
Types with Semantics
Soundness Proof Assistant

Olha Shkaravska
Institut of Informatics, Ludwig-Maximilians University

shkarav@tcs.ifi.lmu.de

Abstract
We present a parametric Hoare-like logic for computer-aided rea-
soning about typeable properties of functional programs. The logic
is based on the concept of aspecialised assertion, which is a pred-
icate expressing the semantics of a typing judgment in a logical
framework (here higher-order logic). Replacing in a type inference
rule the judgments by the appropriate specialised assertions, one
obtains aspecialised rule. Specialised assertions have a uniform
format, and soundness proofs of specialised rules employ uniform
sequences of steps for a variety of type systems. This allowsto
abstract from the type system and defineparametric specialised
assertion and rules. Moreover, we define aparametric soundness
condition for each program construct which ensures soundness of
the corresponding rule. To prove soundness of the specialised rule
for the concrete type system one checks the condition and instan-
tiates the parametric rule. We consider specialised logicsfor “non-
pure” type systems which contain rules with semantical sidecondi-
tions. A semantical condition makes type-checking for sucha sys-
tem undecidable. However, the condition may be approximated by
another type system. We introduce a product-like composition of
two inference systems that eliminates semantical side conditions.
The soundness condition of the composition follows straightfor-
wardly from the soundness conditions of its components and a
statement about the approximation.

Categories and Subject Descriptors F.3.1 [Logics and Mean-
ing of Programs]: Specifying and Verifying and Reasoning about
Programs—Assertions, Mechanical verification, Pre- and Post-
conditions; F.3.2 [Logics and Meaning of Programs]: Seman-
tics of Programming Languages—Denotational semantics; F.3.3
[Logics and Meaning of Programs]: Studies of Program
Constructs—Control primitives, type structure; F.4.1 [Mathe-
matical Logic and Formal Languages]: Mathematical Logic—
Mechanical theorem proving; D.2.4 [Software Engineering]: Soft-
ware/Program Verification—Assertion checkers, correctness proofs;
I.2.2 [Artificial Intelligence]: Automatic Programming—Automatic
analysis of algorithms, program verification; I.2.3 [Artificial Intel-
ligence]: Deduction and Theorem Proving—Inference engines

General Terms Theory, Verification

[copyright notice will appear here]

Keywords Assertions, program logics, type systems, automated
theorem proving

1. Introduction
Type systems and program logics such as Hoare logic tend to serve
the same purpose: to ensure properties of programs. However, the
big advantage of type systems is that they present program proper-
ties in a relatively simple form. Moreover, the inference rules of
even some quite expressive type systems generate syntactically-
driven algorithms which allow to prove the corresponding prop-
erties without human interference. This is a very desirablefeature
for the systems used in applied program verification, see, for exam-
ple, [4, 12, 13].

Before using a type system in program verification one has the
obligation to (ideally) mechanically justify its soundness w.r.t. the
operational semantics of the program language under considera-
tion. This is often not an easy exercise, but when it is done once,
one has the type system correct “forever”. A real problem with type
systems is their compatibility. The syntactic nature of properties
they express makes it difficult to compare their merits.

Program logics are, in general, more expressive than typingsys-
tems. However, despite the impressive progress in the area of auto-
mated theorem proving, proof processes do need human participa-
tion, for instance, to provide invariants. Yet another problem arises
when a predicate to prove, say, stemming from a verification con-
dition generator, is too complicated to be proved automatically, re-
quiring non-trivial instantiations of quantifiers. We willconsider an
example of such statement later.

In this work we develop the idea of a synergy between type sys-
tems and program logics [5]. One may represent a type-inference
rule in the form of a proof rule in the logic, see, for instance, [3]. In
this way a type inference system generates a logic for which auto-
mated, syntactically driven proof scripting is possible. On the other
side, the program logic helps to prove soundness of the type sys-
tem and serves as a basis on which two different type system may
be compared and combined.

The remainder of this paper is split into two main parts. In the
overview we introduce concepts and highlight the ideas on which
the current work is based. The next section is technical, devoted
mainly to concrete issues of implementation. We finish the paper
with a short overview of related papers, a summary of the results
and plans for the future work.

2. Overview of Results
Working on the Mobile Resource Guarantees (MRG) project [1]
we have developed a multi-layered infrastructure for certification
of resources. We believe that such infrastructure may be used for
reasoning about other program properties. We will sketch itbriefly
from bottom to top, see [11] for more detail.

1 2005/7/21

High-Level Type System Γ ⊢Σ eHLL : T

Specialised Logic GΣ ⊲ e : D(Γ, T)

Basic Program Logic G ⊲ e : S

Operational Semantics E ⊢ h, e ⇓ (v, h′)

compile
?

Figure 1. A family of logics for resource consumption

At the basis we have our (trusted)operational semantics.
On the next level we have a general-purpose,basic program

logic for partial correctness. Its role is to serve as a platform at
which various higher level logics may be unified. The latter pur-
pose makes logical completeness of the program logic a desirable
property. Of course, soundness remains mandatory, as the trustwor-
thiness of any application logic defined at higher levels depends
upon it.

On top of the general-purpose logic, aspecialised logic(for
example, the heap logic of [3]) is defined to capture a particular
property. This logic uses a restricted format of assertions, called
specialised assertions, which reflects the information of the high-
level type system.

Judgements in the specialised logic have the formGΣ ⊲ e :
D(Γ, T), where the expressione is the result of compiling a high-
level termeHLL down to a low-level language, and the information
in the high-level type system is encoded in a special form of as-
sertion that depends on the context and type associated toeHLL,
D(Γ, T). GΣ is a set of assumptions (invariants) corresponding
to a first-order signatureΣ. Depending on the property of interest,
this level may be further refined into a hierarchy of proof systems,
for example if parts of the soundness argument of the specialised
assertions can be achieved by different type systems.

In contrast to the general-purpose logic, this specialisedlogic
is not expected to be logically complete, but it should provide
support for automated proof search. In the case of the logic for
heap consumption, this is achieved by formulating a system of
specialised assertions whose level of granularity is roughly similar
to the high-level type system. However, the rules are expressed in
terms of code fragments in the low-level language. Since theside
conditions of the typing rules are computationally easy to validate,
automated proof search is supported by the syntax-directness of
the typing rules. At points where syntax-directness fails —such
as recursive program structures — the necessary invariantsare
provided by the type system.

Thus, on the top level we find ahigh-level type system, that
encodes information on resource consumption. In the judgement
Γ ⊢Σ eHLL : T , the termeHLL has an (extended) typeT in a
contextΓ with the first-order signatureΣ.

The aim of the present work is to ease the computer-aided
verification of the soundness of specialised logics. The soundness

proof, implemented in a theorem prover, justifies the usage of the
logic in program verification.

A “smart” proof scripting assumes:

• modularisation of specialised assertions, which allows one to
consider a complex property as a combination of simpler state-
ments,

• modularisation of proofs itself, that is splitting proofs into lem-
mas,

• proof scripts reuse.

The latter becomes possible due to common features in struc-
tures of assertions and soundness proofs arising from various type
systems. This allows to design aparametric specialised logic,
based on the modularisation principles above.

In the rest of this paper we discuss the components of our rea-
soning infrastructure in more detail and the design of the parametric
logic. We will start with a general outline and then continuewith
concrete logics for the low-level language used in the MRG project.

2.1 A basis for verification

We consider an impure functional language with its operational
semantics formalised in a higher-order logic. The big-stepop-
erational semantics is a partial correctness relation of the form
E ⊢ h, e ⇓ (h′, v) wheree is an expression in the language,
an environment (stack)E : Envs ≡ Vars → Vals, heaps
h, h : Heaps ≡ Fields → Locs → Vals are maps from the
sets of variable names, field names and locations respectively, into
the set of values, andv is a return value. The relation means that if
with the initial environmentE and heaph the expressione termi-
nates, then it evaluates tov and changes the heap toh′.

Program properties are expressed as partial correctness asser-
tions of the formG ⊲ e : P , whereG is a set of assumptions for
methods and functions (invariants) andP is a predicate of type

Spec ≡ Envs → Heaps → Heaps → Vals → Bool .

We callP a specificationof the expressione.
Each program construct, such as a simple expressionx or let-

binding, has its strongest specification,S, that is the specification
which mirrors its operational semantics,S E h h′ v ≡ E ⊢ h, e ⇓
(h′, v). The rules for function calls and method invocations, at
which we will have a closer look later in this paper, manage re-
cursion. Any predicate which holds for a construct follows from its
strongest specification. The set of the strongest specifications for
the language constructs together with an axiom

(e, P) ∈ G

G ⊲ e : P
VAX

and the rule of consequence,

G ⊲ e : Q
∀E h h′ v. (Q E h h′ v) → (P E h h′ v)

G ⊲ e : P
CONSEQ

constitutes thebasic logic, see [2].
The basic logic is sound and (relatively) complete w.r.t. the

operational semantics. The strongest specification for an expression
e is derivable applying the proof rules of the basic logics.

To express the soundness and completeness result we introduce
a predicate of the semantical validity|= e : P , which means,
that for anyE, h, h′, v, the relationE ⊢ h, e ⇓ (v, h′) entails
P E h h′ v. This is extended to contexts in the obvious way. The
soundness of the logic means that for any set of assumptionG, an
expressione and a specificationP the provabilityG ⊲ e : P
implies semantical validityG |= e : P , see [2]. The completeness
theorem ensures the converse, ifG = ∅. We have extended the

2 2005/7/21

basic logic from [2] with an AND-rule:

G ⊲ e : P
G ⊲ e : Q

G ⊲ e : P
V

Q
AND

where−
V

− : Spec → Spec → Spec is defined as

(P
V

Q) E h h′ v ≡ P E h h′ v ∧ Q E h h′ v.

2.2 From type systems to specialised logics

Consider now a typing system for the language. Following the
Foundational Proof Carrying Code (FPCC) principle “to check a
checker” one may want to justify its use in a verification frame-
work. In other words - to prove its soundness w.r.t. the operational
semantics and intended meaning of the judgment.

A typing judgmentΓ ⊢Σ eHLL : T , whereΣ is a first-
order signature, is a syntactical statement, for which the designer
of the system assumes a certain meaning. The semantics of a judg-
ment, possibly modulo compilation, is formalised in in the form
of a specialised assertion. “Modulo compilation” means that the
type system and program logic are not necessary defined for the
same language. The type system may be defined for a high-level
language, whereas the program logic is defined for the language
where the high-level one is compiled to. In MRG we work with typ-
ing systems for the high-level resource-aware functional language
Gamelot [7], which is compiled into a low-levelGrail [8]. The
program logic is defined forGrail [2].

Consider a simple property of “well-formed datatypes”. To
model datatypes, we use a predicateh
T a, expressing that an
addressa in heaph is the start of a (high-level) data-typeT . In the
basic program logic we can express the fact that the a methodc.mf

compiled from the high-level functionf :: List(T) → List(T)
preserves a well-formed data-type as follows:

⊲ c.mf (x) : λE h h
′

v. h
List(T) E〈x〉 −→ h
′

List(T) v

To abstract over the details of modeling data-structures, we con-
struct a specialised logic for this property, by restricting the form
of the assertions to reflect the high-level property to be formalised.

The definition of the specialised assertion carries with it the
high-level types of the variables, and accesses low-level predicates,
which are needed to express the property but should be hiddenin
the specialised logic itself. For instance,

D
`

x : List(T), y : List , List(T)
´

≡ λE h h′ v p.
h
List(T) E〈x〉 ∧ h
List(T) E〈y〉 −→
h′

List(T) E〈x〉 ∧ h′

List(T) E〈y〉 ∧ h′

List(T) v

Substituting in an inference rule the judgments with the spe-
cialised assertions one obtainsspecialisedproof rules, which form
a specialisedprogram logic for the type system. To prove the
soundness of an inference rule means to prove the soundness of
the corresponding specialised rule in the higher-order logic, where
the operational semantics and the basic logic are defined.

Usually, the soundness of a specialised rule is to be proven by
a human operator. A verification framework, such as FPCC or its
MRG-version, requires that the soundness proofs are implemented
in a theorem prover rather than “on the paper”. One may prove
the soundness of the rule directly from the operational semantics
of the appropriate construct or applying the rule of consequence
and the basic rule for the construct. The subgoal which is to be
proven after that is a challenging problem for many typing systems,
especially for thelet-construct. Correct modularisation of proof
scripts substantially improves their quality and speeds upthe work.

2.3 Parametric logic

As we have seen above, the meaning of a typing judgment may
be formalised in the form of an implication containing a statement

about the pre-state in the negative position and a predicateabout
the post-state in the conclusion. Let

PreSpec ≡ Envs → Heaps → Bool
PostSpec ≡ Heaps → Vals → Bool

PreSpec(α) ≡ α → PreSpec
PostSpec(α) ≡ α → PostSpec

The format under consideration is as follows:P in G ⊲ e : P is
split into predicates

P ≡ Pre ⇒ Post
(Pre ⇒ Post) E h h′ v ≡ ∀X. (Pre X E h) −→ (Post X h′ v).

where

Pre :: PreSpec(α)
Post :: PostSpec(α)

− ⇒ − :: PreSpec(α) × PostSpec(α) → Spec

The predicatesPre andPost and a type parameterα depend on
the type system.

We want to design aparametric specialised logic, that is a
set of specialised proof rules parameterised overPre and Post
predicates. For each program construct we define its soundness
predicate overPre and Post , such that assuming this predicate
holds, the corresponding parametric rule is sound, that is provable
in the basic logic. To prove soundness of a given type systemT one
must

• express the semantics of its typing judgment in the form of
assertionD(Γ, T) = PreΓ ⇒ PostT ,

• for each program construct prove its soundness predicate and
instantiate the corresponding parametric rule withPreΓ and
PostT .

In the next section we consider an example which shows how
a modular soundness condition and proof of a parametric ruleare
designed.

2.4 Combining type systems

The parametric framework has yet another important aspect.It
allows us to combine type systems as corresponding specialised
logics on the base of the same operational semantics and basic
logic. One can consider combinations of two kinds.

The first one is a conjunction of two specifications1

G ⊲ e :
“

Pre
1 ⇒ Post

1
^

Pre
2 ⇒ Post

2
”

such thatG ⊲ e : Pre1 ⇒ Post1 andG ⊲ e : Pre2 ⇒ Post2 are
independently provable applying specialised rules of the appropri-
ate logics. The soundness of such combination immediately follows
from the soundness of its constituents.

In some cases, which we will discuss soon, one considersinter-
leaving specialised assertions, that is, of the form

G ⊲ e : Pre
1 · Pre

2 ⇒ Post
1 · ·Post

2
.

The infix operators· and·· are of types

PreSpec(α) × PreSpec(β) → PreSpec(α × β)
PostSpec(α) × PostSpec(β) → PostSpec(α × β)

and respectively defined by:

(Pre
1
· Pre

2) (X1, X2) E h≡ (Pre
1 X1 E h) ∧ (Pre

2 X2 E h)

(Post
1
· ·Post

2) (X1, X2) h′ v≡ (Post
1 X1 h′ v) ∧ (Post

2 X2 h′ v)

1 Everywhere in this paper uppercase indices are used to distinguish spe-
cialised logics.

3 2005/7/21

To complete this definition, we define inference rules in the
combined logic system. The way of combination will become clear
once we explain the reason of introducing interleaving logics. In
practice one may face withnon-puretype systems, by which we
mean systems with inference rules containing semantical, i.e. non-
statically verifiable, side conditions. The heap-space-aware infer-
ence from [4] is such an example.

Motivated by this work we may consider a semanticlet-rules:

G ⊲ e1 : Pre1 ⇒ Post1 G ⊲ e2 : Pre2 ⇒ Post2

|= e1 : P

G ⊲ let x= e1 in e2 : Pre ⇒ Post .
S1

This rule may be proven, thanks to completeness, from a different
rule withG ⊲ e1 : P instead of |= e1 : P :

G ⊲ e1 : Pre1 ⇒ Post1 G ⊲ e2 : Pre2 ⇒ Post2

G ⊲ e1 : P

G ⊲ let x = e1 in e2 : Pre ⇒ Post .
S1’

Syntactically driven proof scripting in such systems is notpossi-
ble. In [4] the predicateP expresses the property ofbenign sharing,
that is, the parts of heaps accessible from the reference variables of
e2 are not destroyed during evaluation ofe1. In this caseP is a
parametrical predicate in the set of variables ine2.

However the side conditionG ⊲ e1 : P may be eliminated if it
can be approximated by another type system, such as

G′
⊲ e1 : Pre ′

1 ⇒ Post ′1
G′

⊲ e2 : Pre ′

2 ⇒ Post ′2

G′ ⊲ let x = e1 in e2 : Pre ′ ⇒ Post ′
S2

with Pre ′, Pre ′

1,Post ′1 implying P . The combined rule must be
free of the semantical condition:

G × G′
⊲ e1 : Pre1 · Pre ′

1 ⇒ Post1 · ·Post ′1
G × G′

⊲ e2 : Pre2 · Pre ′

2 ⇒ Post2 · ·Post ′2

G × G′ ⊲ let x= e1 in e2 : Pre · Pre ′ ⇒ Post · ·Post ′
SC

with the product of sets of invariants defined in the obvious way.
This gives a definition of the combinedlet-rule: SC is a rule

in the combined system if and only if S1’ and S2 are rules in
the components. Other rules are combined in the similar way.We
discuss the soundness issue of combined rules in the next section.

It is easy to see, thatG × G′
⊲ e : Pre · Pre ′ ⇒ Post · ·Post ′

is provable in the combined logic if and only ifG ⊲ e :
Pre ⇒ Post and G′

⊲ e : Pre ′ ⇒ Post ′ are provable in the
corresponding logics. However, reduction to a conjunctionof two
assertion makes no sense since the type-inference for the first sys-
tem alone is not possible.

3. The Language and its Logics
3.1 The Grail language

Grail is a special form of Java Virtual Machine Language (JVML) [8].
Grail retains the object and method structure, but it represents
method bodies as sets of mutually tail-recursive first-order func-
tions. Actual parameters in function calls coincide syntactically
with the formal parameters of the function definitions. Thisallows
function calls to be interpreted as immediate jump instructions of
JVML. The syntax of expressions is defined by the grammar

e ∈ expr ::= null | int i | var x | prim op x x |
new C [t i := xi] | x .t | x .t :=x |
C .t |C .t :=x | let x = e in e |
e ; e | if x then e else e |
call f |C .M (a)

a ∈ args ::= var x | null | i

whereC, M , f , t, x range over class, method, function, field and
variable names respectively,i ranges over integer constants,op de-

note a binary primitive operation, such as arithmetic for integers
and comparisons over integers and heap references. Integers, ref-
erencesr and⊥ form the set of valuesVals. Heap references are
eithernull or of the formRef l, wherel ∈ Locs is a location.

Expressions correspond to primitive sequences of byte-code
instructions. For example,x.t := y represents a dynamic field
update. The bindinglet x = e1 in e2 is used if the evaluation of
e1 returns and integer or reference value on top of the JVML stack,
e1; e2 if not. The instructionC.M(ā) represents static method
invocation. See [8] for more detail aboutGrail.

3.2 The operational semantics and the basic logic

The program logic forGrail is based on the operational semantics
E ⊢ h, e ⇓ (h′, v) via strongest specifications for each program
construct. For instance, the strongest specification for expression
var x is a parametric specificationVAR of type Vars → Spec
defined as follows:

VAR x ≡ λ E h h
′

v. h
′ = h ∧ v = E〈x〉

Similarly, the strongest conditions for dynamic field update, if-
branching andlet-binding have types

PUTFI :: Vars → Fields → Vars → Spec
IF :: Vars → Spec → Spec → Spec

LET :: Vars → Spec → Spec → Spec

respectively. They are defined as follows:

PUTFI x t y ≡ λ E h h′ v. ∃ l. E〈x〉 = Ref l ∧
h′ = h.t(l := E〈y〉) ∧
v = ⊥

IF x P Q ≡ λ E h h′ v.
`

E〈x〉 = true −→ (P E h h v)
´

∧
`

E〈x〉 = false −→ (QE h h v)
´

∧
`

E〈x〉 = true ∨ E〈x〉 = false
´

LET x P1 P2 ≡ λ E h h′ v. ∃ h1 w.
(P1 E h h1 w) ∧
(w 6= ⊥)∧
(P2 E〈x := w〉h1 h′ v)

The rules for the above program constructs look like that:

G ⊲ var x : VAR x
VAR

G ⊲ x.t:=y : PUTFI x t y
PUTFI

G ⊲ et : P G ⊲ ef : Q

G ⊲ if x then et else ef : IF x P Q
IF

G ⊲ e1 : P1 G ⊲ e2 : P2

G ⊲ let x = e1 in e2 : LET x P1 P2
LET

The rule for a function call

G ∪
`

f(x̄) : P
´

⊲ bodyf : λ E h h′ v. P E h h′ v

G ⊲ f(x̄) : P
FUN

allows one to recursively use the assumption that a call tof sat-
isfies a specification when proving that the unfolded definition of
f (bodyf) indeed satisfies the specification. Because of the restric-
tions ofGrail, described at the beginning of this section, the actual
parameters̄x = (x1, . . . xn) coincide with formal parameters as
mentioned inbodyf . For methodinvocations the appropriate rule
instantiates parameters, substituting into the method body.

3.3 Specialised logics

We consider here the MRG’s focus – the resource aware logic
arising from the typing system of Hofmann and Jost [4].

Types in this system are annotated with natural numbers, such
asList(T, k), which means a list of typeT , such that per each

4 2005/7/21

element there arek extra free heap units. We remark, thatT is a
annotated type as well, unless it is an un-boxed type, sayUnit or
Int.

A tying judgmentΓ, n ⊢Σ eHLL : T, n′ may be read
as: “under signatureΣ, in typing contextΓ and withn memory
resources available, the high-level-language termeHLL has type
T with n′ unused resources left over”. Formally, judgments are
defined via heap-space aware inference rules, such as:

n ≥ 1 + k + n′

Γ, xhd : T, xt : List(T, k), n ⊢Σ

cons(xhd , xt) : List(T, k), n′

CONS

and

Γ1, n ⊢Σ eHLL
1 : T0, n0

Γ2, x : T0, n0 ⊢Σ eHLL
2 : T, n

Γ1, Γ2, n ⊢Σ let x = eHLL
1 in eHLL

2 : T, n
LET

We will represent the semantics of the typing judgment in the
program logic as a specialized assertionλ E h h′ v. JU, n, Γ ◮

T, n′K. To this aim, we need to define a notion of avirtual cost(or a
potential). Following [3], we consider just the types unit1, integers
I and annotated lists of integersL(k), wherek is a natural number.
We define a relationv

h
T R, K, which means that a stack value

v, associated with a typeT , points to a regionR in a heaph and
has a virtual costK:

⊥
h
1

∅, 0
U

i
h
I

∅, 0
I

null
h
L(k) ∅, 0

NIL
h.ℓ.TL

h
L(k) R, K

ℓ
h
L(k) {ℓ} ⊎ R, K + k

CONS

with TL for the tail-field and⊎ denoting a disjoint union.
Let U denote a finite set of program variables. We extend the

relation
 to U and a typing contextΓ:

E, ∅
h
Γ ∅, 0

E, U

h
Γ R1, K1 E〈x〉

h
Γ(x) R2, K2

E, U ⊎ {x}
h
Γ R1 ⊎ R2, K1 + K2

According to the correctness theorem from [4], the high-level
typing judgmentΓ, n ⊢ eHLL : T, n′ translates into an assertion
such that for anyE, h, h′v, if the compiled expressione terminates
onE andh with a valuev and a heaph′, then for anyq ≥ 0

• if the amount of free heap units (the free list size) before evalu-
ation ism ≥ n + K + q, whereK is a virtual cost of variables
from U = dom Γ, in the pre-state defined byE andh,

• then the amount of free heap units after the evaluation ism′ ≥
n′ + S + q, whereS is a virtual cost of the return valuev, and
q free heap units are left intact during the evaluation.

Note, that in the original typing system from [4] the disjoint-
ness condition is not necessary. All one needs is to ensure benign
sharing. The latter can be approximated by linear typing.

The definition of the specialised assertion is as follows:

JU, n, Γ ◮ T, n′K ≡ ∀ q F R mK.
0

B

B

@

freelist(h, F, m) ∧
E, U

h
Γ R, K ∧

R ∩ F = ∅∧
m ≥ n + K + q

1

C

C

A

−→

0

B

B

B

@

∃ QS m′ H. v

h
T R, S ∧

freelist(h′, H, m′)∧
Q ∩ H = ∅ ∧ Q ∪ H ⊆ (R ∪ F)∧
footrpint(F ∪ R, h, h′)∧
m′ ≥ n′ + S + q ∧ dom h = dom h′

1

C

C

C

A

The meaning of this assertion corresponds to the semantics of the
corresponding high-level typing judgement. The interested reader
may guess it her/himself or is referred to [3] for more detail. We
have just reported it as an example of a statement whose presence
in verification conditions makes them arguably difficult to prove
automatically. Moreover, the proof of the soundness of thelet-
rule for such assertions is a technically difficult task evenfor a
human operator. So, what can we do to cope with assertions of such
complexity?

First, as we have pointed out, the soundness proofs for such
assertions for the language constructs follow certain patterns. We
extract these patterns and use in the design of the parametric proof
rules and modularisation of proofs.

Secondly, we note that this assertion may be split into two. A
pure numerical assertion should correspond exactly to the heap-
space aware typing judgments from [4]. It will look similar to the
one above, where in the relation
, defined for sets of variables and
contexts, the disjoint union⊎ is substituted with the union∪. The
second type system should approximate benign sharing as we have
mentioned in the previous section. It may be linear typing ormore
general usage-aspect typing [12], etc.

We instantiate the parametric assertion with the usage-aspects-
aware one. We consider3 subsets of used variables. A setU1 de-
notes variables that are potentially destroyed during the evaluation
of a region,R1. The regionR2 corresponding toU2 is intact, but
may be shared with the result region. The less “dangerous” use
concerns variables inU3: they refer to intact regionsR3 and do not
share locations with the result. A setF denotes locations from a
freelist, as in the example above.

SetsU1, U2, U3, contextΓ and typeT play the role of param-
eters in the pre- and post-conditions. Recall, that the parametric
specialised assertion has the form:

Pre ⇒ Post ≡ λ E h h
′

v.∀X. (Pre E h) −→ (Post h
′

v).

We instantiate the parametric assertion in the following way:

X := (R1, R2, R3, F)
Pre := PreUA Γ U1 U2 U3 T

Post := PostUA Γ U1 U2 U3 T

whereXi is thei-th projection ofX, 1 ≤ i ≤ 4:

PreUA Γ U1 U2 U3 T ≡ λX.
U1 ∪ U2 ∪ U3 ⊆ dom Γ ∧
freelist(h, X4) ∧
E, U1

h
Γ X1 ∧ E, U2

h
Γ X2, false ∧ E, U3

h
Γ X3 ∧

X1 ∩ (X1 ∪ X2) = ∅ ∧ X4 ∩ (X1 ∪ X2 ∪ X3) = ∅

and

PostUA Γ U1 U2 U3 T ≡ λX.

∃ Q H. v

h′

T Q, false ∧
freelist(h′, H) ∧
footprint(X4 ∪ X1, h, h′)∧
Q ⊆ (X4 ∪ X1 ∪ X2)∧
H ⊆ (X4 ∪ X1)∧
dom h = dom h′∧

E, U2

h′

Γ X2, true −→

v

h′

T Q, true

Here, the relation
 has the same meaning as above, except
the last parameter. For the usage-aspect-2 variables it switches
on/off the internal separation. For the the usage-aspect-1and -3 it
is irrelevant.

3.4 Parametric proof rules

We now discuss the design of soundness proofs for parametric
rules. Consider the most intricate case – the rule for thelet-

5 2005/7/21

construct – in detail. We sketch the proof of the rule

G ⊲ e1 : Pre1 ⇒ Post1

G ⊲ e2 : Pre2 ⇒ Post2

gLET x Pre Post Pre1 Post1 Pre2 Post2

G ⊲ let x= e1 in e2 : Pre ⇒ Post

in a backward style. The conditiongLET is to be defined.

1. Apply the rule of consequence to obtain the subgoals
G ⊲ e1 : Pre1 ⇒ Post1

G ⊲ e2 : Pre2 ⇒ Post2

gLET x Pre Post Pre1 Post1 Pre2 Post2

G ⊲ let x = e1 in e2 : ?P

with a predicate?P to be instantiated, and

G ⊲ e1 : Pre1 ⇒ Post1

G ⊲ e2 : Pre2 ⇒ Post2

gLET x Pre Post Pre1 Post1 Pre2 Post2

∀ E h h′ v. ?P E h h′ v −→ (Pre ⇒ Post E h h′ v)

2. The first subgoal is eliminated by the basic LET-rule, and?P is
instantiated with

LET x (Pre1 ⇒ Post1) (Pre2 ⇒ Post2)

3. The subgoal to prove is

gLET x Pre Post Pre1 Post1 Pre2 Post2

∀ E h h′ v.
LET x (Pre1 ⇒ Post1) (Pre2 ⇒ Post2) E h h′ v
−→ (Pre ⇒ Post) E h h′ v

4. Simple backward logical reasoning yields:

LET x (Pre1 ⇒ Post1) (Pre2 ⇒ Post2) E h h′ v
gLET x Pre Post Pre1 Post1 Pre2 Post2

(Pre ⇒ Post) E h h′ v

5. Unfold the definition ofLET 2:

∃ h1 w.
((Pre1 ⇒ Post1) E h h1 w) ∧
(w 6= ⊥)∧
((Pre2 ⇒ Post2) E〈x := w〉h1 h′ v)

(Pre ⇒ Post) E h h′ v

6. Fix h1, w and unfold the definition of⇒-operator. One obtains
the following subgoal:

∀X. (Pre1 X E h) −→ (Post1 X h1 w) (1)
∀X. (Pre2 X E〈x := w〉h1) −→ (Post2 X h′ v) (2)

∀X. (Pre X E h) −→ (Post X h′ v)

7. Fix X and assume thatPre X E h holds.

8. Show thatPreX E h implies the existence ofY , s.t.Pre1Y E h
holds, that is, provelemma 1 which is a part ofgLET.

9. Eliminate the∀-quantifier in(1) by instantiating the quantified
parameter withY .

10. Apply(1) to obtainPost1 Y h1 w.

11. Show thatPre X E h, Pre1 Y E h andPost1 Y h1 w imply
the existence ofZ, s.t. Pre2 Z E〈x := w〉h1, that is, prove
lemma 2, which is another part ofgLET.

12. Eliminate the∀-quantifier in(2) by instantiating the quantified
parameter withZ.

2 For the sake of convenience we will now omit
gLET x Pre Post Pre1 Post1 Pre2 Post2 in the assumptions of
the subgoals below.

13. Apply(2) to obtainPost2 Z h′ v.

14. Show that the conditionsPreX E h, Pre1Y E h, Post1Y h1 w
Pre2 Z E〈x := w〉h1 andPost2 Z h′ v imply Post X h′ v,
that is the last part ofgLET, thelemma 3, holds.

In the proof script above steps 1-7, 9, 10, 12, 13 do not depend
on choice ofPre, Post , Pre1, Post1, Pre2, Post2. These steps
form the proof of the parametriclet-rule. The proof is sound if
one is able to perform steps 8, 11, 14. This gives us a desirable
soundness condition which is a conjunction of the corresponding
three statements:

gLET x Pre Post Pre1 Post1 Pre2 Post2 ≡
lemma 1 Pre Pre1 ∧
lemma 2 x Pre Pre1 Post1 Pre2 ∧
lemma 3 x Pre Pre1 Post1 Pre2 Post2 Post

with

lemma 1 Pre Pre1 ≡
∀ E h. ∀ X. (Pre X E h) −→ ∃ Y. (Pre1 Y E h)

lemma 2 x Pre Pre1 Post1 Pre2 ≡
∀ E h h1 w. ∀ X Y. (Pre X E h) −→

(Pre1 Y E h) −→ (Post1 Y h1 w) −→
∃ Z. (Pre2 Z E〈x := w〉h1)

lemma 3 x Pre Pre1 Post1 Pre2 Post2 Post ≡
∀ E h h1 w h′ v.
∀ X Y Z. (Pre X E h) −→

(Pre1 Y E h) −→ (Post1 Y h1 w) −→
(Pre2 Z E〈x := w〉h1) −→
(Post2 Z h′ v) −→ (Post X h′ v)

Similarly, for thelet-rule for a non-pure type system:

G ⊲ e1 : Pre1 ⇒ Post1

G ⊲ e2 : Pre2 ⇒ Post2

gLET ′ x Pre Post Pre1 Post1 Pre2Post2 P

G ⊲ let x = e1 in e2 : Pre ⇒ Post

we introduce the soundness predicategLET′, as conjunction of 3
lemmas, where the first lemma is the one for the pure type system,
and

lemma 2′ x Pre Pre1 Post1 Pre2 P ≡
∀ E h h1 w. ∀ X Y. (Pre X E h) −→

(Pre1 Y E h) −→ (Post1 Y h1 w) −→
(P E h h1 w) −→
∃ Z. (Pre2 Z E〈x := w〉h1)

lemma 3′ x Pre Pre1 Post1 Pre2 Post2 Post P ≡
∀ E h h1 w h′ v.
∀ X Y Z. (Pre X E h) −→

(Pre1 Y E h) −→ (Post1 Y h1 w) −→
(P E h h1 w) −→
(Pre2 Z E〈x := w〉h1) −→
(Post2 Z h′ v) −→ (Post X h′ v)

The parametric rules for basic expressions are instances ofthe
rule of consequence, applied to the appropriate rule in the basic
logic.

We sum up the main result of this subsection. Recall, that
PreSpec(α) = α → PreSpec and PostSpec(α) = α →
PostSpec. For the language constructs above we define the sound-

6 2005/7/21

ness predicates

gVAR : Vars → PreSpec(α) → PostSpec(α) → Bool
gPUTFI : Vars → Fields → Vars →

→ PreSpec(α) → PostSpec(α) → Bool
gIF : Vars → PreSpec(α) → PostSpec(α) →

→ PreSpec(α) → PostSpec(α) →
→ PreSpec(α) → PostSpec(α) → Bool

gLET : Vars → PreSpec(α) → PostSpec(α) →
→ PreSpec(α) → PostSpec(α) →
→ PreSpec(α) → PostSpec(α) → Bool .

which assure the soundness of the corresponding parametricrules:

gVAR x Pre Post

G ⊲ var x : Pre ⇒ Post
GVAR

gPUTFI x t y Pre Post

G ⊲ x.t:=y : Pre ⇒ Post
GPUTFI

gIF x PrePost PretPost t PrefPostf

G ⊲ et : Pret ⇒ Post t G ⊲ ef : Pref ⇒ Postf

G ⊲ if x then et else ef : Pre ⇒ Post
GIF

gLET x Pre Post Pre1 Post1 Pre2 Post2

G ⊲ e1 : Pre1 ⇒ Post1 G ⊲ e2 : Pre2 ⇒ Post2

G ⊲ let x = et in ef : Pre ⇒ Post
GLET

The rules for function call and method invocation are instances of
appropriate basic rules. There are no special soundness predicates.

The predicates are designed as follows:

gVAR x Pre Post ≡ ∀ E h h v.
“

VAR x E h h′ v
”

−→
“

(Pre ⇒ Post) E h h v
”

gPUTFI x Pre Post t y ≡

∀ E h h v.
“

PUTFI x t y E h h′ v
”

−→
“

(Pre ⇒ Post) E h h v
”

gIF x PrePost PretPost t PrefPostf ≡
∀ E h h′ v.
“

E〈x〉 = true −→
`

(Pre E h h v) → (Pret E h h v)
´

∧
`

(Post t E h h v) → (Post E h h v)
´

”

∧
“

E〈x〉 = false −→
`

(Pre E h h v) → (Pref E h h v)
´

∧
`

(Postf E h h v) → (Post E h h v)
´

”

∧

We have used this parametric framework to obtain the soundness
proof of the usage-aspect-aware logic of [12].

3.5 Combined assertions

We start this subsection with a perhaps surprising remark: the
soundness of the combinedlet-rule in general does not follow
from the soundness of the rules for its components. For the sake
of simplicity one may think that the firstlet rule does not contain
a semantical condition. To provide some intuition, we consider the
first-order skeleton of the problem, that is, we should show that
from

Ai
1 −→ Bi

1

Ai
2 −→ Bi

2

Ai −→ Bi
S′i

with i = 1, 2, it follows

A1
1 ∧ A2

1 −→ B1
1 ∧ B2

1

A1
2 ∧ A2

2 −→ B1
2 ∧ B2

2

A1 ∧ A2 −→ B1 ∧ B2
S’C

The assumptionA1
1 ∧ A2

1 −→ B1
1 ∧ B2

1 does not imply the
assumptions ofS′1 andS′2. This makes these rules useless and
the conclusion of the combined implication unprovable. Similarly,
G × G′

⊲ e1 : Pre1
1 · Pre2

1 ⇒ Post1
1 · ·Post2

1 does not imply
G ⊲ e1 : Pre1

1 ⇒ Post1
1. Therefore, thelet-rules for the

components does not justify thelet-rule for the combination.
A similar problem takes place for theif-rule, while for the rules

of the basic language constructs the soundness of the components
do imply the soundness of the composition.

Therefore, if one wants to re-use the soundness of the compo-
nents, one must find a sufficient condition of soundness whichis
stronger than one needs for a single rule.

The soundness condition that we have defined above, has ex-
actly the property we need: the soundness condition of the com-
bined assertion follows from the soundness conditions of its com-
ponents. Below we give a table with the corresponding formalstate-
ments. We have included examples with the basic expressionsas
well, to keep the things uniform.

gVAR x Pre1 Post1 gVAR x Pre2 Post2

gVAR x (Pre1 · Pre2) (Post1 · ·Post2)
CVAR

gPUTFI x t y Pre1 Post1 gPUTFI x t y Pre2 Post2

gPUTFI x t y (Pre1 · Pre2) (Post1 · ·Post2)
CPUTFI

gIF x Pre1Post1 Pre1
tPost1

t Pre1
fPost1

f

gIF x Pre2Post2 Pre2
fPost2

f Pre2
fPost2

f

gIF x (Pre1 · Pre2)(Post1 · ·Post2)
(Pre1

t · Pre2
t)(Post1

t · ·Post2
t)

(Pre1
f · Pre2

f)(Post1
f · ·Post2

f)

CIF

gLET ′ x Pre1 Post1 Pre1
1 Post1

1 Pre1
2Post1

2 P
gLET x Pre2 Post2 Pre2

1 Post2
1 Pre2

2 Post2
2

Pre2 Pre2
1 Post2

1 implies P

gLET x (Pre1 · Pre2)(Post1 · ·Post2)
(Pre1

1 · Pre2
1)(Post1

1 · ·Post2
1)

(Pre1
2 · Pre2

2)(Post1
2 · ·Post2

2)

CLET

where the approximation

Pre
2
Pre

2
1 Post

2
1 implies P≡ ∀ E h h1 w. ∀ X Y.

(Pre2 X E h) →
(Pre2

1 Y E h) → (Post2
1 Y h1 w)

→ (P E h h1 w)

of the semantical side condition allows us to eliminate the side
condition in the combined rule.

4. Related Works
The current work is motivated by the experience we have collected
in Mobile Resource Guarantees(MRG) project [1], when working
on heap-space predicates. In a recent work [3] we have proposed
a synthesis between type systems and program logics. The heap-
space resource type system from [4] is used for automated genera-
tion of invariants and proof scripts in the logic forGrail. The idea
of mapping type systems onto program logics in general case is
sketched in [5]. In [6] the authors consider combinators forgeneral
form of assertions and rules. In this paper we develop these ideas
and consider combinators for specialised logics.

7 2005/7/21

In [9] the authors define a safety logic for an assembly language
with a parametric verification condition generator. The VCGis con-
structed in a “traditional way” with small-step weakest precondi-
tion generation. The safety predicates to be checked are of general
form.

Static analysis and its generalisation in the form of Relational
Hoare Logic is used in [10] for checking correctness of optimis-
ing transformations. The transformations are presented byrules for
deriving (non-standard) typed equations. There the logic is consid-
ered as a generalisation of typing systems, while we use logics to
express the semantics of type judgments or to turn semantical prop-
erties into typeable ones.

5. Conclusions and Future Work
We have considered a parametric logical framework for checking
soundness of type systems. It assists in the design of specialised
logics that mirror types systems in a higher-order logic andmay be
used for automated program verification.

The framework helps to treat compound inference systems,
where one of the components is a non-pure type system, but con-
tains semantical conditions in assumptions of its rules. A well-
designed composition may eliminate semantical conditions.

The parametric logic is implemented as an Isabelle theory. We
have been testing the framework by applying it to different type
systems. The first results obtained by instantiation the parametric
assertion and rules with the usage-aspects aware typing system
of [12], which generalises linear typing, are very encouraging.

We plan to design the specialised logic for the non-pure resource-
aware type system of [4] and combine it with usage aspects. We
want to combine this inference system with other type systems
approximating benign sharing.

We are also interested in applying the framework to other type
systems and their combinations.

6. Acknowledgements
The author is supported by the Mobile Resource Guarantees project
(MRG, project IST-2001-33149), which is funded by the EU un-
der the Global Computing pro-active initiative on the Future and
Emerging Technologies.

The author would like to thank Martin Hofmann and Alberto
Momigliano for a few fruitful discussions.

References
[1] Aspinall, D., Gilmore, S., Hofmann, M., Sannella, D., and Stark., I.

Mobile Resource Guarantees for Smart Devices. InConstruction and
Analysis of Safe, Secure, and Interoperable Smart Devices:Proceedings
of the International Workshop CASSIS 2004, number 3362 in LNCS,
pages 1-26. Springer-Verlag, 2004.

[2] Beringer, L., Hofmann, M., Loidl, H.-W., and Momigliano, A. A
Program Logic for Resource Verification. InProceedings of 17th
International Conference on Theorem Proving in Higher Order Logics
(TPHOLs2004), pages 34-49. Springer-Verlag LNCS, September 2004.

[3] Beringer, L., Hofmann, M., Momigliano, A., and Shkaravska, O. Au-
tomatic Certification of Heap Consumption. InLogic for Programming,
Artificial Intelligence and Reasoning: 11th InternationalConference,
LPAR 2004, volume 3452, pages 347-362. Springer-Verlag, 2005.

[4] Hofmann, M., and Jost, S. Static prediction of heap spaceusage for first-
order functional programs. InProceedings of the 30th ACM Symposium
on Principles of Programming Languages, volume 38, pages 185-197.
ACM Press, 2003.

[5] Hofmann, M. What do program logic and type systems have in
common? InProceedings of ICALP’04, pages 4-7, 2004.

[6] Beringer, L., and Momigliano, A. Implement a theorem prover. In
Mobile Resource Guarantee Project Deliverable D2e, November 2003.

[7] Loidl, H.-W., and MacKenzie, K. A Gentle Introduction toCamelot.
September, 2004.
http://groups.inf.ed.ac.uk/mrg/camelot/Gentle-Camelot/camelot-gentle-
intro.html.

[8] MacKenzie, K., and Wolverson, N. Camelot and Grail: resource-
aware functional programming on the JVM. InTrends in Functional
Programming, volume 4, pages 29-46. Intellect, 2004.

[9] Wildmoser, M., and Nipkow, T. Certifying Machine Code Safety:
Shallow versus Deep Embedding. In K. Slind and A. Bunker and G.
Gopalakrishnan, editors,Theorem Proving in Higher Order Logics
(TPHOLs 2004, volume 3223 of LNCS, pages 305-320. Springer, 2004.

[10] Benton, N. Simple Relational Correctness Proofs for Static Analyses
and Program Transformations. InProceedings of the 31st ACM
Symposium on Principles of Programming Languages (POPL). ACM,
January, 2004.

[11] Aspinall, D., Beringer, L., Hofmann, M., Loidl, H.-W.,and
Momigliano, A. A Program Logic for Resource. Submitted, 2005.

[12] Aspinall, D., and Hofmann, M. Another Type System for In-Place
Update. InESOP’02 — European Symposium on Programming, LNCS
2305, pages 36-52, Springer, 2002.

[13] Xi, H., and Pfenning, F. Dependent Types in Practical Programming.
In Proceedings of the 26th ACM SIGPLAN Symposium on Principlesof
Programming Languages, pages 214–277, San Antonio, January, 1999.

8 2005/7/21

