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Recent work on weighted model counting has been very successfully applied to the prob-
lem of probabilistic inference in Bayesian networks. The probability distribution is encoded 
into a Boolean normal form and compiled to a target language. This results in a more effi-
cient representation of local structure expressed among conditional probabilities. We show 
that further improvements are possible, by exploiting the knowledge that is lost during 
the encoding phase and by incorporating it into a compiler inspired by Satisfiability Mod-
ulo Theories. Constraints among variables are used as a background theory, which allows 
us to optimize the Shannon decomposition. We propose a new language, called Weighted 
Positive Binary Decision Diagrams, that reduces the cost of probabilistic inference by using 
this decomposition variant to induce an arithmetic circuit of reduced size.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Bayesian networks, BNs for short, have been a subject of great interest, partly due to their contribution in solving real-life 
problems involving uncertainty. Bayesian networks are probabilistic graphical models that concisely represent joint proba-
bility distributions by factoring them into conditional probabilities based on independence assumptions. This will perform 
inference more efficiently [1]. Further representational and computational advances have been made by exploiting causal 
independence [2], as well as contextual independence [3] and determinism [4] expressed in conditional probability tables 
(CPTs). In order to represent these additional independencies more concisely, Bayesian networks have been represented as 
weighted Boolean formulas [5,6], reducing inference to Weighted Model Counting (WMC), or weighted #SAT [5]. By represent-
ing a Bayesian network as a Boolean formula f in conjunctive normal form (CNF), it can be compiled into a more concise 
normal form, or language, that renders inference a polytime operation in the size of the representation [7].

A joint probability space with n Boolean variables has 2n interpretations. It is therefore necessary to be able to reason 
with sets of interpretations, requiring a symbolic representation [8]. Symbolic inference unifies the work of probabilistic 
inference and the extensive research done in the field of model checking, verification and satisfiability [9]. Ordered Binary 
Decision Diagrams (OBDDs) are based on Shannon decomposition and have been a very influential symbolic representation 
that reduces compilation to the problem of finding the variable ordering resulting in an optimal factoring.

By exploiting the often ignored knowledge that is lost in the translation, we improve in this paper on methods in recent 
work that encode a BN as an equivalent weighted Boolean formula, while still maintaining the ability to use off-the-shelf 
SAT-solvers.
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Fig. 1. Bayesian network with context-specific independence and determinism.

Our contributions are the following. We propose a weighted variant of OBDDs, called Weighted Positive Binary Decision 
Diagrams (WPBDDs), which are based on positive Shannon decomposition, allowing constraints in BNs to be represented more 
concisely. We use probabilities as symbolic edge weights, reducing the search space exponentially. An optimized compilation 
algorithm is introduced, inspired by the field of Satisfiability Modulo Theories (SMT), known as a lazy SMT-solver [10]. It 
provides the means to view constraints among variables in the encoding as background theory T which supports the 
SAT-solver, allowing constant time conditioning. We compile the conditional probability tables of a BN explicitly, but leave out 
the domain closure implied by the encoding. This approach allows us to remove up to a third of the clauses in the encoding.

A comparison is provided with the state-of-the-art CUDD (CU Decision Diagram [11]) and SDD (Sentential Decision 
Diagram [12]) compilers and we show that WPBDDs induce arithmetic circuits that are 60% reduced in size on average
compared to corresponding OBDD circuits while representing over 30 publicly available BNs. We show an inference speedup 
of over 2.6 times on average compared to Weighted Model Counting with OBDDs, and a speedup up to several orders 
of magnitude compared to Ace and different implementations of the Junction Tree algorithm, making WPBDDs a valuable 
addition to the field of exact probabilistic inference.

After preliminaries and background (Section 4), we introduce WPBDDs (Section 5). The process of using a BN to perform 
exact inference by WMC is explained (Section 6) in addition to its optimization (Section 7). We conclude with experimental 
results (Section 8), and review achievements (Section 9). We start however with summarizing related work.

2. Motivation

Probabilistic inference is an important computational problem in Artificial Intelligence. The size of a full joint probability 
distribution is exponential in the number of variables. Finding more concise representations of probability distributions is 
essential to making probabilistic inference tractable.

Bayesian networks (BN) take advantage of conditional independence to represent probability distributions concisely, yet 
generally leave a substantial number of independencies of other types unexploited. This is demonstrated in Fig. 1, which 
partially shows a BN, where one of its conditional probability tables (CPTs) could be represented more concisely. It shows 
probabilities for d = 0. Remember that P (d = 1 | a, b, c) = 1 − P (d = 0 | a, b, c). Fig. 1c shows how to represent the same CPT 
as a decision tree using 4 probabilities instead of 8 for example.

Recent work has improved the cost of inference by reducing probabilistic inference to Weighted Model Counting (WMC). 
Inference by WMC has a linear time complexity in the size of the representation [13]. Finding more concise representations 
by exploiting additional independencies has therefore direct influence on inference costs. We improve upon related work by 
proposing a suitable representation and providing the methods to obtain it.

3. Related work

Probabilistic inference is a hard computational problem that can be achieved by marginalizing out non-evidence vari-
ables from a joint distribution, requiring an exponential number of operations in the worst case. Efforts toward efficient 
exact probabilistic inference attempt to find a concise factorization; BNs for instance represent a joint probability distribu-
tion as a multiplicative factorization, exploiting conditional independencies among variables. Further improvements to this 
factorization have been made by using propositional and first order logic [14–16]. Representing probability distributions as 
Boolean functions empowers probabilistic inference with the tools developed for VLSI-CAD design, by using symbolic repre-
sentations and Boolean algebra for minimization. Symbolic Probabilistic Inference (SPI) [9] is a good example of this, which is 
currently more commonly referred to as inference by WMC or #SAT [17].

A BN can be translated into a Satisfiability (SAT) instance in conjunctive normal form (CNF), a form commonly used in sat-
isfiability solving. Various encodings have been proposed: log, direct [18], order [19], compact order [20], log-support encod-
ing [21], etc. In the context of BNs, a probability distribution can be considered a pseudo Boolean function f : {0, 1}n → R, 
with arity n, which can be uniquely written as an exponentially sized multi-linear polynomial [22,23]. Others have used the 



G.H. Dal, P.J.F. Lucas / International Journal of Approximate Reasoning 90 (2017) 411–432 413
direct encoding [6], or a combination of the direct and order encoding [24], where a BN is viewed as a set of discrete real 
valued functions, and each function represents a distinct CPT.

Inference by WMC is motivated by linear time complexity in the size of the representation [13], where the common 
goal is to exploit local structure [25]. Choosing a representation or language to compile to is therefore a critical task, 
as one must deal with the balance between the functions a language can represent concisely on the one hand and its 
algorithmic properties on the other. Initial attempts include probability trees [3,26,27] and recursive (factored) probability 
trees [28], which focus on concisely representing each CPT independently, allowing their usage in inference algorithms 
directly. Probabilistic Decision Graphs (PDG) have even shown that the smallest PDG is at least as small as the smallest 
Junction tree for the same distribution [29].

Current WMC approaches to inference divide into search and compilation methods [30]. Typical search algorithms are 
based on DPLL-style SAT solvers that do an exhaustive run to count all satisfying models [24]. Recording SAT evaluation 
paths (i.e. resolution steps) as a compiled structure (e.g. an OBDD), yields one possible factoring. We refer to finding the 
optimal factoring given all variable orderings, as exact compilation.

Compilation performance has been improved by clause learning [31], formula caching [32], bounding [33], and using 
canonical languages. Representational advances include symmetry detection [34,35], support for causal independence [36]
and using read-once functions [37].

Representations relevant in the context of BN compilation are AND/OR Multi-Valued Decision Diagrams (AOMDD) [38], 
Sentential Decision Diagrams (SDD) [12], deterministic-DNNF [39], Zero-suppressed Binary decision diagrams (ZBDD) [22] and 
Ordered Binary Decision Diagrams (OBDD) [40], which view probabilities as auxiliary literals, resulting in an intractably 
large search space. Multi-Terminal BDDs [41] represent multi-valued functions, but would also require many terminal nodes 
considering the size of a probability distribution. Variants of Edge-Value BDDs [42,43] focus on real valued functions. When 
multiple CPTs have probabilities in common, we lose the ability to distinguish from which CPT the probabilities originate. 
We therefore cannot determine on which variables they depend, resulting in an inconsistent model count with regard to the 
distribution. Our approach to maintain consistency is to represent probabilistic edge weights symbolically. This differentiates 
our approach from Multi-Terminal BDDs [41] and Edge-Value BDDs [42]. And unlike SDDs [44], we are not obligated to view 
probabilities as auxiliary literals, reducing the search space to a fraction of its former size. A common characteristic with 
ZBDDs, is the ability to represent mutual-exclusive constraints more concisely [45]. The intuitive difference is that ZBDD 
optimize only the positive cofactor, while we optimize both the positive and negative cofactor of decomposition nodes, a 
matter we will elaborate on in the upcoming discussion.

4. Preliminaries and background

We provide here a description of what Bayesian networks are and introduce a running example (Section 4.1). We then 
show how to encode a BN onto the Boolean domain (Section 4.2), and describe an influential representation that will serve 
for comparison with ours (Section 4.3).

4.1. Bayesian networks

A Bayesian Network (BN) is a graphical representation that is used to compactly represent a joint distribution as a 
product of factors, by taking advantage of conditional independence (CI). A BN is a directed acyclic graph (DAG) that models 
variables X as nodes, the dependencies among them as edges, and their joint probability distribution as

P (X) = P (x1, ..., xn) =
n∏

i=1

P (xi | pa(xi)),

where P (xi | pa(xi)) represents the conditional probability of variable xi given its parents pa(xi). Conditional probability 
tables (CPTs) are associated with edges and capture the degree to which variables are related. BNs reduce the size of 
representing a probability distribution to O(n2k), where k is the maximum number of parents of any node.

Example 1. Fig. 2 shows a BN B defined over variables X = {a, b} (Fig. 2b), its CPTs (Fig. 2c) and corresponding full joint 
probability distribution (Fig. 2a).

Fig. 2b includes a factored form that can greatly be improved when CPTs exhibit local structure, which comes in two 
forms. Context-specific independence (CSI) is expressed when probabilities in a CPT show uniformity regardless of the value 
of one or more variables that they have in common, with or without a certain context. Determinism is expressed when 
probabilities in a CPT are equal to 0 or 1, which can be used to simplify the Boolean formula representing it.

In order to exploit more of the problem structure than a BN, we compile it to a target language that is more capable 
of doing so. The compilation process is not just a way of reformulating into a different language, but is also about finding 
the minimal representation given that language. The goal is to reduce the cost of inference compared to the standard 
factorization, by using the arithmetic circuit induced by that representation.
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Fig. 2. Bayesian network with local structure.

4.2. Encoding Bayesian networks

In order to exploit local structure, we encode BNs into conjunctive normal form (CNF), which is the most common repre-
sentation used in satisfiability solving. It consists of a conjunction of clauses, where each clause is a disjunction of literals. 
A literal is a propositional Boolean variable or its negation. A Bayesian Network defined over variables X can be seen as a 
multi-linear function f : X →R. There are several possibilities of mapping f onto the Boolean domain [6,18,46]. We encode 
f into a Boolean function E( f ) = f e by representing it as a weighted CNF.

E( f ) = f c ∧ f m, (1)

where constraint clauses f c support the mapping M( f ) = f m that encodes probabilities and introduces a Boolean variable 
for each unique variable-value pair. Details are discussed below.

4.2.1. Encoding constraints
The mapping function M introduces for each x ∈ X atoms A(x) = {x1, . . . , xn}, where xi signifies x being equal to its ith

value. To maintain consistency among variables we add to f c an at-least-once (ALO) constraint clause for each x, to ensure 
x is assigned a value:

(x1 ∨ · · · ∨ xn) (2)

As values of a variable are mutually exclusive, we add to f c the following at-most-once (AMO) constraint clauses:

n∧
i=1

⎛
⎝xi =⇒

∧
x j∈A(x)\xi

x j

⎞
⎠ =

n∧
i=1

n∧
j=i+1

(xi ∨ x j), (3)

where xi indicates the negation of xi .

4.2.2. Encoding CPTs
The BN’s factored form is preserved by using a weighted adaptation of the direct encoding. The mapping function M

adds a clause for every probability P (x|pa(x)), where x depends on parent variables pa(x) = {u1, . . . , ur}:

(x ∧ u1 ∧ · · · ∧ ur ⇒ ω) = (x ∨ u1 ∨ · · · ∨ ur ∨ ω), (4)

where atom ω represents probability P (x|pa(x)) symbolically. This symbolism has no influence on its propositional meaning, 
but will later be used during inference. We shall henceforth represent a weighted clause as (x ∨ u1 ∨ · · · ∨ ur) : ω. We 
introduce a new symbolic weight into the encoding for every unique probability local to x’s CPT, allowing multiple clauses 
to be associated with the same weight ω.

Example 2. Assume a BN as given in Example 1. The following clauses form f c :

Variable ALO (Eq. 2) AMO (Eq. 3)

a (a1 ∨ a2 ∨ a3) (a1 ∨ a2) ∧ (a1 ∨ a3) ∧ (a2 ∨ a3)

b (b1 ∨ b2) (b1 ∨ b2)

The variables that make up the search space during compilation therefore are A({a, b}) = {a1, a2, b1, b2, b3}. We encode 
equal probabilities P (x|U ) as unique symbolic weights per CPT:

P (a = 1) P (a = 2) P (a = 3)

ω1 ω1 ω2

a P (b = 1 |a) P (b = 2 |a)

1 ω3 ω3
2 ω3 ω3
3 ω ω
4 5
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In accordance with Equation (4), f m consists of the following clauses, accompanied by their respective symbolic weights:

(a1) : ω1 ∧ (a2) : ω1 ∧ (a3) : ω2 ∧
(a1 ∨ b1) : ω3 ∧ (a1 ∨ b2) : ω3 ∧ (a2 ∨ b1) : ω3 ∧
(a2 ∨ b2) : ω3 ∧ (a3 ∨ b1) : ω4 ∧ (a3 ∨ b2) : ω5.

4.3. Ordered binary decision diagrams

A Boolean function f defined over a set of variables X is a function that maps each complete assignment of its variables 
to either true (1) or false (0). The conditioning of f on instantiated variable xi is defined as the projection:

f |xi←b(x1, . . . , xn) = f (x1, . . . , xi−1,b, xi+1, . . . , xn), (5)

with b ∈ {0, 1}. We will use shorthand notations f |xi and f |xi for f |xi←1 and f |xi←0, respectively. Shannon’s theorem is used 
to find a more compact way to represent f by factoring it.

Theorem 1. [47] Let a Boolean function f : {0, 1}n → {0, 1} be defined over variables X. We can rewrite f using the following equiv-
alence, with x ∈ X:

f = x ∧ f |x ∨ x ∧ f |x.

Definition 1. Theorem 1 demonstrates a decomposition step referred to as Shannon’s expansion, where f |x is called the 
positive cofactor of f with respect to x, and f |x the negative cofactor. The decomposition of f is defined as the recursive 
application of Shannon’s expansion to cofactors until they evaluate to true or false.

Note that all proofs of theorems, lemmas, etc., can be found in the appendix. The Shannon decomposition is key to one of 
the most influential representations in Artificial Intelligence (AI), namely Ordered Binary Decision Diagrams (OBDD) [48].

Definition 2. [49] A Binary Decision Diagram (BDD) represents Boolean function f defined over variables X as a rooted, 
directed acyclic graph, where each node v represents a Shannon expansion on variable var(v) ∈ X . A BDD is ordered (OBDD) 
if variables appear in the same order on all paths from the root. It is a canonical representation if it is reduced by applying 
the following rules:

1. Merge rule: All isomorphic subgraphs are merged.
2. Delete rule: All nodes are removed whose children are isomorphic.

One can compile the described encoding of BNs to OBDDs to perform inference by WMC. Although other languages have 
been used in this context, we focus more on OBDDs as they are commonly used in comparisons with related work.

5. Weighted positive binary decision diagrams

Consider variable x and its corresponding mapped atoms A(x) = {x1, x2}. Decision diagrams that are based on Shannon 
decompositions produce an unnecessarily large representation by redundantly representing constraints f c provided as part 
of encoding E . They also do not take advantage of the symmetric relation x1 = x2 and x1 = x2 in the presence of ALO con-
straints. To ameliorate this, we propose a new canonical language called Weighted Positive Binary Decision Diagrams (WPBDD), 
which are based on positive Shannon decompositions and implicit conditioning. We will elaborate on these concepts through 
an intermediate unweighted variant of WPBDDs (PBDD).

5.1. Explicit and implicit conditioning

When encoded function f e contains a unit clause xi (a clause consisting of a single literal), it can be simplified using unit 
propagation:

1. Every clause containing xi is removed, excluding the unit clause.
2. Literal xi is removed from every clause containing it.

When conditioning f e on literal xi , constraints f c guarantee us to obtain unit clauses containing negated literals x j , with 
x j ∈A(x)\xi (i.e., if x is equal to its ith value, it cannot be equal to its jth value).
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Example 3. We will show by example what unit clauses are obtained by conditioning on positive literals. Consider the 
constraint clauses provided by Example 2, regarding only variable a:

f c = (a1 ∨ a2 ∨ a3) ∧ (a1 ∨ a2) ∧ (a1 ∨ a3) ∧ (a2 ∨ a3)

According to Shannon’s expansion the following holds:

f c = a1 ∧ f c|a1
∨ a1 ∧ f c

|a1

Now specifically look at the unit clauses that result from conditioning on positive literal a1, i.e., instantiating a1 and 
performing unit propagation.

f c|a1
= (1 ∨ a2 ∨ a3) ∧ (0 ∨ a2) ∧ (0 ∨ a3) ∧ (a2 ∨ a3)

= (1) ∧ (a2) ∧ (a3) ∧ (a2 ∨ a3)

= (1) ∧ (a2) ∧ (a3)

= (a2) ∧ (a3).

Thus, conditioning on ai will result in unit clauses containing negated literals a j , with a j ∈A(a) \ {ai}.

We distinguish between two types of conditioning based on the previous observation, and describe them in the following 
definition.

Definition 3. Let f e be an encoded representation of function f , given encoding E , where f is defined over variables X . We 
define f e‖xi

as the conditioning of f e on literals {xi, x1, . . . , xi−1, xi+1, . . . , xn} in any order, i.e., as the explicit conditioning of 
f e on literal xi ∈A(x), and its implicit conditioning on literals x j ∈A(x)\xi , with x ∈ X :

f e‖xi
= f e

|xi ,x1,...,xi−1,xi+1,...,xn
.

It follows from Definition 3 and the constraints provided by encoding E , that the relation between f e‖xi
and f e|xi

is given 
by the following equality:

f e|xi
=

⎛
⎝ ∧

x j∈A(x)\xi

x j

⎞
⎠ ∧ f e‖xi

. (6)

Implicit conditioning on unit clauses takes advantage of deterministic behavior expressed in f c , while other representations 
would explicitly have to condition these unit clauses out. The advantage is two-fold. The size of the encoding can be reduced 
by removing constraint clauses f c generated by Equation (2) and (3), and integrating them directly into the compilation 
process through theory T . As will be shown later, this separation will allow the constraint clauses from f e to be conditioned 
in constant time, as opposed to quadratic time. Secondly, the size of the compiled structure is reduced by not having to 
represent redundant constraint information using our variant on the Shannon expansion, introduced in the following section.

5.2. Positive Shannon decomposition

We propose positive Shannon decompositions that use background knowledge to improve upon Shannon decompositions 
by combining it with implicit conditioning.

Lemma 1. Let an encoded Boolean function f e : {0, 1}n → {0, 1} be defined over A(X), obtained by E( f ), with f defined over X. We 
can rewrite f e using the following equivalence:

f e = f c ∧
(

xi ∧ f e‖xi
∨ f e

|xi

)
,

where f e = f c ∧ f m, and xi ∈A(x), with x ∈ X.

As intuition might confirm, logical representations will grow by the reintroduction of constraints when we apply 
Lemma 1. We introduce a reduced form by removing constraint clauses f c that introduces additional models, in turn allow-
ing us to find more concise representations. These models can easily be removed by a post decomposition conjoin with f c .

Theorem 2. Let an encoded Boolean function f e : {0, 1}n → {0, 1} be defined over A(X), obtained by E( f ), with f defined over X. 
Equivalent under constraints f c , we can rewrite f e using:

f e |= xi ∧ f e‖xi
∨ f e

|xi
,

where f e = f c ∧ f m, and xi ∈A(x), with x ∈ X.
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Fig. 3. Logical circuits.

Fig. 4. From BDDs to logical circuits.

Definition 4. Theorem 2 demonstrates a decomposition step referred to as the (reduced) positive Shannon expansion, where 
f‖x is called the positive cofactor of f with respect to x and is defined in Definition 3, and f |x is called the negative 
cofactor. The decomposition of f is defined as the recursive application of the positive Shannon expansion to cofactors until 
they evaluate to true or false.

Let ◦ be a Boolean operator and let g and h be encoded Boolean functions, according to encoding E . From Theorem 2
we derive how to create the representation of a function according to the operators in a Boolean expression:

g ◦ h = x ∧ (g‖x ◦ h‖x) ∨ (g|x ◦ h|x). (7)

By using the reduced form of the expansion, we are able to represent constraints more concisely in corresponding logical 
circuits (Fig. 3), as well as in the soon to be introduced representation that utilizes it.

For OBDDs, it is not possible for the conditioning of constraint clauses f c on any single variable xi ∈ A(x) to result in 
equal cofactors (isomorphic children). This prohibits the application of the delete rule, effectively rendering OBDDs incapable 
of capturing local structure along the dimension of single variables. To ameliorate this, we introduce positive OBDDs (PBDD) 
as an unweighted intermediate representation, that are based on the positive Shannon decomposition and substitutes the 
delete rule with the collapse rule, which as opposed to deleting literals, applies the distributive law to involved literals in the 
induced logical circuit.

Definition 5. A positive OBDD (PBDD) represents Boolean function E( f ) = f e , where f is defined over variables X , as an 
ordered BDD where each node v represents a positive Shannon decomposition on variable var(v) ∈ A(X). It is a canonical
representation if reduced by applying the following rules:

1. Merge rule: All isomorphic subgraphs are merged.
2. Collapse rule: remove direct descendant u of node v iff f‖xi = f‖x j , where var(v) = xi and var(u) = x j , with xi, x j ∈A(x)

and x ∈ X .

A function essentially depends on a variable if it appears in its prime implicate. The variable set S , on which f e es-
sentially depends, is called the support of f e . We will use this support set to identify to what variables the collapsed rule 
has been applied in order to produce its corresponding logical circuit, a trick similarly utilized with Zero-Suppressed BDDs 
(ZBDD) [45]. Note that a Boolean function E( f ) = f e , where f is defined over variables X , essentially depends on A(X), 
because f c is a prime implicate that mentions all A(X). The canonical property of PBDDs follows from the fact that a binary 
tree can be reconstructed from a PBDD and its support set, by applying its reduction rules reversely.

Fig. 4 shows the difference in representational size between an OBDD, a ZBDD and a PBDD representing the same 
function with constraints on A(x) = {x1, x2}, where g is a Boolean function that does not essentially depend on literals 
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Fig. 5. Application of the collapse rule, where cofactors are equal.

{x1, x2}. The positive Shannon decomposition not only reduces the size of the corresponding logical circuit, it also reduces 
the size of the representation. More generally, OBDDs require an exponential number of nodes in the product of each 
constraint variable’s dimension, where ZBDDs require a linear number, and where PBDDs require only 1 node.

Fig. 4 shows that there are functions where the corresponding minimal PBDD and OBDD differ exponentially in size. Not 
being represented in the figure, the collapse rule additionally removes the nodes that share the same positive cofactor with 
their parents (Fig. 5).

The semantics of nodes, whose children have been removed, changes. A missing node, inferable by the support set S
and variable order, indicates the application of the collapse rule, i.e., the distributive law on xi and x j . There is no ambiguity 
regarding the delete rule as it can never be applied on A(X) due to constraint clauses f c . Note however that the delete 
rule can be applied in case one optimizes Boolean variables of the BN by representing them with only one literal in f e , 
as opposed to two. This will delete literals from the induced circuit and result in an inconsistent model count with regard 
to the probability distribution. It is precisely for this reason that the collapse rule uses the distributive law on involved 
literals to simplify the induced circuit, as opposed to deleting them from it. The combination of the merge and collapse rule 
facilitates a more finely grained control in exploiting CSI, because it allows independence given a subset of the values to be 
expressed more efficiently when dealing with multi-valued variables.

Proposition 1. An OBDD representing Boolean function g and an PBDD representing E(g) induce isomorphic logical circuits under 
Boolean identity, given an appropriate ordering.

Proposition 2. Given an ordering on A(X), the size of PBDD ϕ is less than the size of OBDD ψ when they both represent E( f ) = f e , 
where f is defined over variables X.

5.3. Adding probabilities as weights

Encoding E represents a BN as a weighted propositional formula. We extend PBDDs to weighted PBDDs (WPBDD) using an 
intuitive scheme, taking advantage of the fact that probabilities are fully implied by the variables in the BN. Traditionally, an 
empty clause would result in a contradiction, i.e., the instantiation is unsatisfiable. We implicitly assign weight ω of empty 
clause c to the edge it is associated with, and remove c from the expression. When multiple empty clauses are associated 
with an edge, we simply assign the conjunction (multiplication) of their weights to the edge. To maintain canonicity, we 
only assign weights on the side of the positive cofactor.

Definition 6. A weighted PBDD (WPBDD) representing Boolean function E( f ) = f e , where f is defined over variables X , is 
a PBDD where each node v is a tuple 〈xi, W , f e‖xi

, f e
|xi

〉 that represents a weighted reduced positive Shannon expansion:

f e |= xi ∧ (W ∧ f e‖xi
) ∨ f e

|xi
,

where xi ∈A(X), W is a conjunction of weights ωi , and (W ∧ f e‖xi
) = f e‖xi

under idempotence. It is a canonical representation 
if reduced by applying the following rules:

1. Merge rule: All isomorphic subgraphs are merged.
2. Collapse rule: remove direct descendant u of node v iff W ∧ f‖xi = W ∧ f‖x j , where var(v) = xi and var(u) = x j , with 

xi, x j ∈A(x) and x ∈ X .

Let ◦ be a Boolean operator and let g and h be encoded Boolean functions, according to encoding E . From Definition 6
we derive how to create the representation according to the operators in a Boolean expression:

g ◦ h = x ∧ ((W g ∧ g‖x) ◦ (Wh ∧ h‖x)) ∨ (g|x ◦ h|x), (8)

where W g and Wh are the (conjunction of) weights that correspond to g and h, respectively. Fig. 6 shows the logical circuits 
induced by a weighted and unweighted node, and Fig. 7 shows how we extended the collapse rule in order to deal with 
weights.



G.H. Dal, P.J.F. Lucas / International Journal of Approximate Reasoning 90 (2017) 411–432 419
Fig. 6. Logical circuits.

Fig. 7. Application of the collapse rule, where functions f‖xi = f‖x j and weights ωi = ω j .

Fig. 8. WPBDD reduction.

Example 4. Consider the CPTs from Example 1, where per CPT, equal probabilities are represented by unique symbolic 
weights ωi .

Fig. 8 shows the minimization of a WPBDD using variable ordering a1 < a2 < a3 < b1 < b2, that represents the BN 
with 3 probabilities instead of 9. The collapse rule contributes to the reduction of the model by applying it for in-
stance to the node representing a1. It would be prohibited when a2 and a3 are swapped in the ordering. This demon-
strates that the ordering determines the degree to which a WPBDD can be reduced by using the reduction rules. 
Fig. 9 shows the comparison of this WPBDD with an OBDD representing the same function, given variable ordering 
a1 < a2 < ω1 < a3 < ω2 < b1 < ω5 < b2 < ω3 < ω4, which results in a minimal OBDD that obeys the partial order-
ing used for the WPBDD. The WPBDD induces a logical circuit consisting of 17 logical operators, while the OBDD re-
quires 54.



420 G.H. Dal, P.J.F. Lucas / International Journal of Approximate Reasoning 90 (2017) 411–432
Fig. 9. WPBDD and OBDD comparison.

6. Symbolic inference

We perform Bayesian inference through a process of three phases: encoding, compiling and model counting:

Composition Input Output
Encoder Encoding E f Theory T + f e

Compiler T -solver + SAT T + f e WPBDD ϕ
Counter T -solver + WMC T + ϕ P (x|e)

A BN represented by f is first encoded by the encoder as Boolean function f e using encoding E as defined in Section 4.2. The 
encoder also provides background theory T representing f c , i.e., the constraints among variables that support mapping M.

The compiler uses a lazy SMT-solver to record evaluation paths as a WPBDD. The lazy SMT-solver combines a SAT-solver 
with a theory-solver, were a communication between the two is facilitated in order to support implicit conditioning.

The counter computes the probability of x given evidence e, by translating the provided WPBDD into an arithmetic circuit 
and using the theory-solver to properly instantiate the variables.

6.1. Compilation

It is well known that the variable ordering used during compilation determines the representation size [50]. Compilation 
therefore reduces to finding an optimal variable ordering. Satisfiability (SAT) is key during compilation, where we consecu-
tively condition CNF f in the sequence provided by the ordering to determine if a given valuation is satisfiable. Normally, 
when CNF f contains an empty clause as the result of conditioning, we derive a contradiction (unsatisfiable).

For optimization purposes we deal slightly differently with weighted clauses. Remember that a weighted clause is the 
same as the clause disjoined with the literal that symbolizes its weight. Conventional SAT solving would require the ordering 
to be defined over literals that symbolize a weight and literals that do not. By removing weight literals from the ordering we 
reduce the search space of possible variable orderings considerably, and at the same time we dynamically position weight 
literals in a proper position in the ordering. When a weighted clause is empty (all non weight literals have been conditioned 
out), we are essentially left with a unit clause containing only the weight literal. Upon discovery, we remove this unit clause 
(empty weighted clause) by consecutively conditioning on the containing weight literal, essentially positioning the weight 
literal dynamically in the ordering. This approach preserves the semantics of clauses, thereby still allowing conventional SAT 
solvers to be used.

Algorithm 1 shows the compilation procedure, where the encoded Bayesian network f e = f c ∨ f m is compiled to the 
corresponding WPBDD by SMT-Solver using ordering O . We have used underscore (_) to indicate where we ignore a return 
value. A WPBDD is a directed graph that is build using nodes of type Node:
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Algorithm 1 Compiler.

Condition( f , L)

input: CNF f and literal set L.
output: f conditioned on literals L.

1 if Is-Empty(L)

2 return f , {}
3 else
4 for l in L
5 if Is-Negated(l)
6 f = f |l←0
7 else
8 f = f |l←1
9 Lu = Get-Unit-Literals( f )

10 f , _ = Condition( f , L)

11 return f , Lu

Compile( f c, f m, O , i)
input: CNF f c and f m , ordering O ,

and evaluation depth i.
output: A WPBDD representing f c ∨ f m .

1 if Is-Satisfiable( f c ∨ f m)

2 return True-Terminal()

3 elseif Is-Unsatisfiable( f c ∨ f m)

4 return False-Terminal()

5 else
6 l = O [i]
7 node = Create-Node()

8 node. l = l
9

10 f c
l , Lu = Condition( f c , {l})

11 f m
l , W = Condition( f m, {l} ∪ Lu)

12 node.weights = W
13 node.pCofactor = Compile(

f c
l , f m

l , O , i+1)

14
15 f c

l
, _ = Condition( f c , {l})

16 f m
l

, _ = Condition( f m, {l})
17 node.nCofactor = Compile(

f c
l
, f m

l
, O , i+1)

18
19 node = Collapse(node)
20 node = Merge(node)
21 return node

SMT-Solver( f c, f m, O )

input: Encoded Bayesian network
f e = f c ∨ f m , and ordering O .

output: A WPBDD representing f e .

1 return Compile( f c, f m, O ,0)

struct Node:

Literal : l //the literal used for conditioning cofactors
Node : pCofactor // represents positive cofactor f‖l
Node : nCofactor // represents negative cofactor f |l
Literal set : weights //weight literals of positive cofactor

Initialization: Let function f represent a Bayesian network. We obtain its CNF encoding E( f ) = f e , and provide constraints 
f c and probability encoding f m as separate inputs to SMT-Solver. An ordering is determined by the literals on 
which f c essentially depends, i.e., the literals that do not symbolically represent a weight. Using the encoding and 
ordering, SMT-Solver builds and returns the corresponding WPBDD.

Synopsis: The compiler consists of a theory-solver and SAT-solver. We will provide insight into the separation of the two, 
and where implementational particularities should be considered in the provided algorithm. A WPBDD is build in 
a DPLL-style depth-first manner, of which the order is determined by O . If f e is found to be satisfiable or unsat-
isfiable (Is-Satisfiable, Is-Unsatisfiable) with a given valuation, while using the compile procedure (Compile), we 
return a true or false terminal of type Node (True-Terminal, False-Terminal), respectively. Otherwise, we create a 
new node of type Node (Create-Node) and proceed to conditioning f e on the ith literal in the ordering, depending 
on evaluation depth i. The positive cofactor (lines 10–13) and negative cofactor (lines 15–17) are computed using 
both the theory- and SAT-solver. Although they have a comparable task (Condition), they perform it on different 
parts of the encoding, and in practice they are build, based on different design considerations. The theory-solver 
(lines 10, 15) is responsible for maintaining consistency with regard to the constraints f c by having the SAT-solver 
additionally condition on the literals Lu contained in its unit clauses (Get-Unit-Literals), i.e., implicit condition-
ing. The SAT-solver (lines 11, 16) is responsible for introducing weights W into the WPBDD at the appropriate 
places based on f m . We obtain a reduced WPBDD by applying the reduction rules as defined by Definition 6: the 
merge rule (Merge), as described by [51], and collapse rule (Collapse) to nodes where both cofactors have been 
determined in order to obtain a reduced WPBDD.

Termination: From the fact that the input ordering O consists of literals upon which f c essentially depends, we conclude 
that a satisfiability state will be reached by Compile for f c through conditioning. Additionally, O contains all the 
literals, not symbolizing a weight, that f m essentially depends on. Encoding E produces no dependencies among 
weights, thus conditioning f e on all literals in O will produce a function containing only unit clauses, where each 
containing literal symbolizes a weight. Condition implicitly removes these weights (line 11), thus termination is 
guaranteed when a satisfiability state will be reached for f c ∨ f m . Condition terminates because conditioning a 
function on literals contained in its unit clauses cannot produce additional unit clauses. It essentially just removes 
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Fig. 10. Probabilistic inference.

them. A return value in Condition has been ignored due to this reason. Particular return values have been ignored 
in Compile because conditioning f e on negated literals guarantees that no unit clauses will be produced, as this 
only says that a variable is not equal to some value, having no implication to what value it actually equals.

6.2. Inference by weighted model counting

In order to perform inference by WMC, a WPBDD must be converted into an arithmetic circuit. Recall that a missing 
variable along a path implies the application of the distributive law, identifiable by using the variable ordering and support 
set S (Definition 6). The logical circuit induced by a WPBDD can easily be translated into an arithmetic circuit using the 
conversions in Table 1. Note that x ∨ y reduces to x + y, when x and y originate from the same dimension, i.e., x, y ∈ A(z), 
with z ∈ X .

One of the reasons for using the positive Shannon decomposition is to prevent constraints among variables to be repre-
sented twice in the described process of symbolic inference: once as part of the compiled representation, and again when 
we substitute literals with their appropriate weight in order to perform model counting. During this later phase, theory T
is used to prohibit inconsistent network instantiations, preventing a state where multiple values are assigned to one vari-
able. To perform inference, all weights ωi are set to the probability they represent, and all other literals are set to 1. By 
conditioning T on the evidence using the theory-solver, literals are found that conflict with the evidence in the form of 
unit clauses. These must be set to 0.

Example 5. Let f c = (b1 ∨ b2) ∧ (b1 ∨ b2) represent the constraint clauses for variable b of Example 1. When computing 
P (b1) we condition f c on evidence b1 yielding f c

b1
= b2, thus evidence b1 implies b1 = 1 (true) and b2 = 0 ( f alse). Fig. 10

shows each stage, from decision diagram to the instantiated arithmetic circuit with which we compute P (b1).

7. Optimizations

7.1. Encoding

The constraint clauses f c of encoded function E( f ) = f e , where f is defined over variables X , introduce predictable 
symmetries into the encoding (demonstrated by Example 3). By incorporating these constraints directly into the compilation 
process through theory T , the constraint clauses f c generated by Equation (2) and (3) become obsolete and can thus be 
removed from f e . This reduces the number of clauses in the encoding by

∑
x∈X

1
︸︷︷︸
AL O

clause

+
(

n

2

)
︸︷︷︸
AM O

clauses

,

where we sum over every x ∈ X , with n the domain size of x, i.e., |A(x)|. Both the at-least-once (AMO) and at-most-once 
(AMO) clauses contribute to reducing the number of clauses in the encoding to the number of probabilities in the CPTs 

Table 1
Converting logical to arithmetic operator.

Logical Arithmetic
x x
x (1 − x)
x ∧ y x ∗ y
x ∨ y x + y − x ∗ y
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of the BN. This gives an advantage over related work using the direct encoding, as it puts less strain on the SAT-solver by 
requiring it to only process M( f ).

7.2. Compiler

The compiler uses a lazy SMT-solver, consisting of a theory- and SAT-solver. It allows for optimization in a natural way, 
by providing the ability to substitute the SAT-solver with any other state-of-the-art solver.

The theory-solver is responsible for determining satisfiability with regard to constraint clauses f c . This responsibility 
could be fulfilled by using a conventional SAT-solver. However, we have an optimized theory-solver, that supports constant 
time conditioning as opposed to quadratic time by taking advantage of the structure expressed by the constraint clauses. 
This has a major performance impact as the encoding consists of up to one third of constraint clause, as shown by the 
experimental results later. We have implemented it as follows: we require the function V : A(X) → X that maps literal 
xi back to x, where xi ∈ A(x). For each x we maintain a counter that is initialized to the domain size of x, i.e., |A(x)|. 
Conditioning on negated literal xi will decrease the counter corresponding to x by 1. If the counter reaches 0, we derive 
contradiction (i.e., unsatisfiable as x has no value). Conditioning on positive literal xi will cause any following conditioning 
on x j ∈ A(x)\xi as redundant (i.e., x can only have one value). The SAT-solver will be bypassed completely as a result and 
the compiler will continue with the next variable in the ordering, saving additional time.

The SAT-solver is responsible for determining satisfiability with regard to clauses f m . Although any SAT-solver can be 
used here, we have created a simplified SAT-solver by taking advantage of the structure of M( f ). We use an one-to-many 
map Q : A(X) → O from literal l ∈ A(X) to the clauses O it occurs in, i.e., Q (l) = {c1, . . . , cn}. For each clause ci , we 
maintain if it is satisfied with a counter, initialized to the number of literals it consists of. When conditioning on positive 
literal l we decrease counters associated with Q (l) by 1. The clauses of which the counters have reached 0 are marked 
as satisfied, and their corresponding weights are set aside to be introduced into the representation later. Conditioning on 
negated literal l will mark clauses Q (l) as satisfied. This is possible because M( f ) only contains negated literals, and 
we are able to assume that Q (l) ∩ Q (l) = ∅. When all clauses in f m are satisfied, we derive f to be satisfiable given 
the evaluated instantiation. In combination with the SAT-solver being bypassed in the case of the previously mentioned 
redundant variables, this allows for conditioning in linear time, in the number of clauses that l occurs in.

8. Experimental results

We have developed a tool chain, that can encode a Bayesian network into CNF, compile it to various different represen-
tations, and perform inference using the arithmetic circuits they induce. Using over 30 publicly available Bayesian networks, 
we provide empirical results on encoding size, representation size and compilation time comparisons to other well-known 
representations and compilers. We also compare the time it takes to perform exact inference compared to the classic junc-
tion tree algorithm.

Statistics related to the encoding are shown in Table 2, which includes Example 1 as BN example. The number of 
clauses produced by encoding E is equal to C + P , when disregarding determinism. We can reduce the size of the encoding 
by up to a third, by moving constraint clauses to the theory solver, additionally allowing us to perform constant time 
conditioning on them. We can also see that the majority of the BNs will benefit greatly using the techniques in this paper 
by looking at the amount of equal and deterministic probabilities they contain.

We have developed a compiler that supports compilation of Bayesian networks to OBDDs and ZBDDs (using the CUDD 
3.0.0 library), SDDs [44] (using the SDD 1.1.1 library), and WPBDDs.1,2,3 Each decision diagram is created with the same 
ordering, within the same framework, i.e., doing the same amount of work in the same order. Quite literally, the only 
differences are the inserted appropriate function calls to different libraries, and the output representation. This will have 
comparative implications to whether a particular compilation will succeed given resource constraints as time and memory. 
At the same time, we did not tune the algorithms to ensure that our algorithm stood out favorably, ensuring fair comparison.

The framework divides the compilation process in two for efficiency. The logical representation of each CPT is first 
compiled separately, and then conjoined to represent the full distribution. The latter is essential for producing a logical 
circuit with a consistent model count in order to perform for inference. All results regarding the WPBDD compiler have 
been produced with a hybrid approach, where CPTs are compiled in a top-down fashion, and conjoined bottom-up. We 
found that a fully bottom-up approach is only favorable when BNs have large CPTs like mildew, where we got a 5x 
speedup compared to the top-down approach. In practice, this implies that Bayesian networks can be compiled containing 
larger CPTs in general.

Many strategies were explored in order to find a good variable ordering for each BN. We used simulated annealing in 
combination with an upper bound function for networks, which by far yielded best results. The variable orderings were 
used to induce orderings based on literals, by saying that literal x1 must come before y1 if variable x comes before y in 

1 CUDD is available at http :/ /vlsi .colorado .edu /~fabio/.
2 The SDD compiler is available at http :/ /reasoning .cs .ucla .edu /sdd/.
3 The WPBDD compiler is available at https :/ /github .com /gisodal /wmc/.

http://vlsi.colorado.edu/~fabio/
http://reasoning.cs.ucla.edu/sdd/
https://github.com/gisodal/wmc/
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Table 2
Various statistics on BNs and their encoding, where the number of variables X , literals A(X), constraint clauses C , probabilities P , unique probabilites P u

(unique within a CPT) and the number of deterministic probabilities P d are shown.

Bayesian network X A(X) C P P u P d

example 2 5 6 7 5 2
cancer 5 10 10 20 20 0
earthquake 5 10 10 20 20 0
asia 8 16 16 36 27 8
survey 6 14 16 37 37 0
student farm 12 25 26 70 44 17
sachs 8 24 32 228 175 51
poker 7 43 145 748 71 653
child 20 60 93 344 161 4
carpo 54 122 139 554 246 266
powerplant 40 120 160 432 360 0
alarm 37 105 143 752 182 7
win95pts 76 152 152 1148 274 448
insurance 27 89 142 1419 427 372
andes 220 440 440 2308 652 146
hepar2 70 162 190 2139 1922 0
hailfinder 56 223 470 3741 835 587
pigs 441 1323 1764 8427 1474 4736
link 714 1793 2304 20462 1282 19586
water 32 116 188 13484 3578 7288
munin1 186 992 3522 19226 4323 12700
pathfinder 135 520 3600 106432 2379 56297
weeduk 15 90 347 22611 4600 216
fungiuk 15 165 1144 43007 8990 207
munin2 1003 5376 19460 83920 23228 53102
munin3 1041 5601 20292 85615 24495 53942
munin 1041 5651 20432 98423 24222 63112
munin4 1038 5645 20426 97943 24621 63112
mildew 35 616 17550 547158 14772 510060
mainuk 48 421 3607 130180 18883 3784
diabetes 413 4682 31738 461069 17888 360333
barley 48 421 3607 130180 36924 0

the variable ordering, where x, y ∈ X , x1 ∈ A(x) and y1 ∈ A(y). The weights are introduced into the ordering as literals 
precisely when the WPBDD would introduce them as edge weights.

Tables 3 and 4 show a comparative study between representation size and compilation time of supported representations, 
where WPBDDnc is a WPBDD without application of the collapse rule, in order to show the impact of this rule. SDDs and 
SDDr s are compiled using a balanced and right-aligned vtree ordering, respectively. A left-to-right traversal of these vtrees 
produces the ordering also used for the other representations. Table 3 indicates compilation failure due to a 24 Gb RAM 
memory limitation or a one hour time limit. Progress before failure is can be seen in Table 4. All experiments were run 
using an Intel Xeon E5620 CPU.

Table 3 shows a size comparison of each representation by the only size metric they have in common: the number of 
operators in the logical circuits that individual decision diagrams induce. We can see that WPBDDs have 60% less logical 
operators than the corresponding OBDDs on average at both stages of compilation, reducing inference time and system 
requirements considerably. Also, a WPBDD is reduced by 15% on average by applying the collapse rule when compiling 
CPTs, and 6% reduction on average with fully compiled networks. This statistic is fully determined by the amount of local 
structure in the BN and the ordering used during compilation, and can greatly be improved by utilizing techniques like 
dynamic compilation in the future.

Observe that there is a close relation between the size of OBDDs and SDDr s, as mentioned in [44]. We can see that the 
size of each SDDr is marginally smaller than its corresponding OBDD in Table 3. We assume that this is because SDDs have 
multi-valued logical-OR operators, which allow for more concise representations. SDDs consist of binary logical-AND, and 
n-ary logical-OR operators. We have included OR operators in size computations as n − 1 binary logical-OR operators.

In order to evaluate the WMC approach to exact inference and other methods, we have chosen to compare to Ace 
(version 3.0) and to the junction tree algorithm using the publicly available Dlib library (version 18.18).45 We also provide 
an indicative comparison to the HUGIN library (version 8.4).6 Table 5 shows how much time is spent by each method on an 
identical set of probabilistic queries of the form P (x|e). We have excluded time spent on reading or processing the Bayesian 
network, as well as creating join trees, purely focusing on inference time.

4 Ace is available at http :/ /reasoning .cs .ucla .edu /ace/.
5 Dlib is available at http :/ /dlib .net/.
6 HUGIN is available at http :/ /www.hugin .com/.

http://reasoning.cs.ucla.edu/ace/
http://dlib.net/
http://www.hugin.com/
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our time limitation, respectively).

l number of operators

D ZBDD SDDr SDD

39 30 27 49
159 324 144 362
159 324 144 362
312 825 291 819
321 564 306 765

1098 2007 1080 2135
1602 13164 1581 4881
2370 5394 2355 6082
7872 21861 7857 16030
7179 16233 7164 13405
1043 36276 11025 26662
0008 19227 9993 35004
2806 2658189 142791 188453
9734 23840949 109455 –
3551 95350635 727209 –
3631 1415904 743619 426550
3420 5465610 1263393 1731502
2988 29435283 5732976 2287777
3220 137548032 31493157 10508499
5977 ∗ – –
1388 ∗ – –

– – – –
∗ ∗ – –
∗ – – –
– – – –
∗ – – –
– – – –
– – – –
∗ – – –
– – – ∗
– – – –
– – – –
Table 3
Number of arithmetic operators in intermediate and resulting decision diagrams (symbols – and ∗ indicate compilation failure due to memory or a one

Bayesian 
network

Number of operators per CPT To

WPBDD WPBDDnc OBDD ZBDD SDDr SDD WPBDD WPBDDnc OBD

example 11 19 48 54 33 49 9 15
cancer 80 80 195 747 135 292 66 66
earthquake 80 80 195 747 135 292 66 66
survey 147 147 354 1671 270 510 132 132
asia 131 136 321 1473 231 425 136 136
student_farm 231 252 591 3522 441 747 459 465
sachs 747 759 1788 20928 1611 3176 630 630
poker 731 1128 2373 6774 2289 4219 912 1095
child 1011 1099 2739 26088 2385 4663 2934 2988
carpo 1257 1386 3264 77049 2574 4514 2499 3015
powerplant 1414 1558 3795 86184 3141 6382 4158 4362
alarm 1553 1701 3795 41688 3312 6183 3832 4294
hepar2 8371 8467 18528 1593654 16101 29584 56574 56871 1
weeduk 29196 30543 70863 13762830 69135 170330 32114 34832 1
fungiuk 68430 81435 295458 88536714 287940 250500 234715 251739 7
win95pts 1948 2020 4722 122244 3822 6571 312191 320183 7
insurance 2776 3171 7455 106959 6810 11836 468514 474682 12
pathfinder 23366 40838 240915 6158832 237549 295272 1899921 2135180 57
hailfinder 8909 9520 25371 457860 23865 35707 11141550 11270157 314
water 23498 25458 56268 4776201 53979 81614 18460995 18561108 440
mildew 139386 833215 1482432 56435169 – 832829 21698281 22322743 716
andes 4592 5546 11667 1125528 9192 13809 – –
mainuk 232466 240710 577866 216698319 567135 ∗ – –
barley 244447 252935 649902 581976891 637101 ∗ – –
munin 145258 179744 435102 363002097 415134 723740 – –
munin4 145373 180658 432672 345413400 413277 733401 – –
munin3 140318 172843 420537 327439035 400932 702203 ∗ ∗
diabetes 186630 288075 707679 111194403 696837 984197 – –
pigs 19953 22482 49872 6976569 44127 68288 – –
munin1 25415 32188 74613 7756470 71538 131514 – –
link 22869 27249 60279 12387426 54291 85356 – –
munin2 133493 165853 398550 323654088 379137 670702 – –
 h
ta

1
1
4
0
3
4
6
3
9
0
2
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s documented in Table 3.)

Conjoin compile time

OBDD ZBDD SDDr SDD

0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.001
0.000 0.001 0.000 0.012
0.000 0.000 0.001 0.016
0.002 0.007 0.010 0.041
0.004 0.012 0.018 0.033
0.003 0.025 0.018 0.045
0.003 0.008 0.015 0.059
0.201 7.045 1.192 3.047
0.013 3.988 0.077 (92.86%)
0.264 1285.111 1.455 (14.29%)
1.257 4.203 6.293 0.882
0.366 3.070 1.946 2.485

13.974 101.344 67.038 22.888
17.409 567.997 71.913 9.464
55.055 (32.26%) (96.77%) (32.26%)

160.524 (5.88%) (0.00%) (2.94%)
(21.92%) (21.00%) (20.55%) (21.92%)
(44.68%) (8.51%) (42.55%) (0.00%)
(44.68%) (2.13%) (42.55%) (0.00%)

(1.83%) (1.35%) (1.73%) (2.40%)
(1.54%) (1.06%) (1.35%) (1.45%)
(2.50%) (1.25%) (1.63%) (2.40%)
(1.21%) (0.73%) (0.97%) (1.21%)
(7.05%) (6.59%) (6.59%) (8.18%)

(14.05%) (11.89%) (11.89%) (12.97%)
(3.51%) (2.95%) (3.09%) (3.23%)
(1.30%) (0.60%) (1.20%) (1.098%)
Table 4
Compilation time in seconds. (In case of compilation failure, the percentage of successfully conjoined/processed variables is shown, of which the reason i

Bayesian 
network

CPT compile time

WPBDD WPBDDnc OBDD ZBDD SDDr SDD WPBDD WPBDDnc

example 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
cancer 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
earthquake 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
survey 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
asia 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
student_farm 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001
sachs 0.000 0.000 0.000 0.000 0.002 0.007 0.001 0.001
poker 0.001 0.001 0.002 0.002 0.015 0.030 0.002 0.004
child 0.000 0.000 0.001 0.000 0.004 0.009 0.004 0.004
carpo 0.001 0.001 0.003 0.002 0.006 0.008 0.005 0.006
powerplant 0.001 0.001 0.002 0.002 0.005 0.006 0.007 0.008
alarm 0.001 0.001 0.002 0.002 0.008 0.018 0.006 0.007
hepar2 0.006 0.005 0.016 0.063 0.055 0.097 0.072 0.072
weeduk 0.815 0.817 0.249 1.178 1.615 2512.160 0.084 0.112
fungiuk 1.799 1.803 1.027 11.011 7.276 179.470 126.701 356.738
win95pts 0.003 0.003 0.003 0.005 0.014 0.016 0.129 0.132
insurance 0.002 0.002 0.004 0.005 0.020 0.022 0.201 0.211
pathfinder 0.685 0.678 7.840 8.066 30.405 2.226 1.333 1.501
hailfinder 0.011 0.011 0.018 0.035 0.105 0.177 5.556 5.546
water 0.107 0.107 0.090 0.253 0.764 4.922 44.400 45.883
mildew 275.356 275.445 129.703 134.639 (11.43%) 1146.805 304.752 2062.466
andes 0.006 0.006 0.007 0.032 0.027 0.041 (94.52%) (94.52%)
mainuk 7.503 7.528 2.272 27.709 20.179 (4.17%) (95.744%) (95.74%)
barley 7.682 7.683 2.247 77.280 27.284 (4.17%) (95.74%) (93.62%)
munin 0.193 0.190 0.458 30.999 21.165 2.568 (75.67%) (75.67%)
munin4 0.186 0.189 0.438 28.238 21.256 2.560 (78.98%) (78.98%)
munin3 0.165 0.173 0.395 26.503 23.430 2.225 (74.23%) (74.23%)
diabetes 3.142 3.137 6.479 13.272 106.197 11.352 (54.85%) (54.85%)
pigs 0.016 0.016 0.036 0.228 0.248 0.114 (94.09%) (94.09%)
munin1 0.037 0.036 0.101 0.322 0.998 0.416 (89.73%) (89.73%)
link 0.040 0.040 0.070 0.621 0.512 0.403 (89.200%) (89.20%)
munin2 0.162 0.162 0.400 28.014 19.650 2.255 (78.94%) (78.94%)
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Table 5
Inference time in seconds.

BN Queries WPBDD OBDD Ace Dlib

example 17 0.000 0.000 0.015 0.001
cancer 714 0.001 0.002 0.735 0.138
earthquake 714 0.001 0.002 0.735 0.139
survey 4448 0.014 0.023 5.214 2.244
asia 18360 0.053 0.108 21.041 9.798
sachs 258324 2.142 5.323 503.670 1471.963
student_farm 1109885 7.346 17.942 1405.520 2627.214
poker 145999 2.204 5.229 238.969 3574.706
child 121647 4.058 14.603 331.598 3545.921
carpo 213257 7.697 21.340 500.063 3515.298
powerplant 457407 21.575 64.450 1398.680 3393.056
alarm 94034 5.062 13.324 297.079 3547.504
hepar2 26530 16.419 50.950 241.252 3463.509
weeduk 1051 0.420 1.608 20.541 3586.316
fungiuk 718 1.911 6.556 19.679 3567.136
win95pts 13595 50.586 135.639 75.531 3220.060
insurance 280 1.391 4.477 6.598 3571.825
pathfinder 765 23.501 78.277 30.369 3391.518
hailfinder 875 133.381 432.411 20.879 2448.653
water 2221 474.047 1319.978 93.262 ∗
mildew 1312 290.731 1401.271 387.664 ∗
Avg speedup 2.69 149.65 991.82

Remember that the computational complexity of inference by Weighted Model Counting (WMC) is linear in the size of 
the representation [13]. It implies that whenever we obtain a representation of smaller size, we will achieve faster runtimes. 
This relation between size and inference time is reflected in the empirical evaluations between WPBDDs and OBDDs, and 
can be inferred with regard to other representations like ZBDDs and SDDs.

Interesting is the comparison to Ace, which uses DNNF representations. It is known that OBDDs support more polytime 
queries than d-DNNFs [39]. This is partly reflected in the results of Table 5. There are two factors that are currently influenc-
ing the speedup and that compared to Ace could be improved. The compiler used to create the OBDDs and WPBDDs does 
not yet support exploitation of determinism, while Ace does. Depending on the amount of determinism (stated in Table 2) 
this can have a major impact. The other factor concerns the increasing complexity of finding good orderings as problem 
sizes grow. The ordering used during compilation directly influences the size of the representation and inference time, and 
improving methods for finding good orderings will become essential in future work.

We have also achieved a staggering speedup compared to the junction tree algorithm by Dlib, confirmed by an excep-
tional amount of cache misses reported by cachegrind (Valgrind tool), and other profile information by GNU Gprof and GNU 
Perf on resource usage. A comparison to HUGIN LITE over a subset of networks provides implications to performance for 
Bayesian networks of limited size, where we were able to achieve a speedup averaging at over 5x. Although this result 
provides intuitions on the performance using larger BNs, it should be considered purely indicative. Collectively, compilation 
and inference results show that WPBDDs make a valuable addition in the field of exact probabilistic inference.

9. Conclusion

To reduce the cost of Bayesian inference through Weighted Model Counting (WMC), we proposed a new canonical lan-
guage called Weighted Positive Binary Decision Diagrams that represents probability distributions more concisely. We have 
provided theoretical results in addition to practical results on compilation size with regard to 30+ Bayesian networks, 
where we have seen WPBDD induced logical circuits reduced by 60% on average in comparison to OBDD induced circuits. 
The introduced reduction rule is responsible for a 15% reduction on average among compiled CPTs. These results can be 
improved even further in the future by finding a better variable ordering. This is made easier by WPBDDs, as they do not 
consider probabilities as auxiliary literals and reduce the search space considerably. We have evaluated the costs of infer-
ence compared to OBDD induced circuits, Ace, Dlib and Hugin. We were able to achieve a speedup of several orders of 
magnitude. The proposed language thus gives computational benefits during model counting as well as compilation.

Appendix A. Proofs

Lemma 1. Let an encoded Boolean function f e : {0, 1}n → {0, 1} be defined over A(X), obtained by E( f ), with f defined over X. We 
can rewrite f e using the following equivalence:

f e = f c ∧
(

xi ∧ f e‖xi
∨ f e

|xi

)
,

where f e = f c ∧ f m, and xi ∈A(x), with x ∈ X.
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Proof. We show that the lemma holds by reducing the Shannon expansion to the positive Shannon expansion through 
equivalence. Function f is defined over variables X = {x}, and encoded as Boolean function f e = f c ∧ f m given E , where

A(x) = {x1, . . . , xn}, f c =
⎛
⎝ ∨

x j∈A(x)

x j

⎞
⎠ ∧

⎛
⎝ ∧

xk∈A(x)

∧
xl∈A(x)\xk

(xk ∨ xl)

⎞
⎠ , f m = 1.

Equation (2) and (3) show that f c has a cardinality of at least two when encoding a non-trivial function, and that f m

essentially depends on a (non-strict) subset of variables on which f c essentially depends. We therefore chose f m to be 
simplistic to make the following reductions more intuitive. Note that the at-most-once clauses generated for xi are subsumed 
by f c at the final step.

f e = f c ∧ f m

=
⎛
⎝ ∨

x j∈A(x)

x j

⎞
⎠ ∧

⎛
⎝ ∧

xk∈A(x)

∧
xl∈A(x)\xk

(xk ∨ xl)

⎞
⎠

︸ ︷︷ ︸
f c

∧ 1

︸︷︷︸
f m

= xi ∧
⎛
⎝ ∧

x j∈A(x)\xi

x j

⎞
⎠

︸ ︷︷ ︸
f e|xi

∨ xi ∧
⎛
⎝ ∨

x j∈A(x)\xi

x j

⎞
⎠ ∧

⎛
⎝ ∧

xk∈A(x)\xi

∧
xl∈A(x)\x{ik}

(xk ∨ xl)

⎞
⎠

︸ ︷︷ ︸
f e
|xi

Shannon expansion of f e on xi .

= xi ∧
⎛
⎝ ∧

x j∈A(x)\xi

x j

⎞
⎠ ∧ 1

︸︷︷︸
f e‖xi

∨ xi ∧
⎛
⎝ ∨

x j∈A(x)\xi

x j

⎞
⎠ ∧

⎛
⎝ ∧

xk∈A(x)\xi

∧
xl∈A(x)\x{ik}

(xk ∨ xl)

⎞
⎠

︸ ︷︷ ︸
f e
|xi

Positive Shannon expansion of f e on xi . Equivalent by Definition 3, and Equation (6).

= xi ∧
⎛
⎝ ∧

x j∈A(x)\xi

x j

⎞
⎠ ∧ f e‖xi

∨ xi ∧ f e
|xi

=
⎛
⎝ ∧

x j∈A(x)\xi

(xi ∨ x j)

⎞
⎠ ∧

(
xi ∧ f e‖xi

∨ f e
|xi

)

= f c ∧
(

xi ∧ f e‖xi
∨ f e

|xi

) �

Theorem 2. Let an encoded Boolean function f e : {0, 1}n → {0, 1} be defined over A(X), obtained by E( f ), with f defined over X. 
Equivalent under constraints f c , we can rewrite f e using:

f e |= xi ∧ f e‖xi
∨ f e

|xi
,

where f e = f c ∧ f m, and xi ∈A(x), with x ∈ X.

Proof. We first show what models are introduced by one reduced positive Shannon expansion, providing clear implications 
what models are introduced by n expansions (i.e. a decomposition). We then show that f c can be factored out of the 
positive Shannon decomposed function, and used to remove the introduced models, as they are subsumed by f c .

Let function f and its encoding be defined as provided in the proof of Lemma 1. We will first show that applying one 
reduced positive Shannon expansion removes at-most-once (AMO) clauses related to the variable we expand.

f e = f c ∧ f m

=
⎛
⎝ ∨

x j∈A(x)

x j

⎞
⎠ ∧

⎛
⎝ ∧

xk∈A(x)

∧
xl∈A(x)\xk

(xk ∨ xl)

⎞
⎠

︸ ︷︷ ︸
c

∧ 1

︸︷︷︸
m
f f



G.H. Dal, P.J.F. Lucas / International Journal of Approximate Reasoning 90 (2017) 411–432 429
= xi ∧ 1

︸︷︷︸
f e‖xi

∨
⎛
⎝ ∨

x j∈A(x)\xi

x j

⎞
⎠ ∧

⎛
⎝ ∧

xk∈A(x)\xi

∧
xl∈A(x)\x{ik}

(xk ∨ xl)

⎞
⎠

︸ ︷︷ ︸
f e
|xi

= f w

We have M j |= f e , with j = {1, . . . , n}, where M j = {x1, . . . , x j−1, x j, x j+1, . . . , xn} and Mk |= f w , with k = {1, . . . , (n − 1) +
2(n−1)}, where Mk = {x1, . . . , xk−1, xk, xk+1, . . . , xn} for 1 ≤ k ≤ n and k �= i, and Mk = {. . . , xi, . . .} for the remainder. We 
conclude that f e �≡ f w , because f e has n models, while f w has (n − 1) + 2(n−1) . Expanding xi has caused any model 
containing xi to be true, i.e., model {x1, . . . , xi−1, xi, xi+1, . . . , xn} has changed to the models {. . . , xi, . . .}. It is precisely those 
additional models in Mk that are not in M j , which can be removed by AMO clauses created for xi , i.e.:

f e ≡
⎛
⎝ ∧

x j∈A(x)\xi

(xi ∨ x j)

⎞
⎠ ∧ f w .

Where one expansion on xi removes AMO clauses related to xi , a decomposition clearly removes AMO clauses related to all 
variables A(x). This holds regardless of ordering, as a positive Shannon decomposition of f e is guaranteed to produce an 
isomorphic representation due to the symmetric nature of the constraints. We can reduce the positive Shannon expansion 
to its reduced by form factoring out f c :

f w = f c ∧ f m

=
⎛
⎝ ∨

x j∈A(x)

x j

⎞
⎠ ∧

⎛
⎝ ∧

xk∈A(x)

∧
xl∈A(x)\xk

(xk ∨ xl)

⎞
⎠

︸ ︷︷ ︸
f c

∧ 1

︸︷︷︸
f m

= f c ∧

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x1 ∧ 1

︸︷︷︸
f e‖x1

∨
⎛
⎝ ∨

x j∈A(x)\x1

x j

⎞
⎠ ∧

⎛
⎝ ∧

xk∈A(x)\x1

∧
xl∈A(x)\x{1k}

(xk ∨ xl)

⎞
⎠

︸ ︷︷ ︸
f e
|x1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= f c ∧ (x1 ∨ f c ∧ (x2 ∧ 1︸︷︷︸
f e‖x2

∨ . . .︸︷︷︸
f e
|x2

))

= f c ∧ (x1 ∨ f c ∧ (x2 ∨ f c ∧ (x3 ∧ 1︸︷︷︸
f e‖x3

∨ . . .︸︷︷︸
f e
|x3

)))

= . . .

= f c ∧ (x1 ∨ ( f c ∧ (x2 ∨ ( f c ∧ . . . xn−1 ∨ ( f c ∧ xn)))))

= f c ∧ (x1 ∨ . . . ∨ xn)

= f c

This confirms that, when using reduced positive Shannon decompositions, equivalence is only achieved under domain clo-
sure constraints, as AMO clauses are subsumed by f c . �
Proposition 1. An OBDD representing Boolean function g and an PBDD representing E(g) induce isomorphic logical circuits under 
Boolean identity, given an appropriate ordering.

Proof. Let E(g) = ge be a Boolean function, with g a Boolean function defined over variables X = {x1, . . . , xn}. We show 
that an OBDD representing g is equivalent to a PBDD representing E(g) by comparing their induced logical circuits, under 
the premise that the collapse rule does not apply distribution, but deletes literals. Note that this comparison requires g to 
be a Boolean function, and thus each x ∈ X is mapped to two atoms A(x) = {x1, x2}. For every Shannon expansion on g , 
there is an equivalent positive Shannon expansion on ge (Fig. 11).
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Fig. 11. Expansions.

Fig. 12. Constraints in OBDD ψ .

We have equality, because there exists a trivial mapping between the two decomposition types, namely x = x1 and 
x = x2. Observe the implication that the collapse rule can be applied to ge whenever the delete rule can be applied to 
g . Under our pretense we can infer that the OBDD and PBDD induce equivalent circuits, because they are isomorphic due 
to a trivial mapping for precisely those orderings where, for each x ∈ X , atoms A(x) = {x1, x2} are placed adjacent in the 
order, e.g., A(x1) < . . . < A(xn) and for each x ∈ X we have partial orders x1 < x2. The delete rule alters the circuit if 
cofactors are equal by applying the distributive law and identity, e.g., x ∧ g ∨ x ∧ g = (x ∨ x) ∧ g = g . The collapse rule 
forgoes that last step. We therefore conclude that the OBDD and PBDD induce equivalent circuits under Boolean iden-
tity. �
Proposition 2. Given an ordering on A(X), the size of PBDD ϕ is less than the size of OBDD ψ when they both represent E( f ) = f e , 
where f is defined over variables X.

Proof. In the case where f is not Boolean, we will show that PBDD ϕ is always smaller than OBDD ψ , when they both 
represent E( f ) = f e . Consider some x ∈ X , for which we find atoms A(x) = {x1, x2, x3, . . . , xn} adjacent in the ordering, 
where n is the domain size of x. OBDD ψ will contain the subfunction shown in Fig. 12.

Here, j, k, l and m are subfunctions that essentially depend on {x4, . . . , xn}. We can transition from the OBDD induced 
logical circuit above to the corresponding logical circuit induced by a PBDD, by removing the bold edges, literals and oper-
ators. Shannon expansions that have indicator 1 at their root can be removed, which coincides with implicit conditioning. 
More generally, this allows us to remove 

∑n
i=1(i − 1) nodes from the OBDD. Additionally, the implicates for negative 

cofactors are removed that are marked by indicator 2.
Removing the implicate for the negative cofactor together with implicit conditioning, contribute to reducing the size 

of induced logical circuits by removing operators while maintaining equivalence. The extent to which is lower bounded 
by:

∑
x∈X

n

︸︷︷︸
negative
cof actor

+
n∑

i=1

(i − 1) ∗ 3

︸ ︷︷ ︸
implicit

conditioning

,

where we sum over every x ∈ X , with n the domain size of x, i.e., |A(x)|. This increases when atoms A(x) are not adjacent 
in the ordering, and is multiplied by the number of distinct subfunctions in OBDD ψ that depend on A(x). Furthermore, we 
are guaranteed to encounter each x ∈ A(X) in an OBDD along every path from root to the true terminal, which serves as 
an upper bound regarding PBDDs. The collapse rule can effectively reduce the size of the representation if the structure of 
f e allows it, by reducing the number of nodes from |A(pa(x))| to |pa(x)| for every subfunction, provided that literals A(y), 
with y ∈ pa(x), for each parent are adjacent in the ordering. �
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