- Probability distribution P: attaches a number in (closed) interval [0,1] to Boolean expressions
- Boolean algebra \mathcal{B} (for two variables rain and happy):

T (true),
rain, ᄀrain,
happy, ᄀhappy,
rain \wedge happy,..., rain \wedge happy $\wedge \neg$ happy,...,
\neg rain \wedge happy,..., rain \vee happy,
\neg rain \vee happy,..., \perp (false)
such that:
$-\perp \leq$ rain, rain \leq (rain \vee happy), ... (in general $\perp \leq x$ for each Boolean expression $x \in \mathcal{B}$);
$-x \leq \top$ for each Boolean expression $x \in \mathcal{B}$

Probability distribution

- Boolean algebras (sets):
- $\top \Leftrightarrow \Omega$
$-\perp \Leftrightarrow \varnothing$
$-a \Leftrightarrow A$
$-\neg a \Leftrightarrow \bar{A}$
$-(a \vee b) \Leftrightarrow(A \cup B)$
$-(a \wedge b) \Leftrightarrow(A \cap B)$
$-a \leq(a \vee b) \Leftrightarrow A \subseteq(A \cup B)$
with $\Leftrightarrow 1-1$ correspondence, e.g.

$$
P(\overline{\text { Rain }})=1-P(\text { Rain })
$$

- Conditional probability distribution:

$$
P(\text { happy } \mid \text { rain })
$$

probability of happy assuming that rain is true

- A probability distribution P is defined as a function $P: \mathcal{B} \rightarrow[0,1]$, such that:
$-P(\perp)=0$
$-P(T)=1$
- $P(a \vee b)=P(a)+P(b)$, if $a \wedge b=\perp$ with $a, b \in \mathcal{B}$

- Examples:

$-P($ rain \vee happy $)=P($ rain $)+P($ happy $)$, as rain \wedge happy $=\perp$ (why? Because I define it that way)
$-P($ rain \wedge happy $)=P(\perp)=0$
$-P(\neg$ rain \vee rain $)=P(\neg$ rain $)+P($ rain $)=$ $P(T)=1$
$\Rightarrow P(\neg$ rain $)=1-P($ rain $)$
$-0 \leq P($ rain $) \leq 1$

Conditional probability

(Example: flu and fever)

- $P($ flu \wedge fever $)$: chance of flu and fever at the same time
- $P(f l u \mid$ fever $)$: chance of flu knowing that the person already has fever (conditional probability)
- Definition:

adjust $P($ flu \wedge fever $)$, so that uncertainty in 'fever' is removed
- Recall: P (Flu \cap Fever) is different notation, with same meaning as $P(f l u \wedge$ fever $)$

Reversal of chances

- $P(h \mid e)$ (e.g. $P(f l u \mid f e v e r))$ is usually unknown:

flu	$P($ flu \mid fever $)$	fever
$\begin{gathered} H \\ \text { (hypothesis) } \end{gathered}$		$\begin{gathered} E \\ \text { (evidence) } \end{gathered}$

- Known is:

$$
\begin{array}{ll}
P(e \mid h) & P(\text { fever } \mid \text { flu })=0.9 \\
P(h) & P(\text { flu })=0.05 \\
P(e) & P(\text { fever })=0.09 \\
& \xrightarrow{c} \text { f(fever } \mid \text { flu }) \\
\quad \text { flu } & \xrightarrow{\text { fever }} \\
P(\text { flu })=0.05 & P(\text { fever })=0.09
\end{array}
$$

Bayes' rule (the 'chance reverter'):

$$
P(h \mid e)=P(e \mid h) P(h) / P(e)
$$

- Bayes' rule - reversal of chances:
$P($ fever \mid flu $)=0.9$
$P(f l u)=0.05$
$P($ fever $)=0.09$

$$
\begin{aligned}
P(\text { flu } \mid \text { fever }) & =\frac{P(\text { fever } \mid \text { flu }) P(\text { flu })}{P(\text { fever })} \\
& =0.9 \cdot 0.05 / 0.09=0.5
\end{aligned}
$$

- Marginalisation and conditioning:

$$
\begin{aligned}
P(e) & =P(e \wedge h)+P(e \wedge \neg h) \\
& =P(e \mid h) P(h)+P(e \mid \neg h) P(\neg h)
\end{aligned}
$$

since $P(a \vee b)=P(a)+P(b)$ if $a \wedge b=\perp$,

$$
\begin{aligned}
P(e) & =P(e \wedge \top) \\
& =P(e \wedge(h \vee \neg h)) \\
& =P((e \wedge h) \vee(e \wedge \neg h))
\end{aligned}
$$

and $P(e \mid h)=P(e \wedge h) / P(h)$

