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ABSTRACT 

Graphical representations for probabilistic relationships have recently received considerable attention 
in A1. Qualitative probabilistic networks abstract from the usual numeric representations by 
encoding only qualitative relationships, which are inequality constraints on the joint probability 
distribution over the variables. Although these constraints are insufficient to determine probabilities 
uniquely, they are designed to justify the deduction of a class of relative likelihood conclusions that 
imply useful decision-making properties. 

Two types of qualitative relationship are defined, each a probabilistic form of monotonicity 
constraint over a group of variables. Qualitative influences describe the direction of the relationship 
between two variables. Qualitative synergies describe interactions among influences. 

The probabilistic definitions chosen justify sound and efficient inference procedures based on 
graphical manipulations of the network. These procedures answer queries about qualitative relation- 
ships among variables separated in the network and determine structural properties of optimal 
assignments to decision variables. 

1. Introduction 

Many knowledge representation schemes, including the various flavors of 
"causal networks" [36, 44, 57], qualitative physical models [58], and belief 
networks [39], model the world as a collection of states, events, or other 
ontological primitives connected by links that describe their interrelationships. 
The representations differ widely in the nature of the fundamental objects and 
in the precision and expressiveness of the relationship links. 

Qualitative probabilistic networks (QPNs) occupy a region in represe.ntation 
space where the objects are arbitrary variables, and the relationships are 
qualitative constraints on the joint probability distribution among them. This 
area is important for AI research because the relation among variables is often 
uncertain due to incomplete knowledge or modeling, and because strictly 
numeric representations are inappropriately precise for many applications. 

* Portions of this paper previously appeared in the Proceedings of AAAI-87, Seattle, WA [60]. 
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Excess precision leads to knowledge bases applicable in only narrow domains 
and to diminished modularity because interactions increasingly arise at finer 
levels of detail [20, 64]. 

The qualitative relationships expressible in the QPN formalism are designed 
to afford robustness yet permit a reasoner to deduce useful properties about 
optimal assignments to the specially designated decision variables in the 
network. These "useful properties" are facts that enable a planner to reduce 
the search space of possible courses of action. The nature of these decision 
properties and the qualitative relationships leading to them are developed in 
the body of this paper. 

1.1. Motivation 

Expected benefits of the analysis of qualitative prohabilistic networks fall into 
three primary categories. 

(1) Probabilistic semantics for a common knowledge base construct. Rela- 
tions similar in intent to those expressible in QPNs have been applied widely in 
AI knowledge bases without serious attempts at formalization, probabilistic or 
otherwise. The analysis below suggests how such constructs might be inter- 
preted and in some cases dictates how they must be interpreted to justify 
inferences drawn by associated reasoners. 

(2) Qualitative reasoning methods for domains where signs of  associations 
are not guaranwed, and functional relations are not deterministically fixed. 
Many applications of qualitative reasoning are not faithful to the underlying 
assumptions behind a "qualitative differential equations" interpretation. Tak- 
ing an explicit probabilistic approach reveals the possible pitfalls of such 
violations. This issue is discussed further in Section 8.4 below, 

(3) Efficient inference techniques to support tasks in planning under uncer- 
tainty. As mentioned above, the qualitative relationships are designed to assist 
a planner by determining some facts about the admissible plans. Indeed, this 
representation was originally developed within a planning context [61,62]. In 
the examples and discussion below we will see how inferences derived from 
QPNs can constrain the structure of strategies that need to be considered by a 
planner. 

1.2. Preview of the paper 

Section 2 formally introduces qualitative probabilistic networks, relates them to 
numeric graphical probabilistic representations, and presents an example from 
the domain of digitalis therapy. The digitalis example illustrates the use of 
qualitative influences, qualitative relations describing the sign (direction) of the 
relationship between a pair of variables. 

The next four sections elaborate the semantics, properties, and application 
of qualitative influences. A formal probabilistic definition for them is motivated 
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and developed in Section 3. Section 4 describes inference mechanisms that are 
sound with respect to this definition and presents an efficient algorithm for 
answering queries about the qualitative influences holding among arbitrary 
variables in the network. Section 5 considers alternative probabilistic semantics 
and shows that the definition of Section 3 is the weakest satisfying the inference 
mechanisms of Section 4. Application of these techniques to the digitalis 
example is the subject of Section 6. 

Qualitative synergies, which describe the qualitative interaction among in- 
fluences, are defined, defended, and analyzed in Section 7. This section also 
presents graphical algorithms for reasoning about synergies in QPNs similar to 
those for qualitative influences. Analysis of the digitalis model enhanced with 
synergy assertions demonstrates that useful properties of the preferred therapy 
plan follow from purely qualitative assertions. 

Section 8 contrasts the qualitative probabilistic network representation with 
related work in AI, decision theory, and statistics. The relevance of these 
results to previous qualitative reasoning applications is also discussed. A 
perspective on the significance of this work is offered in the final section. 

2. Qualitative Probabilistic Networks 

2.1. Network models 

A network model is a graph-like structure with nodes that represent variables 
and edges and hyper-edges that describe relationships among them. In a 
probabilistic model, the values of variables as well as their interrelationships 
are uncertain, defined by a probability distribution over the joint value space. 
Probabilistic network models have attracted much recent attention in AI, for 
example in Pearl's work on belief networks [39] and related formalisms [5, 29, 
53]. The network formalism developed here is accurately viewed as a qualita- 
tive abstraction of influence diagrams [22], which are belief networks with 
additional constructs to support decision making. In particular, all properties 
holding of a belief network or influence diagram by virtue of structure alone 
are also true of the corresponding QPN. Some QPN terminology, notation, 
and even solution concepts (by analogy) are borrowed from Shachter's work 
on influence diagram evaluation [47, 48]. 

Formally, a qualitative probabilistic network is a pair G = (V, Q). V is the 
set of variables, or vertices of the graph. Q is a set of qualitative relationships 
among the variables. The qualitative influences and synergies in Q correspond 
to directed edges and hyper-edges, respectively, in the graph G. To be a valid 
QPN, G must be acyclic with respect to influence edges. 

Variables, named by lower-case symbols, are associated with a set of possible 
values, for example, boolean for propositional event variables, or real intervals 
for continuous parameters. Unlike most numeric schemes, there is no practical 
requirement to reformulate the value spaces into discrete, finite sets. Let X(a) 
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denote the domain of variable a. The domain of a tuple of variables is the 
product space of the individual domains, for example, X ( ( a ,  b ) ) =  X(a )x  
X(b). The tuple is written as a set when the ordering is insignificant. Sub- 
scripted symbols denote values in the domain of a variable. 

The variable set V may contain one special variable v, called the value node. L 
Relationships involving v express preferences over the other variables. 

It is also useful to distinguish a set D C_ V - { v }  of decision variables. A 
decision-making program takes variables in D to be under its control and 
therefore focuses on deriving the implications on v of choosing different values 
for them. The remainder of the variables in the network are random variables 
not under direct control of the decision maker. 

Qualitative relationships express constraints on the joint probability distribu- 
tion over the variables. Unlike the numeric conditional probabilities specified 
in belief networks and influence diagrams, they are not generally sufficient to 
determine the exact distribution. In fact, in a purely qualitative network the 
absolute likelihood of any joint event is completely unconstrained! Neverthe- 
less, the qualitative relationships are carefully designed to justify the deduction 
of a class of relative likelihood conclusions that in turn imply useful decision- 
making properties. Note that nothing prevents us from building hybrid models 
combining qualitative relationships with those more precise, although the 
present work does not pursue that possibility. 

There are two types of qualitative relationships in QPNs. Qualitative in- 
fluences describe the direction of the relationships between two variables. 
Qualitative synergies describe interactions among influences, These concepts 
form the basis of the QPN formalism and are developed in detail below. 

2.2. Example: The Digitalis Therapy Advisor 

The development of QPN concepts is illustrated with a simple causal model 
taken from Swartout's programs for digitalis therapy [55]. The model,  shown in 
Fig. 1, is a fragment of the knowledge base that Swartout used to re-implement 
the Digitalis Therapy Advisor [16] via an automatic programmer.  

In the figure the circular nodes represent random variables. The rectangular 
node is a decision variable, in this case denoting the dosage of digitalis (dig) 
administered to the patient. The value node v is drawn within a hexagon and 
represents the utility of the outcome of the patient. Qualitative influences 
among the variables are indicated by dependence links, annotated with a sign 
denoting the direction of the relationship. The link asserts that the variables 
are related monotonically, in a precise probabilistic sense elucidated below. 2 

This name is unfortunate because o actually represents a utility function, often distinguished in 
decision theory from the value function. Nevertheless, the term is retained because it is well 
entrenched in the vocabulary of influence diagrams. 

2 Discussion of qualitative synergies holding in this example is deferred to Section 7. 
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Fig. 1. Part of the causal model for digitalis therapy. The sign on a link form node a to node b 
indicates the effect of an increase in a on b. 

According to the model, digitalis negatively influences conduction (con) and 
positively influences automaticity (aut). The former is the desired effect of the 
drug, because a decrease in conduction decreases the heart rate (hr), which is 
considered beneficial for patients with tachycardia, the population of interest 
here. The desirability of lower heart rates is represented by the negative 
influence on the value node, asserting that lower rates increase expected utility. 
The negative influence is obviously valid only to a point; a universal objective 
of therapy, after all, is to keep heart rates significantly above zero. In 
interpreting conclusions from these models it is important to heed the qualify- 
ing assumption that variables remain within the monotonic range of their 
relationships. 

The increase in automaticity is an undesired side-effect of digitalis because 
this variable is positively related to the probability of ventricular fibrillation 
(vf) ,  a life-threatening cardiac state. Calcium (Ca) and potassium (K) levels 
also influence the level of automaticity. 

There are no links into the decision variable because the digitalis dosage is 
considered by the model to be under direct control. 

A qualitative encoding of this model is appropriate for the knowledge base 
of a general digitalis therapy program because a numeric description would 
require additional context information or be inaccurate. While the exact 
probabilistic relationships among these variables vary from patient to patient, 
the directions of the relations are reliably taken as constant. Conclusions drawn 
from this model are therefore valid for a broad class of patients. 

The conclusions we would like our programs to derive from the digitalis 
model are those taken for granted in the description above. For example, we 
unthinkingly assumed that the effects of digitalis on conduction and of conduc- 
tion on heart rate would combine to imply that digitalis reduces the heart rate. 
Further, because lower heart rates are desirable, digitalis is therapeutic along 
the upper path. Conversely, it is toxic along its lower path to the value node. 
The tradeoff between therapy and toxicity cannot be resolved by mere 
qualitative influences. 

The immediate task of this paper is to develop a semantics for these 
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qualitative influences that justifies the kind of inferences we require while 
providing the maximum robustness. In the sections below, I provide such a 
semantics in terms of a probabilistic definition for qualitative influences. In 
Section 5 we will see that this definition is the weakest in a reasonable class 
that justifies the conclusions mentioned above. 

3. Qualitative Influences Defined 

3.1. Influence notation 

The qualitative links in the digitalis model above can be represented formally 
as edges in the graph annotated by sign. Let S~(a, b, G) denote the assertion 
that a qualitative influence of a on b in direction (that is, sign) 6 holds in graph 
G = (V, Q).  

Definition 3.1 (Qualitative influence edges). Sa(a, b, G)=-(a, b, 6 )E  Q, where 
6 is one of +, - ,  0, or ?. 

By convention, S ° links are left implicit in graphical displays of the network. 
They would also typically be left implicit--inferable via a closed-world assump- 
t i o n - i n  data structures representing qualitative networks. For example, a 
representation of the QPN of Fig. 1 would explicitly record (dig, con, - )  in Q 
but would leave (dig, vf, 0) implicit in the absence of a signed link. 

The pred function selects only the predecessors exerting nonzero influences 
on a variable. 

Definition 3.2 (Predecessors) 

pred~;(b) =- {a[(a ,  b, 6) ~ Q, for some 6 E {+,  - ,  ?}} , 

pred~;(b) =- U [{c} Upred~(c)]. 
cCpredf;(h ) 

Note that for all d C D, pred~;(d) = 0. The subscript G is omitted when its 
value is clear from context. 

3.2. Probabilistic semantics for qualitative influences 

Consider two variables, a and b. Informally, when a and b denote boolean 
events, a qualitative influence is a statement of the form "a  makes b more (or 
less) likely." This binary case is easy to capture in a probabilistic assertion. Let 
A and A denote the assertions a = true and a = false, respectively, and 
similarly, B and /~. 

Definition 3.3 (Binary S +). We say "a positively influences b"  (stochastically) 
and write S+(a, b, G), if and only if (iff) for all x E X(predc(b) - {a}) such 
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that x is consistent with both A and e{,3 

Pr(BIAx) >1 Pr(B I ,4x).  (1) 

In Definition 3.3, the context x ranges over all consistent assignments to the 
variables other than a that influence b. (Henceforth,  x in a formula will be 
understood as universally quantified over the values of predecessor variables.) 
Thus, S + is analogous to Forbus'  qualitative proportionality, aQ, [13], which is 
an inequality on partial derivatives, also universally quantified over contexts. 
We need to include the ceteris paribus condition here and in the definitions 
below so that qualitative relations will be applicable in situations where x is 
partially or totally known. If we had stated the S t  definition in marginal terms 
("on  average, a positively influences b") ,  it would not be valid to apply it in 
specific contexts. 

Because its definition refers to a specific predecessor set, S + holds in a 
particular network; programs that alter the structure of the network may 
exhibit nonmonotonicity in S + relative to its first two arguments [17]. In the 
following I omit the third argument only when the intended network is 
unambiguous or inessential. 

Conditions analogous to (1) and those following define negative and zero 
influences; I omit them for brevity. S °, an assertion that (1) holds with 
equality, is the familiar concept of conditional independence of a and b given 
b's direct influences. We could rule out the independent case with strict 
versions of S + and S-,  but discussion is limited to non-strict influences for this 
paper. 

S" always holds. It is included explicitly only so that we can represent S ° 
implicitly in the lack of an influence assertion. 

For dichotomous variables, it is not hard to show that Bayes' rule implies 
that (1) is equivalent to 

Pr(A[Bx) >~ Pr(A [/~x) . (2) 

In the terminology of Bayesian belief revision, (1) is a condition on posteriors, 
while (2) is a condition on likelihoods. Notice that S+(a, b) is simply an 
assertion that the likelihood ratio is greater than or equal to unity. 

Formalizing the intuitive idea that "higher values of a make higher values of 
b more likely" is not quite as straightforward when a and b take on more than 
two values. An obvious prerequisite for such statements is some interpretation 
of "higher ."  Therefore,  we require that each random variable appearing in an 
S + and S assertion be associated with an order ~> on its values. This relation 
has the usual interpretation for numeric variables such as "potassium concen- 
tration"; for variables like "automatici ty,"  an ordering relation must be 
contrived. 

We can safely ignore cases where the conditional probabilities are undefined because these are 
impossible contexts. 
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The more troublesome part of defining positive influences is specifying what 
it means to "make higher values of b more likely." Intuitively, we want a 
statement that the probability distribution for b shifts toward higher values as a 
increases. To make such a statement,  we need an ordering on cumulative 
probability distribution functions (CDFs) F b over b that captures the notion of 
"higher ."  

However,  probability distributions cannot be straightforwardly ordered ac- 
cording to the size of the random variable. Different rankings result from 
comparison of distributions by median, mean, or mean-log, for example. We 
require an ordering that is robust to changes of these measures because the 
random variables need be described by merely ordinal scales [27]. An assertion 
that calcium concentration positively influences automaticity should hold 
whether calcium is measured on an absolute or logarithmic scale, and regard- 
less of how we measure automaticity. 

An ordering criterion with the robustness we desire is first-order stochastic 
t 

dominance (FSD) [65]. FSD holds for CDFs F b and F b iff for any given value 
¢ 

b 0 of b, the probability of obtaining b 0 or less is smaller for F h than for F h. 
¢ 

That is, F~, FSD F b iff 

Vb,, Fh(bo) <~ F;,(bo) . (3) 

A necessary and sufficient condition for (3) is that for all monotonically 
increasing (that is, order-preserving) functions ~b, 

f &(bo) dF~,(bo) >t f 4~(b,,) d F ; ( b o ) .  (4) 

That  is, the mean of F b is greater than the mean of F~ for any monotonic 
transform of b. For further discussion and a proof  that (3) is equivalent to (4), 
see [12]. 

We are now ready to define qualitative influences. 

Definition 3.4 (S+). Let  Fh(. la,x) be the CDF for b given a = a i and context x. 
Then S+(a, b) iff 

Val ,a  2. a 1 >1 a 2 ~ Fb(" la,x) FSD Fb(-la2x). (5) 

Definition 3.4 is a generalization of Definition 3.3 under the convention that 
true > false for binary events. 

Like (1), (5) is a condition on posteriors. A comparable definition of S + in 
terms of likelihood must imply FSD of the posteriors for any prior distribution 
F b. That  is, we allow that there may be a context x inducing any distribution on 
b. Milgrom [32] proves that the following condition is necessary and sufficient 
for (5) to hold for any Fb(. Ix). 
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Va~ ,a2,b ~ ,b 2. 

(a, > a2) A (b, ~> b2) :2~ 
f,,(al]b,x) f (a2lb,x) 

> (6) 
L(a,  lbex) L(a21b2x) " 

In (6), f ,( .  Ibex) is the probability density function for a given b i and x. 
This condition is known in statistics as the Monotone Likelihood Ratio 

Property (MLRP) [2]. The necessity of MLRP for (5) is established by the 
special case of dichotomous events. That (6) is a generalization of (2) is more 
clearly seen by rewriting the latter as 

Pr(A[Bx) Pr(A I Bx ) 
t> 1 > (7) 

Pr(A [/3x) Pr(,4 ]/~x) ' 

For a demonstration of the sufficiency of MLRP, see [32]. 
It is convenient to adopt special notation for influences on the value node v. 

The value node is related to its predecessors by a utility function u : X(pred(v)) 
---, ~ [25]. 

Definition 3.5 (U*).  The variable a positively influences utility, U +(a), iff 

Va,,a 2.a l>~a 2 ~ u(al,x)>~u(a2, x). (8) 

The definition of U+(a) is a special case of S+(a, v) taking into account the 
deterministic relation (a degenerate probability distribution) between v and its 
predecessors in the network. 

4. Indirect Relationships 

Edges in a graph of influence links constrain the direct relationship between 
pairs of variables. Our next step is to design inference mechanisms to derive 
the indirect relationships that follow from patterns of local influences. 

First, let us define the canonical direction between two variables to be the 
strongest qualitative influence derivable from those explicitly appearing in Q. 
The canonical direction can be easily computed from Q by preferring an 
explicit 0 to the other 6's (which are always consistent with 0 because the 
conditions are non-strict), preferring + or - to ?, and replacing the conjunc- 
tion of + and - with 0. 

Definition 4.1 (dir). Let A= {6[(a,b, 6 ) E Q } .  The canonical direction of 
influence of a on b, dir(a, b, G), is given by 
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dir( a, b, G) = 

f undefined, 
O, 

if b E predc,(a ) , 
i f A = 0 , 0 E  A, or {+,  - }  C ~1, 
ifA = {+} or A = {+,  ?} ,  
ifA = { - }  o r J  = { - ,  ?} , 
otherwise.  

If dir(a, b ) =  ? then a and b are dependent  in an unknown, varying, or 
context-dependent  direction. 

4.1. Probabilistic dependence in graph representations 

Definition 4.2 (dep). The dependency graph, dep(G), of G = (V, Q) is 

dep(G) = (V, E ) ,  

where 

(a, b) E E iff dir(a, b, G) E {+,  - ,  ?}.  

The dependency graph simply encodes the pattern of nonzero influences 
without distinguishing the signs on the links. Pearl et al. [41] have character- 
ized the expressiveness of these graphs with respect to the dependency 
structure of probability distributions. Some results of this work and terminolo- 
gy developed there will prove useful in analyzing the properties of QPNs. 

In a directed acyclic graph representation, two variables are conditionally 
independent  given any set of other variables that d-separates them in the graph. 

Definition 4.3 (d-separation, Pearl [37]). Two variables a and b are d-separated 
by a set of variables S in a directed acyclic graph iff for every undirected path 
from a to b either: 

(1) there is a node s @ S on the path with at least one of the incident edges 
leading out of s, or 

(2) there is a node t on the path with both incident edges leading in, and 
neither t nor any of its successors are in S. 

The concept of d-separation is illustrated by the network of Fig. 2. 
The following implication of Definition 4.3 is useful in justifying the infer- 

ence rules for QPNs presented below. 

Lemma 4.1. I f  b ~predc (a  ), then a and b are d-separated in dep(G) by any S 
such that predc;(b ) C_ S C {s I b ~pred~(s)} .  

For convenience, all proofs are relegated to Appendix A. 
Taking S = predc(b ), this result is the basis for our closed-world assumption 

that dir(a, b, G) = 0 if there are no explicit influences in Q. If in addition there 
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Fig. 2. Variables a and b are d-separated by {w,x} but by no other subset of {w,x, y, z}. 

267 

are no directed paths from b to a, we adopt the default influence S~(a, b). In 
Pearl's terminology, this assumption is valid when dep(G) is an l-map--a 
graph for which all d-separations are true conditional independencies. 

4.2. Network transformations 

We answer queries about relations among separated variables in a QPN by 
transforming the graph into one where the variables of interest are related 
directly. The method is based on Shachter's algorithm for evaluating numeric 
influence diagrams [47] by repeated reductions and arc reversals. Each manipu- 
lation preserves the probabilistic relationships--qualitative in our case--hold- 
ing among variables in the possibly smaller set V. It is possible via sequences of 
these manipulations to answer queries about the relationships among any 
subset of variables in the network [48]. 

The two basic network transformation operators are reduction (red) and 
reversal (rev). The reduced network red(b, G) is the qualitative probabilistic 
network obtained by splicing variable b out of G and adjusting qualitative 
influences as dictated by Theorem 4.3 below. The reversed network 
rev(a, b, G) is obtained from G by replacing (a, b, 6 ) E  Q with the influence 
(b, a, ~) and updating other influences as specified in Theorem 4.4. 

Let G '  = (V', Q ' )  be the result of one of these transformation operations. 
For simplicitly we adopt the convention that Q'  contains only the canonical 
directions. The relationship between Q and Q'  is described in Section 4.3 
below. Both the red and rev operations preserve essential properties of the 
networks: 

• dep(G') is acyclic. 
• dep(G') is an /-map. 

4.3. Variable reductions 

It can be demonstrated for the binary case that, in the absence of direct links 
from a to c, 
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S*(a, b, G) A S+(b, c, G)  ~ S+(a ,  c, red(b, G)) . 

The ability to pe r fo rm inference across influence chains is an essential p roper ty  
of  a quali tative algebra.  F r o m  the digitalis model ,  for  example ,  we would  like 
to deduce  that  increasing the dose of  digitalis decreases  the heart  rate but  
increases the l ikelihood of  ventr icular  fibrillation. Indeed ,  most  p rograms  with 
models  like this would  make  such an inference.  For tuna te ly ,  the definition 
offered above  for  S + implies transitivity for  mult i -valued as well as binary 
variables. 

T h e o r e m  4.2 .  

Sa'(a, b, G) A S~2(b, c, G) A S°(a, c, G) 

$6®~2(a, c, red(b, G)) , 

where 6i E {+ ,  - ,  0, ?} and ® denotes sign multiplication, described in Fig. 3. 

Appl ica t ion  of  T h e o r e m  4.2 requires  that  no direct  influences exist be tween  
a and c. A more  general  specification of  the result of  variable reduct ion  is the 
following: 

T h e o r e m  4.3.  

Sal(a, b, G)  A Sa2(b, c, G)  A Sa3(a, c, G)  

S(a'®a2~3(a, c, red(b, G)) , (9) 

where @ denotes sign addition, also described in Fig. 3. 

T h e o r e m  4.2 is really a corol lary  o f  T h e o r e m  4.3 with 3 3 = 0, the identi ty 
e lement  for  @. 

This result tells us how to update  the direct ion be tween  pairs of  predecessors  
and successors of  a reduced  variable.  W h e n  the reduced  variable has at most  
one  successor,  T h e o r e m  4.3 covers  all necessary changes  to the ne twork .  W h e n  
there are multiple successors,  however ,  the removal  may  render  them depen-  
dent ,  as the modif ied ne twork  does not  contain  the original d-separat ing set. 

® 
+ 

0 
9 

+ - 0 * @ 
+ - 0 ~ + 

+ 0 ~ 
0 0 0 0 0 
? ? 0 ? 

q- - -  0 ? 

+ ? + 
? ? 

+ - 0 ? 
? ? v 

Fig. 3. The ® operator for combining influence chains and the @ operator for combining parallel 
influences. For example , + @ - = - .  The operations commute, associate, and distribute like 

ordinary multiplication and addition. 
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To reflect these dependencies, we must add new influences among these 
variables. One way to compute the new relations is to reverse all but one of the 
successor links according to the procedure of the next section, then perform 
reduction as described above. 

We can solve some special problems using reduction transformations exclu- 
sively. If the variables can be ordered for reduction so that they have at most 
one successor when reduced, the updating rule of Theorem 4.3 is sufficient. 
For example, to find the qualitative influence of a on b given a set of variables 
W for any a ~ pred*(b) and pred*(a) C_ W C_ pred*(b) we need only splice out 
all other variables in the network. The restrictions on a and W ensure that the 
variables can be ordered for simple reduction. Because each application of 
reduction rule (9) reduces the number of influence edges (including zeros) in 
the network by one, the complexity of this procedure is O(IVI2)J This 
contrasts with the corresponding problem for numeric probabilistic networks, 
which is NP-hard [6]. Some sample reduction sequences are displayed in Fig. 4. 

original network dir(a, c) 

(1) ~ 81 ® 6. 

(2) ~ (~'1 e ~2) (~ (53 

(67 o 6~) • (~= o ~4) ( a )  

[~, ® (< • (65 e 64))] • (6= e ~4) ( 4 )  

Fig. 4. Some sample reduction sequences. The right column contains the expression for dir(a, c) in 
the network obtained by removing nodes between a and c. Fragments (1) and (2) correspond to 
the situations of Theorems 4.2 and 4.3, respectively. When a ~pred*(b), the relation with all 

intermediate variables reduced is simply the sign sum of all directed paths from a to b. 

Since it is possible to construct cases where this algorithm requires ~(]V] ~) operations, its 
overall complexity is O(]VI~). 
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4.4. Influence reversals 

The procedure developed above is valid when a precedes b in the network and 
the variables of W are intermediate between the two. Often, however, the 
network is such that the qualitative influence of a on b cannot be determined 
by any sequence of single-successor reductions. In such cases we need to 
perform one or more reversals in the network before or after applying the 
methods of the previous section. 

In reversing a qualitative influence link, we must preserve the essential 
properties mentioned in Section 4.2 above. To ensure acyclicity, we can 
reverse the influence from a to b only if there are no other directed paths 
between them. Reversal is also precluded if a is a decision variable. To 
guarantee that the dependency structure is valid after reversal (that is, 
G' = rev(a, b, G) is an / -map) ,  we generally have to insert additional links. As 
demonstrated by Shachter [48], it is sufficient that each of the two variables 
gain the other's predecessors: 

preda,(a ) = predo(a ) tD predo(b ) U {b} - {a} , 

predc;,(b ) = predo(a ) U predo(b ) - {a} . 

Definition 3.4 for S~(a, b) explicitly refers to the predecessors of b. Therefore, 
when the predecessor structure changes we need to recompute the influences 
that may be affected. The following result describes the influences holding after 
reversal. 

Theorem 4.4. Let G' = rev(a, b, G). G' inherits all the qualitative influences of  
G except: 

(1) dir(a, b, G') is undefined. 
(2) dir(b, a, G')  = dir(a, b, G). 
(3) Vw C predc,(b),  

dir( w, b, G ' ) =- [ dir( w, a, G ) ®  dir( a, b, G)] • dir( w, b, G ) .  

(4) Vw Epredc;,(a ) - {b}, 

S dir(w, a, G ) ,  if dir(w, b, G) = 0 
dir( G') w,  a, 1 9. otherwise 

= dir(w, a, G)G(d i r (w ,  b, G ) ® ? ) .  

This transformation is illustrated in Fig. 5. 
Some information may be lost in the process of reversing influences. For 

example, let G" =- rev(a, b, rev(a, b, G)), the network obtained by reversing an 
influence then reversing it again. Application of Theorem 4.4 twice yields the 
result depicted in Fig. 6. Although the link from a to b is correct, the reversal 
process weakens the other links. More generally, the prospect of information 
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5 2 ~ 5 3  rev 

Fig. 5. Influence reversal. 

52 ? )~  / /(5 ® ® 53 ® (53 2 51) 

Figl 6. Information lost in a double reversal of the influence from a to b. 

® (53 

lost suggests that the strategy for transforming a network may have significant 
impact on the strength of conclusions obtained. Analysis of this and related 
issues can be found in another paper focusing on inferential properties of 
OPNs [63]. 

5. Necessity Results 

The preceding sections establish that the FSD condition for S + (Definition 3.4) 
is sufficient to support essential inferences such as the chaining of influences. In 
this section I present some simple desiderata for a qualitative influence 
definition that entail the necessity of FSD for these properties. 

5.1. Posterior conditions 

I start by specifying the form such definitions must take. To capture the intent 
of "higher values of a make higher values of b more likely" in a probabalistic 
semantics, it seems reasonable to restrict attention to conditions on the 
posterior distribution of b for increasing values of a. Therefore,  I postulate that 
a definition of S +(a, b) must be of the form 

Va,,a2. a,>~a2 ~ F~,('la,x) R~,('la2x), (lo) 

where R is some relation on CDFs. This condition is exactly (5) with FSD 
replaced by the more abstract relation. 

There are two basic desiderata that severely restrict the possible relations R. 
First, S + must satisfy Theorem 4.2. Without the ability to chain inferences, the 
qualitative influence formalism has little computational value. Second, the 
condition must be a generalization of the original specification of S + for 
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dichotomous variables (Definition 3.3). With only two possible values this 
appears to be a minimal monotonicity condition. These criteria lead to a sharp 
conclusion. 

Theorem 5.1. Let S+(a, b) be defined by (10). Given the following conditions: 
(1) Theorem 4.2, 
(2) for binary b, a I >i a2, and x, 

Fb(" lal x) R Fb(. la2x ) <:> Pr(Bla,x) ~ Pr(Bla2x ) , 

the weakest R is FSD. 

The force of this result is weakened somewhat by the a priori restriction of 
definitions to those having the form of (10). Many statistical concepts of 
directional relation (based on correlation or joint expectations, for example) 
do not fit (10) yet appear to be plausible candidates for a definition of 
qualitative influence. Quadrant dependence [30] holds between a and b when 5 

Va,,a_~. a, ~> a 2 ~ Fh(. la ~< a , )  FSD Fb(. la ~< a2).  (11) 

Lehmann proves that quadrant dependence is necessary but not sufficient for 
regression dependence, which is his terminology for (5) without the quantifica- 
tion over contexts x. As quadrant  dependence is weaker,  yet still exhibits 
transitivity, 6 it seems to be an attractive alternative to regression dependence.  
To justify our choice of the latter, we must consider the decision-making 
implications of probabilistic models. 

5.2. Decision-making with qualitative influences 

The prime motivation for adopting a probabilistic semantics is so that the 
behavior of our programs can be justified by Bayesian decision theory [46]. A 
decision of d~ over d 2 (that is, such a choice of assignments to decision 
variables) is valid with respect to a QPN if the network entails greater expected 
utility for the former. The most useful distinctions to make in designing a 
qualitative representation are those that will support inferences about prop- 
erties of the valid decisions. 

For example, if a positively influences utility (Definition 3.5) and there are 
no indirect paths from decision variable a to the value node,  then a choice of al 

This is actually the condition Lehmann proposes as a strengthening of quadrant dependence. 
The basic quadrant dependence fixes a 1 at a's maximal value. 

6 For transitivity we need to quantify over contexts in (11). The proof parallels that for Theorem 
4.2. 



Q U A L I T A T I V E  PROBABILISTIC NETWORKS 273 

over a 2 is valid iff a~ ~> a2 .7 Decision-making power is enhanced if we can 
deduce new influences on utility from chains of influences in the network. Our 
definition of qualitative influence is necessary as well as sufficient for such 
inferences. 

Theorem 5.2. Suppose U~2(b, G) and U°(a, G). A necessary and sufficient 
condition for U~'®~2(a, red(b, G)) is Sa'(a, b, G) as in Definition 3.4. 

Figure 7 depicts this situation with 6 2 = +. 
Theorem 5.2 demonstrates that while conditions weaker than S +, such as 

quadrant dependence, may be sufficient for propagating influences across 
chains, they are not adequate to justify decisions across chains. For choosing 
among alternatives, the relevant parameter is the utility function evaluated at a 
point; utilities conditioned on intervals of the decision variable (as in quadrant 
dependence) do not have the same decision-making import. 

5.3. Simpson's paradox 

Because qualitative influences are based on simple intuitive relationships, they 
may provide insight into qualitatively counterintuitive situations. One cele- 
brated example is Simpson's paradox, in which a factor is shown to have positive 
impact on some result in all contexts (precisely the definition of S +), yet its 
overall influence is negative. 

In an instance presented by Blyth [3], patients given an experimental 
treatment have an increased chance of survival in each of two test cities. 
However, when the statistics from the cities are pooled, it turns out that 
patients with the treatment have a decreased survival probability. How is this 
possible? In this example, the population of city 1 have a significantly better 
prognosis and patients from city 2 are more likely to be treated. Thus, a treated 
patient is more likely to come from city 2 and is therefore less likely to survive. 

A QPN modeling this example would have qualitative influences S+(treat, 
survive), S +(city, survive) (adopting the convention city~ > city2), and S (treat, 

Fig. 7. Chaining utility influences. The influence 6~ = + in G is necessary and sufficient for 
U +(a, red(b, G)). 

7 The existence of other paths from a to utility would leave open the possibility that the net 
influence of a is negative. For example, we could summarize the therapeutic effect of digitalis 
through conduction and heart rate as a direct positive influence. But this might be outweighed by 
the indirect negative influence of digitalis via automaticity. 
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city). Reducing city according to (9) leads to the ambiguous conclusion 
S~(treat, survive), indicating that Simpson's  paradox is a possibility in this 
circumstance. 

If there had been no interaction between the likelihood of t reatment  and the 
pat ient 's  residence, or if the interaction had been in the other direction, 
Simpson's  paradox could not arise. The following is a direct consequence of the 
QPN update  rules, Theorems  4.3 and 4.4. 

Corollary 5.3. Suppose V = { a , b , c }  and S+(a ,c ,G) ,  and let 6a. h be 
dir(b, a, G) or dir(a, b, G),  whichever is defined. A necessary condition for 
Simpson's paradox to apply for a and c with respect to b is: 

6~, b ® dir(b, c, G)  ~ { - ,  ?} .  

Although the phenomena  surrounding Simpson's  paradox are well under- 
stood, QPNs provide a convenient  language for expressing these enabling 
conditions. ~ With a, b, and c standing for treat, city, and survive, respectively, 
the result applies directly to the example above.  (Incidentally, if the residence 
of the patient is known at the time of a t rea tment  decision, the model correctly 
mandates  that the t rea tment  should be administered.)  

6. Back to the Digitalis Model 

To summarize the discussion of qualitative influences thus far, let us return to 
the digitalis example presented in Section 2.2. We are interested in computing 
the effect of the decision variable,  dig, on utility. The network of Fig. 1 
reduces to the one depicted in Fig. 8(a), which further reduces to that of Fig. 
8(b). 

(a) (b) 
]Fig. 8. Reduction of the digitalis model. (a) Digitalis is therapeutic in its effect on conduction but 
toxic via the influence on automaticity. (b) The overall effect of digitalis cannot be resolved with 

qualitative influences. 

Whether it obtains in a given case depends on the numeric probabilities, that is, we cannot 
express sufficient conditions for Simpson's paradox in terms of qualitative influences. See Neufeld 
and Horton [35] for a discussion of Simpon's paradox in the context of another formalism based on 
probabilistic inequalities. 
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The result, not surprisingly, is ambiguous. Purely qualitative influences are 
too weak to determine optimal decisions in the presence of true tradeoffs. 
Nevertheless, the QPN is sufficient to determine some influences (for example, 
calcium on ventricular fibrillation), and uncovers the source of indeterminacy 
in others. 

In the next section, a second type of qualitative relationship is introduced: 
qualitative synergy. Synergies complement influences by constraining the inter- 
actions among probabilistic influences. Although synergies cannot resolve the 
tradeoff of Fig. 8(b), they can provide useful facts about the relation of the 
optimal digitalis dosage to other variables in the model. 

7. Qualitative Synergy 

Swartout's XPLAIN knowledge base includes the "domain principle" that if a 
state variable acts synergistically with the drug to induce toxicity, then smaller 
doses should be given for higher observed values of the variable [55]. This fact 
could be derived by a domain-independent inference procedure given a suitable 
definition for qualitative synergy. Two variables synergistically influence a third 
if their joint influence is greater (in the sense of FSD) than separate, 
statistically independent influences. In the digitalis example, we need to assert 
that digitalis acts at least independently with Ca and K deviations in increasing 
automaticity. For the desired result, we also need the fact that heart rate and 
ventricular fibrillation are synergistic in their influence on utility. (This synergy 
is due to our indifference to heart rate--indeed it is undefined--for patients in 
fibrillation. The relation of this indifference to synergy is clarified in Section 7.7 
below.) 

Figure 9 illustrates the QPN for digitalis enhanced by synergy assertions. 
Potassium (K) is omitted for simplicity; its implications are analogous (with 
sign reversal) to those for calcium. Qualitative synergies are indicated by a 
boxed sign with multiple inputs and a single output. The input variables are 
synergistic in the designated direction in their influence on the output variable. 

+ 

Fig. 9. The digitalis model with synergy. A boxed sign indicates that the inputs are qualitatively 
synergistic in their influence on the output. 
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7.1. Synergy notation 

Qualitative synergies are the second type of qualitative relationship repre- 
sented in Q for a QPN G = (V, Q). As qualitative influences are directed edges 
augmented by sign, qualitative synergies are directed hyper-edges with a sign 
label. A qualitative synergy assertion that the variables in T C V are synergistic 
in direction ~ on variable w is written Ya(T, w, G). 

Definition 7.1 (Qualitative synergy hyper-edges). 

Ya(T, w, G)=--(T, w, 6 ) E  Q . 

7.2. Qualitative synergy defined 

A formal definition of qualitative synergy must capture the informal intuition 
expressed above that the "joint influence is greater than separate statistically 
independent influences." This will be the case when the effect of varying one 
variable is enhanced by simultaneous variation of the other. 

The joint influence of two variables a and b on a third, c, is expressed by the 
conditional cumulative distribution for c, Fc(-lab).  To compare magnitude of 
"influence," we need some reference points. One way to measure a difference 
in influence is to take the difference of two conditional CDFs. Two variables 
are synergistic if the difference associated with raising one is greater (in the 
sense of FSD) for higher values of the second. 

Definition 7.2 (Qualitative synergy, Y~). Variables a and b are synergistic on c 
in network G, written Y+({a, b}, c, G) iff 

Val ,a2,bl ,be,co. 

(a, ~> a2)/x (b, ~> b2) 

F,,(c,, [a,b,x) - g~(c 0 [a2blx ) <~ F~.(c 0 [a,b2x) - F~.(c 0 [a2bEX) . (12) 

Replacing <~ in condition (12) by 1> or = defines subsynergy or zero synergy 
(Y and y0),  respectively. If the variable set T in YS(T, w, G) contains more 
than two elements, the condition above holds for all pairs of variables in T. 

As usual, x ranges over assignments to the other predecessors of c. 
The inequality (12) quantified over Co can be viewed as stochastic dominance 

of the respective distributions of CDF differences. The condition means that 
raising a from a 2 to a I has a greater effect for higher values of b. Note that the 
inequality is symmetric in a and b. 

If S°(a, c), then Y°({a, w}, c) follows immediately for any variable w E 
pred*(c) because of conditional independence. With conditional independence, 
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F~.(. [alwx ) = Fc(" ]a2wx ) for all w and x, therefore both sides of equation (12) 
are zero. 

Lacking an explicit synergy assertion for two or more variables that are 
predecessors of another, the prudent closed-world assumption is Y'~: no 
constraint on their interaction. 9 Although it is reasonable to assume S ° in the 
absence of knowledge to the contrary, in this case, the variables are tied by a 
common immediate successor. They are not d-separated by this successor, and 
interactions in situations with this pattern are quite common. 

Fortunately, there are several prototypical patterns of systematic interaction 
that might alleviate the burden of specifying qualitative synergies. One that has 
attracted some interest in the literature on numeric probabilistic networks is 
the "noisy OR gate" model proposed by Pearl [39, Chapter 4]. 

In the noisy OR model, the binary-valued predecessors of a binary "effect" 
variable are considered separate possible causes of the effect. Each "cause" 
variable is associated with a parameter Pi representing the probability of the 
effect given that this variable is true and all other predecessors are false. We 
can compute the rest of the conditional probabilities for y under the assump- 
tion that the "inhibiting events" that prevent Y given each Z~ are independent. 
For effect variable y with predecessors z~ . . . . .  z , ,  the conditional probabilities 
are: 

Pr(Ylzi  . . .  z , ) =  1 - l-[ (1 - p , ) .  (13) 
{ i iZf l  

Regardless of the magnitudes of the parameters p~, the noisy OR model 
entails subsynergy, Y-. To see this. consider the Y condition ((12) with the 
inequality reversed) for the special case of binary variables. Y-({ z j, z k }, y) iff: 

Let 

where 

Vx ~ X({z, I(i # J ) / '  (i # k)}) 

Pr(Y] Z / Z , x )  - Pr(Y[ 2 , Z , x )  <~ Pr(Y{ Z i Z , x  ) - Pr(Y] 2 j 2 , x )  . (14) 

px = I1 ( 1 - p , ) ,  
Z(x) 

Z(x)  = { i I Zi in assignment x } . 

Then from the noisy OR model (13), 

Pr(YI ZjZ~.x) - Pr(Y] 2 Z~.:r) = p ,p , (1  - Pk ) 
and 

Pr(YlZj2kx ) -  Pr(Y! Z , Z . x l  = p ~ p  . 

9 In the examples of this section, all syn~ '~:ie~ are specified explicitly. 

(15) 

(16) 
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Because 0~<pk ~< 1, the expression in (15) is not greater than that of (16), 
satisfying the binary Y-  condition (14). Figure 10 illustrates the relation 
between a numeric probabilistic network using the noise OR model and its 
corresponding QPN. 

It is also easy to verify that Henrion's generalizations of the noisy OR model 
[21] entail Y-. Intuitively, a noisy OR is subsynergistic because, as with 
deterministic OR gates, raising an input has less effect when other inputs are 
already raised. In contrast, a model based on a probabilistic generalization of 
"gating conditions" (see Rieger and Grinberg [44]) would be synergistic 
because an increase in one variable enables the effect of the other. More 
generally, we should expect non-? synergy results from canonical models 
because any representation that specifies an n-way influence in terms of O(n) 
parameters must employ some systematic assumption about interactions. ~" 

7.3. Supermodularity, yn, and monotone decisions 

The Y~ definition relates closely to the concept of supermodular functions 
[45, 561 . 

Definition 7.3 (Supermodularity, Ross [45]). A function g such that, for all 
a~ >t a 2 and b~ >! b2: 

g(a,, b~) + g(a 2, b2) >~ g(a 1, b2) + g(a2, b,) (17) 

is called supermodular. If (17) holds with equality, then g is modular, and if the 
inequality is reversed, g is submodular. 

1 

P,~ 

~~..._j (b) 

Fig. 10. (a) The "noisy OR" model, and (b) its corresponding qualitative abstraction. 

1o Dempster's rule of combination is also subsynergistic under an analogous definition of synergy 
in terms of belief functions [49]. A demonstration of this requires further assumptions regarding 
how to interpret conditioning as evidence combination. 
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The most important property of supermodular functions, from our perspec- 
tive, is that they imply monotone decisions. Let the function an(b ) choose the 
value of a that maximizes g for the given b. 

a ~, ( b ) = arg max g( a, b ) . 

It can be shown that ag(.) increases monotonically in b if g is supermodular 
(see Ross [45, p. 6]). 

The following result clarifies the connection between Y~ and supermodu- 
larity. 

Lemma 7.1. Y+({a, b}, c) (respectively Y and y0) holds iff the function 

ee,(a, b Ix) : f ¢h(c0)f,,(c 0 ]abx) dc 0 

is supermodular (submodular, modular) in a and b for all increasing functions 
and contexts x. 

The function e~ is the expectation of c under the monotonic transform O. 
The equivalence between submodularity of F 0 for all c (Definition 7.2, the Y+ 
condition) and supermodularity of expectations for all ~b is reminiscent of the 
correspondence between the FSD condition (3) and increasing expectations for 
all & (4). 

Once again, it is useful to define special notation for synergistic influences on 
the value node. 

Definition 7.4 (Y~).  Variables a and b are synergistic on utility, Yu({a ,  
b}, G), for ~ = +, - ,  0, iff u is supermodular, submodular, or modular, 
respectively, in a and b. 

6 
Note that Yv(T ,  G) is weaker than Y~(T, v, G), as the condition on u need 

not hold for all monotonic transformations. 
In the terminology of utility theory, ~-modularity expresses multi-attribute 

risk aversion, proneness, or neutrality as ¢5 is - ,  +,  or 0, respectively [9, 43]. 
Multi-attribute risk neutrality is equivalent to additive separability for u [11], as 
suggested by the form of the modularity condition (17). 

The correspondence between Y~; and supermodularity is useful because of 
the monotone decision property of supermodular functions. Consider the 
situation of Fig. 11. There we have Yv({a ,  b}) even though dir(a, v ) =  
dir(b, v) = ?. Qualitative influences alone tell us nothing about which value we 
should choose for the decision variable a. Positive synergy, on the other hand, 
implies that if b is observable, our policy should be to choose higher values of a 
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Fig. 11. Synergistic influence on utility. Even though U~(a) and U~(b) we can deduce that the 
optimal choice of a is increasing in b. 

for greater values of the observed b. While this still does not reveal the exact 
value of the optimal a, it dictates the form that our strategy should take. 

7.4. Propagation of synergies in networks 

The mechanisms for deducing indirect synergies that hold in a QPN are 
analogous to the network transformation techniques for qualitative influences 
developed in Section 4. In particular, we can extend qualitative synergies 
through qualitative influences by variable reduction. 

Theorem 7.2. Synergies can be extended along qualitative influences by reduc- 
tion according to the following: 

Yal( {a, b}, c, G) ^ S~2(c, d, G)/x S°(a, d, G)/x S°(b, d, G) 

Ya'®a-'({a, b}, d, red(c, G)) . 

This reduction is depicted in Fig. 12. 

4 

= red(c, G) 

Fig. 12. Propagation of synergy through qualitative influences. Values for dir(a, d, G') and 
dir(b, d, G') follow from Theorem 4.2. The new synergy y~1~62 is the result of Theorem 7.2. 
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Like Theorem 4.2, Theorem 7.2 requires that there be no direct influences 
among the variables newly linked in the reduced QPN. The next result 
provides the reduction rule for the more general case. 

T h e o r e m  7.3. 

Y~'({a, b}, c, G)/x S~2(c, d, G)/x Y~({a, c}, d, G)/x 

V~4({b, c}, d, G)/x S%(a, c, G)/x S%(b, c, G)/x V~7({a, b}, d, G) 

Y(~t®'sa)®(~3®~6)®(~®%)®~7({a, b }, d, red(c, G )) . (18) 

Theorem 7.3 generalizes Theorem 7.2 because 

S"(a,d, G)/x S°(b,d, G) ~ 63=34=37=0 

by conditional independence. 
Note that the signs of direct influences from a and b to d do not affect the 

synergy propagation, though the signs of influences on c do. This more 
complicated situation is illustrated in Fig. 13. 

A special case of the foregoing results demonstrates how to propagate 
synergies backwards through qualitative influences. Upon reduction, a vari- 

~8 

e (64 ® 65) 

Fig. 13. Variable reduction with parallel synergies. 
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able's predecessors assume its role in all synergies, with modified signs 
reflecting the direction of the predecessor's influence. 

Corollary 7.4. 

Y~3({a, c}, d, G)/x S~"(b, c, G)/x S°(a, c, G) 

Ya3®a"({a, b}, d, red(c, G)). 

The results follows from the assignment 6~ = 65 = 67 = 0 in Theorem 7.3. 
(The zero synergy of a and b on c, 61 , follows from the zero influence of a on c, 
6s-) Application of Corollary 7.4 is illustrated in Fig. 14. 

For an example of the use of backwards propagation, consider a synergy 
relation from the digitalis model. In the more detailed model of Fig. 15, the 
effects of variables dig (digitalis dosage) and Ca (measured serum calcium) 
would be mediated by dig' and Ca', the actual concentrations of digitalis and 
calcium in the bloodstream. Even though the synergy assertion is in terms of 
the physiological parameters, we can deduce synergy on the practically relevant 
proxy variables by reduction according to Corollary 7.4. 

Though the definition for Y~ differs from Y~, the synergy update rule (18) 
also holds when d is the value node and Yu is substituted for Y as appropriate. 
In fact, for backwards propagation the Y~v condition is exactly preserved. 

Theorem 7.5. Given S~6(b, c, G) and S'~(a, c, G), Y~)( {a, c}, G) is both neces- 
sary and sufficient for "-~:~®~6,- r 6  t~a, b}, red(c, G)). 

56, 6 >  

G' = rd(c, G) 
5s 

Fig. 14. Backwards propagation of synergies through qualitative influences. 
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Fig. 15. An elaboration of a digitalis model fragment. Variables dig and Ca represent dosage and 
measurement, respectively, while the primed versions are actual concentrations. The unprimed 

variables are synergistic by reduction of dig' and Ca'. 

A canonical decision situation with the above form is the estimation problem 
from statistics. The problem is to choose an estimate a of the true "state of 
nature" 0 given only an observation z that is statistically related to 0. Karlin 
and Rubin [24] demonstrate that if 

(1) the optimal estimate is increasing in 0 (the monotone decision property 
of Section 7.3), 

(2) utility decreases away from the optimum, and 
(3) z is related to 0 by the MLRP (the likelihood condition for S + (6), 

Section 3.2), 

then a and z also satisfy the monotone decision property. 
By representing the estimation problem as the QPN of Fig. 16, we see that 

the sufficiency part of Theorem 7.5 is a similar result, with the monotone 
decision property replaced by the stronger condition of qualitative synergy. 
Synergy seems justified for the estimation problem because the relative value 
of a higher estimate increases with the state of nature. 

The applicability of the setup in Fig. 16 goes well beyond estimation. 
Suppose the state of nature 0 represents an unobservable disease severity and 
the decision variable a the aggressiveness of therapy. Choosing a therapy level 
is similar to estimating the severity of disease, as more serious conditions call 
for stricter treatments. It is essential that a program be capable of inferring the 
qualitative implications for therapy of any symptom z related to disease 
severity in a known direction. 

Fig. 16. A qualitative probabilistic network for the estimation problem, 
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7.5. Synergy reversal 

Synergies must also be updated upon reversal of a link. Consider a reversal of 
the influence from c to d in the network of Fig. 13 (top half). Synergies on d 
are revised (or newly created) according to the following rule. 

Theorem 7.6. 

Ya'({a, b}, c, G)/x Sa2(c, d, G) A Y~3({a, c}, d, G) A 

Y~4({b, c}, d, G) A SaS(a, c, G) A S~*(b, c, G)/x Y~7({a, b}, d, G) 

Y(al®62)°('83®'86)°(Sz®85)e87({a, b }, d, rev(c, d, G)) . 

After reversal, the possibility of interactions with d render all synergies on c 
ambiguous. Synergies on variables other than c or d are unaffected by the 
operation. 

7.6. Landmark values 

The monotone decision property can be used to develop a concept of landmark 
values for QPNs analogous to the landmark value concept in qualitative 
simulation [28]. A landmark value is any distinguished point in the domain of a 
variable. Their usefulness to qualitative reasoning accrues when landmark 
values of several variables correspond in a meaningful way or the point has 
some other qualitative significance for the application. 

In QPNs, the interesting landmarks are optimal values of decision variables 
and the corresponding values of observable non-decision variables. Suppose 
that in the disease-severity interpretation of Fig. 16, the variable z represents 
an observable symptom with a specially designated "normal" value of z*. 
There is a corresponding landmark value of the decision variable, a*, repre- 
senting the optimal level of therapy given z = z*. The value of a* may be 
known to the program, especially if there is documented experience with 
z-normal patients, everything else being equal. Even if its exact value is not 
known, or if it depends on other variables, the a* concept has meaning as a 
landmark value in terms of its optimality property. 

Suppose further that a patient presents with an elevated z-value of z' > z*. 
The qualitative implication drawn from our model is that the corresponding 
optimal therapy a' is increased, a'/> a*, all else being equal. As correspond- 
ences in the quantity space [13] are known in finer detail, the program can 
determine optimal strategies with increasing precision. 
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7.7. Synergy in the digitalis example 

To complete our discussion of qualitative synergy, let us return to the digitalis 
model of Fig. 9. As promised, I start by justifying the synergy relation between 
hr and yr. 

Consider two heart rates, hr, >~hr 2, and the two values of the binary 
÷ 

variable yr. The synergy condition, Y~,({hr ,  v f } ) ,  is an instantiation of Defini- 
tion 7.4: 

u(hr  I , V F )  - u(hr  2, V F )  >1 u(hr  I , V F )  - u(hr  2, V F )  . (19) 

Given VF, the heart rate is irrelevant (and ill-defined because ventricular 
fibrillation is a state where the heart is not contracting regularly). Therefore, 
the left-hand side of (19) is zero. For patients not  in fibrillation, lower heart 
rates are preferable, by U (hr),  at least within the range considered here. This 
implies that the right-hand side of (19) is negative, satisfying the inequality. 

By applying the results of Section 7.4, we can successively reduce any 
variables positioned between the ones of interest. Figure 17 shows the result of 
removing all but dig, Ca, and v. The final step, transformation from the 
fragment of Fig. 17(a) to that of Fig. 17(b), requires parallel combination of 
synergies using Theorem 7.3. 

The final result of the exercise is that while the value of administering 
digitalis is ambiguous, by U '(dig) ,  we can deduce that the optimal dosage is a 
decreasing function of calcium, by Y~,({dig ,  Ca}) .  The more detailed model of 
Fig. 15 showed us that this result holds whether we are talking about the actual 
substance concentrations in the bloodstream or about the amounts adminis- 
tered and measured by imperfect means. 

Inferences of this sort play a central role in therapy planning and in 
development of consultation systems via automatic programming [33, 55]. For 
planning, this type of result is a constraint on the class of admissible plans, 
significantly pruning the search space [59]. This is an especially useful kind of 
constraint for the automatic generation of a consultation system because the 

+ 

(b) 
Fig. 17. Transformation of the digitalis model with synergy: (a) collapsing the therapeutic pathway 

and consolidating the toxic, (b) final situation after reduction of yr. 
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qualitative form of the solution corresponds to the structure of part of the 
target code. 

The digitalis dosage d* for patients with normal calcium--a distinguished 
point in the quantity space for Ca--is a landmark value as described in Section 
7.6. Subsynergy implies that the dosage for a patient with calcium above 
normal should be lower than d*. This is essentially the strategy of the digitalis 
program produced by Swartout's XPLAIN system [55], where a domain principle 
mandates that dosage should be adjusted according to "drug sensitivities." 
QPNs provide a more general and principled language for encoding domain 
knowledge, from which policies such as this can be derived. 

8. Related Work 

The QPN representation and reasoning techniques presented here borrow 
many concepts from other work in AI and decision theory. The most obvious 
debt is to research in numeric probabilistic networks, especially that of Pearl 
[39] and Shachter [47]. This work also relates to other efforts by similarity of 
purpose. In the following sections I compare it with research in qualitative 
probability, ordering relations on random variables, and nonmonotonic and 
qualitative reasoning. 

8.1. Qualitative probability 

The central task in designing a qualitative probability representation--indeed 
in the design of a qualitative representation for anything--is choosing the 
important qualitative distinctions to make. For example, a straightforward 
mapping of techniques from qualitative physics might suggest that we carve up 
the [0, 1] probability scale into a quantity space by choosing a small set of 
designated reference points. For example, the set of points {0.01, 0.05, 0.5, 
0.95, 0.99} might be chosen as especially significant. 

Such a scheme is a "non-starter" because it is only by coincidence that the 
important qualitative thresholds for any problem will align themselves with the 
fixed boundaries in the probabilistic quantity space. Furthermore, it is not clear 
that the types of manipulations typically performed on probabilities will respect 
these boundaries in a systematic fashion. For example, Bacchus' inheritance 
reasoner [1] cannot chain inferences about typicality. Attempts to construct 
qualitative notions of absolute probability (see, for example, the work of 
Halpern and colleagues [18, 19]) are likely to encounter similar problems) ~ 
Unlike the scales of physical parameters, the probability interval does not 
appear to have values (except the endpoints) that are universally interesting or 
even of special significance within a domain. And the qualification problem [50] 
is inevitably important here because one can almost always think of conditions 

t~ For a more fundamental argument about the limitations of this approach, see the recent work 
of Xiang et al. [66]. 
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that would bring the probability of any nonanalytic event outside any given 
nonuniversal range. 

This suggests that it might be more appropriate to base qualitative probabili- 
ty concepts on relative likelihoods. A relative likelihood logic permits state- 
ments that one formula is more likely than another [10, 15]. Absolute prob- 
ability is subsumed by a scheme of this type given a set of special formulas 
corresponding to canonical chance situations (such as experiments with an 
idealized coin) of all probabilities. 

The qualitative relationships presented here can be viewed as a special case 
of relative likelihood where only assertions about the comparative probability 
of particular conditional events are permitted. Both S 6 and Y~ are limited to 
comparisons of the likelihood of a given event under different conditions. For 
the binary case, S a induces a quantity space on the likelihood ratio (7) with a 
distinguished value of one. 

There are three primary advantages to restricting the formalism to these 
special likelihood comparisons. First, information in the constraints is substan- 
t i a l ly - though  not completely--preserved by the transformation operations 
presented in Sections 4 and 7, a necessary prerequisite for tractable inference. 
(See Blyth [4] for examples of difficulties with some other seemingly reason- 
able qualitative likelihood comparisons.) Second, the ability to deduce decision 
properties suggests that these comparisons are making some of the significant 
qualitative distinctions. And third, the ceteris paribus condition in the defini- 
tions reduces the impact of the qualification problem, as does the embedding of 
the formalism in closed-world networks. 

The enterprise of qualitative probability is not necessarily hostile to quantita- 
tive probability. In Savage's axiomatization of Bayesian decision theory [46, 
Chapter 3], the qualitative likelihood ordering logically precedes development 
of quantitative probability measures. ~2 The existence of a numeric representa- 
tion for likelihood is only a convenient fact that simplifies much of the theory 
and supports some direct applications. The emphasis to date on numerical 
probability representations in applied decision theory and AI is due in part to 
technological history; there is no fundamental requirement of probability or 
utility theory that we focus exclusively on the precise extreme of the repre- 
sentation spectrum. 

8.2.  Relations on random variables 

Philosophers have long attempted to develop mathematical definitions of 
causality, occasionally producing probabilistic interpretations. Motivated by a 

~2 The same is true of an earlier treatment by Koopman [26]. Strictly speaking, the qualitative 
theory is more general than the quantitative one, which typically requires some sort of additivity 
axiom. This is not, however, a motiviation for the present work (indeed, the proofs assume 
additivity), which stresses advantages for knowledge representation and computation. 
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more limited set of concerns, I have ignored in this treatment temporal 
properties, mechanisms, and other issues salient to causality. These matters 
aside, Suppes [54] proposes a probabilistic condition for binary events that is 
equivalent to S ÷ (1) without the context quantification. For multi-valued 
variables, Suppes suggests quadrant dependence (11). A cause is considered 
spurious if the probabilistic relation can be explained by a prior common cause. 
The concept of spuriousness can be partially captured in QPNs by dis- 
tinguishing qualitative influences inferred via arc reversals (spurious) from 
those derivable solely from reductions along influence chains (genuine). This is 
similar in spirit to the approach of Simon [52], and is equivalent to the 
distinction emphasized by Pearl [38] between causal and evidential support. 

As suggested previously, ordering of random variables has also attracted 
considerable interest in statistics [2, 30, 45] and decision theory [65[. Milgrom 
[32] demonstrates the application of MLRP to theoretical problems in informa- 
tional economics. 

The key difference between the S ÷ definition proposed here and previous 
work is that we obtain transitivity by requiring the condition to hold in all 
contexts. Humphreys [23] proves a special case of Theorem 4.2 to the effect 
that binary qualitative influences along Markov chains (graphs where each 
node has a single predecessor, thereby eliminating context) can be combined 
by sign multiplication. In contrast, Suppes demonstrates that the causal algebra 
induced by his condition--defined only at the margin--does not possess the 
transitive property. A causal algebra either lacking sound reduction rules like 
those of Section 4.3 or restricted to simple Markov chains would have little 
value for knowledge representation. 

Considerably less attention has been devoted to relations of probabilistic 
synergy. The supermodularity concept of Section 7.3 has not, to my knowl- 
edge, previously been interpreted in a probabilistic context. However, a 
constraint similar in spirit to sub-synergy was exploited by NESTOR [5, p. 102], 
a diagnostic program based on probabilistic inequalities. (NESTOR used qualita- 
tive influences to bound probability intervals as well.) And we saw in Section 
7.2 that several canonical probabilistic models proposed for AI programs are 
special cases of Y~. 

8.3. Nonmonotonic reasoning 

There has been considerable interest of late in probabilistic accounts of 
nonmonotonic reasoning [40]. Recently, Neufeld [34] proposed a probabilistic 
semantics for defaults based on a relation equivalent to strict binary S ~ without 
the context quantification. His reasoner derives consequences of an inference 
graph of defaults and logical relations by applying properties of the probabilis- 
tic relation and conditional independencies implicit in the graph's structure. 

Although the use of qualitative probabilistic relations for nonmonotonic 
inference is interesting, I am skeptical about the ultimate potential of any 
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purely probabilistic approach. Likelihood is only one of many criteria for 
believing [8]; a satisfactory semantics for defaults must encompass the full 
range of factors determining whether adopting a particular state of belief is 
cognitively and computationally rational [7, 51]. 

8.4. Qualitative reasoning 

It might appear at first glance that the very imprecision sanctioned by 
qualitative mechanisms obviates the need to consider explicitly uncertainty 
underlying the models. This position, however, confounds the weakness of 
inferences and input specifications with other kinds of variability in the model. 
The distinction is crucial because the latter might undermine the soundness of 
conclusions drawn from qualitative knowledge bases. 

The interpretation of a set of qualitative physical relationships as "qualitative 
differential equations" (see Kuipers [28], for example) treats each relationship 
as a constraint on some "true" functional relationship that holds over time. To 
assert that b = M+(a) (in Kuipers' notation) is to claim that there exists an 
increasing function f such that b, =f(a , )  for all t. This is incompatible with a 
probabilistic interpretation, even though f is only loosely constrained. A 
qualitative influence assertion of S+(a, b), on the other hand, leaves open the 
possibility that the relationship is non-deterministic ( f  might vary over time) 
and does not prohibit an increase in a from coinciding with a decrease in b. 

Application of qualitative-physics inference mechanisms in a probabilistic 
environment is dangerous because they tend to take as impossible what is 
merely unlikely. For example, Forbus' measurement interpretation algorithm 
for qualitative process theory [14] prunes away the qualitative behaviors that 
are inconsistent with observations of the system. If the dynamics of the system 
are really probabilistic (I do not claim that this is the case for Forbus' 
application), then this step is not valid because no behaviors are truly inconsis- 
tent. In such a situation, measurements serve to change the likelihoods of 
various behaviors but never to rule them out. This difference is vital in a 
critical application because some highly unlikely behaviors may nevertheless be 
important enough to demand attention from the reasoner. 

Though we cannot prune measurement interpretations, we might be able to 
perform some pruning on the plan space using the techniques presented above. 
A particular measurement does not in general reveal any facts about the other 
model variables with certainty, yet it may allow us to deductively conclude that 
some decision variables (perhaps dials in the control room) should be adjusted 
in particular directions. 

9. Conclusion 

9.1. Summary 

A QPN model represents qualitative constraints on the probabilistic relation- 
ships among a set of variables. In this paper I have defined and analyzed two 
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basic constraint types: qualitative influences that express direct relationships 
between variables, and qualitative synergies that express interactions among 
influences. The probabilistic definitions justify sound graph-based inference 
procedures that answer queries about the qualitative relationship of any subset 
of variables in the model. Qualitative relationships involving the special value 
variable v dictate structural properties of the optimal assignment to decision 
variables. 

Despite the ubiquity of constructs similar to qualitative influences in knowl- 
edge representation mechanisms, there has been little study of the semantics of 
these statements. Previous work either denies the probabilistic nature of the 
relationships among variables in the model or takes for granted the ability to 
draw inferences by chaining influences in the network. I have defined a positive 
qualitative influence of a on b as an assertion that, in all contexts, the posterior 
probability distribution for b given a is stochastically increasing (in the sense of 
FSD) in a. A series of results provides theoretical support for this S ~ definition: 

• S ~ justifies reduction of variables by influence chaining. Reduction of any 
subset of variables can be performed in O([VI 2) time. 

• S ~ permits some nontriviai conclusions upon influence reversal. 
• S ~ is the weakest posterior condition that justifies chaining of influences. 
• S ~ is necessary and sufficient for chaining decisions across influences. 

Two variables a and b are positively synergistic on c if the posterior 
distribution for c is increased more (in the sense of FSD) upon a positive 
change in a for higher values of b. This Ya definition has several computation- 
ally and decision-theoretically useful properties: 

• Canonical models such as the "noisy OR" often entail Y~. 
• y8 is equivalent to supermodularity on expectation with respect to all 

monotonic transformations. 
• Y~ implies the monotone decision property. 
• Synergies may be propagated forwards or backwards along qualitative 

influences. They also may be nontrivially updated upon influence reversal. 
• Any nonredundant sequence of reductions and reversals is computable in 

polynomial time. 

Together, the two qualitative relationships provide a simple yet powerful 
modeling language. A planner is often able to derive important facts about the 
qualitative structure of optimal strategies from only weak premises on the 
qualitative relationships in the domain. 

9.2. Discussion 

Though powerful in some respects, the qualitative relationships are also quite 
limited. First, they can only express monotone associations. Second, as we saw 
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in Section 6, QPNs are unable to resolve true tradeoffs because parallel 
influences of different sign are indeterminate in combination (+  • -  = ?). 
Indeed, "unresolvable in a QPN" might be the best available formal definition 
of a tradeoff situation. 

Thus, a QPN decision model can support planning "up to tradeoffs." 
Indeed, SUDO-PLANNER uses dynamically generated QPNs to establish con- 
straints on the admissible plan space for a medical therapy domain [61]. 
Admissibility is defined with respect to the qualitative relations in the domain. 
To proceed beyond that point, we would need more precise knowledge of 
these relations. I see no insurmountable barriers to the development of hybrid 
representations that augment QPNs with stronger constraints, up to and 
including constraint to exact numeric values. As mentioned above, features of 
such a hybrid scheme were explored by Cooper in the NESTOR project [5]. 
While NESTOR'S basic representation was probability intervals, it applied 
constraints similar to qualitative influences and synergies to bound the result of 
certain combination operations. 

Another possibility for tradeoff resolution is in the "order of magnitude" 
techniques [42] developed in qualitative physics. In the case when one parallel 
influence can be declared negligible with respect to another--for  example, the 
mildly unpleasant taste of an orally-administered drug relative to its curative 
powers--indeterminacy can be avoided by simply ignoring the former when in 
conflict with the latter. 

Finally, evaluation of QPNs as a knowledge representation must also take 
into account the feasibility of constructing knowledge bases of reasonable 
complexity. For reasons of modularity and precision, QPNs should be substan- 
tially easier to generate than their numeric counterparts. Preliminary ex- 
perience from the development of SUDO-PLANNER has confirmed the feasibility 
of automatic model generation for small networks (on the order of twenty 
nodes) [61]. Further research is necessary to develop techniques for construct- 
ing qualitative probabilistic networks of significantly greater scale. 

Appendix A. Proofs 

Lemma 4.1. l f  b ~pred~;(a) then a and b are d-separated in dep(G) by any S 
such that pred~;(b) C_ S C_ {sl b ~predG(s)).  

Proof. Two variables are d-separated iff every undirected path between them 
is blocked according to one of the conditions of Definition 4.3. Every path 
between a and b must pass through one of b's predecessors or one of its 
successors. Because predc,(b ) C_ S, the paths through the predecessors are 
blocked by the first condition. Consider a path through a successor of b. Let t 
be the first variable on the path, starting from b, that has both incident edges 
leading in. Such a variable must exist because b ~pred6(a  ). Because it is the 
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first, there  is a directed path to it from b. But  b has no directed paths to 

e l ements  of S. There fore ,  ne i the r  t nor  any of its successors are in S and t 
blocks the path via the second cond i t ion  of Def in i t ion  4.3. [] 

Theorem 4,2. 

Sa'(a, b, G)/x Sa2(b, c, G) ^ S°(a, c, G) 

Sa~®~2(a, c, red(b, G)) , 

where 6i E { + ,  - ,  0, ?} and ® denotes sign multiplication, described in Fig. 3. 

Proof. I will prove the case 6 t = 6 2 = + ;  the others  are analogous .  Choose a~ 

and  a 2 such that aj ~> a 2, and an x 0 in X(pred(b)Upred(c)- {a, b})  that  is 
cons is tent  with a I and az. 13 Let F. deno te  the condi t ional  C D F  for c and c the 

min imal  value of the var iable .  By the def ini t ion of cumula t ive  probabi l i ty  we 
have 

cl~ 

F,(c, laix,)= f f fh,(b(,cllaixo)dbodcl . 
£ 

Chang ing  the order  of in tegra t ion  and decompos ing  the joint  p robabi l i ty  
yields 14 

c o 

c 

(A.1)  

Because  a and  c are condi t ional ly  i n d e p e n d e n t  given b and  x, by the S ° premise  

and  L e m m a  4.1, we can remove  a i f rom the f,  expression.  Rewri t ing  the 
densi ty  func t ion  as the derivat ive of a cumula t ive ,  we get 

£ 

(A.2)  

The  inne r  integral  is s imply the C D F  for c given b o. 

~3 In all subsequent proofs, x is understood to range over assignments to relevant predecessor 
variables in a similar manner. 

14 If some values of b 0 are inconsistent with xo, then distributions of c conditioned on b 0 and x,) 
(and therefore the right-hand sides of equations (A.1)-(A.3)) are not well-defined. This has no 
consequence, however, because the value of fb(bola~Xo) in such cases will always be zero. 
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F,.(c o l aixo) = f F,.(co I b,,xo) dFb(bo [ a,x,,). (A.3) 

Because b positively influences c, the pointwise FSD condition (3) implies that 
for any c o, F,.(colboxo) is a decreasing function of b 0. And S+(a, b) entails FSD 
of Ft,(b oIalxo) over Fb(bo[a2xo). Therefore,  (4) applies with the inequality 
reversed (negating F,.(co[bxo) yields an increasing function), leading to the 
conclusion 

MCo Fc(c,, ] a,xo) ~ Fc(c,, I a_~x,,), 

implying FSD. Because a I, a 2, and x o were chosen arbitrarily, we have finally 
S+(a, c). [] 

Theorem 4.3 

Sa'(a, b, G) A Sa2(b, c, G)/x Sa3(a, c, G) 

Sla'®a2)**3(a, c, red(b, G)) , 

where • denotes sign addition, also described in Fig. 3. 

Proof. Proceed as for the proof  of Theorem 4.2 to equation (A.1). Because 63 
is not generally zero, we cannot remove a~ in the next two steps. 

f 
F,(c,, ]aixo) = J F,.(c,, [a,b,,x,,) dFb(b,, [ aix,,). 

Define P,. as a variant where ai is fixed to a~ in the first term 

t" 

Pc(c,, l aixo) = J F,-(co [a,boxo) dFb(bo [aix,,). 

Note that P,.(co] alxo)= Fc(c 0 [a,Xo) and that 

63 = + ( - )  ~ Vco F,.(cola,b,,xo)<~ (>1) F~(cola2box,,), 

therefore 

V c,, L ( c,, [ a=x,j ) <- (>1) Fc ( co I a=x,,). (A.4) 

When 63 = ? it is possible that the relation varies with c 0. Regardless of 63, 
F,.(coJajboxo) is a decreasing/increasing/nonmonotonic function of b 0 as 62 is 
+ / - / %  For concreteness, suppose 61 = ¢~2 = + (again, the other cases are 
analogous). Following the reasoning in the proof of Theorem 4.2 above, we get 

Fc(co I a,x,,) = F,.(c o ]a,Xo) FSD F,.(c 0 l a2x,,). 
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If 6 3 = + (more generally if 6 3 agrees with the polarity of the FSD relation), 
this result combines with (A.4) to imply FSD of the corresponding unhatted 
functions F,, thereby establishing the result. Without such agreement FSD may 
be violated, permitting us to conclude only S?(a, c, red(b, G)). [] 

Theorem 4.4. Let G' = rev(a, b, G). G' inherits all the qualitative influences of  
G except: 

(1) dir(a, b, G') is undefined. 
(2) dir(b, a, G')  = dir(a, b, G). 
(3) Vw Epred~;,(b), 

dir( w, b, G ' ) = [ dir( w, a, G ) ®  dir( a, b, G)] • dir( w , b, G ). 

(4) Vw Cpred~; , (a)-  { b } ,  

dir(w, a, G ) ,  if dir(w, b, G) = 0 
dir( w , a, G ' ) = ?,  otherwise 

= dir(w, a, G)@(dir(w,  b, G ) ® ? ) .  

Proofi First, note that all variables outside predc(a ) U predc;(b ) retain the 
same set of d-separations. Second, let us verify each relation above: 

(1) There is no longer an influence from a to b. 
(2) To show that the influence on the reserved link remains unchanged it is 

convenient to work with the likelihood form of S ~, equation (6). Applying 
Bayes'  formula: 

f .(a, I bix)f~(bj[x) 
L(b~la'x) = L(ai Ix) 

Choose four values a~/> a 2 and b~/> b 2. 

L ( b ,  l a,x) _ f .(a, I b,x)fb(b I IX) f .(a, I b,x) 
L(b2 l a,x) L(a,  I b2x)L(b2 Ix) = g(b,.  b 2, x) fa(a, [b2x) " 

Using the monotone likelihood property, dir(a, b. G) = + ( - )  implies 

fb(b, la,x) 
fb(b21a,x) 

fb(b, I a2x) 
~> (~<) f~,(be l a2x) • 

Rearranging we get 

fb(b~la,x) L(b~la ,x )  

fb(b, l a2x) ~ (~ )  fh(b2 l a2x) ' 
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the MLRP for b given a. As noted above (and proven by Milgrom [32]), this is 
necessary and sufficient for our posterior FSD condition to hold for any prior 

F,, (a o Ix). 
(3) In G, the influence of w on b is relative to a predecessor set that includes 

a. In G'  the influence is not so conditioned and is therefore equivalent to the 
influence on b obtained by splicing a out of the network. Applying Theorem 
4.3 with the original influences yields the expression above. 

(4) Here the reversal transforms an unconditional relation to a conditional 
one. If dir(w, b, G) = O, w and b are d-separated by pred(b) in dep(G) (by 
Lemma 4.1), therefore f , .(wo[abx ) = f,,.(w0 ] ax) by conditional independence. 
In that case the MLRP obviously holds for the conditional density iff it holds 
for the marginal one. If w has nonzero influence on b in G, this independence 
does not hold. Because a and w may interact significantly in their influence on 
b we cannot say anything about their relation given b. For example, let the 
three variables be binary with a and w marginally independent (that is, 
dir(w, a, G) = 0), 

Pr(A) = Pr(W) = 0 .5 ,  

Pr(B I ,~il~) = 0.1,  

Pr(B I / i W  ) = 0.2,  

P r ( B [ A W )  = 0.9.  

Then dir(w, a, G') can be + or - depending on whether P r ( B I A W  ) is less 
than or greater than 0.45. Either possibility is consistent with an initial G with 
dir(a, b) = dir(w, b) = +. [] 

Theorem 5.1. Let S+(a, b) be defined by (10). Given the following conditions: 
(1) Theorem 4.2, 
(2) for binary b, a I ~ a 2, and x, 

Fb ( ' lalx) R Fb ( . la2x) ~=~ Pr( B l a,x) >~ Pr( B l a~_x) , (A.5) 

the weakest R is FSD. 

Proof. First, note that FSD satisfies these conditions. Next, assume that R 
satisfies them but R does not entail FSD. We will start with an instantiation of 
Theorem 4.2 and derive a contradiction. Let a, b, and c be the only variables 
(so we can safely ignore x) with S+(a, b), S+(b, c), and no other direct links. 
For concreteness, let b range over the unit interval [0, 1] and c be binary with 
Pr(Clab ) = &(b), for some &:[0 ,  1]---~ [0, 1] monotonic. The monotonicity of 
& guarantees S+(b, c) and its independence from a validates S°(a, c) in the 
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original network, By assumption, Theorem 4.2 applies, yielding the conclusion 
S+(a, c) and thereore F,.(c o [a I) R Fc.(c o ]a2). Because c is binary, (A.5) must 
hold. Using 

Pr(CI a,) = f Pr(Cla,b,) dFb(bo l a , ) ,  

the right-hand side of (A.5) becomes 
I I 

f ¢b(bo) dFb(b,,[a,)>~ f c~(bo)dFb(bo]a:). (1.6)  

Because ~b may be any monotonic function, FSD is necessary for (A.6) and is 
therefore entailed by R. [] 

(~2 0 Theorem 5.2. Suppose U (b, G) and U (a, G). A necessary and suffictent 
61 ® ~  . 61 • . . condition for U -(a, red(b, G)) ts S (a, b, G) as m Defimtton 3.4. 

Proof. The expected utility of a i with any x is given by 

u(ai, x) = f u(b,,, x) dFh(b 0 l a~x). (A.7) 

Let us prove the case 61 = 62 = +. U ~(a) is satisfied in the reduced network iff 
u(a~, x) is increasing in a i. From (8) we know that u(b o, x) is monotonically 
increasing in b 0. In fact, it can be any monotonic function. Therefore, (A.7) is 
increasing in ai under the same conditions as (4), which is exactly the S + 
condition (5) of Definition 3.4. [] 

Lemma 7.1. Y+({a, b}, c) (respectively Y -  and yO) holds iff the function 

e~(a, b Ix) = f d)(c,,)f~(cl, [abx) dc0 (A.8) 

is supermodular (submodular, modular) in a and b for all increasing functions ch 
and contexts x. 

Proof. Choose arbitrary a~ ~> a 2, b~ t> b 2, and x. By Definition 7.3, e ,  is 
supermodular iff 

/ 

ee~(al, bl Ix) + e4,(a 2, b21x) >t ee~(a 1, b2 Ix) + e~,(a 2, bl Ix).  

Rearranging, 

e,(al ,  b~ Ix) - e , ( a  2, b 1 Ix) >I e¢,(a~, b e [x) - e , ( a  2, b 2Ix).  
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Substituting the definition of ee, (A.8) and combining the integrals, 

f 4'(co)[L(co [a,b,x) - f,(c,, [a2blX)] de,, 

f 4'(co)[f,.(c o [a~b2x ) - f,.(c,, [a2b2x)] dc o . (A.9) 

A necessary and sufficient condition for (A.9) to hold for any increasing 
function 4' is that the bracketed distribution differences be related by FSD. 
(Recall the equivalence between (3) and (4) in Section 3.2.) That is, 

gc o F(c,,  l a,b,x) - F,.(c o [a2b,x) ~ F,(c,, ]a,b2x ) - F,.(c o l a2b2x). 

This is exactly the Y+ condition of Definition 7.2. [] 

Theorem 7.2. Synergies can be extended along qualitative influences by reduc- 
tion according to the following: 

Yal({a, b}, c, G)/x S~2(c, d, G)/x S"(a, d, G)/x S°(b, d, G) =:~ 

Ya'>a:({a, b}, d, red(c, G)). 

Proof. Let us assume that 6 r = & = +; the other cases are analogous. We can 
describe the cumulative for d conditional on a and b by integrating over its 
counterpart for c. 

do 

F,,(d,,Jabx)= f f f,(d, Iabcox)f,(colabx)dc,,ddl 
d 

do 

d 

(A.IO) 

(A.11) 

= f Fd(d,, I cox)f,.(c o [abx) dc,,. (A. 12) 

In going from (A.10) to (A.11) I took advantage of the conditional independ- 
ence between d and each of a and b given c implied by the S ° conditions and 
Lemma 4.1. Because S+(c, d), Fa(do[co) is a decreasing function of c o for any 
do. Therefore, equation (A.12) and Lemma 7.1 imply that Fj(dolabx ) is a 
submodular function of a and b for all d o (a function g is submodular iff - g  is 
supermodular). By the definition of submodularity, 
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Vd(, Fd(d,)lamb,x) - Fd(d()]a2b,x) <~ Fd(d())a~bzx ) - Fd(d,)la2b2x) , 
(A.13) 

which is the condition for Y+({a, b}, d) of Definition 7.2. [] 

Theorem 7.3. 

Ya'({a, b}, c, G) A S~2(c, d, G) A Ya3({a, c}, d, G) A 

Ya4({b, c}, d, G) A SaS(a, c, G) A Sa6(b, c, G)/x Ya~( { a, b }, d, G) 

Yla'®a2)~(a3®a")m(a4®as)*aT( { a, b }, d, red(c, G )) . 

Proof. Start as in the proof of Theorem 7.2, but do not use conditional 
independence. 

d( ) 

Fd(dolabx)= f f fe(d,]abc(,x)f,(Co]abx)dco dd, 
d 

-- f F,¢(do l abcox) dF (c,)labx). 

As in the proof of Theorem 4.3, define/~d to be the CDF with the conditioning 
variables fixed in the first term, to a~ and b 1 in this case. 

[~d(d() l abx) = f Fd(d(, ] alb~cox) dF,.(co t abx). 

Regardless of aj and b 1, Fe(dola~bjcox ) has monotonocity properties de- 
termined solely by 6 2 . Following the reasoning of the proof of Theorem 7.2, we 
have the following fact about J~a (a hatted version of (A.13)): 

Vd() Fd(do l alb|x) - -  Fd(d,, l a2 b ,x) 

R [~d(d,)[a,b2x) - ~,(d,, t a2b2x). (A.14) 

with R the relation ~<, >/, = ,  or ? as ¢3~ ® 3 2 is + ,  - ,  0, or ?. Henceforth I will 
refer to functions satisfying conditions of the form (A. 14) as R-modular. Let PI~ 
be intermediate between F a and Fd where only b is fixed 

F'd(do [abx) = f Fd(d,, l ab,c()x) d F  (c()labx). 

F'e(dola,bix)=F'd(d(,la,bix ) for either b i. Therefore ,~it is R- Note that 
modular iff 
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VdoPa(d,,la~b,x)- P~(dola2b,x) 

RFd(do la ,b2x) - -  P~(d, , lazb2x).  (A.15) 

Using (A.14) and a little rearrangement, a sufficient condition for (A.15) is 

where 
Vd,, a l (do)  RA2(d,, ) , 

A , ( d , , ) ~ , ( d , , l a 2 b , x ) -  P~(d, , la2b,x).  

(A.16) 

(A.17) 

Expanding the definitions for Fd and Pli, 

A~(d,,) = f [F,,(d 0 ]a,b,cox ) - Fd(d 0 l a2b~c,,x)] d C ( c  0 [a2b,x ) . (A.18) 

The difference inside the integral of equation (A.18) is an increasing, decreas- 
ing, or constant function of c 0 as 33, the synergy of a and c, is - ,  +,  or 0. The 
influence of b on c, a 6, determines an FSD relation among the F,(colab~). 
Therefore, condition (A.16) holds if 33@36 agrees with R, which was de- 
termined by 3~ @ a 2. 

Another application of this line of reasoning with the roles of a and b 
reversed leads to the conclusion that P~, where 

~'d(d,, l abx) = f Fd(d,, l a,bc,,x) dFc(c,, l abx), 

is R-modular if 34 ® 35 agrees with R. Thus, agreement among these pairwise 
products yields R-modularity of P,,, F'j, and P"j. 

Suppose that 37 also agrees with R. Then, from the Y~ definition we have 

Vd,, F, f id o ]alblCoX ) - Fd(d,, t a2b,c,,x) 

R F,,(d,, ]a,b2c,,x ) - Fd(d o [a2bzc,,x), 

which entails the following inequality when integrating over a positive function: 

Vd o f [Fd(d o ]a~b~c,,x) - Fj(d  o l a2b~c~x)] d F ( c  o ]aEb2X ) 

R f [F,,(d,, l a,b2c,,x) - Fj(d,, l a2b2c,,x)] dg,(c,, l a2bzx). 

Equivalently, 

g d o F'd( d,, [ a2b2x ) - [:'d( d, , ] a2b2x) 

R P"a(d,, l a2b2x) - F,~(d o ]a2b2x). (A. 19) 
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We can transform (A.19) to a relation on F d alone by applying some R- 
modularity conditions already known and taking advantage of the equivalences 
among the hatted and primed Fs for particular values of a and b. Combining 
(A. 19) with R-modularity of P','~, 

Vdo Fd(d,, [ a l b l X )  - [f,'l(do l azb ,x)  + Fd(do l a2b2x) - Fi,(d o [a~b~x) 
R Fd(d,, [a,b2x ) - Fd(d o [ a2b2x ) . 

Applying R-modularity of Plt yields 

V d  o 2Fd(d 0 ]a ,b lx)  - Fd(d o ]a2b,x ) - P] (d  o ]azb,x  ) + k,,(d 0 l a2b2x ) 

R Fd(d 0 ]a,b2x ) - Fd(d,, l a2b2x ) + P'j(d 0 ]a ,b2x) ,  

and finally, R-modularity of /~ leads to the result 

Vd,, F,,(d. l a,b,x) - F,,(do l a2b,x) 

R rd(do l alb2x) - F~(do l a=bzx). 

Therefore, unanimity among the terms in the new synergy expression given by 
the theorem statement implies R-modularity of Fa, the condition of interest. 
Dissent by any term results in a synergy of Y?, vacuously true. [] 

0 Theorem 7.5. Given Sa"(b, c, G)  and S (a, c, G) ,  < Y ~j ( { a, c } , G )  is both neces- 
sary and sufficient f o r  r u''a3®a~'~'~ la ,  b} ,  red(c, G)) .  

Proof. By the expected utility property and the conditional independence of a 
and c we have 

u(a, b, x) = f u(a, c0, x) dF,(c0 [bx). 

Let A~ represent the utility difference upon varying a between a t and a, when 
b = b i, that is, A~ = u(al ,  bi, x)  - u(a 2, bi, x).  Expanding, 

a i = f [u(a, ,  c o, x)  - u(a 2, c o, x)] dF,(col bix ) . 

Note that 6 6 determines an FSD condition on F,(c0lbix ). A corresponding 
relation on the Ai is entailed iff the term in brackets is monotone in the same 

83 direction with respect to c 0. This is exactly the condition for Y u ( { a ,  c}). [] 
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Theorem 7.6. 

Y~'( {a, b}, c, G)/x S~2(c, d, G)/x Y~3({a, c},  d, G)/x 

Y~( { b, c}, d, G)/x S~S(a, c, G)/x S6~(b, c, G)/x Y~( {a, b }, d, G) 

Yl~'~2)@c6~®~")®(6~®as)e~7( { a, b}, d, rev(c, d, G)) . 

Proof. The post-reversal distribution for d is conditioned on all d's pre-reversal 
predecessors except c and therefore is the same as that obtained by reducing c 
from the network. The result is identical to the expression from Theorem 
7.3. [] 
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