Several refinements to the
original binary resolution rule have therefore been proposed. An example of such an infer-
ence rule is hyperresolution which carries out several binary resolution steps in one step [38].
Furthermore, dealing with equality and ordering predicates as introduced above, in logical de-
duction poses certain problems. Simply adding the axioms that define equality and ordering,
as formulas to a logical theory, is not feasible. To deal with part of the meaning of equality
several special inference rules have been designed, such as for example demodulation [40]. A
demodulator is an equality axiom

t1 =12

where t1,ts are terms. Applying a demodulator to an atom in a formula in which the term
t1 occurs yields a new formula F’ where t; has been replaced by to, possibly by substituting
terms for variables appearing in ¢;. Finally, ordering and equality predicates are usually
dealt with by evaluating the resulting atoms to true or false. In the field of constraint logic
programming currently much research is carried out in dealing with such predicates in a more
declarative way [16].

In addition to a number of inference rules, theorem-proving programs provide reason-
ing strategies that impose certain restrictions on the size of the search space. A frequently
employed reasoning strategy is the set-of-support strategy [39]. It must be stressed that it
requires a lot of ingenuity on the part of the developer to find a strategy that behaves in a
satisfactory way.

3 Medical reasoning models

Logical languages such as first-order predicate logic are general languages with no direct
relationship to any problem area whatsoever. This lack of a direct relationship to a par-
ticular problem area, such as medicine, is in certain ways an advantage. The limitations
that are encountered in the formalization of medical knowledge are restrictions of the lan-
guage employed, and not of an unsatisfactory attempt of designing a special-purpose med-
ical knowledge-representation language. Moreover, since classical logical languages such as
propositional and first-order predicate logic are well-understood, all restrictions are known in
advance.

However, the generality of logical languages also poses some problems, since translating
medical knowledge into logical formulas is not supported by some special-purpose syntax or
semantics. In the following, it will turn out that it is indeed possible to impose restrictions
on the full syntax of first-order predicate logic based on features of the (medical) problem at
hand.

In order to show the potentials of logic as a language for formalizing medical knowledge,
we will distinguish several more or less typical medical reasoning models. Although any form



of categorization of medical reasoning is arbitrary, this distinction will aid in characterizing
the nature of logic-based knowledge representation in relationship with medical reasoning.
Here, we shall pay attention to three medical reasoning models:

e Heuristic, diagnostic reasoning;
e Anatomical reasoning;
e Causal reasoning.

Each reasoning model will be investigated by means of an example taken from a medical
textbook or by knowledge gathered from interviewing a doctor.

3.1 Heuristic, diagnostic reasoning

There are several different languages known from the literature to formalize diagnostic reason-
ing. Examples of such languages, other than logic, are set theory and belief networks [33, 19].
In the present section, we focus on the logical representation of diagnostic reasoning in the
spirit of MY CIN-like rule-based expert systems [4, 9]. In this formalization, diagnostic reason-
ing is viewed as a deductive process instead of as an abductive process, the other frequently
adopted view of diagnostic reasoning [34].

We describe our attempt to reformulate the HEPAR system, a rule-based expert system for
the diagnosis of disorders of the liver and biliary tract, to first-order predicate logic (actually,
many-sorted predicate logic, but we disregard the sorts in this article) [25]. The problems
encountered in doing so, and some of the solutions found will be discussed.

The formalization of medical diagnostic reasoning involves two different aspects. First,
some suitable logical representation of patient data must be chosen. Second, we have to decide
on the logical representation of diagnostic medical knowledge. In Section 2.2, we have dealt
with logical data representation in medicine; the forms introduced in that section immediately
can be used for the representation of patient data. For example, the data of a 12-year old
patient (which has been used in the validation of the HEPAR system) can be expressed in
first-order logic as follows:

sex(patientl ) = female
age(patientl) = 12

Complaint (patientl,arthralgia)
time_course(patientl,illness) = 150

Signs(patient1, Kayser_Fleischer_rings)

ASAT (patient1,labresult,biochemistry) = 200
urinary-copper (patientl,labresult,biochemistry) = 5

As can be observed, several singlevalued and multivalued properties are expressed as formulas
consisting of a single atom (unit clauses). This logical representation differs from a more
database-oriented representation as sometimes employed in PROLOG-like language [1]. In
this case, the representation language is primarily viewed as a term manipulation language,



not as a logical language. Then, the information above would be represented as a single term,
for example as follows:

patient(name = patientl ,
sex = female,
age = 12,

complaint = [arthralgia],

)

similar to a record in traditional database systems.

Although the representation of patient data in logic seems straightforward, the represen-
tation of negative information (such as findings observed to be absent) is not. We shall discuss
this matter further after discussing the representation of diagnostic medical knowledge.

Diagnostic medical knowledge is represented in the HEPAR system using production rules
with object—attribute—value tuples. According to the declarative reading of rules, translation
of most production rules is straightforward yielding logical implications [2, 24]. An example
of such a logical implication concerning Wilson’s disease is shown below:

Vx(Duration(x, complab,chronic) A
(disorder(z) = hepatocellular) N
(age(x) < 25) A
(caeruloplasmin (x, labresult,biochemistry) > 20) A
(urinary_copper (x, labresult,biochemistry) > 1)
— Diagnosis(x, Wilson_s_disease))

Note that this formula (after translation to clausal form) conforms to the syntax of a Horn
clause. However, we discovered that more than 50% of the production rules in the HEPAR
system could only be translated to non-Horn clauses. This was partly due to the occurrence
of negative conditions in the original production rules, and partly due to the presence of
multiple (positive) conclusions in rules (which were translated to disjunctions). So, a Horn-
clause theorem prover would be insufficient as an interpreter of the resulting logical theory.

Diagnostic reasoning in medicine typically involves reasoning about diagnostic categories.
For example, in the domain of the HEPAR system, a clinician first tries to establish whether
the patient suffers from an acute, subacute or chronic disorder, from a hepatocellular or
biliary obstructive disorder, and whether features are present indicating that the disorder
is malignant [25]. Where in the original version of HEPAR, the specification of knowledge
concerning diagnostic categories is accomplished in production rules, in the logical version of
HEPAR logical implications are used for this purpose. For example, the following implication
concludes about the chronic nature of the disorder of patients x:

V((time_course(x, illness) > 26) A
(Signs(x, spider_angiomas) V
Signs(x, palmar_erythema) V
Signs(x, Kayser_Fleischer_rings))
— Duration(z, complab,chronic))



Note that the literal Duration(x, complab,chronic) occurs in the previous implication concern-
ing Wilson’s disease.

Given the data of a specific patient, represented as a collection of unit clauses D, and the
diagnostic theory T, diagnostic problem solving using a resolution-based theorem prover like
OTTER amounts to establising

D uUT U{=Diagnosis(z,y)} + O

for every patient name substituted for the variable x and every possible disorder substituted
for the variable y. In the OTTER system, this can be accomplished by using a combination of
binary resolution, hyperresolution, demodulation and evaluation of atoms containing numeric
constants, in conjunction with the set-of-support strategy.

There remain certain aspects of HEPAR that have no suitable equivalent in classical logic.
In the original version of the HEPAR system:

1. A form of closed world assumption (CWA) is taken to hold true [35]. With regard to
all tests carried out for a patient, all findings not observed in the patient to be present
are (implicitly) assumed to be absent.

2. A diagnostic strategy is incorporated. Even the relatively simple diagnostic strategy in
HEPAR could not easily be expressed in the language facilities provided by the OTTER
theorem prover.

3. Some reasoning concerning the derivability of facts using the notknown meta-predicate
is carried out. There is no analogous notion in standard first-order logic.

4. Reasoning with uncertain knowledge is possible using the certainty factor model of
Shortliffe and Buchanan [4].

To deal with unavailable patient data, for all investigations for which unit clauses were present,
negative unit clauses were added if the property concerned was multivalued, thus explicitly
stating the remaining test results to be negative. For example, to the clauses concerning the
patient discussed above, one of the unit clauses added was the following:

—Complaint (patient1,fever)

indicating that it was assumed that the patient did not have a fever. Note the difference with
the closed world assumption as it appears in the logic programming literature; here a literal
—P(t1,t2,...,t,) is assumed unless the positive literal P(t1,ts,...,t,) can be derived from the
theory [22]. The choice of our more restrictive method for handling negative information was
also motivated by the fact that the rule-based version of HEPAR contains several production
rules with negative conclusions. Instead of completely relying on the closed world assumption,
separating out the CWA and the classical logical approach to negative information seemed
more appropriate.

In our experiments with the OTTER system and a resolution-based theorem prover we
developed in COMMON LISP, we found that general, domain-independent reasoning methods
were insufficient for imposing a clear conceptual structure on the reasoning process. As a
solution to this problem, we have investigated the use of a meta-level architecture [27]. In our
COMMON LISP theorem-proving program, a knowledge base consists of two levels: an object-
level containing the declarative domain knowledge from HEPAR, and a meta-level containing



domain-specific control primitives. The actual application of inference rules at the object-level
is controlled by the meta-level primitives.

The meta-level control primitive that turned out to be particularly effective was what we
called the pattern matching ordering primitive, or pmo primitive for short. A pmo primitive
is defined as an ordered list

(LI,LQ?' .. 7Ln)

where each L; is a list of patterns (p1, p2,...,pm). A pattern p; is either a positive or negative
literal. Because these literals may contain arbitrary terms, their pattern-matching capability
is quite general. Patterns specified in the pmo primitive are used in the selection of relevant
clauses, in conjunction with the set-of-support strategy, to which resolution can be applied.
The elements L; are processed in the order of specification, one at the time. The total order
of the patterns in the list of patterns is used to sort the clauses in accordance with this
order. The pmo primitive provides a level of abstraction similar to the notion of generic task
as proposed in [6]. Application of a pmo primitive may lead to a loss in completeness, but
refutation completeness can be preserved by careful design of the meta-level of an expert
system.

3.2 Anatomical reasoning

In the previous section we have discussed the kind of diagnostic reasoning employed in expert
systems primarily based on heuristic knowledge. However, in certain fields of medicine, for
example neurology, knowledge concerning the anatomy of the human body is at least as
important. The form of automated reasoning in which knowledge concerning the anatomy of
the human body is applied, is known as anatomical reasoning.

The point of departure for any expert system implementing anatomical reasoning, is the
axiomatization of the basic anatomical relations. The more precise the description of the
anatomical structures must be, the more complex the resulting axiomatization will be. Not
always is a precise three-dimensional specification of anatomical relations required. In our ap-
proach to anatomical reasoning, it suffices to indicate only that certain anatomical structures
are connected to each other in a qualitative way, as axiomatized by the Connected predicate.
This predicate is defined as a transitive, irreflexive relation, as follows:

VaVyVz( Connected(x,y) A Connected(y, z) — Connected(z, z))
Vz(—Connected(x, x))

Note that the Connected predicate is by its transitive and irreflexive properties also antisym-
metric. (So, a theorem prover is capable of detecting an inconsistency given the formulas
Connected(a,b) and Connected(b,a) from the two axioms given above.)

As a starting point for our discussion concerning the specification of anatomical reasoning
in logic, we consider an actual example (the diagnosis of lesions of the facial nerve) taken from
a textbook of neurology [8]. We start by summarizing the relevant sections in this textbook.

The classical picture of facial palsy is well-known. These patients have a mouth that
droops and may draw to the opposite side. They cannot wrinkle the forehead or close the
eye at the affected side. Facial palsy is due to a lesion of the facial nerve (cranial nerve
VII); this nerve can be affected by a large variety of disorders. The severity and nature of
the complaints and signs that may be observed in the patient depend on the level of facial
nerve lesion. Knowledge of the branching pattern of the nerve and the consequences of a



1: stylomastoid foramen

5 2: facia canal
4 3: stapedius nerve
3 4: geniculate ganglion
2

5: interna auditory meatus

Figure 1: Levels in the facial nerve.

lesion of a particular branch is important in diagnostic problem solving. Figure 1 gives a
schematic overview of the branching pattern of this nerve. The facial nerve is a mixed nerve;
it contains motor fibers that supply striated muscle fibers, sensory fibers that carry taste from
the anterior two-third of the tongue and some sensation, and parasympathetic fibers.

The facial nerve emerges from the brain stem and leaves the skull via the internal auditory
meatus. Next, a small nerve is branched off (the stapedius nerve), that supplies the stapedius
muscle (a small muscle that is attached to the ear drum, regulating its tension). The facial
nerve proceeds its way through the facial canal (in the temporal bone), next branching off
the chorda tympani, a nerve mostly consisting of parasympathetic fibers that supply the
submandibular and sublingual glands. The facial nerve leaves the facial canal through the
stylomastoid foramen. Finally, it splits up in a number of branches that supply the superficial
musculature of the face and scalp (e.g. orbicularis oris et oculi, buccinator, platysma).

A bit simplified, we distinguish the following five levels of facial nerve lesions (consult
again Figure 1):

Level 1: A lesion outside the stylomastoid foramen produces signs such as drooping of the
mouth. The patient cannot whistle, wink, close the eye or wrinkle the forehead. When
the patient attempts to close the eye, the eye bulb will turn upward (Bell’s sign).

Level 2: A lesion of the nerve in its course through the facial canal will result in all the signs
as present in a level 1 lesion, but in addition there is reduced salivation (lesion of the
chorda tympani) and loss of taste in the anterior two-thirds of the tongue.

Level 3: All signs of a level 2 lesion are present, but in addition the stapedius nerve is
affected, causing hyperacusis (due to paralysis of the stapedius muscle).

Level 4: A lesion of the geniculate ganglion is usually due to herpes zoster, in which case
herpetic lesions are visible on the ear drum and external auditory canal (Ramsay Hunt
syndrome). Typically, a patient will experience pain in and behind the ear.

Level 5: A lesion in the internal auditory meatus is usually associated with acoustic nerve
(cranial nerve VIII) involvement, because the last nerve also runs through this canal.
In addition to the signs mentioned for lower level lesions, deafness will be present.
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This completes the description of the neurological knowledge involved in diagnosing facial
nerve lesions.

In formalizing this knowledge using first-order predicate logic, we start by completing
the axiomatization of the anatomical relationships by giving a domain-specific fill-in for the
Connected predicate. The atom Connected(x,y) is intended to mean that the facial nerve
runs from level z up to level y:

Connected
Connected
Connected
Connected

stylomastoid_foramen, chorda_tympani)
chorda_tympani,stapedius_nerve)
stapedius_nerve,geniculate_ganglion)
geniculate_ganglion,internal_auditory_-meatus)

~ A~~~

Note that we have employed anatomical terms to denote the various levels.

To relate anatomical structures and signs that may arise due to facial nerve lesion, we
have to express that the signs associated with a lesion at a certain level = includes all the
signs of a lesion at a lower level y:

VaVy(Lesion(z) A Connected(y,x) — Lesion(y))

This completes our axiomatization of the knowledge that forms the basis of logical anatomical
reasoning.

We next specify the relationship between a lesion at a certain level and the specific anatom-
ical structures that will be affected by this lesion, expressed by the unary predicate symbol
Affected. We use a bi-implication, because given a lesion at a certain level we may want to
know which structures will be affected by this lesion; on the other hand, the observation of
malfunction of certain structures may be interpreted as evidence for a lesion at a certain level:

(Lesion(stylomastoid_foramen) <
(Affected(orbicularis_oris) N
Affected(orbicularis_oculi) N
Affected(buccinator) N
Affected(frontalis—muscle) N
Affected(platysma)))

(Lesion(chorda_tympani) <
(Affected(sensory_taste_fibers) A
Affected(sublingual_gland) N
Affected (submazillary_gland)))

(Lesion(stapedius_nerve) < Affected(stapedius-muscle))
(Lesion(geniculate_ganglion) < Affected(sensory_fibers_ear))
(Lesion (internal_auditory_-meatus) < Affected(acoustic_nerve))

Finally, paralysis of certain muscles and disturbed sensation will give rise to specific signs
and complaints in the patient. This knowledge is again expressed using a collection of bi-
implications:

(Affected(orbicularis_oris) < (Sign(mouth_droops) A
Sign(cannot_whistle)))

11



(Affected(orbicularis_oculi) < (Sign(cannot_close_eyes) N Sign(Bell)))
(Affected(buccinator) < Sign(flaccid_cheeks))
(Affected(frontalis—-muscle) < Sign(cannot_wrinkle_forehead))

(Affected(platysma) < Sign(paresis_superficial_neck_musculature))

((Affected(sublingual_gland) N Affected(submazillary-gland)) <
Complaint (dry-mouth))

(Affected(sensory_taste_fibers) < Complaint (taste_loss_anterior_part_tongue))
(Affected(stapedius_muscle) < Complaint(hyperacusis))

(Affected(sensory_fibers_ear) «

(Complaint(pain_behind_ear) N

Complaint (pain_within_ear) A
Sign(herpetic_lesions)))

(Affected(acoustic_nerve) < Complaint(deafness))

Let T be the logical theory given above. For example, after automatic translation to clausal
form, using hyperresolution the OTTER system is now capable to derive:

T U { Lesion(stapedius_nerve) } U {=Sign(x)} U {—=Complaint(y)} + O

where for x we have mouth_droops, cannot_whistle, cannot_close_eyes,  Bell,
flacid_cheeks, cannot_wrinkle_forehead and paresis_superficial_neck_musculature; for y we have
hyperacusis, dry_mouth and taste_loss_anterior_part_tongue. Note that all results but the com-
plaint hyperacusis have been derived using the anatomical axioms for the Connected predicate.
Reasoning from signs and complaints to the level of a facial nerve lesion is also possible (es-
sentially employing the bi-implication), but here we need a meta-level primitive that selects
from the unit clause concerning Lesion the one specifying knowledge regarding the highest
level of the lesion.

In our formalization of the anatomical reasoning model, we did not make a distinction
between left- and right-sided lesions of the facial nerve. The extension of the logical theory
to include this distinction is straightforward. However, this is not always the case. In our
design of a logical specification of the human visual system, we obtained terms such as

lateral (left(structure))

where structure is a universally quantified variable. Presented with such terms, a theorem
prover like OTTER will end up in endless search, deriving deeply nested terms such as

lateral (left(left(left(retina))))

Although declaratively correct, such information will generally not be very useful. Using
a meta-level architecture approach in which a meta-level primitive is included that prefers
clauses with flat terms may help, but we have not yet investigated this approach.
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3.3 Causal reasoning

Although in the previous section we primarily focussed on the logical specification of anatom-
ical relations, implicitly other reasoning models were also involved. Some of the formulas
presented in the previous section express some relationship between cause and effect of nerve
damage, thus representing causal knowledge. The reasoning about such cause—effect relation-
ships is known as causal reasoning. In the present section, we shall study the logic of causal
reasoning in medicine, taking the logical specification of physiological processes as a point of
departure.

The representation of causal knowledge in logic is rather straightforward; it may be rep-
resented by means of a collection of logical implications of the following form:

cause — effect

where both cause and effect are conjunctions of literals. Most literals refer to the state of some
parameter; the states of all parameters together describe the entire physiological process. As
an example of a parameter consider the level of a substance in the blood; the actual level of
the substance stands for the parameter’s state.

In Section 2.2 we have already introduced the logic of state representation in medicine. A
state is either numeric or qualitative. An example of a numeric state (of parameter level of
sodium in the blood) is expressed by the following unit clause:

conc(blood, sodium) = 125

In clinical practice, numeric parameters are often changed to qualitative states. In the above
case, we get:

conc(blood, sodium) = decreased

There are several common types of causal reasoning in medicine. We shall study the negative
feedback process and its logical specification in some detail.

In terms of cause—effect relationships, the global specification of a negative feedback pro-
cess leads to the following logical theory T' (to simplify matters, we have assumed that a cause
consists of a single literal):

S — T
rl — 1o

/
Tn1 — Tn

r — s

where s, 75, 7/, 1 < i < n,n > 1 are literals in first-order logic; the literals r;, r, are similar,
in the sense that substitution of terms for variables occurring in these literals can make them
syntactically equal. Note that we have T' |= —s; in words: the negative feedback is a semantic
consequence of the process description.

To investigate the applicability of this approach to formalizing causal reasoning in medicine,
we have chosen a particular example of a negative feedback process from the literature, viz.
the renin—angiotensin—aldosterone system. The description is taken from a general textbook
of physiology [14]. We start by giving a brief summary of the medical knowledge involved.
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Figure 2: The renin-angiotensin—aldosterone system.

The regulation of the blood pressure is accomplished by the collaborative effort of a
number of control systems in the human body. One of these control systems is the renin—
angiotensin—aldosterone system. Figure 2 gives a pictorial overview of this control system.
We review the regulatory factors involved.

The proteolytic enzyme renin is released by cells of the juztaglomerular apparatus in the
kidneys. A decrease in the mean renal arterial pressure increases the renin secretion, and an
increase in the mean renal arterial pressure leads to a decrease in the renin secretion. Renin
acts on an ag-globulin (angiotensinogen) that circulates in the blood, liberating the decapep-
tid angiotensin-1. In turn, the octapeptid angiotensin-II is liberated from angiotensin-I by
angiotensin converting enzyme (ACE) that is produced in the lungs.

Angiotensin-II is a powerful arteriolar constrictor; administration of angiotensin-II leads
to an increase in arterial blood pressure. In addition, it stimulates the secretion of aldosterone,
a hormone produced by the adrenal cortex; an increase in angiotensin-II levels in the blood
increases aldosterone levels in the blood. Aldosterone stimulates active reabsorption of Na™
from the urine and the secretion of K* to the urine. Water moves with the reabsorbed Na™
to the blood, which causes an increase in blood volume. This in turn leads to an increase in
blood pressure. Finally, an increase in blood pressure inhibits the secretion of renin. This
completes our description.

When considering the physiological process described above in terms of a causal model,
we have to analyse its behaviour in terms of causes and effects. We start this formalization
by introducing a number of predicate and function symbols and constants that will be used
to represent parameters and states. For the representation of the level of a substance in the
blood we employ the binary function symbol conc. The unary function symbol pressure stands
for blood pressure. The conversion of one substance into another substance by some enzyme,
will be represented by the binary function symbol conversion. Finally, we distinguish two
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constants: decreased and increased to express the states of various parameters in a qualitative
way. Step by step, the text given above will now be translated into a logical theory T
A decrease in the blood pressure yields an increase in renin blood levels:

pressure(blood) = decreased — conc(blood, renin) = increased

The relationship between renin levels in the blood and conversion of angiotensinogen into
angiotensin-I is expressed as follows:

Vou(cone(blood, renin) = v — conversion(angiotensinogen,angiotensin_I) = v)

where the universally quantified variable v stands for increased or decreased.
The relationship between decreased or increased conversion of angiotensinogen into angiotensin-
I is represented by means of the following logical implication:

Vou(conversion(angiotensinogen,angiotensin_I) = v —
conc(blood, angiotensin_I) = v)

A change v in the blood level of angiotensin-I leads to an inverse change in the ACE levels,
and a similar change in angiotensin-II levels:

Vu(conc(blood, angiotensin_I) =v —
(=(conc(blood, ACE) = v) A conversion(angiotensin_I, angiotensin_II) = v))

Vo (conversion(angiotensin_I,angiotensin_II) = v —
conc(blood, angiotensin_II) = v)

Angiotensin-II produces arterial vasoconstriction and an increase in aldosterone levels:

conc(blood, angiotensin_II) = increased

-
(Vasoconstriction (arteries,peripheral ) A
conc(blood, aldosterone) = increased)

Arterial vasoconstriction produces an increase in bloodpressure:
Vasoconstriction (arteries,peripheral ) — pressure(blood) = increased

An increase in the aldosterone levels results in an increase of blood sodium and a decrease of
the potassium levels:

conc(blood, aldosterone) = increased —
(cone(blood, sodium) = increased N conc(blood, potassium) = decreased)

The reabsorption of sodium is accompanied by the reabsorption of water, causing an increase
in blood volume; more in general, a change in sodium level causes a change in blood volume:

Vv (cone(blood, sodium) = v — volume(blood) = v)
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The change in blood volume causes a similar change in cardiac output:
Vo(volume(blood) = v — output(heart) = v)

A change in cardiac output causes the same change in blood pressure:
Vo(output(heart) = v — pressure(blood) = v)

A change in bloodpressure causes an inverse change in renin levels:
Vo(pressure(blood) = v — —(conc(blood, renin) = v))

Finally, we need to express that ‘increased’ and ‘decreased’ are different notions:
—(increased = decreased)

This completes our formalization of the causal knowledge concerning the renin—-angiotensin—
aldosterone system.

After (automatic) conversion of this logical theory T' to clausal form, a theorem prover
like OTTER is capable of deriving in six steps

T U {pressure(blood) = decreased} - O
the last step being the derivation of
pressure(blood) = increased
among others via the intermediate derivation of
Vasoconstriction (arteries, peripheral )
yielding a contradiction with
pressure(blood) = decreased

Although, we shall not go into the details, it is easy to combine the kind of causal reasoning
(often called ‘deep knowledge’) with ‘heuristic rules’ (also called ‘surface knowledge’) as dis-
cussed in Section 3.1 using a logical approach. For example, the following logical implication
expresses heuristic knowledge concerning renovascular hypertension, but ‘interfaces’ by two
of its conditions to the causal reasoning system discussed above:

((pressure(blood) = increased) N

(conc(blood, renin) = increased) N
Investigation(angiogram,positive))
— Diagnosis(patient,renovascular_hypertension)
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4 Discussion

In this paper, we investigated the applicability of logic as a language for the representation
of a number of medical reasoning models. It appeared that each of the models examined had
its own characteristic logical structure. It was shown that the language of first-order predi-
cate logic allowed for the precise, and compact, representation of these models. Translation
of the medical knowledge concerned could be carried out in a simple, straightforward way.
Generally, in translating domain knowledge into logic, many of the subtleties that can be
expressed in natural language are lost. In our study, it appeared that this problem was less
prominently present, because we took medical reasoning models as a point of departure for
the formalization. Although a significant portion of medical knowledge may be accessible to
formalization in logic, for many problem types in medicine, logic will not be the first lan-
guage of choice. Examples of such problems are medical decision making under uncertainty
and therapy planning.

In our experiments, we have refrained from using non-monotonic logics, a subject of much
ongoing research. Non-monotonic logics arise, for example, when dealing with incomplete
knowledge. Work on the use of non-monotonic logic in medicine has been done by Console
et al., who have investigated the logic of diagnosis in incomplete causal models [10]. A
disadvantage of such non-monotonic logics is that they are far less well-understood than
standard logic. Another approach to non-monotonic logics is to express the non-monotonicity
at the meta-level and to adopt a form of meta-level reasoning. The advantage of such an
approach is that the representation language remains standard logic, while at the same time
gaining flexibility [18, 36]. This is what we actually have attempted to do; in our experiments
we have completely remained within standard first-order logic. The use of first-order predicate
logic in building medical expert systems has also been advocated in [12]. However, in this
paper a significant part of the medical domain knowledge is represented by means of meta-
level logical schemata. As far as we know, a clean mathematical foundation of this approach
has never been provided.

Although the problems taken as examples in this paper were relatively small, the logical
expert systems we developed for larger domains indicate that the techniques discussed remain
applicable. Large applications will require additional machinery, such as the modularization
of the logical theories. Techniques for the modularization of logical theories have been studied
in the related field of algebraic specification languages [13]. Furthermore, our results indicate
that when using general-purpose inference rules in logic-based medical expert systems solving
real-life problems, some domain-specific forms of automated reasoning control are required. A
meta-level architecture, where the meta-level consists of a number of domain-specific control
primitives, as applied in our experiments concerning diagnostic reasoning, may be useful in
this case.

Several problems in using logic for building medical expert systems require further study.
In translating the HEPAR system to many-sorted logic, we disregarded the uncertainty that
went with the medical knowledge represented. As a consequence, the advice produced by the
logical version of HEPAR does not provide ordering information as to which conclusion has
the strongest support. With regard to the classification of a patient into final diagnostic cat-
egories, the effect was not significant, as was to be expected, because it was previously shown
in the original version of HEPAR, using a database with patient data, that on the average
4 conclusions were selected by the system out of the 80 possible diagnostic conclusions [26].
Even without the availability of ordering information, such advice is still valuable. However,
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the result of the translation was less successful with respect to the intermediate conclusions
produced by HEPAR, because here the uncertainty attached is used as information to pursue
certain final diagnoses. We think that a meta-level reasoning approach may solve part of the
problem, a subject of future research.

Although a restrictive logical approach to anatomical reasoning may be applicable to
many other problems than those we have experimented with, it is to be expected that when
the axiomatization of the anatomical relations becomes more involved, it will be difficult to
keep the logical reasoning process under control. On the other hand, it has been shown that
when a theorem prover is used intelligently, even a complete Tarskian axiomatization of plane
geometry can be handled.

The classical approach to the formalization of causal reasoning is control theory, which
provides means for the design of flexible time-varying models. The qualitative model we
developed in first-order logic has the advantage over a quantitative modeling technique that
the model’s structure is more clearly revealed, and that no presuppositions of the linearity of
the model are made. In applications in which the structural, qualitative aspects of a model
are more important than numerical detail, such as in clinical medicine, this approach may be
sufficiently powerful.

Acknowledgement. Implementation of the resolution-based theorem prover in COMMON
LISP was carried out together with Bob van den Berg, who developed most of the program.
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