Types with Semantics

Soundness Proof Assistant

Olha Shkaravska

Institut of Informatics, Ludwig-Maximilians University
shkarav@tcs.ifi.Imu.de

Abstract

We present a parametric Hoare-like logic for computer-cids-
soning about typeable properties of functional prograre. [6gic
is based on the concept obpecialised assertignvhich is a pred-
icate expressing the semantics of a typing judgment in a#bgi
framework (here higher-order logic). Replacing in a typfelience
rule the judgments by the appropriate specialised asssrtimne

obtains aspecialised rule Specialised assertions have a uniform

format, and soundness proofs of specialised rules emplifgrom
sequences of steps for a variety of type systems. This altows
abstract from the type system and defperametric specialised
assertion and rulesMoreover, we define parametric soundness

conditionfor each program construct which ensures soundness of

the corresponding rule. To prove soundness of the speaiatide
for the concrete type system one checks the condition atdnins
tiates the parametric rule. We consider specialised Idgicton-
pure” type systems which contain rules with semantical sateli-
tions. A semantical condition makes type-checking for sauslys-
tem undecidable. However, the condition may be approxichbaye
another type system. We introduce a product-like compmositif
two inference systems that eliminates semantical sideitionsl
The soundness condition of the composition follows strihigh

wardly from the soundness conditions of its components and a

statement about the approximation.

Categories and Subject Descriptors F.3.1 [Logics and Mean-
ing of Program§ Specifying and Verifying and Reasoning about
Programs—Assertions, Mechanical verification, Pre- andt-Po
conditions; F.3.2 [[ogics and Meaning of PrograrhsSeman-
tics of Programming Languages—Denotational semantic8;3F.
[Logics and Meaning of PrograrhsStudies of Program
Constructs—Control primitives, type structure; F.4.Mafthe-
matical Logic and Formal LanguagesMathematical Logic—
Mechanical theorem proving; D.2.8¢ftware EngineerirjgSoft-
ware/Program Verification—Assertion checkers, corrextipeoofs;
1.2.2 [Artificial Intelligencd: Automatic Programming—Automatic
analysis of algorithms, program verification; |.2&ificial Intel-
ligencq: Deduction and Theorem Proving—Inference engines

General Terms Theory, Verification

[copyright notice will appear here]

Keywords Assertions, program logics, type systems, automated
theorem proving

1. Introduction

Type systems and program logics such as Hoare logic tendve se
the same purpose: to ensure properties of programs. Howibeer
big advantage of type systems is that they present prograpepr
ties in a relatively simple form. Moreover, the inferencéesuof
even some quite expressive type systems generate syatyetic
driven algorithms which allow to prove the correspondingpar
erties without human interference. This is a very desirédsdeure
for the systems used in applied program verification, seexam-
ple, [4, 12, 13].

Before using a type system in program verification one has the
obligation to (ideally) mechanically justify its soundses.r.t. the
operational semantics of the program language under cmasid
tion. This is often not an easy exercise, but when it is doreepn
one has the type system correct “forever”. A real problenhwyipe
systems is their compatibility. The syntactic nature ofpamies
they express makes it difficult to compare their merits.

Program logics are, in general, more expressive than tygyiag
tems. However, despite the impressive progress in the ama®
mated theorem proving, proof processes do need humanipartic
tion, for instance, to provide invariants. Yet another peaiarises
when a predicate to prove, say, stemming from a verificatam c
dition generator, is too complicated to be proved autoralijicre-
quiring non-trivial instantiations of quantifiers. We wétbnsider an
example of such statement later.

In this work we develop the idea of a synergy between type sys-
tems and program logics [5]. One may represent a type-inéere
rule in the form of a proof rule in the logic, see, for instarfi&. In
this way a type inference system generates a logic for whitb-a
mated, syntactically driven proof scripting is possible.t®e other
side, the program logic helps to prove soundness of the type s
tem and serves as a basis on which two different type systeymm ma
be compared and combined.

The remainder of this paper is split into two main parts. k& th
overview we introduce concepts and highlight the ideas oitlwh
the current work is based. The next section is technicalpteéel
mainly to concrete issues of implementation. We finish theepa
with a short overview of related papers, a summary of theltesu
and plans for the future work.

2. Overview of Results

Working on the Mobile Resource Guarantees (MRG) project [1]
we have developed a multi-layered infrastructure for fieation

of resources. We believe that such infrastructure may be fmse
reasoning about other program properties. We will sketbhiéfly
from bottom to top, see [11] for more detail.

2005/7/21

High-Level Type System T ts efLL . T
compile
Specialised Logic

Gs>e: DI, T)

Basic Program Logic Gr>e: S

Operational Semantics E - h,e || (v, k)

Figure 1. A family of logics for resource consumption

At the basis we have our (trustegperational semantics

On the next level we have a general-purpdsasic program
logic for partial correctness. Its role is to serve as a platform at
which various higher level logics may be unified. The latter-p
pose makes logical completeness of the program logic aat@sir
property. Of course, soundness remains mandatory, asste/ar-
thiness of any application logic defined at higher levelsetels
upon it.

On top of the general-purpose logic,specialised logio(for
example, the heap logic of [3]) is defined to capture a pdeicu
property. This logic uses a restricted format of assertioafied
specialised assertionsvhich reflects the information of the high-
level type system.

Judgements in the specialised logic have the fetm > e :
D(T', T), where the expressianis the result of compiling a high-
level terme’“* down to a low-level language, and the information
in the high-level type system is encoded in a special formsef a
sertion that depends on the context and type associatetita
D(T, T). Gx is a set of assumptions (invariants) corresponding
to a first-order signatur®. Depending on the property of interest,
this level may be further refined into a hierarchy of prooftsyss,
for example if parts of the soundness argument of the spseifl
assertions can be achieved by different type systems.

In contrast to the general-purpose logic, this speciallegit
is not expected to be logically complete, but it should pdevi
support for automated proof search. In the case of the lagic f
heap consumption, this is achieved by formulating a systém o
specialised assertions whose level of granularity is rtyugimilar
to the high-level type system. However, the rules are espin
terms of code fragments in the low-level language. Sincesithe
conditions of the typing rules are computationally easyaiidate,
automated proof search is supported by the syntax-direstog
the typing rules. At points where syntax-directness failssueh
as recursive program structures — the necessary invaréets
provided by the type system.

Thus, on the top level we find high-level type systenthat
encodes information on resource consumption. In the juégeém
I by e . T, the terme*L has an (extended) typE in a
contextI” with the first-order signaturg.

proof, implemented in a theorem prover, justifies the usddbeo
logic in program verification.
A “smart” proof scripting assumes:

e modularisation of specialised assertions, which allows tm
consider a complex property as a combination of simpleestat
ments,

e modularisation of proofs itself, that is splitting proofga lem-
mas,

e proof scripts reuse.

The latter becomes possible due to common features in struc-
tures of assertions and soundness proofs arising fromusatigpe
systems. This allows to design marametric specialised logic
based on the modularisation principles above.

In the rest of this paper we discuss the components of our rea-
soning infrastructure in more detail and the design of thampatric
logic. We will start with a general outline and then contirwi¢h
concrete logics for the low-level language used in the MR@jqut.

2.1 A basis for verification

We consider an impure functional language with its openatio
semantics formalised in a higher-order logic. The big-stgp
erational semantics is a partial correctness relation efftim
E + h,e | (h',v) wheree is an expression in the language,
an environment (stackf : FEnwvs Vars — Vals, heaps
h, h : Heaps = Fields — Locs — Vals are maps from the
sets of variable names, field names and locations resplgciivio
the set of values, andis a return value. The relation means that if
with the initial environmentr and heaph the expressiom termi-
nates, then it evaluates toand changes the heapib

Program properties are expressed as partial correctneses as
tions of the formG > e : P, whereG is a set of assumptions for
methods and functions (invariants) aRds a predicate of type

Spec = Envs — Heaps — Heaps — Vals — Bool.

We call P a specificatiorof the expression.

Each program construct, such as a simple expressianiet-
binding, has its strongest specificatid#, that is the specification
which mirrors its operational semanticEhh'v=EF h,e
(W', v). The rules for function calls and method invocations, at
which we will have a closer look later in this paper, manage re
cursion. Any predicate which holds for a construct followanf its
strongest specification. The set of the strongest spedificator
the language constructs together with an axiom

(e, P) e G

7 - " VA

Gre: P
and the rule of consequence,

G>e: Q
VEhKh v.(QEhh v) — (PEhh v)
Gre: P

constitutes thdasic logic see [2].

The basic logic is sound and (relatively) complete w.r.e th
operational semantics. The strongest specification foxpression
e is derivable applying the proof rules of the basic logics.

To express the soundness and completeness result we icerodu
a predicate of the semantical validity= e : P, which means,
that for anyE, h, ', v, the relationE + h,e | (v,h’) entails
P Ehh v. This is extended to contexts in the obvious way. The
soundness of the logic means that for any set of assum@tj@m
expressiore and a specificatio” the provabilityG > e : P

X

CONSEQ

The aim of the present work is to ease the computer-aided implies semantical validityz = e : P, see [2]. The completeness

verification of the soundness of specialised logics. Thendoess

theorem ensures the converseGif = (). We have extended the

2005/7/21

basic logic from [2] with an AiD-rule:

Gre: P
G>e: Q

Gre: PAQ
where— A\ — : Spec — Spec — Spec is defined as
(PANQ)EhW v=PEhKvAQEhN v

AND

2.2 From type systems to specialised logics

Consider now a typing system for the language. Following the
Foundational Proof Carrying Code (FPCC) principle “to dhac
checker” one may want to justify its use in a verification feam
work. In other words - to prove its soundness w.r.t. the dpmral
semantics and intended meaning of the judgment.

A typing judgmentT’ Fs el . T, whereX is a first-
order signature, is a syntactical statement, for which g®gher
of the system assumes a certain meaning. The semanticsdg-a ju
ment, possibly modulo compilation, is formalised in in thoerh
of a specialised assertiorfModulo compilation” means that the
type system and program logic are not necessary defined dor th

about the pre-state in the negative position and a predatadat
the post-state in the conclusion. Let

PreSpec = Envs — Heaps — Bool

PostSpec = Heaps — Vals — Bool
PreSpec(a) = « — PreSpec
PostSpec(a) = « — PostSpec

The format under consideration is as follow3in G > e : Pis

split into predicates

P = Pre= Post
(Pre = Post) ERh'v = VX.(Pre X Eh) — (Post X h' v).
where
Pre PreSpec(a)
Post PostSpec(a)
- = - PreSpec(a) x PostSpec(a) — Spec

The predicate®re and Post and a type parameterdepend on
the type system.
We want to design garametric specialised logjcthat is a

same language. The type system may be defined for a high-levelSet of specialised proof rules parameterised aver and Post

language, whereas the program logic is defined for the layjgua
where the high-level one is compiled to. In MRG we work witp-ty
ing systems for the high-level resource-aware functioaagliage
Gamelot [7], which is compiled into a low-levetrail [8]. The
program logic is defined fdkrail [2].

Consider a simple property of “well-formed datatypes”. To
model datatypes, we use a predicAté-r a, expressing that an
address: in heaph is the start of a (high-level) data-tyfge In the
basic program logic we can express the fact that the a methog
compiled from the high-level functioff :: List(T) — List(T)
preserves a well-formed data-type as follows:

>cmg(z): AERR v. h I List(ry E{x) — I I List Ty v

To abstract over the details of modeling data-structures;em-
struct a specialised logic for this property, by restrigtthe form
of the assertions to reflect the high-level property to benfdised.
The definition of the specialised assertion carries witthé t
high-level types of the variables, and accesses low-laeglipates,
which are needed to express the property but should be hidden
the specialised logic itself. For instance,

D(z : List(T),y : List, List(T)) =AEhh vp.
h H_Lz'st(T) E<ZL’> AN h ”_L'Lst(T) E<y> —
h/ H_Lz'st(T) E<ZL’> A h, ”_L'Lst(T) E<y> N h/ H_Lz'st(T) v

Substituting in an inference rule the judgments with the- spe
cialised assertions one obtasecialisedoroof rules which form
a specialisedprogram logic for the type system. To prove the
soundness of an inference rule means to prove the soundhess
the corresponding specialised rule in the higher-ordec)aghere
the operational semantics and the basic logic are defined.
Usually, the soundness of a specialised rule is to be proyen b
a human operator. A verification framework, such as FPCCsor it
MRG-version, requires that the soundness proofs are inmgiesd
in a theorem prover rather than “on the paper”. One may prove
the soundness of the rule directly from the operational stics
of the appropriate construct or applying the rule of consege
and the basic rule for the construct. The subgoal which iseto b
proven after that is a challenging problem for many typingtesms,
especially for thelet-construct. Correct modularisation of proof
scripts substantially improves their quality and speedthapvork.

2.3 Parametric logic

predicates. For each program construct we define its sosadne
predicate overPre and Post, such that assuming this predicate
holds, the corresponding parametric rule is sound, thatoggble

in the basic logic. To prove soundness of a given type sygteme
must

e express the semantics of its typing judgment in the form of
assertionD(T, T) = Pre" = Post™,

o for each program construct prove its soundness predicate an
instantiate the corresponding parametric rule witk:" and
Post™.

In the next section we consider an example which shows how
a modular soundness condition and proof of a parametricande
designed.

2.4 Combining type systems

The parametric framework has yet another important aspect.
allows us to combine type systems as corresponding syssgiali
logics on the base of the same operational semantics and basi
logic. One can consider combinations of two kinds.

The first one is a conjunction of two specificatidns

Gre: (Pr61 = Post’ /\ Pre? = P05t2)

suchthaGG > e : Pre' = Post' andG > e : Pre? = Post® are
independently provable applying specialised rules of fiprapri-
ate logics. The soundness of such combination immediatttyfs

Ofrom the soundness of its constituents.

In some cases, which we will discuss soon, one considas
leaving specialised assertiorthat is, of the form

G 1> e: Pret- Pre? = Post' - -Post®.
The infix operators and-- are of types

PreSpec(a) x PreSpec(3) — PreSpec(a x [3)
PostSpec(a) x PostSpec() — PostSpec(a x (3)

and respectively defined by:
(Pre! - Pre?) (X1, X2) Eh=(Pre! X1 ER) A (Pre? Xo Eh)
(Post! - - Post?) (X1, X2) b’ v=(Post* X1 h' v) A (Post? Xo h' v)

As we have seen above, the meaning of a typing judgment may ! Everywhere in this paper uppercase indices are used toglissh spe-

be formalised in the form of an implication containing a staent

cialised logics.

2005/7/21

To complete this definition, we define inference rules in the
combined logic system. The way of combination will beconeacl
once we explain the reason of introducing interleavingdsgin
practice one may face withon-puretype systems, by which we
mean systems with inference rules containing semantieainon-
statically verifiable, side conditions. The heap-spacaravinfer-
ence from [4] is such an example.

Motivated by this work we may consider a semane-rules:

G > ey : Pre; = Posty Gres:
'261 : P
G > letx=e1 ines : Pre = Post.

This rule may be proven, thanks to completeness, from ardifte
rule withG > e; : P instead of = e; : P:

Pre; = Posty G>es:
Gr>el: P

G > let x=e;1 ines : Pre = Post.

Syntactically driven proof scripting in such systems ispusgsi-
ble. In [4] the predicat® expresses the propertyleénign sharing
that is, the parts of heaps accessible from the referené@bles of
eo are not destroyed during evaluation @f. In this casep is a
parametrical predicate in the set of variablesdn

However the side conditio > e; : P may be eliminated if it
can be approximated by another type system, such as

Pres = Posts
S1

Grep: Pres = Posto

S1’

G' > e1: Pre| = Post}
G’ > ez : Prel, = Posth

G' > letx=e; ines : Pre’ = Post’
with Pre’, Pre’,Post} implying P. The combined rule must be
free of the semantical condition:
G x G 1>ey: Prey- Prey = Posty - -Post}
G x G 1> ey: Pres- Prel, = Posts - -Posth
G xG'>letx=e; ines: Pre- Pre’ = Post - -Post’
with the product of sets of invariants defined in the obvioay.w
This gives a definition of the combinddt-rule: Scis a rule
in the combined system if and only if S1’' and S2 are rules in
the components. Other rules are combined in the similar Wéy.
discuss the soundness issue of combined rules in the neiirsec
Itis easy to see, thdt x G’ 1> e : Pre - Pre’ = Post - - Post’
is provable in the combined logic if and only & > e
Pre = Post andG’ > e : Pre’ = Post’ are provable in the
corresponding logics. However, reduction to a conjunctbtwo
assertion makes no sense since the type-inference for sheys-
tem alone is not possible.

3. The Language and its Logics
3.1 The Grail language

Grail is a special form of Java Virtual Machine Language (1Y§8].
Grail retains the object and method structure, but it reprss
method bodies as sets of mutually tail-recursive first-ofdac-

tions. Actual parameters in function calls coincide sytitadly

with the formal parameters of the function definitions. Thlisws

function calls to be interpreted as immediate jump instonst of

JVML. The syntax of expressions is defined by the grammar

null |int ¢ |var z |prim op z x|
new C [t; :== o] | z.t |z.t:=x |
C.t|C.ti=x|letz=ecine]|
e;e|if z then e else e
call f | C.M(@)

var z |null| ¢

e € expr =

a € args :=

whereC, M, f, t, x range over class, method, function, field and
variable names respectivelyranges over integer constanig, de-

note a binary primitive operation, such as arithmetic faegers
and comparisons over integers and heap references. Istegér
erences and_L form the set of valued/uls. Heap references are
eithernull or of the formRef [, wherel € Locs is a location.

Expressions correspond to primitive sequences of byte-cod
instructions. For example;.t := y represents a dynamic field
update. The bindinget z =e¢; in e2 is used if the evaluation of
e1 returns and integer or reference value on top of the JVMLkstac
e1; ez if not. The instructionC.M (a) represents static method
invocation. See [8] for more detail abokitail.

3.2 The operational semantics and the basic logic

The program logic foGrail is based on the operational semantics
E + h,e |} (K,v) via strongest specifications for each program
construct. For instance, the strongest specification fpression
var z is a parametric specificatiolAR of type Vars — Spec
defined as follows:

VARz =AEhh v.h' =hAv=E(z)

Similarly, the strongest conditions for dynamic field upmdait-
branching and et-binding have types

PUTFI Vars — Fields — Vars — Spec
IF ' Vars — Spec — Spec — Spec
LET Vars — Spec — Spec — Spec

respectively. They are defined as follows:

PUTFlzty=XEhh'v. 3. E{x) = Ref I A
K =ht(l = E(y)) A
v=_1
E(z) = true — (PEhhv))A
E(z) = false — (Q Ehhv))A
E(z) = true V E(z) = false)
LET2P P, =XEhh v. 3y w.
(Pl Ehh w) A\
(w# L)A
(P E(z := w) h1 h'v)
The rules for the above program constructs look like that:
VAR

IFzPQ=XEhh v.

Gr>varxz: VAR x

o atimy: PUTRIziy 1T
Gre: P Gp> ef: Q

IF
G > if v thenes elsees: IFx PQ

GI>€1: P1 GI>€2: P2
G>letz=e;ines: LET z P P>
The rule for a function call
GU (f(z): P) > body; : AEhR v. PEhh v
— FuN
Gp> f(z): P

allows one to recursively use the assumption that a cafl sat-
isfies a specification when proving that the unfolded definitf
f (body,) indeed satisfies the specification. Because of the restric-
tions ofGrail, described at the beginning of this section, the actual
parameterg = (z1, ... z,) coincide with formal parameters as
mentioned inbody ;. For methodinvocations the appropriate rule
instantiates parameters, substituting into the methog.bod

LET

3.3 Specialised logics

We consider here the MRG's focus — the resource aware logic
arising from the typing system of Hofmann and Jost [4].

Types in this system are annotated with natural numbers, suc
as List(T, k), which means a list of typ&, such that per each

2005/7/21

element there arg extra free heap units. We remark, ttiatis a
annotated type as well, unless it is an un-boxed typeUsay or
Int.

A tying judgmentl’, n Fs e T, n’ may be read
as: “under signatur&, in typing contextl’ and withn memory
resources available, the high-level-language teffi” has type
T with n’ unused resources left over”. Formally, judgments are
defined via heap-space aware inference rules, such as:

HLL

n>1+k+n
— CONSs
U, zpag : T, @t : List(T, k), n Fx
cons(xpa, vi) : List(T, k), n’
and
I'i,n ks e{ILL : To, no
Ta, 2:To, no Fx e : T, n
LET

', T, n by letz=eltlinellt . T\ n

We will represent the semantics of the typing judgment in the
program logic as a specialized assertio®t h b’ v. [U, n, T »
T, n']. To this aim, we need to define a notion ofigual cost(or a
potentia). Following [3], we consider just the types uiitintegers
I and annotated lists of integelig k), wherek is a natural number.
We define a relatiom IH%: R, K, which means that a stack value
v, associated with a typ€, points to a regiorR in a heaph and
has a virtual cosK:

u |
TIF 0,0 4k g, 0

hLTL IFf gy R, K
NIL
null Hﬂ(k) 0,0 L ka(k) {{}WR, K+k
with TL for the tail-field ands denoting a disjoint union.

Let U denote a finite set of program variables. We extend the
relationl- to U and a typing context':

E,U bt Ri, K1 E(x) IF,, R, K»
E,@ ‘F? 0,0 E,UL‘H{CC} ‘F? Ri W Ry, K1+ Ko

According to the correctness theorem from [4], the highelev
typing judgment’, n + e#LL . T, »’ translates into an assertion
such that for anyz, h, h'v, if the compiled expressionterminates
on E andh with a valuev and a heap/’, then for anyg > 0

CONs

o if the amount of free heap units (the free list size) befordev
ation ism > n + K + ¢, whereK is a virtual cost of variables
fromU = dom T, in the pre-state defined by andh,

¢ then the amount of free heap units after the evaluatien’is>
n’ + S 4 ¢, whereS is a virtual cost of the return valug and
q free heap units are left intact during the evaluation.

Note, that in the original typing system from [4] the disjBin
ness condition is not necessary. All one needs is to ensunigrbe
sharing. The latter can be approximated by linear typing.

The definition of the specialised assertion is as follows:

[U,n,Tw» T, n]=VgFRmK.
freelist(h, F, m) A
E, U I R, KA

RNF=0A -
m>n+K+q
3QSm H. v I R, SA

freelist(h', H, m’) A
QNH=O0ANQUHC (RUF)A
footrpint(F U R, h, h') A

m' >n'+8+qAdomh=domh

The meaning of this assertion corresponds to the sematritibe o
corresponding high-level typing judgement. The interdstader
may guess it her/himself or is referred to [3] for more detaie
have just reported it as an example of a statement whosengeese
in verification conditions makes them arguably difficult t@ye
automatically. Moreover, the proof of the soundness of tbe-
rule for such assertions is a technically difficult task evena
human operator. So, what can we do to cope with assertiongbf s
complexity?

First, as we have pointed out, the soundness proofs for such
assertions for the language constructs follow certairepagt We
extract these patterns and use in the design of the parametof
rules and modularisation of proofs.

Secondly, we note that this assertion may be split into two. A
pure numerical assertion should correspond exactly to dag-h
space aware typing judgments from [4]. It will look similarthe
one above, where in the relatién defined for sets of variables and
contexts, the disjoint uniow is substituted with the union. The
second type system should approximate benign sharing aawee h
mentioned in the previous section. It may be linear typinghore
general usage-aspect typing [12], etc.

We instantiate the parametric assertion with the usageetsp
aware one. We considérsubsets of used variables. A dét de-
notes variables that are potentially destroyed during vh&iation
of a region,R;. The regionR; corresponding td/: is intact, but
may be shared with the result region. The less “dangerous” us
concerns variables ifis: they refer to intact region®s and do not
share locations with the result. A sBtdenotes locations from a
freelist, as in the example above.

SetsU,, U, Us, contextl” and typeT play the role of param-
eters in the pre- and post-conditions. Recall, that therpeandc
specialised assertion has the form:

Pre = Post = AEhh' v.VX.(Pre Eh) — (Post h' v).
We instantiate the parametric assertion in the following:wa

X := (Ri, R2, Rs, F)
Pre := Preya U Uy U3 T
Post := Postya UL U3 U3 T

whereX; is thei-th projection ofX, 1 < i < 4:

Preya TU1 U2 U3 T = MX.
UyuUzUUs C dom T A
freelist(h, X4) A
E, Ul F X1 A E, Us IFR Xo, false A E, Us I X3 A
XiN(XiuXo) =0 A XuNn(X1UX2UX3)=0

and
Postya TU, U UsT = AX.
JQH. v IFE Q, false A

freelist(h', H) A

footprint (X4 U X1, h, ')A

Q C (X4 UX1UXo)A

H C (X4 U Xl)/\

dom h = dom h'A

E, Uy F X, true —
v II-T’;I Q, true

Here, the relation- has the same meaning as above, except
the last parameter. For the usage-aspect-2 variables itresi
on/off the internal separation. For the the usage-aspecidl-3 it
is irrelevant.

3.4 Parametric proof rules

We now discuss the design of soundness proofs for parametric
rules. Consider the most intricate case — the rule for 1be-

2005/7/21

construct — in detail. We sketch the proof of the rule

G > ey : Prey = Posty
G > es: Pres = Posts
gLET x Pre Post Prei Post1 Pres Posta

G > let x=e; iney : Pre = Post
in a backward style. The conditiggLET is to be defined.

1. Apply the rule of consequence to obtain the subgoals

G > ey : Prey = Posty
G > es: Pres = Posts
gLET x Pre Post Prei Post1 Pres Posta

G > letz=e€;ines: 7P
with a predicate€ P to be instantiated, and

G > ey : Prey = Posty
G > es: Pres = Posts
gLET x Pre Post Prey Post1 Prea Posts
VEhh v.?P Ehh'v — (Pre = Post Ehh'v)

2. The first subgoal is eliminated by the basiTtrule, and? P is
instantiated with

LET x (Pre1 = Post1) (Prez = Posta)

3. The subgoal to prove is

gLET = Pre Post Prey Post1 Prea Posts

VYEhhR v.
LET z (Pre1 = Post1) (Pres = Post2) ERR' v
— (Pre = Post) Eh R v

4. Simple backward logical reasoning yields:
LET x (Pre1 = Post1) (Prea = Posts) ERK v
gLET x Pre Post Prey Post1 Pres Posts
(Pre = Post) ERW v

5. Unfold the definition oLET 2

3 hl w.
((Pre1r = Post1) Ehhiw) A
(w#L)A
((Prea = Posts) E{z := w) h1 k' v)
(Pre = Post) Eh W v
6. Fix h1, w and unfold the definition of--operator. One obtains
the following subgoal:
VX.(Pre; X Eh) — (Posty X hy w) (1)
V X. (Pre2 X E{z := w) h1) — (Posta X h' v) (2)
VX.(Pre X Eh) — (Post X h'v)
7. Fix X and assume thdtre X F h holds.

8. ShowthatPre X E himplies the existence &f, s.t.Pre;Y E h
holds, that is, provéemma_1 which is a part ogLET.

9. Eliminate thev-quantifier in(1) by instantiating the quantified
parameter witty".

10. Apply (1) to obtainPost1 Y hy w.

11. Show thatPre X E h, Pre1 Y E h and Post1 Y hi w imply
the existence ofZ, s.t. Pres Z E{x := w) h1, that is, prove
lemma_2, which is another part ofLET.

12. Eliminate thé/-quantifier in(2) by instantiating the quantified
parameter with?.

2For the sake of convenience we will now omit
gLET = Pre Post Prei Postiy Pres Poste in the assumptions of
the subgoals below.

13. Apply (2) to obtainPosts Z h' v.

14. Show that the conditionBre X E h, Pre1Y E h, Post1Y hiw
Pres Z E{x := w) h1 and Posta Z h' v imply Post X h' v,
that is the last part ofLET, thelemma_3, holds.

In the proof script above steps 1-7, 9, 10, 12, 13 do not depend
on choice ofPre, Post, Prey, Post1, Pres, Posts. These steps
form the proof of the parametritet-rule. The proof is sound if
one is able to perform steps 8, 11, 14. This gives us a desirabl
soundness condition which is a conjunction of the corregpon
three statements:

gLET = Pre Post Prei Post1 Pres Posta =
lemma_l Pre Pre; A
lemma_2 x Pre Prei Posty Pres A
lemma_3 x Pre Pre, Posti1 Pres Posts Post

with

lemma_l Pre Pre; =
VEhVX.(Pre X EhR) — 3Y.(Pre1 Y Eh)

lemma_2 x Pre Prei Post1 Pres =
VEhhiw.VXY. (PreXEh)—
(Pre1Y Eh) — (Post1 Y hiw) —
3Z. (Prea Z E{x := w) h1)

lemma_3 x Pre Prei Post, Pres Posty Post =
VYEhhiwh'v.
VXY Z. (Pre X Eh) —

(Pre1Y Eh) — (Post1 Y hiw) —

(Pres Z E{x :== w) h1) —

(Posta Z h' v) — (Post X h'v)

Similarly, for thelet-rule for a non-pure type system:
G > ey : Preiy = Posty

G > es: Pres = Posts
gLET ' 2 Pre Post Pre; Post, PreaPosta P

Pre = Post

G > letz=¢; ines :

we introduce the soundness predicgt€T’, as conjunction of 3
lemmas, where the first lemma is the one for the pure typersyste
and

lemma_2’ = Pre Pre; Post, Pres P =
VEhhiwVXY. (PreX Eh) —
(Pre1Y Eh) — (Post1 Y hiw) —
3Z. (Pres Z E{z :== w) h1)

lemma_3’ x Pre Prei Post, Pres Posty Post P =
VY Ehhiwh'v.
VXY Z. (Pre X Eh) —

(Pre1Y Eh) — (Post1 Y hiw) —

('P Eh hl w) —

(Pres Z E{x :== w) h1) —

(Posta Z h' v) — (Post X h'v)

The parametric rules for basic expressions are instancee of
rule of consequence, applied to the appropriate rule in tHsicb
logic.

We sum up the main result of this subsection. Recall, that
PreSpec(ar) = a — PreSpec and PostSpec(a) = a —
PostSpec. For the language constructs above we define the sound-

2005/7/21

ness predicates

gVAR : Vars — PreSpec(a)) — PostSpec(a) — Bool
gPUTFI : Vars — Fields — Vars —

— PreSpec(a) — PostSpec(a) — Bool
gIF: Vars — PreSpec(a) — PostSpec(a) —

— PreSpec(a) — PostSpec(a) —

— PreSpec(a) — PostSpec(a) — Bool
gLET : Vars — PreSpec(a)) — PostSpec(a) —

— PreSpec(a) — PostSpec(a) —
— PreSpec(a) — PostSpec(a) — Bool.

which assure the soundness of the corresponding parameéésc

gVAR = Pre Post

GVAR
G > var x : Pre = Post

gPUTFI 2ty Pre Post
G > z.t:=y: Pre = Post

GPUTFI

glF « PrePost PreiPost; PreyPosty
G > et : Prey = Posty G > ef: Preyf = Posty

GIF
G > if x then e; else ey : Pre = Post
gLET x Pre Post Prei Post1 Pres Posta

G 1> e : Prey = Posti1 G > ey: Pres = Posts GLET

G > letx=e¢ iney : Pre = Post

The rules for function call and method invocation are insésnof
appropriate basic rules. There are no special soundnedisaes.
The predicates are designed as follows:

gVAR z Pre Post= Y Ehho. (VARa: Ehh’v) —

((Pre = Post) Ehhv)
gPUTFI x Pre Postty =
VEhhv. (PUTFI xtthh’v) .

((Pre = Post) Ehhv)

glF = PrePost Pre;Post; PreyPost; =
VYEhR v.

E(z) = true —
(Pre Ehhv) — (Pre: ERhv))A
(Post: Ehhv) — (PostEhhv)))/\

~ T~

E(z) = false —
(Pre Ehhv) — (Preg Ehhv))A
(Post; Ehhv) — (PostEhhv)))/\

—~

(

We have used this parametric framework to obtain the sowsdne
proof of the usage-aspect-aware logic of [12].

3.5 Combined assertions

We start this subsection with a perhaps surprising remdum: t
soundness of the combina@gt-rule in general does not follow
from the soundness of the rules for its components. For tke sa
of simplicity one may think that the firatet rule does not contain
a semantical condition. To provide some intuition, we cdesthe
first-order skeleton of the problem, that is, we should shioat t
from

Al — Bi

Al — Bé

Al — Bt S

with7 = 1, 2, it follows

AN A2 — B AB2

AN A2 — BIAB3

A'AN A2 — B'AB?
The assumptiondA} A A2 — B{ A B? does not imply the
assumptions of’1 and S’2. This makes these rules useless and
the conclusion of the combined implication unprovable. igirty,
G x G’ > e : Pre}- Pre? = Post] - -Post? does not imply
G > el Pre} = Posti. Therefore, thelet-rules for the
components does not justify thet-rule for the combination.

A similar problem takes place for the-rule, while for the rules
of the basic language constructs the soundness of the camjzon
do imply the soundness of the composition.

Therefore, if one wants to re-use the soundness of the compo-
nents, one must find a sufficient condition of soundness wisich
stronger than one needs for a single rule.

The soundness condition that we have defined above, has ex-
actly the property we need: the soundness condition of the- co
bined assertion follows from the soundness conditionssofdim-
ponents. Below we give a table with the corresponding fostatk-
ments. We have included examples with the basic expressi®ns
well, to keep the things uniform.

gVAR & Pre' Post® gVAR x Pre? Post?
gVAR = (Pre' - Pre?) (Post® - - Post?)

S'c

CVAR

gPUTFl 2ty Pre* Post' gPUTFl zty Pre® Post?

CPUTFI
gPUTFIl 2ty (Pre' - Pre?) (Post' - - Post?)
glF x Pre' Post' Prej Post; Pre’ Post};
glF « Pre?Post? Pre?Past? Pre} Post;
CIF
glFz (Pre' - Pre?)(Post' - -Post?)
(Pre} - Pre?)(Post; - -Post?)
(Pre} - Pre%)(Post} - -Post?)
gLET ' « Pre' Post' Prel Posti Pre}Posts P
gLET x Pre? Post® Pre? Post? Pre3 Post3
Pre? Pre? Post? implies P CLET
gLET z (Pre1 . PreQ)(Post1 . -P05t2)
(Pre} - Pre?)(Posti - -Post?)
(Pre} - Pre3)(Posts - -Post3)

where the approximation

Pre® Pre; Posts implies P= VEhhiw.V X Y.
(Pre* X Eh) —
(Pre3 Y Eh) — (PostlY hyw)
— (P Ehhiw)

of the semantical side condition allows us to eliminate tiie s
condition in the combined rule.

4. Related Works

The current work is motivated by the experience we have ciglte

in Mobile Resource Guarante€¢BIRG) project [1], when working

on heap-space predicates. In a recent work [3] we have pedpos
a synthesis between type systems and program logics. Tipe hea
space resource type system from [4] is used for automateztgen
tion of invariants and proof scripts in the logic ferail. The idea

of mapping type systems onto program logics in general case i
sketched in [5]. In [6] the authors consider combinatorgtmeral
form of assertions and rules. In this paper we develop thiesgsi
and consider combinators for specialised logics.

2005/7/21

In [9] the authors define a safety logic for an assembly laggua
with a parametric verification condition generator. The VIE§Gon-
structed in a “traditional way” with small-step weakest qmadi-
tion generation. The safety predicates to be checked arenafrgl
form.

Static analysis and its generalisation in the form of Refual
Hoare Logic is used in [10] for checking correctness of ofgtim
ing transformations. The transformations are presentedlbg for
deriving (non-standard) typed equations. There the Iag@onsid-
ered as a generalisation of typing systems, while we useddgi
express the semantics of type judgments or to turn sembpiima
erties into typeable ones.

5. Conclusions and Future Work

We have considered a parametric logical framework for cimeck
soundness of type systems. It assists in the design of $ipedia
logics that mirror types systems in a higher-order logic aray be
used for automated program verification.

The framework helps to treat compound inference systems,
where one of the components is a non-pure type system, but con

tains semantical conditions in assumptions of its rules. &l-w
designed composition may eliminate semantical conditions

The parametric logic is implemented as an Isabelle theogy. W

have been testing the framework by applying it to differemtet
systems. The first results obtained by instantiation tharpatric
assertion and rules with the usage-aspects aware typirfignsys
of [12], which generalises linear typing, are very encoingg

We plan to design the specialised logic for the non-pureuress

aware type system of [4] and combine it with usage aspects. We
want to combine this inference system with other type system

approximating benign sharing.
We are also interested in applying the framework to othee typ
systems and their combinations.

6. Acknowledgements

The author is supported by the Mobile Resource Guarantegscpr
(MRG, project IST-2001-33149), which is funded by the EU un-
der the Global Computing pro-active initiative on the Fetand
Emerging Technologies.

The author would like to thank Martin Hofmann and Alberto
Momigliano for a few fruitful discussions.

References

[1] Aspinall, D., Gilmore, S., Hofmann, M., Sannella, D.,da8tark., I.
Mobile Resource Guarantees for Smart DevicesCamstruction and
Analysis of Safe, Secure, and Interoperable Smart Deviteseedings
of the International Workshop CASSIS 2p@dmber 3362 in LNCS,
pages 1-26. Springer-Verlag, 2004.

[2] Beringer, L., Hofmann, M., Loidl, H.-W., and Momigliand&\. A
Program Logic for Resource Verification. FProceedings of 17th
International Conference on Theorem Proving in Higher Qrdegics
(TPHOLs2004)pages 34-49. Springer-Verlag LNCS, September 2004.

[3] Beringer, L., Hofmann, M., Momigliano, A., and Shkarkes O. Au-
tomatic Certification of Heap Consumption. llogic for Programming,
Artificial Intelligence and Reasoning: 11th Internation@bnference,
LPAR 2004 volume 3452, pages 347-362. Springer-Verlag, 2005.

[4] Hofmann, M., and Jost, S. Static prediction of heap spaege for first-
order functional programs. IRroceedings of the 30th ACM Symposium
on Principles of Programming Languagesmlume 38, pages 185-197.
ACM Press, 2003.

[5] Hofmann, M. What do program logic and type systems have in
common? InProceedings of ICALP'04pages 4-7, 2004.

[6] Beringer, L., and Momigliano, A. Implement a theorem y&Dn In
Mobile Resource Guarantee Project Deliverable DRevember 2003.

[7] Loidl, H.-W., and MacKenzie, K. A Gentle Introduction ©amelot.
September, 2004.
http://groups.inf.ed.ac.uk/mrg/camelot/Gentle-Catiehmelot-gentle-
intro.html.

[8] MacKenzie, K., and Wolverson, N. Camelot and Grail: rese-
aware functional programming on the JVM. Tnends in Functional
Programming volume 4, pages 29-46. Intellect, 2004.

[9] Wildmoser, M., and Nipkow, T. Certifying Machine Code f8ty:
Shallow versus Deep Embedding. In K. Slind and A. Bunker and G
Gopalakrishnan, editor§’heorem Proving in Higher Order Logics
(TPHOLSs 2004volume 3223 of LNCS, pages 305-320. Springer, 2004.

[10] Benton, N. Simple Relational Correctness Proofs fatiStAnalyses
and Program Transformations. Proceedings of the 31st ACM
Symposium on Principles of Programming Languages (PORCM,
January, 2004.

[11] Aspinall, D., Beringer, L., Hofmann, M., Loidl, H.-W.and
Momigliano, A. A Program Logic for Resource. Submitted, 200
[12] Aspinall, D., and Hofmann, M. Another Type System forRiace

Update. INESOP’02 — European Symposium on ProgrammirdCS
2305, pages 36-52, Springer, 2002.
[13] Xi, H., and Pfenning, F. Dependent Types in PracticalgPamming.

In Proceedings of the 26th ACM SIGPLAN Symposium on Princgdles
Programming Languagepages 214-277, San Antonio, January, 1999.

2005/7/21

