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Have you got Entero Hemorrhagic E. coli?
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Probabilistic reasoning

Joint probabillity distribution P(X) = P(X1, Xo, ..., X,)
#» marginalisation:

P(Y)=) P(Y,Z), withX =Y UZ
A

& conditional probabillities:

P(Y | Z) = P]gY

#» Bayes’ theorem:
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Probabillistic reasoning (cont)

Examples: )

P(e,g) = Ple, g,d) + Ple, g,d) = 0.009215 + 0.000285 = 0.0095
P(e | g) = P(e, g)/P(g) = 0.0095/0.01049 ~ 0.906

Note that:
# Mainly interested in conditional probability distributions:
P(Z | &) = P*(Z)

for (possibly empty) evidence £ (instantiated variables)

# Tendency to focus on conditional probability
distributions of single variables

# Many efficient reasoning algorithms exist
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Bayesian networks

P(CH, FL, RS, DY, FE, TEMP)

P(FE=y | FL = y,RS = y) = 0.95

P(FE =y | FL = n,RS = y) = 0.80

P(FE =y | FL = y,RS = n) = 0.88

P(FE =y | FL = n,RS = n) = 0.001
P(FL=y)=0.1

flu (FL) fever (FE) TEMP
(yes/no) (< 37.5/> 37.5)

(yes/no)

P(TEMP < 37.5 | FE = y) = 0.1

P(RS=y|CH=y)=0.3
P(TEMP < 37.5 | FE = n) = 0.99

P(RS =1y |CH=n)=0.01

SARS (RS)
(yes/no)

— / dyspnoea (DY)
VisitToChina (CH) P(CH=1y)=0.1 (yes/no)
(yes/no)

P(DY =y | RS =y) =0.9
P(DY =y | RS = n) = 0.05
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Reasoning: evidence propagation

# Nothing known:
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Reasoning: evidence propagation

#» Temperature >37.5 °C:
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Definition Bayesian network

A Bayesian network 5 is a pair B = (G, P), where:

# (Qualitative part) G = (V(G), A(G)) Is an acyclic
directed graph, with
s V(G) ={vy,v9,...,v,}, asetof vertices (nodes)
s A(G) CV(G) x V(G) asetof arcs

»® (Quantitative part) P(Xy () Is a joint probability
distribution, such that

P(Xyvie) = ] PXol|Xew)
veV(G)

where 7 (v) denotes the set of parents of vertex v in G
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Markov independence




A Bayesian network

P(FL =y) = 0.1

Flu (FL)
(yes/no)

P(FL, MY, FE)

P(MY = y|FL = y,FE = y) = 0.96
P(MY = y|FL = y, FE = n) = 0.96
P(MY = y|FL = n,FE = y) = 0.20
P(MY = y|FL = n, FE = n) = 0.20

Myalgia (MY)
(yes/no)

P(FE = y|FL = y) = 0.95
P(FE = y|FL = n) = 0.1

Fever (FE)
(yes/no)

Thus: P(FL,MY,FE) = P(MY|FL,FE)P(FE|FL)P(FL)

Example: P(—fl, my,fe) =0.20-0.1-0.9 =0.018
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Independence and reasoning

FLU MYALGIA
o I | >
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Independence and reasoning

Conclusion: the arc from FEVER to MYALGIA can be
removed, and hence only

P(MY | FL) (= P(MY | FL,FE))

need be specified

FLU  _ MYALGA  FLU _ MYALGIA
No I |

IA FLU
] @ EEmpaael 20 B , o NN
vesll— ] Cves ] veslC ] TvesHE ]
EEEEEEEEEE
o I | | ==
esHll— ] w7
MYALGIA  FLU  MYALGIA
[ o ONNEN ] | , ONNNN
[ I Cyves N ] [ I Tyves N ]
EEEEEEEEEE
N[ ] 1
es I |
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Independence relation

Let X,Y,Z C V be sets of (random) variables, and let P be
a probability distribution of V' then X is called conditionally
independent of Y given Z, denoted as

X UpY|Z, iff PIX|Y,Z)=PX|2)

Note: This relation is completely defined in terms of the
probability distribution P, but there is a relationship to
graphs, for example:

{Xo} Wp { X3} | {X1}

X1
y/n
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How to define an independence relation?

® List all the instances of 1L

® List some of the instances of 1. and add axioms from
which other instances can be derived

# Define a joint probability distribution P and look into the
numbers to see which instances of the independence
relation 1L hold (this yields 1L p)

# Use a graph to encode 1L, which yields 1L (so, what
type of graph — directed, undirected, chain?)
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Explicit enumeration

{1} L {4} | @
14r 1L {3} [ 11}
14 L {1} | @
131 L {4} [ 12}
{1,2} 1L {4} | &
{47 1L {3} [ {2}
14 L {12} | &
12} L {4} [ 13}
{1,2,3} 1L {4} | ©
{27 1L {1} [ {4}
{2y L {1} @
{27 1L {4} [{1,3}
12; L {4} | @
14) L1} [12,3}
{37 1L {4} [ {1}
{47 1L {2} [ {3}

Consider V =1{1,2,3,4} and 1l:

{47 1L {2} [ {1}
13y L4 |2
11y AL {4} [ 12}
14 L 31| @
{47 1L {1} [ {2}
2,3t L {4} | &
11} L {4} [ 13}
{4} 1L {2,3} | @
11y L {2} [ 14}
{1y L {2} | @
{4r L {3} [{1,2}
2,4y L {1} | @
1y AL 14} [ 12,3}
127 L {4} [ 11}
{47 1L {1} [ {3}

{2} L {4} | &
14} 1L {2,3} [ {1}
14y 1L {2} | &
11,3} 1L {4} [ {2}
{1,3} L {4} | @
{4} 1L {1,3} [ {2}
{4} 1L {1,3} | @
11,2} 1L {4} [ {3}
{4} 1 {1,2,3} | ©
{3} 1L {4} [{1,2}
{1,4} 1L {2} [ @
{4} 1L {2} [{1,3}
{1} 1L {2,4} [ @
14} 1L {1, 2} [ {3}
{2,3} AL {4} [ {1}
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As an undirected graph

Basic idea:

# Each variable V' is represented as a vertex in an
undirected graph G = (V(G), E(G)), with set of vertices
V(G) and set of edges E(G)

# the independence relation 1L« Is encoded as the
absence of edges; a missing edge between vertices u
and v indicates that random variables X, and X, are
(conditionally) independent = (u-)separation
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Example

Consider the following undirected graph G-

L @ ©

2w

{1} g {3,6} | {2}

{4} LLg {6} | {2,5}

{4} UL {6} | {1,2,3,5)

{1} Lz {5} | {4}, asthe path 1 — 2 — 5 does not contain
4

© o o o

°

{1,5,6} LLg {7} | @
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D-map and I-map for 1Lp

Let P be probability distribution of X. Let G = (V(G), E(G))
be an undirected graph, then for each U, W, Z C V(G):

#® ( Is called an undirected dependence map, D-map for
short, if

XUJJ_pr|XZ:>UJ_|_Gw|Z

#® ( Is called an undirected independence map, I-map for
short, if
UJ_|_0W|Z:>XUJ_|_Xw‘XZ

#® ( Is called an undirected perfect map, or P-map for
short, If G Is both a D-map and an I-map, or,
equivalently

XUJJ_pr|Xz<:>UJ_|_Gw|Z
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Examples D-maps

Let V ={1,2,3,4} be a set and X, the corresponding set of
random variables, and consider the independence relation
1l p, defined by

{ X1} lLp {Xa} | {X2, X3}
{Xo} lLp { X3} | {X1, X4}

The following undirected graphs are examples of D-maps:
D @/®
@ ©)
@ @
@
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Examples of I-maps

Let V ={1,2,3,4} be a set with random variables Xy, and
consider the independence relation L p:

{X1} lLp {Xa} | { X2, X3}
{Xo} lLp { X3} | {X1, X4}

The following undirected graphs are examples of I-maps:

(So, what is the P-map?)
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Markov network

A pair M = (G, P), where

® G =(V(G),E(G))is an undirected graph with set of
vertices V(G) and set of edges E(G),

# P s ajoint probability distribution of Xy, ), and

# Glisanl-map of P
IS said to be a Markov network or Markov random field

Example M = (G, ¢) = (G, P):

@ 5 Potential:
¢(X17X27X3) — w(Xl,XQ)T(XQ,Xg),

or joint probabillity distribution:

P(Xl, Xo, XS) _ P(Xlg);Q())?Q())(Q,Xg)
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Expressiveness: directed vs undirected

Directed graphs are more subtle when it comes to
expressing independence information than undirected
graphs

@@@ -

%5
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d-Separation: 3 situations

A chain £ (= path in undirected underlying graph) in an
acyclic directed graph G = (V(G), A(G)) can be blocked:

Diverging

2 blocks (d-separates) 1 and 3: {1} 1L {3} | {2}
Serial

2 blocks (d-separates) 1 and 3: {1} 1L {3} | {2}
Converging

2 d-connects 1 and 3: {1} L {3} | {2}
(same holds for successors of 2); note {1} 1L {3} | &
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Example blockage

#® The chain 4,25 from 4 to 5 is blocked by {2}

#® Thechain1,2,5,6 from 1 to 6 is blocked by {5}, and also
by {2} and {2,5}

# The chain 3,4,6,5 from 3 to 5 is blocked by {4} and
{4,6}, but not by {6}
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Examples directed I-maps

Consider the following independence relation L p:

{X1} Lp {Xo} |2
{X1, X2} p {X4}[{X3}

and the following directed I-maps of P:
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Find the independences

FLU
g = B
YEs \
\ FEVER TEMP
no NG | <=37.5 GG |
yes | > >37.5 |
SARS DYSPNOEA
no [N | no NN |
yes [I | > ves |
VisitToChina -
no NG |
yes |

# FLU 1L VisitToChina | @

® FLU 1L SARS |
9o
9o
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Relationship directed and undirected graphs

# Directed graphs contain independences that become
dependences after conditioning (instantiating variables)

# Undirected graphs do not have this property

# However, undirected subgraphs can be generated, by
making potentially dependent parents of a child
dependent

Example:

Original Moral Graph
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Moralisation

Let G be an acyclic directed graph; its associated
undirected moral graph G™ can be constructed by
moralisation:

1. add lines to all non-connected vertices, which have a
common child, or descendant of a common child, and

2. replace each arc with a line in the resulting graph
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Moralisation

Let G be an acyclic directed graph; its associated
undirected moral graph G™ can be constructed by
moralisation:

1. add lines to all non-connected vertices, which have a
common child, or descendant of a common child, and

2. replace each arc with a line in the resulting graph

SIKS Basic Course: Learnina and Reasonina — n. 28/34



Comments

Resulting undirected (moral) graph is an I-map of the
associated probability distribution

However, it contains too many dependences!

Example: {1} 1L% {3} | @, whereas {1} fLgn {3} | @

Original Moral Graph

Conclusion: make moralisation ‘dynamic’ (i.e. a function
of the set on which we condition)

For this the notion of ‘ancestral set’ is required
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Ancestral set

Let G = (V(G), A(G)) be an acyclic directed graph, then if
for W C V(G) it holds that = (v) C W for all v € W, then W is
called an ancestral set of W. An(1/) denotes the smallest
ancestral set containing W

An({6}) = {3,4,6,9}
An({10,7}) = {7,6,3,4,9,10}
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‘Dynamic’ moralisation

Let P be a joint probability distribution of a Bayesian
network B = (G, P), then

Xy Ap Xv|XW

holds iff U and V' are (u-)separated by W in the moral
induced subgraph G™ of G with vertices An(UUV U W)

Example:

X1 le X3 ‘ X9; An({1,2,3}) = {1,2,3}

Original Moral Graph
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‘Dynamic’ moralisation

Let P be a joint probability distribution of a Bayesian
network B = (G, P), then

Xy Ap leXW

holds iff U and V' are (u-)separated by W in the moral
induced subgraph G™ of G with vertices An(UUV U W)

Example:

X; llp X3 | @ An({1,3)) = {1,3)

L G

Moral Graph

Original
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Example (1)

{10} AZ {13} [ {7.8}




Example (1)

{10} 7‘m‘GKLm(uo,?,&13}) {13} ‘ {7’ 8}




Example (2)

{10} 1LE {13} |




Example (2)

110} Lap 1o, 1131 [ 2

.



Conclusions

# Conditional independence is defined as a logic that
supports:

» symbolic reasoning about dependence and
iIndependence information

» Mmakes it possible to abstract away from the
numerical detall of probability distributions

» the process of assessing probability distributions

# Looking at graphs makes it easier to find probability
distributions that are equivalent (important in learning)

# Conditional independence is currently being extended

towards causal independence (a logic of causality) =
maximal ancestral graphs
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