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Abstract. This article contains an elementary introduction to the cryptanalysis of
stream ciphers. Initially, a few historical examples are given to explain the core aspects
of cryptography and the various properties of stream ciphers. We define the mean-
ing of cryptographic strength and show how to identify weaknesses in a cryptosystem.
Then, we show how these cryptographic weaknesses can be exploited and attacked by
a number of cryptanalytic techniques. The academic literature includes many articles
there use complex mathematical notations to represent trivial cryptanalytic techniques.
Contrarily, this paper tries to put forward the most commonly used cryptanalytic tech-
niques by using only simplistic and comprehensible examples. The addressed techniques
are used in several scientific articles to mount practical attacks on real cryptosystems.

1 Introduction

This manuscript is an excerpt of the third chapter in the doctoral dissertation of Roel Ver-
dult [120]. The first chapters of this book contains a theoretical background with an elemen-
tary description of security protocols, cryptographic primitives and cryptanalytic attacks.

1.1 Cryptographic strength

The strength of a cryptographic algorithm is expressed in the total amount of computations
an adversary needs to perform to recover the secret key. It is often referred to as the compu-
tational complexity of the cipher.

For a perfectly secure cipher, the computational complexity is the same as the key space,
sometimes referred to as the entropy of the key. The key space refers to the set of all possible
keys and represents the total number of combinations using all secret key bits. The size of
the key (key-size) is the amount of bits n which define the size of the complete key space 2n.

The naive method to recover the secret key is to try simply all combinations. Such method-
ology is often referred to as an exhaustive search or a brute-force attack. It would most likely
require almost 2n computations to determine the secret key. To be precise, on average an
adversary finds the secret key halfway. When lucky, the key can be determined at an early
stage, but it might just as well be one of the last tries. Interestingly, this property already
shows that the number of computations required to determine the key is by definition lower
than the actual key space.

A cipher that is perfect should be the base for a secure cryptosystem. In practice how-
ever, most ciphers are (slightly) weaker than the full entropy of their secret key. With clever
optimizations it is often possible to find the secret key by doing far fewer computations than
the actual entropy would require. This is called the actual attack complexity of a cipher.

1.2 Stream ciphers

A stream cipher performs an encryption which is similar to the One-time Pad (OTP) en-
cryption technique. It produces a large chunk of secret, random looking data and combines it
with the plaintext to produce ciphertext. Without the exact same data chunk, the plaintext
cannot be uncovered from the ciphertext. The random data represents a stream of bits which
is derived from the secret key and is commonly referred to as keystream. A stream cipher



contains some persistent memory, called the internal cipher state, which is initialized by the
secret key and propagates to a successor state after each encryption step. The output of a
strong stream cipher is comparable to (and should be indistinguishable from) a contiguous
bit stream produced by a Pseudo Random Number Generator (PRNG).

To be more precise, we embed the remarks made in [108] and define a stream cipher as
follows: an encryption function which operates on individual plaintext digits (usually bits)
where its internal state is initialized with the secret key prior to encryption. The keystream
varies, depending on the initialized secret key and the moment of encryption with respect to
the propagation of the internal state. Encryption of plaintext and decryption of ciphertext are
both performed by the exclusive-or (XOR) operation, which is denoted by a ⊕ symbol and
represents a bit-wise addition modulo two. A useful mathematical property of this operator
is that it can be inverted. Therefore, it can be applied for encryption as well as decryption.

There are two types of stream ciphers, synchronous and self-synchronizing. In a syn-
chronous stream cipher, the encryption bits are computed independently from the plaintext.
Such ciphers are useful in situations when a communication channel is more prone to error. It
might happen that just one badly transmitted bit is wrongly interpreted, which however does
not directly affect the other bits that were transferred in a correct manner. Therefore, stream
ciphers are very useful to encrypt streaming media where the speed of data-traffic is more
important than the completeness and integrity of the data. Contrarily, a self-synchronizing
stream cipher computes the successor of its internal state with a function over the previous
state and the ciphertext. The internal state diverts from its original propagation path when a
transmission error occurs. This dissertation focusses itself on the most widely used and best
studied of the two, the synchronous stream ciphers. Therefore, a general reference to a stream
cipher refers to a synchronous stream cipher.

An important objective of a stream cipher is to avoid a direct relation between the input
(secret key) and output (keystream) of the cipher. Because the entropy of a stream cipher is
limited to the size of the internal state, the produced keystream will eventually repeat itself.
Note, that this is not a property of a regular One-time Pad (OTP).

Pure One-time Pad encryption can provide perfect secrecy when the keystream is truly
random and uniquely generated for each message that is transmitted [109]. In such a setting,
the keystream should consist of a unique bit string that contains uniformly distributed random
bits. However, in practice it is difficult to generate truly random data. Alternative methods,
like using the complete contents of a random book, drastically limit the number of possible
keystreams. Moreover, reuse of the same keystream is very insecure. With access to previous
plaintext and ciphertext, an adversary would be able to extract the keystream. If the same
keystream is used in a second transmission, the adversary can use the recovered keystream
and reveal the second plaintext. Exactly for this particular reason, the encryption technique
is called One-time Pad. The keystream that represents the secret key should only be used
once.

Fig. 1.1: Enigma
machine1

Keystream can be seen as an unique set of bits which must be as long
as the plaintext. However, continuing distribution of fresh keystream for
long data sequences is undesirable. With an increase in electronic trans-
missions of large transcripts in the 20th century, the need for alternative
solutions grew. In response several stream cipher encryption techniques
were introduced. For instance, in the 1930s stream ciphers were mainly
used in the form of physical rotor machines which operated mostly me-
chanically. A well-known example of such a rotor machine is the Enigma,
which is illustrated in Figure 1.1. A few decades later, the introduction
of large scale computer networks increased the demand for more hard-
and software oriented stream ciphers which supported automated com-
munication.

1 http://www.securityninja.co.uk/wp-content/uploads/2010/09/4-rotor-enigma-open-copy-BW.jpg
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One of the most popular techniques in the sixties and seventies was the non-linear binary
sequence stream cipher [52, 71, 72, 85, 105]. It produces a binary keystream that allows a
regular One-time Pad encryption without the requirement of a very large secret key. A typical
cryptosystem based on a non-linear stream cipher is illustrated in Figure 1.2. This type of
ciphers was very popular because of their small hardware footprint.

shift register

f(·)

plaintext

⊕

ciphertext

(a) Alice (sender)

shift register

f(·)

ciphertext

⊕

plaintext

(b) Bob (receiver)

Fig. 1.2: Typical non-linear stream cipher system

The cryptographic algorithm illustrated in Figure 1.2 embeds a rotating shift register,
which represents the internal state of the cipher. After the computation of a new keystream
bit, the successor function updates the internal state by a linear function to preserve as much
entropy to the cipher. Then, the output component applies a non-linear filter function f(·)
to compute the next keystream bit. The keystream bits are used by the sender (Figure 1.2a)
to encrypt the plaintext bits by combining both bit strings with the exclusive-or (XOR)
operation. The resulting ciphertext is transmitted over an insecure channel. The receiver
(Figure 1.2b) performs the exact same computations and applies another XOR operation,
this time on the ciphertext bits in combination with the keystream bits. The keystream bits,
already embedded in the ciphertext, are cancelled out and the original plaintext is revealed
to the receiver.

The sender and the receiver use the non-linear stream cipher to compute exactly the
same keystream. Then, the sender combines the keystream with the plaintext to produce the
ciphertext by using the XOR operation. The receiver performs the same technique on the
ciphertext together with the keystream to reconstruct and reveal the plaintext.

In most cryptosystems it is important to link multiple encrypted messages in one crypto-
graphic session, this is called chaining of encryption. Stream ciphers inherently provide this
feature since their ciphertext is produced incrementally. It uses the previous internal state
and a successor function to step forward.

Besides these historical stream cipher designs there are several new proposals in the lit-
erature [4, 47, 57, 76]. Despite their advantages in flexibility and speed, stream ciphers are
currently scarcely used in secure systems that provide strong cryptographic security. Typical
stream cipher attacks aim to separate the plaintext from the encryption bits. For instance, a
malleability attack exploits a general and unavoidable weakness in traditional stream ciphers
where the keystream is generated independently from the plaintext. Small alterations (bit-
flips) to the ciphertext might be sufficient to perform the attack without actually recovering
the secret key. More details are given in Section 2.1.

The security that is provided by the underlying building blocks of stream ciphers are
well-studied. However, the security implications of these separate components may not hold
when they are combined and used together in one cryptographic algorithm. Instead, the
comprehensive security implications of block ciphers are better understood [19, 25].
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2 Cryptographic attacks

This section introduces seven fundamental cryptanalytic techniques which are used in cryp-
tographic attacks, also referred to as cryptanalysis. There are many more advanced and
complex cryptographic attack methodologies and techniques proposed in the literature [18,
22,24,26,44,45,54,84,125]. However, to maintain readability, only very rudimentary versions
of the fundamental techniques are introduced. The type of cryptosystem that is mainly used
to demonstrate the attack techniques is a variant of the non-linear stream cipher system,
introduced in Section 1.2.

To mount a cryptographic attack, it sometimes requires significant computational effort to
recover the secret key. The computing power that is required reflects the attack complexity, see
Section 1.1. It is possible to generalize the computations that are required for a cryptographic
attack in such a way that they can be (partially) pre-computed. Such technique is commonly
referred to as Time-Memory Trade-Off (TMTO). The general idea is to split a cryptographic
attack into two phases, a pre-computation phase (off-line) and active attack phase (on-line).
For more information on this topic, please refer to the TMTO methods and efficient search
techniques proposed in the literature [2, 10–12,20, 21, 27, 61, 77, 80, 102, 115, 117].

2.1 Malleability attack

The specifics of a synchronous stream cipher that produces a non-linear binary sequence are
explained in Section 1.2. It shows an illustration of a typical cryptosystem that uses such
a cipher. The generated binary sequence serves as the keystream and is combined with the
plaintext by applying the exclusive-or (XOR) operator. Such a cryptosystem could in prin-
ciple provide a secure channel which protects the confidentiality of the data transmission.
However, without further protection, the integrity of the data is not guaranteed. Additional
countermeasures, such as a Message Authentication Code (MAC), can protect the authentic-
ity of the data. Without supplementary cryptographic techniques a stream cipher system is
vulnerable to a malleability attack.

During a malleability attack the ciphertext is transformed in such a way that it still
decrypts to bona fide plaintext, yet satisfies the attacker’s purpose. Note, that the goal of a
malleability attack is not to recover the secret key. In fact, it tries to undermine the security
of the cryptosystem without having any knowledge of the secret key. Figure 2.1 demonstrates
a data transmission tampering of a banking application that is vulnerable to a malleability
attack. A fairly small money transfer is altered by a single bit-flip and suddenly represents a
very large money transfer. Even if the keystream is produced by an extremely secure stream
cipher, other components of the cryptosystem might still be vulnerable. It is the strength of
the entire cryptosystem that defines the actual security.

ciphertext = 0011 1100 0011

tampering = 1 ⊕

ciphertext′ = 1011 1100 0011

Eve (adversary)

amount(100) = 0000 0110 0100

keystream = 0011 1010 0111 ⊕

ciphertext = 0011 1100 0011

Alice (sender)

ciphertext′ = 1011 1100 0011

keystream = 0011 1010 0111 ⊕

amount(2148) = 1000 0110 0100

Bob (receiver)

Fig. 2.1: Malleability attack alters the value of a money transfer
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Although a malleability attack appears to be powerful, it is not that straightforward to
mount. The adversary needs to know exactly where and when the amount is transmitted
to be able to tamper with it. A bit-flip at an incorrect position is meaningless and will
most likely result in a corrupted transmission. Knowledge about the keystream allows an
adversary to prepare more carefully crafted tampering. However, this involves reuse of the
keystream, a situation which a stream cipher should avoid at all costs. As Section 1.2 states,
it is important that the binary sequence is used only once. To enforce this, the internal state
should be initialized with a unique value each time the stream cipher is used. For instance,
such a value can be derived from a secret key in combination with fresh random challenges.

A secure exchange of fresh random challenges and a protected Initialization Vector (IV)
of the cipher is not a trivial task [15]. In fact, several proprietary stream ciphers allow an
adversary to influence the initialization of the internal state in such a way that exactly the
same keystream is produced as it was generated in a previous session. A comprehensive,
yet practical, example of a stream cipher malleability attack is given in [48]. It describes
the first practical attack on the MIFARE cryptosystem. The memory contents of a MIFARE
Classic smartcard can be revealed even without any knowledge of the secret key. The MIFARE
cryptosystem is further analysed and a number of attacks appeared in the literature [34, 37,
41, 62, 62, 64, 67, 81, 95, 100, 101, 118, 119, 121, 122, 126].

2.2 Divide-and-conquer attack

A very powerful way to reduce the complexity of a computation is to divide one big problem
into two separate small problems, often referred to as divide-and-conquer. It is used in various
fields within computer science to optimize the solving of hard computational problems [9,13,
14,56]. Its main purpose to reduce computational complexity and generic applicability makes
this technique ideally suitable to attack certain types of cryptosystems [46].

As mentioned in Section 1.1, a cryptographically secure cipher with a secret key of sig-
nificant length, for instance 80 bits, takes a lot of time and resources to solve. Dividing the
exhaustive search to find the secret key for such a cryptosystem would not reduce the com-
plexity itself. It only allows the adversary to parallelize two searches, each of exactly half the
complexity of the main problem 279. However, when the adversary finds a way to divide the
big problem into two smaller problems, the complexity is significantly reduced.

Cipher 1

k0 k1 k2 k3 k4 k5 k6 k7

a
b c

d

f(a, b, c, d)

keystream

Fig. 2.2: Divide-and-conquer cipher

The cipher schematic, illustrated in Fig-
ure 2.2, is used to demonstrate how to mount
a divide-and-conquer an attack. The 8-bit se-
cret key k = k0 . . . k7 ∈ F

8
2 is loaded into the

internal state during initialization. Each encryp-
tion round the internal state rotates one step to
the left after producing a keystream bit as out-
put. The key space of the cipher that consists of
only 28 = 256 keys and keystream repeats itself
after eight rotations. Therefore, this algorithm
should be considered extremely insecure. How-
ever, its simplicity suits its purpose to demon-
strate a divide-and-conquer attack.

The eight squares in Figure 2.2 represent the rotate register of the internal state. It is
loaded with the ones and zeros of the secret key during initialization. The f(·) component is
a non-linear function which uses 4 input bits (arrows from above) and produces 1 output bit,
which is referred to as keystream ks. The keystream bits are defined by ksi where i represents
the number of performed cipher rotations.

Consider the first three encryption rounds as illustrated in Figure 2.3. The input to the
f(·) function is different for the first three keystream bits ks0, ks1 and ks2. However, the secret
key bits required to produce ks0 and ks2 are the same, although they differ in order. To be
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precise, the first keystream bit is given by ks0 = f(k0, k2, k4, k6) and the third keystream bit
by ks2 = f(k2, k4, k6, k0).

k0 k1 k2 k3 k4 k5 k6 k7

f(k0, k2, k4, k6)

ks0

k1 k2 k3 k4 k5 k6 k7 k0

f(k1, k3, k5, k7)

ks1

k2 k3 k4 k5 k6 k7 k0 k1

f(k2, k4, k6, k0)

ks2

Fig. 2.3: Computation of the first three encryption rounds and
the derivation of ks0, ks1 and ks2

The odd and even patterns in the keystream are properties of this particular divide-and-
conquer cipher. Only the even key bits k0, k2, k4 and k6 are required to compute the even
keystream bits ksx where x ∈ 2N defines the even positions, while only the odd key bits k1,
k3, k5 and k7 are used to compute the odd keystream bits ksy where y ∈ 2N+ 1 defines the
odd positions.

Cipher 1 was designed as one big algorithm, but it can easily be divided into smaller
algorithms. Figure 2.4 demonstrates how to divide the cipher, both having a key-size of
exactly half compared to the original cipher.

k0 k1 k2 k3 k4 k5 k6 k7

a
b c

d

f(a, b, c, d)

keystream = ks0ks1ks2 . . .

k0 k2 k4 k6

a b c d

f(a, b, c, d)

keystream = ks0ks2ks4 . . .

(a) Cipher for even keystream bits

k1 k3 k5 k7

a b c d

f(a, b, c, d)

keystream = ks1ks3ks5 . . .

(b) Cipher for odd keystream bits

Fig. 2.4: Divide-and-conquer attack by dividing odd and even keystream bits

With only half of the internal cipher state, the computational complexity for the odd and
even cipher drops to 24. Consequently, the total complexity for both together is reduced to
only 2× 24 = 25 = 32, which is considerably less than the initial computational complexity of
28 = 256. Note, that a divide-and-conquer attack does not just halve the entropy of the key

space. Such division would only yield a relative small complexity reduction of 2
8

2
= 27 = 128.

It is far more powerful to separate the cipher into two smaller algorithms which rely on two
independent secret keys, where the two keys represent both halves of the original secret key.

2.3 Correlation attack

The cipher weakness that allows a correlation attack is a statically biased encryption output
that is highly-influenced by certain internal state bits which are used as input. Therefore, a
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guess for these input bits would most likely directly influence the output bits. With the use
of statistical analysis the adversary can learn information about these internal state bits.

The advantage of a correlation attack is that the adversary can significantly shrink the set
of likely secret key candidates. The stronger the bias, the more information is leaked when
analyzing the input and output relations. Stream ciphers in particular are often susceptible
to correlation attacks. There have been numerous proposals in the literature to define fast
and optimized stream cipher correlation attacks [3, 28, 32, 33, 35, 39, 82, 83, 93, 94, 97, 104].

In the case of a stream cipher, a correlation attack technique is often applicable on multi-
ple sequential encryption outputs. After a successor state is reached within a stream cipher,
several previously chosen bits might overlap with the input to the next encryption. Further-
more, the bias is verifiable on every produced output, which allows an adversary to correlate
previous and successor states. The combination of multiple biased encryption outputs leads to
more information of the complete internal state. The set with the most probable candidates
is likely to contain the internal state that is derived from the correct secret key.

To explain the basic correlation attack [110,111], a vulnerable stream cipher is introduced
in Figure 2.5. Cipher 2 is a simple rotating stream cipher with an output component that
relies on the non-linear filter function f(·). To increase readability the function definition is
also given in the corresponding component of the figure.

Cipher 2

k0 k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14 k15

a
b c

d

f(a, b, c, d) = ((a ∧ b ∧ c) ∨ (a ∧ b ∧ c))⊕ d

keystream = ks0ks1ks2 . . .

Fig. 2.5: Stream cipher with correlation weakness, initialized by secret key k

The cipher illustrated in Figure 2.5 is similar to the cipher introduced in Section 2.2
in terms of computing its successor and the way it produces encryption bits. However, it
consists of two separate rotating registers and has a larger internal state that is initialized
by 16 secret key bits. Furthermore, it does not suffer from the same weakness that allows
separation between odd and even bits output. Instead, it employs a non-linear filter function
which generates output that is statistically biased in correlation to the input. The function
f(·) is given by Definition 1.

Definition 1. Define the statistically biased non-linear filter function f : F4
2 → F2 as

f(a, b, c, d) = ((a ∧ b ∧ c) ∨ (a ∧ b ∧ c))⊕ d

The filter function takes four input bits (a, b, c and d) and produces one output bit by
evaluating the specified non-linear equation. The boolean table which represents the input-
ouput relation of f(·) is illustrated in Figure 2.6.

abcd f(a, b, c, d)

0000 1

0001 0

0010 0

0011 1

abcd f(a, b, c, d)

0100 0

0101 1

0110 0

0111 1

abcd f(a, b, c, d)

1000 0

1001 1

1010 0

1011 1

abcd f(a, b, c, d)

1100 0

1101 1

1110 1

1111 0

Fig. 2.6: Boolean input-ouput table that corresponds to Definition 1
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The bias of the function is easily determined by looking at its input-output relation showed
in Figure 2.6. Although f(·) produces a balanced output, which means that half of the pro-
duced output bits are zero and half of them are one, input bit d has significantly more influence
on the output than the input bits a, b and c. Note the four marked rows in the input-output
table illustrated in Figure 2.6 which point out where the input bits abc are equal to each
other.

In 12 out of the 16 inputs for abcd, the output bit ks is exactly the same as the input bit
d. Therefore, it is valid to conclude that on average with randomly distributed input bits, in
3

4
of the cases ks = d, while only in 1

4
of the cases ks 6= d. This property makes the second

rotation register much more influential to the value of the produced keystream bits.

Assume an adversary recovers the first keystream bit ks0. She knows that ks0 was com-
puted by the function f(·) with the arguments f(k3, k7, k10, k12). Therefore, she can determine
with probability 3

4
the correct value for input d, which is for ks0 the thirteenth secret key

bit k12. Although this reduces the set of likely candidate keys significantly, the power of a
correlation attack is best demonstrated when it is applied multiple consecutive times.

Subsequently, consider a set of 16 contiguous keystream bits ks0ks1. . .ks15. The secret
key bits k3k7k10k12 are used to compute ks0. Likewise, after five rotations the second register
is completely rotated and the secret key bits k8k1k4k12 are used for ks5. According to Defi-
nition 1, the fourth bit d is the most influential input bit. For both cases, ks1 and ks5, the
fourth input bit to f(·) is the secret key bit k12.

Let us combine the probability that 1

4
of the time k12 6= ks0 and that also 1

4
of the

time k12 6= ks5. If ks0 = ks5, the adversary can assume that the average probability of
ks0 = ks5 6= k12 significantly drops to 1

4
× 1

4
= 1

16
. This is because it is highly unlikely that

in both cases the (independent) input bits a, b and c are equal to each other. A correlation
attack that focusses on a combination of keystream bits provides a much greater advantage.
The probability of a correct key-bit guess can be derived from the product of all probabilities
that correspond to an independent verifiable statistical bias in the cipher.

The correlation attack, mounted on the output ks0 and ks5, is also valid for many more
bits from the recovered keystream set. For every pair of keystream bits which are five positions
apart (ksi = ksi+5 where i ∈ {0, . . . , 10}), the average probability that they are exactly the
same as the corresponding bit from the secret key is 15

16
. The properties of this cipher allow

an even better (but a more complex) correlation attack. However, the purpose of the previous
description is to present a simple and explanatory example.

The scientific article [68] introduces a widely deployed cipher that is vulnerable to a
correlation attack. It shows how to recover the secret key using a statistical bias in the output
bits selection function that is part of the cryptographic algorithm. Although it is slightly
different from the example presented here, the attack also exploits a correlation weakness to
learn information about the internal state bits.

2.4 Guess-and-determine attack

Despite several well-known historical recommendations in the literature [5,70,86], many pro-
prietary stream ciphers do not use their complete internal state to compute a keystream bit.
Such cipher design allows an adversary to mount a guess-and-determine attack. This attack
abuses the fact that only a few internal state bits are defined as input to the filter function.
Therefore, only these bits determine the value of the computed keystream bit.

To mount such an attack, an adversary only guesses used bits, computes the output and
evaluates it against the corresponding keystream bit that was recovered from an eavesdropped
trace. The evaluation immediately leads to a contradiction for many of the guessed candidates.
After evaluation, the internal state is updated accordingly and only additional required bits
are guessed.

There are several impressive, yet slightly complex, examples in the literature [23,60,69,74,
75,103,129] that show the feasibility of guess-and-determine attacks on various cryptographic
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algorithms. To avoid the details of complex and optimized techniques another elementary
stream cipher is introduced, see illustration in Figure 2.7.

Cipher 3

k0 k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14 k15

a
b c

d

f(a, b, c, d) = (a ∧ b)⊕ c⊕ d

keystream = ks0ks1ks2 . . .

Fig. 2.7: Non-linear stream cipher, initialized by secret key k

Cipher 3, illustrated in Figure 2.7, is a clear example of a stream cipher that is vulnerable
to a guess-and-determine attack. The output component embeds a balanced non-linear filter
function which is given by Definition 2.

Definition 2. Redefine the filter function f : F4
2 → F2 as

f(a, b, c, d) = (a ∧ b)⊕ c⊕ d

The boolean table that represents the input-ouput relation of f(·) from Definition 2 is
shown in Figure 2.8. Note, that c and d have always influence on the computed keystream
bit, while the influence of a and b depend on one each other.

abcd f(a, b, c, d)

0000 1

0001 0

0010 0

0011 1

abcd f(a, b, c, d)

0100 0

0101 1

0110 1

0111 0

abcd f(a, b, c, d)

1000 1

1001 0

1010 0

1011 1

abcd f(a, b, c, d)

1100 1

1101 0

1110 0

1111 1

Fig. 2.8: Boolean input-ouput table that corresponds to Definition 2

The adversary searches for a weakness in the cipher state transitions that allows a guess-
and-determine attack. She starts by examining the corresponding cipher structure and the
specified input bits which are required to compute the non-linear function. As mentioned in
Section 2.3, the cipher illustrated in Figure 2.5 enables the adversary to guess only a few bits
of secret key per computed output.

The cipher requires only four inputs bits at a time to compute one keystream bit. The 16
bit long secret key initializes an internal state. Therefore, the internal state has an entropy
of 16 bits. Nevertheless, if only four bits of the internal state are used each time to compute
a keystream bit, it makes no sense to increase complexity and guess all the bits at once.
Especially, when the guessed values are not used to compute the next output bit. The power
of a guess-and-determine attack rests itself in guessing each time only the bits that are actually
used and make sure their output do not contradict with the keystream.

An adversary can easily perform an exhaustive-search over all 16 different input bits abcd
which are shown in Figure 2.8. Next, she computes the result for each f(a, b, c, d) and tests
the output against one of the recovered keystream bits. This would allow her to distinguish
good and bad candidates.

Function f(·) is balanced, so it evaluates for all 16 different values of abcd to eight times
to a zero and eight times to a one. Therefore, when the keystream bit is a zero, the eight abcd
candidates, which lead to a one, are disqualified (also referred to as eliminated).
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After computing f(·) and performing one rotation on both registers, the cipher successor
state is reached. The next keystream bit is computed with four different secret key bits. The
adversary again uses the same technique and eliminates incorrect abcd candidates for the
second keystream bit. The computational complexity drops significantly when it is possible
to evaluate the input for each consecutive keystream bit independently from the others.

ks0 = f(k3, k7, k10, k12)

ks1 = f(k4, k8, k0, k13)

ks2 = f(k5, k9, k1, k14)

ks3 = f(k6, k10, k2, k15)

ks4 = f(k7, k0, k3, k11)

Fig. 2.9: First five
evaluations of f(·)

Assume an adversary recovered 16 consecutive keystream
bits ks0ks1. . .ks15, let us examine how she can mount a guess-
and-determine attack on the cipher illustrated in Figure 2.5.
To clarify the secret key bits which are used to compute a
keystream bit, the first 5 evaluations of the filter function f(·)
are specified in Figure 2.9.

The four secret key bits k3k7k10k12 are used to produce
the first keystream bit ks0. The adversary needs to guess all
24 = 16 candidates for the 4 secret key bits k3k7k10k12. After
elimination, only half of the candidate set survives the test. So,
each guess of 4 bits allows the adversary to eliminate 1 bit of
entropy. This leaves the adversary after 24 computations with

a smaller set of 2
4

2
= 23 possible candidates.

Evaluation of the second keystream bit ks1 requires the adversary to guess another 4
bits of the secret key, this time for k4k8k0k13. Again, only half of the candidate set survives.
These four secret key bits are completely different from those used to compute ks0. In fact,
the adversary guessed now 8 independent secret key bits, namely k0k3k4k7k8k10k12k13. Even
so, she only has 23× 24 = 27 candidates after guessing the bits that compute ks1. In contrast
to the regular 28 candidates one should consider when 8 bits are unknown. It becomes even
better, after computing the keystream bit for all 27 candidates, half of them are once again
eliminated. It leaves a set of only 26 possible candidates with values that represent 8 bits of
the secret.

The adversary applies the same technique on the third keystream bit ks2. She guesses 12
secret key bits and after 210 computations only 29 possible candidates survive. The fourth
keystream bit ks3 is computed with the secret key bits k6k10k2k15. Note that the secret key bit
k10 was already guessed to compute the first keystream bit ks0. It introduces two (partially)
independent problems, a property which is similar to the divide-and-conquer attack described
in Section 2.2.

Evaluating of ks3 is rather special, this time the adversary only has to guess three bits
instead of four. After guessing the bits and before evaluating the candidate set against the
keystream, the size of the candidate set is 212. Since a computation has to be performed for
each of the candidates in this set, the total attack complexity grows to 212 computations.
Nevertheless, after evaluating ks3, the adversary guessed 15 secret key bits and compiled a
set of only 211 candidates.

The last secret key bit k11, which is still not considered, is required to compute the
fifth keystream bit ks4. Guessing k11 only mildly increases the computational complexity
of the attack. The candidate set is first doubled (again) to 212 and after 212 computations
immediately halved again to 211 candidates. Testing the candidates requires in total two times
the largest computation of 212 plus some insignificant and negligible smaller computations
which were performed on the smaller candidate sets. This results in a total attack complexity
of (2× 212) + 210 + 27 + 24 = 9360 ≈ 213 instead of the supposed 216 = 65536 computations.

Although the computational complexity is reduced significantly in this example, further
(more complex) optimizations of the guess-and-determine strategy could improve this attack
even more. Such techniques are not further explored in this section, although they are further
addressed in the cryptographic attacks described in [62, 95, 123, 124].
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2.5 Differential cryptanalysis

The Data Encryption Standard (DES), introduced in 1977, was considered theoretically secure
for many years. This confidence lasted until 1991 when Biham and Shamir showed in [16] that
it is possible to cryptographically attack a cipher that is similar to DES. They used a new
attack technique which they introduced as differential cryptanalysis.

The company IBM, responsible for the initial design of DES, claimed in [36] that they were
already familiar with this particular attack technique for more than 15 years. Furthermore,
they explained to have used their knowledge to prevent differential cryptanalysis on DES as
much as possible.

Nonetheless, two years later, Biham and Shamir published another article [17] in which
the authors specifically attacked the cryptographic algorithm of DES. The attack requires
an enormous amount of gathered data and is therefore considered purely theoretical. Their
publications inspired many fellow academics to further explore and optimize the differential
attack technique both for block ciphers [1, 31, 87] and for stream ciphers [53, 99, 128].

The applicability of differential cryptanalysis highly depends on the possibility to gather
a set of similar encryptions which differ only to a certain extent. A straightforward approach
would be to find a way that directly influences and only slightly changes the internal state
of the cipher. To apply such a technique in practice, often additional components of the
cryptosystems are used to intentionally create the desired difference in the internal state.
Examples of such components are the internal state initialization procedure, key diversification
schemes and random number generators. With control over these components an adversary
can often predict and pre-compute the desired changes.

The initialization procedure of the cipher might allow an attacker to specifically change
one internal state bit at a certain position. Such a minor change could lead directly to a
different output which indicates the changed bit is a significant input to the filter function.
Likewise, when the change does not influence the corresponding keystream bit, it reveals that
the bit is an insignificant input to filter function.

Consider the non-linear stream Cipher 4, illustrated in Figure 2.10. It uses the non-linear
filter function from Definition 2. Although the workings of the cipher are similar to that of
Cipher 3, the internal state is initialized in a different way.

Cipher 4

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

a
b c

d

f(a, b, c, d) = (a ∧ b)⊕ c⊕ d

keystream = ks0ks1ks2 . . .

Fig. 2.10: Non-linear stream cipher that initializes a fresh internal state
with the key k and nonce n by xi ← ki ⊕ ni where i ∈ {0, . . . , 15}

Many cryptosystems use random challenges to add freshness to the encryption. In this
example the challenges consist of a 16-bit random value which is called the nonce n. Fur-
thermore, the bits of k are not just placed into the internal state of the cipher like Cipher 3.
Instead, they are loaded with the exclusive-or (XOR) of the secret key k and the nonce n. To
be precise, the initialization is performed by xi ← ki ⊕ ni where i ∈ {0, . . . , 15}.

Assume two additional attack vectors on the cryptosystem. The adversary has complete
control over the nonce n and secondly, she can invoke and observe plain keystream from an

11



authentication attempt as often as she likes. This allows her to perform differential crypt-
analysis in the following way. First, she authenticates using a nonce n and stores the first
computed keystream bit ks0. Next, she flips the fourth bit n3 from the nonce n which gives
her an alternative nonce n′. Then, she re-authenticates with the nonce n′ and compares the
computed bit ks′0 against the previously stored keystream bit ks0.

After the two authentications, the adversary did not recover the actual value of x3. How-
ever, she does know that the difference between the internal states of the two authentication
sessions is a negation of the bit x3. Furthermore, the bit x3 represents input a to the filter
function, which in turn is used to compute the first keystream bit for both authentications ks0
and ks′0. Note, that input b, represented by x7, was not altered by the nonce since n7 = n′

7.
The same holds for input c and d, since the fourth bit of the nonce was changed.

A closer look at the input-output relation of the filter function (see Figure 2.8) reveals
that the value of input a only matters if input b is true. The first keystream bit is computed
with x3 as input a and x7 as input b. Consequently, x3 only influences the keystream bit ks0
when x7 = 1. Therefore, if ks0 = ks′0 the adversary can conclude that x7 = 0. Likewise, the
contrapositive is valid as well, if ks0 6= ks′0 she can conclude that x7 = 1.

In conclusion, a differential attack can be mounted on this cipher simply by flipping the
fourth bit of the nonce and uses it to re-authenticate. The observed differences between
the first computed keystream bit in both authentications reveals the value of x7. With the
knowledge of nonce bit n7 and the determination of x7, the secret key bit k7 can be simply
recovered by computing k7 = x7 ⊕ n7.

This particular example shows how to recover one bit of the secret key by performing only
two authentications and with negligible computational complexity. Since the stream cipher is
rotating regularly, the same technique could be applied to recover more bits of the secret key.
Likewise, flipping nonce bit n4 and observation of a difference in ks1 reveals x8.

Differential cryptanalysis is a powerful technique to recover a secret key. Some carelessly
designed cryptosystems are vulnerable to such an extent that it is even possible to mount a
differential attack in practice. For instance, the MIFARE Classic and iClass ciphers, presented
in [67,95] and [63,65,66], are vulnerable to a practical differential attack. Both ciphers allow
manipulation of the input in such a way that the computed output leaks information about
the secret key.

A differential attack often requires specific input-output differences. The initialization of a
cryptosystem might not always allow an adversary to enforce such differences in the internal
state. Nonetheless, there is always the possibility to gather many traces and filter out the
ones that satisfy the predetermined conditions. Moreover, according to the birthday paradox,
the number of traces the adversary needs to gather is much smaller than the number usually
suggested by intuition, see [112] for more details.

2.6 Algebraic attacks

Several cryptographic attack methodologies aim to reduce the computational complexity of
a stream cipher by attacking the non-linear function. However, some cipher designs consist
of one or more linear components. Such ciphers are vulnerable to algebraic attacks. The
literature includes several historical contributions concerning algebraic attacks [78, 79, 106,
107]. Throughout the last decade, several attack generalizations and optimizations were pro-
posed [7, 8, 30, 38, 40, 42, 43, 59, 92]. This section, however, only defines the basic principles of
algebraic attacks. Note that algebraic attacks should not be confused with linear cryptanal-
ysis, which was introduced in [90] to attack the block cipher DES.

A property of a linear boolean function is the possibility to postpone an evaluation. Com-
putational problems which are formalized during a cryptographic attack can be written as
a system of boolean equations [114]. Instead of computing the outcome directly, a combina-
tion of these equations can be solved by well-known techniques such as Gaussian elimina-
tion [78, 89, 98, 107, 113, 127].
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In boolean algebra, a function f is F2-linear if it satisfies f(x⊕ y) = f(x)⊕ f(y) for any
pair (x, y) of elements in its domain. Moreover, a boolean linear function defines that the
input variables either always or never influence the output. Consequently, an observation of
influenced output bits, that were computed by a linear function, leak a deterministic linear
relation about the corresponding changes of the input bits. When a sequence of influenced
output bits exceeds the number of input bits, it is just a matter of solving the system of
equations without the need for expensive computations. Contrarily, a non-linear function
makes the inversion process more difficult, since the influence of the individual input bits
depends on the actual value of these bits. In contrast to a linear function, it is much more
difficult to generalize an equation for non-linear functions which holds for every input.

Consider the cipher design with linear output as illustrated in Figure 2.11. It consist of
two very small bitwise rotating registers which both deliver one input bit to the linear filter
function f(·) in order to produce the next keystream bit.

Cipher 5

k0 k1 k2 k3 k4 k5 k6 k7

a b

f(a, b) = (a⊕ b)

keystream = ks0ks1ks2 . . .

Fig. 2.11: A linear stream cipher, initialized by secret key k

The linear filter function f(·) consists of only one exclusive-or (XOR) operation and is
redefined in Definition 3. The XOR operation, denoted by the symbol ⊕, represents a math-
ematical addition modulo 2.

Definition 3. Redefine the filter function f : F2
2 → F2 as

f(a, b) = (a⊕ b)

The XOR operator is a bitwise linear operation and allows an adversary to compile a
system of equations. Consider the following keystream bits ks0ks1. . .ks7 = 10110101. Fig-
ure 2.12 consists of four columns, each of which represents a write-up or evaluation step.
After three steps, eight equalities are formed which correspond to the considered keystream.
A combination of those equalities determines two equations which should be satisfied when
guessing the actual secret key bits.

Given the equalities denoted in Figure 2.12d it is feasible to deduce two equations, which
are given below in Equation (1) and Equation (2). The equations specify that there are two
sets of secret key bits. All elements within one set carry the same value (either zero or one).
However, both sets represent the opposite value to each other, which is confirmed by the fact
that k6 is an element of the first set and its complement k6 is an element of the second set.

k6 = k3 = k1 = k5 = k7 (1)

k6 = k4 = k2 = k0 (2)

According to Equation (1) and Equation (2) there could be only two solutions, either
k0k1. . .k7 = 10101000 or its bitwise complement k0k1. . .k7 = 01010111. The computational
complexity to evaluate the equation is negligible. However, the actual work that is required
also includes the evaluation of the keystream bits, deducing the equalities and formulating
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ks0 = k2 ⊕ k5

ks1 = k3 ⊕ k6

ks2 = k4 ⊕ k7

ks3 = k0 ⊕ k5

ks4 = k1 ⊕ k6

ks5 = k2 ⊕ k7

ks6 = k3 ⊕ k5

ks7 = k4 ⊕ k6

(a)

k5 = k2 ⊕ ks0

k6 = k3 ⊕ ks1

k7 = k4 ⊕ ks2

k5 = k0 ⊕ ks3

k6 = k1 ⊕ ks4

k7 = k2 ⊕ ks5

k5 = k3 ⊕ ks6

k6 = k4 ⊕ ks7

(b)

k5 = k2 ⊕ 1

k6 = k3 ⊕ 0

k7 = k4 ⊕ 1

k5 = k0 ⊕ 1

k6 = k1 ⊕ 0

k7 = k2 ⊕ 1

k5 = k3 ⊕ 0

k6 = k4 ⊕ 1

(c)

k5 = k2

k6 = k3

k7 = k4

k5 = k0

k6 = k1

k7 = k2

k5 = k3

k6 = k4

(d)

Fig. 2.12: Evaluation of ks0ks1. . .ks7 = 10110101 leads to the equalities of (d)

the final equation. It is much harder to generalize such tasks in terms of computational
complexity, especially since several tricks to efficiently optimize such effort were proposed in
the literature [7, 29, 88, 92].

Techniques that find their origin in the previously explained algebraic attacks are applied
in practice to the proprietary Hitag2 cipher described in [123]. At first it considers two linearly
combined inputs as one element of the initialization. This allows an adversary to drastically
reduce the list of possible internal states by avoiding independent evaluation of both inputs.

2.7 Meet-in-the-middle attack

It is not trivial to increase the computational complexity of a cryptosystem. General reasoning
could steer a designer to apply inefficient enhancements [58,96]. For instance, it is misleading
to think that applying a cipher twice, using a completely different secret key, would double the
total computational complexity of a cryptographic algorithm. At first sight it suggests that an
adversary needs to perform an exhaustive search twice, to independently determine the first
and second secret key. In practice however, it is unlikely that an adversary would use such a
method to attack a cryptosystem that applies multiple encryptions. This section introduces a
powerful cryptanalytic technique that attacks such a cryptosystem from two sides, the input
and the output, and tries to correlate the results in the middle. The technique is commonly
referred to as a meet-in-the-middle attack. It can be seen as a special form a divide-and-
conquer attack, since it generally tries to solve two independent problems concurrently.

Doubling the computational complexity means that the entropy of both secret keys are
multiplied with each other, resulting in the product of both secret keys. However, a scheme
where two independent ciphers are applied in a consecutive manner is vulnerable to a meet-
in-the-middle attack. Such an attack reduces the computational complexity to the sum of
both entropies instead of to the product.

A meet-in-the-middle attack requires knowledge of at least one plaintext-ciphertext pair.
With such a pair, the adversary can attack both independent ciphers at the same time. The
plaintext is used as input to the first cipher, while the ciphertext is considered as output of
the second cipher. The idea is to find a list of candidate outputs (ciphertexts) of the first
cipher and a list of candidate inputs (plaintexts) for the second cipher. The intersection of
both lists reveals a relation between the two independent secret keys. A plaintext-ciphertext
pair that consists of a long enough bitstring singles out only one possible candidate. When
multiple candidates are found, more plaintext-ciphertext pairs can be utilized as test vectors
to recover the valid secret keys.

For instance, Figure 2.13 shows a cryptosystem that utilizes two different stream ciphers
with completely independent secret keys. The ciphers are applied consecutively after each
other to encrypt the plaintext. After encryption with the first cipher, the plaintext is trans-
formed into an intermediate state which represents the output of the first cipher as well as
the input to the second cipher.
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stream cipher 1 stream cipher 2

plaintext

⊕

intermediate state

⊕

ciphertext

Fig. 2.13: cryptosystem which is vulnerable to a meet-in-the-middle attack

Assume that both stream ciphers in Figure 2.13 are not susceptible to a known crypto-
graphic weakness. This leaves the adversary with no other option than to perform an exhaus-
tive search over the complete key space of both ciphers. Instead of trying for each first cipher
key guess all possible second cipher keys, the adversary performs the following attack steps.

1. She first recovers a plaintext-ciphertext pair of moderate length. It is preferably a longer
bitstring than the secret keys length of both stream ciphers together. More bits, means
more information and avoids multiple (false) candidates when correlating the output of
the first cipher with the input of the second cipher.

2. Then, she encrypts the plaintext with the first cipher using all possible secret keys and
stores the (encrypted) output in one big list. This output list represents the intermediate
state candidates.

3. Next, she decrypts the ciphertext with the second cipher using all possible secret keys
and looks if the (decrypted) input entry exists in the output list of the first cipher.

4. Finally, the decrypted input entry that exists in the encrypted output list is the value
where both ciphersmeet in the middle. The secret keys used to encrypt and decrypt to this
value are the secret keys used by the original system to produce the plaintext-ciphertext
pair.

Instead of performing a brute-force attack on the second cipher for each first cipher se-
cret key guess, the adversary only has to perform two independent brute-force attacks and
correlate the intermediate results. This makes the cryptographic problem only twice as big,
meaning the sum of twice the original (computational complexity)×2, instead of the product
(computational complexity)2.

The meet-in-the-middle attack is a well-known strategy to defeat weak components and
schemes embodied in various cryptosystem. Several improvements and practical implementa-
tions of meet-in-the-middle attacks are given in the literature [6,49–51,55,73,116]. Likewise,
the article [68] introduces a variant of the meet-in-the-middle attack that recovers the secret
key during the cipher initialization phase. It first shows how to recover the internal state of
the CryptoMemory cipher. Then, it starts from the default initialization and guesses the first
half of the secret key while running forward and guesses the other half running backwards.
During the intersection of both internal state candidate lists, the overlapping state represents
the secret key.

Some cryptosystems explicitly define encryption schemes to mitigate meet-in-the-middle
attacks. For instance, the Triple DES (3DES) specification defines the use of multiple consec-
utive utilizations of the Data Encryption Standard (DES). To mitigate a meet-in-the-middle
attack, the crypto operation is performed three times instead of two. Note, that the increase
in computational complexity is limited to two times the original 256×2 = 2112 bits, instead
of the intuitively expected three times. Since the achieved complexity is only two single DES
keys, the 3DES scheme defines a way to securely perform three times single DES using exactly
two secret keys of 256 bits. It involves a sequence of encryption, followed by a decryption and
encryption again.

Multiple encryption schemes are useful to increase the computational complexity of block
ciphers, yet they do not provide the same security features as stream ciphers. Combination
of various stream cipher outputs means that multiple keystreams are all combined together
with the plaintext using an XOR operation. This inherently defines a direct linear relation
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between the computed output bits of each utilized stream cipher. In fact, [91] shows that
the keystream produced by a combination of two additive stream ciphers is as secure as the
strongest of the two. Although this feature does not increase the cryptographic strength, it
could be used to spread the potential risk of cipher weaknesses over multiple independent
ciphers.

3 Acronyms

3DES Triple DES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
DES Data Encryption Standard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
IV Initialization Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
MAC Message Authentication Code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
OTP One-time Pad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
PRNG Pseudo Random Number Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
TMTO Time-Memory Trade-Off. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
XOR exclusive-or . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
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70. Jovan Dj Golić. On the security of nonlinear filter generators. In 3rd International Workshop
on Fast Software Encryption (FSE 1996), volume 1039 of Lecture Notes in Computer Science,
pages 173–188. Springer-Verlag, 1996.

71. S.W. Golomb. Shift Register Sequences. Holden-Day Series in Information Systems. Holden-Day,
1967.

72. El Groth. Generation of binary sequences with controllable complexity. IEEE Transactions on
Information Theory, 17(3):288–296, 1971.

73. Jian Guo, San Ling, Christian Rechberger, and Huaxiong Wang. Advanced meet-in-the-middle
preimage attacks: First results on full Tiger, and improved results on MD4 and SHA-2. In 16th
International Conference on the Theory and Application of Cryptology and Information Secu-
rity, Advances in Cryptology (ASIACRYPT 2010), volume 6477 of Lecture Notes in Computer
Science, pages 56–75. Springer-Verlag, 2010.

74. Philip Hawkes and Gregory G Rose. Exploiting multiples of the connection polynomial in
word-oriented stream ciphers. In 6th International Conference on the Theory and Application
of Cryptology and Information Security, Advances in Cryptology (ASIACRYPT 2000), volume
1976 of Lecture Notes in Computer Science, pages 303–316. Springer-Verlag, 2000.

75. Philip Hawkes and Gregory G Rose. Guess-and-determine attacks on SNOW. In 9th Interna-
tional Workshop on Selected Areas in Cryptography (SAC 2002), volume 2595 of Lecture Notes
in Computer Science, pages 37–46. Springer-Verlag, 2003.

76. Martin Hell, Thomas Johansson, and Willi Meier. Grain: a stream cipher for constrained
environments. International Journal of Wireless and Mobile Computing, 2(1):86–93, 2007.

77. Martin E. Hellman. A cryptanalytic time-memory trade-off. IEEE Transactions on Information
Theory, 26(4):401–406, 1980.

78. Lester S. Hill. Cryptography in an algebraic alphabet. American Mathematical Monthly,
36(6):306–312, 1929.

79. Lester S Hill. Concerning certain linear transformation apparatus of cryptography. American
Mathematical Monthly, pages 135–154, 1931.

80. Jin Hong and Sunghwan Moon. A comparison of cryptanalytic tradeoff algorithms. Journal of
Cryptology, 26(4):559–637, 2013.

81. Bart Jacobs and Ronny Wichers Schreur. Logical formalisation and analysis of the MIFARE
Classic card in PVS. In 2nd International Conference on Interactive Theorem Proving, volume
6898 of Lecture Notes in Computer Science, pages 3–17. Springer-Verlag, 2011.

82. Thomas Johansson and Fredrik Jönsson. Fast correlation attacks through reconstruction
of linear polynomials. In 20th International Cryptology Conference, Advances in Cryptology
(CRYPTO 2000), volume 1880 of Lecture Notes in Computer Science, pages 300–315. Springer-
Verlag, 2000.

83. Fredrik Jönsson and Thomas Johansson. A fast correlation attack on lili-128. Information
Processing Letters, 81(3):127–132, 2002.

84. John Kelsey, Bruce Schneier, and David Wagner. Mod n cryptanalysis, with applications against
RC5P and M6. In 6th International Workshop on Fast Software Encryption (FSE 1999), volume
1636 of Lecture Notes in Computer Science, pages 139–155. Springer-Verlag, 1999.

85. Edwin Key. An analysis of the structure and complexity of nonlinear binary sequence generators.
IEEE Transactions on Information Theory, 22(6):732–736, 1976.

86. GJ Kuhn. Algorithms for self-synchronizing ciphers. In 1st Southern African Conference on
Communications and Signal Processing (COMSIG 1988), pages 159–164. IEEE, 1988.

87. Xuejia Lai, James L Massey, and Sean Murphy. Markov ciphers and differential cryptanalysis. In
10th International Conference on the Theory and Application of Cryptographic Techniques, Ad-
vances in Cryptology (EUROCRYPT 1991), volume 547 of Lecture Notes in Computer Science,
pages 17–38. Springer-Verlag, 1991.

88. Chein-Shan Liu, Satya N Atluri, et al. A novel time integration method for solving a large system
of non-linear algebraic equations. Computer Modeling in Engineering & Sciences (CMES),
31(2):71–83, 2008.

89. Harry M Markowitz. The elimination form of the inverse and its application to linear program-
ming. Management Science, 3(3):255–269, 1957.

90. Mitsuru Matsui. Linear cryptanalysis method for DES cipher. In 12th International Conference
on the Theory and Application of Cryptographic Techniques, Advances in Cryptology (EURO-
CRYPT 1993), volume 765 of Lecture Notes in Computer Science, pages 386–397. Springer-
Verlag, 1994.

91. Ueli M Maurer and James L Massey. Cascade ciphers: The importance of being first. Journal
of Cryptology, 6(1):55–61, 1993.

20



92. Willi Meier, Enes Pasalic, and Claude Carlet. Algebraic attacks and decomposition of boolean
functions. In 27th International Conference on the Theory and Application of Cryptographic
Techniques, Advances in Cryptology (EUROCRYPT 2004), volume 3027 of Lecture Notes in
Computer Science, pages 474–491. Springer-Verlag, 2004.

93. Willi Meier and Othmar Staffelbach. Fast correlation attacks on stream ciphers. In 7th In-
ternational Conference on the Theory and Application of Cryptographic Techniques, Advances
in Cryptology (EUROCRYPT 1988), volume 330 of Lecture Notes in Computer Science, pages
301–314. Springer-Verlag, 1988.

94. Willi Meier and Othmar Staffelbach. Fast correlation attacks on certain stream ciphers. Journal
of Cryptology, 1(3):159–176, 1989.

95. Carlo Meijer and Roel Verdult. Ciphertext-only cryptanalysis on hardened Mifare Classic cards.
In 22nd ACM Conference on Computer and Communications Security (CCS 2015). ACM, 2015.

96. Ralph CMerkle and Martin E Hellman. On the security of multiple encryption. Communications
of the ACM, 24(7):465–467, 1981.

97. William Millan, EP Dawson, and LJ O’Connor. Fast attacks on tree-structured ciphers. In 1st
Workshop in Selected Areas in Cryptography (SAC 1994), pages 146–158, 1994.

98. David E Muller. A method for solving algebraic equations using an automatic computer. Math-
ematical Tables and Other Aids to Computation, 10(56):208–215, 1956.

99. Frédéric Muller. Differential attacks against the Helix stream cipher. In 11th International
Workshop on Fast Software Encryption (FSE 2004), volume 3017 of Lecture Notes in Computer
Science, pages 94–108. Springer-Verlag, 2004.

100. Karsten Nohl. Cryptanalysis of crypto-1. Computer Science Department University of Virginia,
White Paper, 2008.

101. Karsten Nohl, David Evans, Starbug, and Henryk Plötz. Reverse engineering a cryptographic
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