Worlds Coalgebraically

Olha Shkaravska 1,2
Institute of Cybernetics, Tallinn, Estonia

A finite array $(A$, sel, upd $)$ with values from the set V and locations in the set L is the set A equipped with sel : $A \times L \rightarrow V$ and upd: $A \times L \times V \rightarrow A$ operations subject to the equations of the theory of global state [1], [2]: $\operatorname{sel}(\operatorname{upd}(a, l o c, v), l o c)=v, \operatorname{upd}(a, l o c, \operatorname{sel}(a, l o c))=a$, $\operatorname{upd}\left(\operatorname{upd}(a, l o c, v), l o c, v^{\prime}\right)=\operatorname{upd}\left(a, l o c, v^{\prime}\right)$ and $\operatorname{upd}\left(\operatorname{upd}(a, l o c, v), l o c^{\prime}, v^{\prime}\right)=$ $\operatorname{upd}\left(\operatorname{upd}\left(a, l o c^{\prime}, v^{\prime}\right), l o c, v\right)$ whenever $l o c \neq l o c^{\prime}$.

The set A is isomorphic to some R copies of the finite map $S=V^{L}$. Arrays with values from V and locations from L form a category (L, V)-Array, where an array morphism is a map in Set, which respects the operations in the obvious way.

In [2] we have shown that (L, V)-Array is equivalent to the category Set ${ }_{G}$ of coalgebras of the comonad $G(X)=X^{S} \times S$. In the presented work we strengthen this result. The categories are isomorphic. The isomorphism sends an array $(A$, sel, upd $)$ to the coalgebra $\left(A, \alpha: A \rightarrow A^{S} \times S\right)$, where transitions $\alpha_{1}(a)=\overline{\operatorname{upd}}(a,-)$ and observations $\alpha_{2}(a)=\overline{\operatorname{sel}}(a)$, are defined by maps $\overline{\operatorname{upd}}\left(a,\left(v_{1}, \ldots v_{n}\right)\right)=\operatorname{upd}\left(\ldots \operatorname{upd}\left(a, 1, v_{1}\right) \ldots, n, v_{n}\right)$ and $\overline{\operatorname{sel}}(a)=$ $(\operatorname{sel}(a, 1), \ldots, \operatorname{sel}(a, n))$.

To model fresh memory allocation one replaces the base category Set with the presheaf category 【Inj, Set】, where Inj is the category of natural numbers and injections. The presheaf category is cartesian closed with the product of presheaves defined elementwise and the exponent Y^{X} at n the set of natural transformations $X m \times I n j{ }^{\prime}(n, m) \stackrel{\rightarrow}{\rightarrow} Y m$.

In [3] the author gives a general construction for models of indexed theories on $\llbracket I n j, S e t \rrbracket$. There to create a model at world n one needs a natural transformation block ${ }_{n}: A(n+1) \dot{\rightarrow}(A n)^{V}$ subject to a few equations.

In this work we consider a simplified dual construction for extending from global to local state, for presheaves $\llbracket I n j^{\prime}, S e t \rrbracket$, where $I n j^{\prime \prime}$ is obtained from Inj by removing all arrows of type $1 \rightarrow n$ with $n>2$ ("new"-arrows). As in [3], given a presheaf A we consider the sequence of comodels $\left(A n, \operatorname{sel}_{n}, u p d_{n}\right)$. A V^{\star}-array $(A, s e l, u p d)$ is a presheaf A equipped with the natural transformations sel : $A \times L \Rightarrow V$, upd : $A \times L \times V \Rightarrow A$ whose nth components satisfy

[^0]the axiomatics at world n. Here V is the constant functor. The functor L sends n to $\{1, \ldots n\}$ and $\operatorname{Lold}_{n}^{i}:\{1, \ldots, n\} \rightarrow\{1, \ldots, n+1\}$ sends $l \leq i$ to l, fixes the cell $i+1$ as the fresh one and sends $l>i$ to $l+1$. The functor S sends n to V^{n} and $S o l d_{n}^{i}:\left(v_{1}, \ldots, v_{n}\right) \mapsto\left(v_{1}, \ldots, v_{i}, v_{0}, v_{i+1}, \ldots, v_{n}\right)$, where v_{0} is a fixed constant from the set V.

Our main result is that the category V^{*}-Array is isomorphic to $\llbracket I n j^{\prime}, S e t \rrbracket_{G}$. The proof is done directly by the definitions. Alternatively, one may use the fact that $\overline{u p d}_{n}(-,-): A n \times S n \dot{\rightarrow} A n$ and the first component of the coalgebra structure map $\alpha_{1, n}: A n \dot{\rightarrow}\left(A^{S}\right) n$ are in a 1-1 correspondence due to the adjunction. In more detail, if $a \in A n, s \in S m, f \in \operatorname{Inj}^{\prime}(n, m)$ then $\alpha_{1, n, m}(a)(s, f)=\overline{u p d}_{m}(A f(a), s)$, and, for the inverse, if $a \in A n, s \in S n$ then $\overline{u p d}_{n}(a, s)=\alpha_{1, n, n}(a)\left(s, \mathbf{i d}_{n}\right)$.

Contrary to [3] we do not consider block operations and let the arrows old n_{n}^{i}, with $0 \leq i \leq n$, of $I n j^{\prime}$ create the transition to the comodel at world $n+1$. The arrow old ${ }_{n}^{i}$ represents the map $\operatorname{Lold}_{n}^{i}$.

To ensure the coherence of sel and upd operations in different worlds we add transition axioms $\operatorname{sel}_{n}\left(\operatorname{Aold}_{i}^{n}(a), i+1\right)=v_{0}$. The constant v_{0} play a role of the default value which is placed into a fresh location whenever it is created.

The price for this simplification is that we cannot speak about an equational theory now, since we have equations with mixed levels of arrows.

One may define the dual block $: A n \times V \dot{\rightarrow} A(n+1)$ as block $_{n}(a, v)=$ $\left(\lambda i . u p d_{n+1}\left(\operatorname{Aold}_{n}^{i-1}(a), i, v\right)\right)$, where $1 \leq i \leq n+1$, and this block ${ }_{n}$ will satisfy the following equations, similar to the block-axioms from [1]:
$u p d_{n+1}\left(\right.$ block $\left._{n}(a, v)(l o c), l o c, v^{\prime}\right)=\operatorname{block}_{n}\left(a, v^{\prime}\right)(l o c)$,
$\operatorname{sel}_{n+1}\left(\right.$ block $\left._{n}(a, v)(l o c), l o c\right)=v$, $\operatorname{block}_{n+1}\left(\right.$ block $\left._{n}(a, v)(l o c), v^{\prime}\right)\left(\operatorname{Lold}_{n}^{\text {loc }-1}\left(l o c^{\prime}\right)\right)=$ $b l o c k_{n+1}\left(\right.$ block $\left._{n}\left(a, v^{\prime}\right)\left(l o c^{\prime}\right), v\right)\left(\operatorname{Lold}_{n}^{l o c^{\prime}-1}(l o c)\right)$ whenever $l o c \neq l o c^{\prime}$, and $u p d_{n+1}\left(b l o c k_{n}(a, v)(l o c), L o l d_{n}^{l o c-1}\left(l o c^{\prime}\right), v^{\prime}\right)=\operatorname{block}_{n}\left(u p d_{n}\left(a, l o c^{\prime}, v^{\prime}\right), v\right)(l o c)$.

One uses naturality of sel and upd to prove these equations. The connections between approaches "with" and "without" block still needs to be explored. In particular, one should check if any of block maps, satisfying the equations may be presented via old arrows as above.

References

[1] G. D. Plotkin, A. J. Power. Notions of Computation determine Monads, Proc. FOSSACS 2002, Lecture Notes in Computer Science, 2303, Springer-Verlag, 2002, pp. 342-356.
[2] A. J. Power, O. Shkaravska. From Comodels to Coalgebras: State and Arrays, Proc. CMCS 2004, Electronic Notes in Theoretical Computer Science, 106 (2004)
[3] A.J. Power. Semantics for Local Computational Effects, MFPS, submitted.

[^0]: 1 The author thanks John Power and Tarmo Uustalu for the discussions.
 2 Email: shkarav@cs.ioc.ee

