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Abstract

We consider inference in general dynamic Bayesian networks. We are especially interested
in models in which exact inference becomes intractable, as, for example, in switching linear
dynamical systems. We introduce expectation propagation as a straightforward extension of
Pearl’s exact belief propagation. Expectation propagation, is a greedy algorithm, converges
in many practical cases, but not always. Our goal is therefore to derive a message propagation
scheme that can be guaranteed to converge.

Following Minka, we therefore first derive a Bethe-free energy like functional, the fixed
points of which correspond to fixed points of expectation propagation. We turn this primal
objective into a dual objective in terms of messages or Lagrange multipliers. Approximate
inference boils down to a saddle-point problem: maximization with respect to the differ-
ence between forward and backward messages, minimization with respect to the sum of the
forward and backward messages. We derive several variants, ranging from a double-loop al-
gorithm that guarantees convergence to the saddle point to a damped version of “standard”
expectation propagation. We discuss implications for approximate inference in general, tree-
structured or even loopy, Bayesian networks.
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1 Introduction

Pearl’s belief propagation [29] is a popular algorithm for inference in Bayesian networks. It is
known to be exact in special cases, e.g., for tree-structured (singly connected) networks with
just Gaussian or just discrete nodes. However, in many cases it fails, for the following reasons.

Structural. When loops are present, the network is no longer singly connected and belief prop-
agation does not necessarily yield the correct marginals. However, loopy belief propaga-
tion, that is, Pearl’s belief propagation applied to networks containing cycles, empirically
leads to good performance (approximate marginals close to exact marginals) in many
cases [28, 22].

Non-structural. Even although the network is singly connected, belief propagation itself is in-
tractable or infeasible. A well-known example is inference in hybrid networks consisting of
combinations of discrete and continuous (Gaussian) nodes [18]. Another example is infer-
ence in factorial hidden Markov models [9], which becomes infeasible when the dimension
of the state space gets too large.

In this article, we focus on the “non-structural” failure of Pearl’s belief propagation. To
this end, we restrict ourselves to dynamic Bayesian networks: these have the simplest singly-
connected graphical structure, namely a chain. We will review belief propagation in dynamic
Bayesian networks for exact inference in Section 2. Examples of dynamic Bayesian networks
in which exact inference can become intractable or highly infeasible are the factorial hidden
Markov models mentioned before, switching linear dynamical systems (the dynamic variant of
a hybrid network), nonlinear dynamical systems, and variants of dynamic hierarchical models.

Algorithms for approximate inference in dynamic Bayesian networks can be roughly divided
into two categories: sampling approaches and parametric approaches. Popular sampling ap-
proaches in the context of dynamic Bayesian networks are so-called particle filters (see [6] for a
collection of recent advances). With regard to the parametric approaches we can make a further
subdivision into variational approaches and greedy projection algorithms. In the variational
approaches (see e.g. [14] for an overview) an approximate tractable distribution is fitted against
the exact intractable one. The Kullback-Leibler divergence between the exact and approximate
distribution plays the role of a well-defined global error criterion. Examples are variational
approaches for switching linear dynamical systems [8] and factorial hidden Markov models [9].
The greedy projection approaches are more local: they are similar to standard belief propaga-
tion, but include a projection step to a simpler approximate belief. Examples are the extended
Kalman filter [13], generalized pseudo-Bayes for switching linear dynamical systems [2, 16], and
the Boyen-Koller algorithm for hidden Markov models [4]. In this article, we will focus on these
greedy projection algorithms.

In his PhD thesis [25] (see also [24]), Minka introduces expectation propagation, a family of
approximate inference algorithms that includes loopy belief propagation and many (improved
and iterative versions of) greedy projection algorithms as special cases. In Section 3 we will de-
rive expectation propagation as a straightforward extension of exact belief propagation, the only
difference being an additional projection in the procedure for updating messages. We illustrate
expectation propagation in Section 3.3 on switching linear dynamical systems and variants of
dynamic hierarchical models. Although arguably easier to understand, our formulation of expec-
tation propagation applied to dynamic Bayesian networks is just a specific case of expectation
propagation for chain-like graphical structures (see Section 3.2).

In exact belief propagation the updates for forward and backward messages do not interfere,
which can be used to show that a single forward and backward pass are sufficient to converge to
the correct beliefs. With the additional projection, the messages do interfere and a single forward
and backward pass may not be sufficient, suggesting an iterative procedure to try and get better
estimates, closer to the exact beliefs. A problem, however, with expectation propagation in
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Figure 1: Graphical representation of a dynamic Bayesian network.

general is that it does not always converge [25]. An important and open question is whether this
is due to the graphical structure (e.g. messages running in cycles in networks with loops), to
projections in the message update (causing interference between forward and backward passes
even in chains), or both. By restricting ourselves to approximate inference on chains, we focus
on the impact of the projections, unconcealed by structural effects.

In an attempt to derive convergent algorithms, we first have to define what we would like to
optimize. Inspired by the Bethe free energy recently proposed for loopy belief propagation [38]
and its generalization to expectation propagation [24, 23], we derive in Section 4.1 a similar
functional for expectation propagation in dynamic Bayesian networks. It is easy to show that
fixed points of expectation propagation correspond to extrema of this free energy and vice versa.
The primal objective boils down to a non-convex minimization problem with linear constraints.
In Section 4.3 we turn this into a constrained convex minimization problem at the price of
an extra minimization over canonical parameters. This formulation suggests a double-loop
algorithm, which is worked out in Section 5.

This double-loop algorithm is guaranteed to converge, but requires full completion of each
inner loop. The equivalent description in terms of a saddle-point problem in Section 6 suggests
faster short-cuts. The first one can be loosely interpreted as a combination of (natural) gradient
descent and ascent. The second one is based on a damped version of “standard” expectation
propagation. Both algorithms can be shown to be locally stable close to the saddle point.

Simulation results regarding expectation propagation applied to switching linear dynamical
systems are presented in Section 7. It is shown that it makes perfect sense to try and find the
minimum of the free energy even when standard undamped expectation propagation does not
converge. In Section 8 we end with conclusions and a discussion of implications for approximate
inference in general Bayesian networks.

2 Dynamic Bayesian networks

2.1 Probabilistic description

We consider general dynamic Bayesian networks with latent variables xt and observations yt.
The graphical model is visualized in Figure 1 for T = 4 time slices. The joint distribution of
latent variables x1:T and observables y1:T can be written in the form

P (x1:T ,y1:T ) =
T∏

t=1

ψt(xt−1,xt,yt) ,

where
ψt(xt−1,xt,yt) = P (xt|xt−1)P (yt|xt) ,

and with the convention ψ1(x0,x1,y1) ≡ ψ1(x1,y1), i.e., P (x1|x0) = P (x1), the prior. Our
definition of the potentials ψt(xt−1,xt,yt) is sketched in Figure 2. In the following we will use
the shorthand ψt(xt−1,t) ≡ ψt(xt−1,xt,yt). That is, we will assume that all evidence y1:T is
fixed and given and include the observations in the definition of the potentials. In principle, xt
can be any combination of discrete and continuous variables (as for example in a switching linear
dynamical systems). However, for notational convenience we will stick to integral notation.
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Figure 2: Definition of potentials.
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Figure 3: Message propagation.

2.2 Belief propagation

Our goal is to compute one-slice marginals or “beliefs” of the form P (xt|y1:T ): the probability of
the latent variables in a given time slice given all evidence. This marginal is implicitly required
in many EM-type learning procedures (e.g., the Baum-Welch procedure for hidden Markov
models [3, 36] or parameter estimation in linear dynamical systems [34, 7]), but can also be of
interest by itself, especially when the latent variables have a direct interpretation. Often we also
need the two-slice marginals P (xt−1,xt|y1:T ), but as we will see, belief propagation gives these
more or less for free.

A well-known procedure for computing beliefs in general Bayesian networks is Pearl’s belief
propagation [29]. Specific examples of belief propagation applied to Bayesian networks are the
forward-backward algorithm for hidden Markov models [31, 36] and the Kalman filtering and
smoothing equations for linear dynamical systems [32, 7]. Here we will follow a description
of belief propagation as a specific case of the sum-product rule in factor graphs [17]. This
description is symmetric with respect to the forward and backward messages, contrary to the
perhaps more standard filtering and smoothing operations. We distinguish variable nodes xt
and local function nodes ψt in between variable nodes xt−1 and xt. The message from ψt forward
to xt is called αt(xt) and the message from ψt back to xt−1 is referred to as βt−1(xt−1) (see
Figure 3).

The belief at variable node xt is the product of all messages sent from neighboring local
function nodes:

P (xt|y1:T ) ∝ αt(xt)βt(xt) .

Following the sum-product rule for factor graphs, the message sent from the variable node xt to
the function node ψt is the product of all messages that xt receives, except the one from ψt itself.
Or, to put it differently, the belief at xt divided by the message βt(xt), which is (up to irrelevant
normalization constants) αt(xt). Note that this a peculiar property of chains: variable nodes
simply pass the message they receive on to the next local function node; in a general tree-like
structure these operations are slightly more complicated.

Information about the potentials is incorporated at the corresponding local function nodes.
The recipe for computing the message from the local function node ψt to a neighboring variable
node xt′ , where t′ can be either t (forward message) or t− 1 (backward message), is as follows.1

1The standard description is slightly different. In the first step the potential is multiplied with all messages
excluding the message from xt′ to ψt and there is no division afterwards. For exact belief propagation, marginal-
ization over all variables except xt′ commutes with the multiplication by the message from xt′ , which therefore
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1. Multiply the potential corresponding to the local function node ψt with all messages from
neighboring variable nodes to ψt, yielding

P̂ (xt−1,xt) ∝ αt−1(xt−1)ψt(xt−1,t)βt(xt) , (t = 1 : T ) (1)

our current estimate of the distribution at the local function node given the incoming
messages αt(xt−1) and βt(xt).

2. Integrate out all variables except variable xt′ to obtain the current estimate of the one-slice
marginal P̂ (xt′).

3. Conditionalize, i.e., divide by the message from xt′ to ψt.

Applying this recipe to the forward and backward messages we obtain, respectively,

αt(xt) ∝

∫

dxt−1 αt−1(xt−1)ψt(xt−1,xt)βt(xt)

βt(xt)

=

∫

dxt−1 αt−1(xt−1)ψt(xt−1,xt) (t = 1 : T )

βt−1(xt−1) ∝

∫

dxt αt−1(xt−1)ψt(xt−1,xt)βt(xt)

αt−1(xt−1)

=

∫

dxt ψt(xt−1,xt)βt(xt) , (t = 2 : T ) (2)

with convention α0(x0) ≡ βT (xT ) ≡ 1. It is easy to see that the forward and backward messages
do not interfere: they can be computed in parallel and a single forward and backward pass is
sufficient to compute the exact beliefs. Furthermore note that the two-slice marginals follow
directly from (1) after all α1:T and β1:T have been calculated.

Despite the apparent simplicity of the above expressions, even in chains exact inference can
become intractable or computationally too expensive. We can think of the following, often
related, causes for trouble.

• The integrals at the function nodes are not analytically doable. This happens when, for
example, the dynamics in the (continuous) latent variables is nonlinear. Popular approxi-
mate approaches are the extended Kalman filter [13] and recent improvements [15].

• The operations, i.e., the integrals or summations, at the function nodes become compu-
tationally too expensive because, for example, computing the integral involves operations
that scale with a polynomial of the dimension of xt. This is the motivation behind vari-
ational approximations for factorial hidden Markov models [9], among others. Our own
specific interest is in dynamic hierarchical models, the graphical structure of which is vi-
sualized in Figure 4. All nodes are Gaussian and all transitions linear, which makes this
a specific case of a linear dynamical system. Exact inference is of order N 3, with N the
number of nodes within each time slice. The goal is to find an approximate inference
algorithm that is linear in N .

• A description of the belief states P (xt) themselves is already exponentially large. For
example, with N binary states at each time, we need on the order of 2N parameters to
specify the probability P (xt). The Boyen-Koller algorithm [4] projects the belief onto an
approximate factored belief state that requires only N variables. The factored frontier
algorithm [27] is a further extension that executes the forward and backward operations
in a computationally efficient manner.

cancels with the division afterwards [see Equation (2)]. This makes the standard procedure more efficient. The
procedure outlined in the text is, as for as the results are concerned, equivalent and generalizes directly to the
expectation propagation algorithm described in the next section.
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Figure 4: A dynamic hierarchical model.
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Figure 5: Switching linear dynamical system.

• Over time, the number of components needed to describe the beliefs becomes exponential.
This is the case in switching linear dynamical systems [35, 26] (see Figure 5). Suppose
that we have M different switch states. Then, at each forward step the number of mixture
components multiplies by M and we need M T mixture components to express the exact
posterior. This is an example of the well-known fact that inference in hybrid Bayesian
networks is much harder than in networks with just discrete or just Gaussian nodes [20].

Most of these problems can be tackled by the approach described below, which we will refer to
as expectation propagation.

3 Expectation propagation as approximate belief propagation

3.1 Projection to the exponential family

Expectation propagation is a straightforward generalization of exact belief propagation. As
explained above, problems with exact inference may arise in the marginalization step: exact
calculation may not be doable and/or might not keep the beliefs within a family of distributions
that is easy to describe and keep track of. The suggestion is therefore to work with approximate
belief states, rather than with the exact ones. That is, we extend the marginalization step as
follows.

2. Integrate out all variables except variable xt′ to obtain the current estimate of the belief
state P̂ (xt′) and project this belief state on to a chosen family of distribution, yielding the
approximate belief qt′(xt′).

The remaining questions are then how to choose the family of distributions and how to project.
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For the family of distributions we take a particular member of the exponential family, i.e.,

qt(xt) ∝ eγT
t f(xt) , (t = 1 : T ) (3)

with γt the canonical parameters and f(xt) the sufficient statistics.2 Typically, γ and f(x)
are vectors with many components. For example, the sufficient statistics for an N -dimensional
Gaussian are

f(x) = {xi (i = 1 : N), xixj (i, j = 1 : N ; j ≤ i)} .

Furthermore, note that a distribution over discrete variables can be written in exponential form,
simply by defining f(x) as a long vector of Kronecker delta-functions, one for each possible state,
and taking the corresponding component of γ equal to the logarithm of the probability of this
state.

Our choice for the exponential family is motivated by the fact that multiplication and division
of two exponential forms yields another exponential form. That is, if we initialize the forward
and backward messages as

αt(xt) ∝ eαT
t f(xt) and βt(xt) ∝ eβT

t f(xt) ,

for example choosing αt = βt = 0, they will stay of this form: αt and βt fully specify the
messages and are all that we have to keep track of. As in exact belief propagation, the belief
qt(xt) is a product of incoming messages:

qt(xt) ∝ e(αt+βt)
T f(xt) . (t = 1 : T ) (4)

Typically, there are two kinds of reasons for making a particular choice within the exponential
family.

• The main problem is that the exact belief is not in the exponential family and therefore
difficult to handle. The approximating distribution is of a particular exponential form,
but usually further completely free. Examples are a Gaussian for the nonlinear Kalman
filter or a conditional Gaussian for the switching Kalman filter of Figure 5.

• The exact belief is in the exponential family, but requires too many variables to fully specify
it. The approximate belief is part of the same exponential family but with additional
constraints for simplifications, e.g., factorized over (groups of) variables. This is the case
for the Boyen-Koller algorithm [5] and would also be the way to go for the linear dynamical
system of Figure 4.

Although the motivation is somewhat different, both can be treated within the same framework.
In the projection step, we replace the current estimate P̂ (x) by the approximate q(x) of the

form (3) that is closest to P̂ (x) in terms of the Kullback-Leibler divergence

KL(P̂ |q) =

∫

dx P̂ (x) log

[

P̂ (x)

q(x)

]

. (5)

With q(x) in the exponential family, it is easy to show that the solution follows from moment
matching: we have to find the canonical parameters γ such that

g(γ) ≡ 〈f(x)〉q ≡

∫

dx q(x)f(x) =

∫

dx P̂ (x)f(x) .

2A perhaps more standard definition of a distribution in the exponential family reads

q(x) = exp

[
∑

i

γifi(x) +D(x) + S(γ)

]

,

which can be turned into the form (3) by defining f0(x) ≡ D(x) and γ0 ≡ 1. The only thing to keep in mind then
is that γ0 is never to be treated as a parameter, but always kept fixed.
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For members of the exponential family the so-called link function g(γ) is unique and invertible,
i.e., there is a one-to-one mapping from canonical parameters to moments.

In fact, to compute new messages αt(xt) and βt−1(xt−1), we do not have to compute the
approximate marginals P̂ (xt′). We only need the expectation of f(xt′) over the two-slice marginal

p̂t(xt−1,t) ≡ P̂ (xt−1,xt) ∝ eαT
t−1f(xt−1)ψt(xt−1,t)e

βT
t f(xt) . (t = 1 : T ) (6)

In terms of the canonical parameters αt and βt, the forward and backward passes require the
following operations.

Forward pass. Compute αt such that

〈f(xt)〉p̂t
= 〈f(xt)〉qt = g(αt + βt) . (t = 1 : T )

Note that 〈f(xt)〉p̂t
only depends on the messages αt−1 and βt. With βt kept fixed, the

solution αt = α̃t(αt−1,βt) can be computed by inverting g(·), i.e., translating from a
moment form to a canonical form.

Backward pass. Compute βt−1 such that

〈f(xt−1)〉p̂t
= 〈f(xt−1)〉qt−1

= g(αt−1 + βt−1) . (t = 2 : T )

Similar to the forward pass, the solution can be written βt−1 = β̃t−1(αt−1,βt). By
definition we can set βT ≡ 0 (no information propagating back from beyond T ).

The order in which the messages are updated is free to choose. However, iterating the
standard forward-message passes seems to be most logical.

1. Start with all αt and βt equal to zero.

2. Go forward by updating α1 to αT leaving all βt intact.

3. Go backward by updating βT−1 to β1 leaving all αt intact.

4. Iterate the forward and backward passes 2. and 3. until convergence.

Note that we can set βT = 0 and can evaluate αT once after convergence: it does not affect the
other αt and βt.

Without projection, i.e., if the exponential distribution is not an approximation but exact,
we have a standard forward-backward algorithm, guaranteed to converge in a single forward and
backward pass. In these cases, one can easily show α̃t(αt−1,βt) = α̃t(αt−1), independent of βt
and similarly β̃t−1(αt−1,βt) = β̃t−1(βt): the forward and backward messages do not interfere
and there is no need to iterate. This is the case for standard Kalman smoothing [32] and for the
forward-backward algorithm for hidden Markov models [31].

Expectation propagation generalizes several known algorithms. For example, GPB2 for
generalized pseudo-Bayes [2, 16], arguably the most popular inference algorithm for a switching
linear dynamical system, is nothing but a single forward pass of the above algorithm. The Boyen-
Koller algorithm [5] corresponds to one forward and one backward pass for a dynamical Bayesian
network with discrete nodes and independency assumptions over nodes within each time slice.
In both cases, expectation propagation can be interpreted as an attempt to iteratively improve
the existing estimates.

Some of the problems mentioned in the previous section may not have been solved. For
example, we may still have to compute complicated nonlinear or highly dimensional integrals
or summations. However, in any case we “only” have to compute moments of the two-slice
distribution, not the one-slice marginals themselves. A more important concern is that the exact
beliefs might not be accurately approximated with a distribution in the exponential family.
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Figure 6: Expectation propagation for dynamic Bayesian networks. The approximate distribu-
tion is a product of one-slice beliefs qt. Each belief qt follows from the product of the forward
message αt and backward message βt. The product of the messages corresponding to βt−1 and
αt represents the “effect” of potential ψt. That is, to recompute the effect of ψt, we take out the
terms βt−1 and αt from the approximate distribution, substitute ψt instead, and project back
to an uncoupled approximate distribution, yielding updates for qt−1 and qt and thus for βt−1

and αt.

3.2 Link with expectation propagation

Here we will illustrate that the algorithm described in the previous section is indeed a special
case of expectation propagation as described in [25, 24].

We approximate the full posterior, which is a product of potentials or “terms” ψt(xt−1,t),
with an uncoupled distribution of exponential form:

P (x1:T |y1:T ) ≈
T∏

t=1

qt(xt) ∝
T∏

t=1

e(αt+βt)
T f(xt) .

Here αt and βt are supposed to quantify how adding a potential affects the approximate belief
qt(xt): αt stands for the effect of adding ψt(xt−1,t), βt for the effect of adding ψt+1(xt,t+1).

Now suppose that we would like to recompute the effect of the potential ψt(xt−1,t). We
remove the corresponding terms αt and βt−1 and replace them with ψt(xt−1,t) to arrive at the
new approximation

P̂ (x1:T ) ∝
∏

t′<t−1

qt′(xt′)
[

eαT
t−1f(xt−1)ψt(xt−1,t)e

βT
t f(xt)

] ∏

t′>t

qt′(xt′) , (t = 1 : T )

and thus at the approximate marginal over two time slices

P̂ (xt−1,xt) ≡ p̂t(xt−1,t) =
1

ct
eαT

t−1f(xt−1)ψt(xt−1,t)e
βT

t f(xt) , (t = 1 : T )

with ct a normalization constant and as above with convention P̂ (x0,x1) ≡ P̂ (x1). These
normalization constants can be used to estimate the data likelihood:

P (y1:T ) ≈
T∏

t=1

ct .

3.3 Examples

3.3.1 Switching linear dynamical system

Here we will illustrate the operations required for application of expectation propagation to
switching linear dynamical systems. The potential corresponding to the switching linear dy-
namical system graphically visualized in Figure 5 can be written

ψt(st−1 = i, st = j, zt−1, zt) = pψ(st = j|st−1 = i)Φ(zt;Cijzt−1, Rij)Φ(yt;Ajzt, Qj) ,
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where Φ(z;m, V ) stands for a Gaussian with mean m and covariance matrix V . The messages
are taken to be conditional Gaussian potential of the form

αt−1(st−1 = i, zt−1) ∝ pα(st−1 = i)Ψ(zt−1;m
α
i,t−1, V

α
i,t−1)

βt(st = j, zt) ∝ pβ(st = j)Ψ(zt;m
β
j,t, V

β
j,t) ,

where the potential Ψ(z;m, V ) is of the same form as Φ(z;m, V ), but without the normalization
and in fact need not be normalizable, i.e., can have a negative covariance. Note that a message
α(st−1, zt−1) is in fact a combination of M Gaussian potentials, one for each switch state i. It
can be written in exponential form with sufficient statistics

f(s, z) = {δs,i (i = 1 : M), δs,izk (i = 1 : M ; k = 1 : N), δs,izkzl (i = 1 : M ; k, l = 1 : N ; l ≤ k)} .

The two-slice marginal P̂ (st−1, st, zt−1, zt), with elements

P̂t(st−1 = i, st = j, zt−1, zt) ∝ αt−1(st−1 = i, zt−1)Φt(st−1 = i, st = j, zt−1, zt)βt−1(st = j, zt) ,

consists of M 2 Gaussians: one for each combination {i, j}. With some bookkeeping, which
involves the translation from canonical parameters to moments, we can compute the moments
of these M 2 Gaussians, i.e., we can rewrite

P̂ (st−1 = i, st = j, zt−1, zt) ∝ p̂ijΦ(zt−1, zt; m̂ij , V̂ij) , (7)

where m̂ij is a 2N -dimensional vector and V̂ij a 2N × 2N covariance matrix.
To obtain the forward pass in expectation propagation, we have to integrate out zt−1 and

sum over st−1. Integrating out zt−1 is trivial:

P̂ (st−1 = i, st = j, zt) ∝ p̂ijΦ(zt; m̂ij , V̂ij) ,

where now m̂ij and V̂ij are supposed to be restricted to the components corresponding to zt, i.e.,
the components N + 1 to 2N in the means and covariances of (7). Summation over st−1 yields
a mixture of M Gaussians for each switch state j, which is not a member of the exponential
family. The conditional Gaussian of the form

qt(st = j, zt) = p̂jΦ(zt|m̂j , V̂j)

closest in KL-divergence to this mixture of Gaussians follows from moment matching:

p̂j =
∑

i

p̂ij , m̂j =
∑

i

p̂ijm̂ij ,

and V̂j =
∑

i

p̂ij V̂ij +
∑

i

p̂ij(m̂ij − m̂i)(m̂ij − m̂i)
T .

To find the new forward message αt(st, zt) we have to divide the approximate belief qt(st, zt)
by the backward message βt(st, zt). This is most easily done by translating qt(st, zt) from the
moment form above to a canonical form and subtracting the canonical parameters corresponding
to βt(st, zt) to yield the new αt(st, zt) in canonical form.

The procedure for the backward pass follows in exactly the same manner by integrating out
zt and summing over st. All together, it is just a matter of bookkeeping, with frequent transfor-
mations from canonical to moment form and vice versa. Efficient implementations can be made
if, for example, the covariance matrices Qi and Ri are restricted to be diagonal. The forward
filtering pass is equivalent to a method called GPB2 [2, 16]. An attempt has been made to ob-
tain a similar smoothing procedure, but this required quite some additional approximations [26].
In the above description however, forward and backward passes are completely symmetric and
smoothing does not require any additional approximations beyond the ones already made for
filtering. Furthermore, the forward and backward passes can be iterated until convergence in
the hope to find a more consistent and better approximation.
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3.3.2 Dynamic hierarchical model

As a second example, we consider the dynamic hierarchical model of Figure 4. For ease of
notation, we assume all nodes to correspond to one-dimensional variables zi,t and use z0,t to
denote the highest-level node (referred to as mt in the figure). zt refers to the state of all hidden
variables in time slice t. In this notation, the potentials are of the form

ψt(zt−1,t) =
N∏

i=1

P (yi,t|zi,t)P (zi,t|zi,t−1, z0,t)P (z0,t|z0,t−1) .

We take the messages to be independent Gaussians, i.e.,

αt(zt) =
N∏

i=0

αi,t(zi,t) ,

with αi,t(xi,t) one-dimensional Gaussians, and similarly for βt(zt). All messages being indepen-
dent, it is easy to see that the approximate two-slice marginal obeys

P̂ (zt−1,t) = P̂ (z0,t−1, z0,t)
N∏

i=1

P̂ (zi,t−1, zi,t|z0,t) ,

i.e., the distributions over the lower-level nodes are independent of each other given the higher
level node. Straightforwardly collecting terms, we have

P̂ (zi,t−1, zi,t|z0,t) =
1

ci,t(z0,t)
αi,t−1(zi,t−1)P (yi,t|zi,t)P (zi,t|zi,t−1, z0,t)βi,t(zi,t) , (8)

with ci,t(z0,t) the appropriate normalization constant and thus

P̂ (z0,t−1, z0,t) ∝ α0,t−1(z0,t−1)P (z0,t|z0,t−1)β0,t(z0,t)
∏

i

ci,t(z0,t) . (9)

Note that these normalizations can be written in the form of a Gaussian potential and can be
computed independently of each other.

In the forward pass, we have to integrate out z0,t−1 in (9) yielding P̂ (z0,t). Similarly, we can
integrate over zi,t−1 in (8) to obtain P̂ (zi,t|z0,t) and from that the approximate belief

P̂ (zi,t) =

∫

dz0,t P̂ (zi,t|z0,t)P̂ (z0,t) .

Again, the backward pass proceeds in a completely symmetric manner by integrating out z0,t

and zi,t.
The above scheme can be easily generalized to more than two levels. An update starts at

the lowest level, conditioned on the parameters of the next level. Normalizing terms for the
lower level then appear in the update for the next level. So we can go up to the highest level,
always taken into account the normalization terms of the next lower level and conditioned on
the parameters of the next higher level. The highest level is unconditioned and thus directly
yields the required marginal distribution. The projection to a factorized form then goes in the
opposite direction, subsequently integrating out over the distribution at the next higher level.
The number of computations required in each forward and backward is proportional to the
number of nodes (N + 1 in the above two-level case), to be contrasted with the N 3 complexity
for exact inference. Obviously, exactly the same procedure can be used if all nodes are discrete
rather than Gaussian.

11



4 A free energy function

4.1 The free energy

In order to derive a convergent algorithm, we first have to define what we would like to optimize.
The primal objective that we will derive is inspired by the recently proposed Bethe free energy
functional for loopy belief propagation in [38] and follows the reasoning in [23].

The exact posterior P (x1:T |y1:T ) is the solution of

P (x1:T |y1:T ) = argmin
P̂ (x1:T )

KL(P̂ (x1:T )|P (x1:T |y1:T ))

= argmin
P̂ (x1:T )

∫

dx1:T P̂ (x1:T ) log

[

P̂ (x1:T )P (y1:T )

P (x1:T ,y1:T )

]

= argmin
P̂ (x1:T )

{

−
T∑

t=1

∫

dx1:T P̂ (x1:T ) log ψt(xt−1,t) +

∫

dx1:T P̂ (x1:T ) log P̂ (x1:T )

}

, (10)

under the constraint that P̂ (x1:T ) is a probability distribution, i.e., is nonnegative and marginal-
izes to 1. Here and in the following this constraint is always implicitly assumed when we consider
probability distributions and marginals. We will use notation min′ to indicate that there are
other constraints as well (which ones should be clear from the text).

The above expression is nothing but a definition of the conditional P (x1:T |y1:T ). In the
following we will simplify and approximate it. The first observation is that the exact solution
can be written as a product of two-slice marginals divided by a product of one-slice marginals:

P̂ (x1:T ) =

T∏

t=1

P̂ (xt−1,t)

T−1∏

t=1

P̂ (xt)

, (11)

again with convention P̂ (x0,x1) ≡ P̂ (x1). Plugging this into (10), our objective is to minimize

min
P̂ (x1:T )

{
T∑

t=1

∫

dxt−1,t P̂ (xt−1,t) log

[

P̂ (xt−1,t)

ψt(xt−1,t)

]

−
T−1∑

t=1

∫

dxt P̂ (xt) log P̂ (xt)

}

,

for a distribution P̂ (x1:T ) of the form (11). This can be rewritten as a minimization over two-slice
marginals under consistency constraints

∫

dxt−1 P̂ (xt−1,t) = P̂ (xt) (t = 1 : T ) and

∫

dxt P̂ (xt−1,t) = P̂ (xt−1) (t = 2 : T ) . (12)

We will refer to these as the forward and backward constraints, respectively. Note that there
is no optimization with respect to beliefs P (xt): these are fully determined given the two-slice
marginals. For chains, and similarly for trees, this is all still exact. In networks containing loops,
a factorization of the form (11) serves as an approximation (see e.g. [38]). The connection with
variational approaches [14] is discussed in Section 8.

4.2 An approximate free energy

Now, in order to arrive at a free energy functional for expectation propagation we make two
assumptions or approximations. First, we assume that the beliefs are of the exponential form
P (xt) ≈ qt(xt) in (3). Next we replace the marginalization constraints (12) by weaker expecta-
tion constraints on p̂t(xt−1,t) ≈ P̂ (xt−1,t):

〈f(xt)〉p̂t
= 〈f(xt)〉qt (t = 1 : T ) and 〈f(xt−1)〉p̂t

= 〈f(xt−1)〉qt−1
(t = 2 : T ) . (13)
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Our objective remains the same, i.e.,

min′

p̂

{
T∑

t=1

∫

dxt−1,t p̂t(xt−1,t) log

[

p̂t(xt−1,t)

ψt(xt−1,t)

]

−
T−1∑

t=1

∫

dxt qt(xt) log qt(xt)

}

, (14)

but now under the constraints (13) and with qt(xt) of the exponential form (3). Note that, as
before, these constraints make the one-slice marginals qt(xt) an implicit function of the two-
slice marginals p̂t(xt−1,t): there is no minimization or maximization with respect to qt(xt).
Furthermore, qT (xT ) does not appear in the objective: it can be computed afterwards from the
forward constraint (13) for t = T .

Adding Lagrange multipliers βt and αt for the forward and backward constraints and taking
derivatives we find that at a fixed point of (14) qt(xt) and p̂t(xt−1,t) are of the form (4) and (6).
The other way around, at a fixed point of expectation propagation, the expectation constraints
are automatically satisfied. Combination of these two observations proves that the fixed points
of expectation propagation indeed correspond to fixed points of the “free energy” (14).

4.3 Bounding the free energy

Finding the minimum of the “primal” energy function (14) is a constrained optimization problem
over functions. Due to the negative q log q term, this objective is not necessarily convex in p̂1:T .
To get rid of the concave q log q term, we make use of the Legendre transformation

−

∫

dxt qt(xt) log qt(xt) = min
γt

{

−γTt 〈f(xt)〉qt + log

∫

dxt eγT
t f(xt)

}

. (15)

Substitution into (14) yields3

min′

p̂
min
γ

{
T∑

t=1

∫

dxt−1,t p̂t(xt−1,t) log

[

p̂t(xt−1,t)

ψt(xt−1,t)

]

+
T−1∑

t=1

[

−γTt 〈f(xt)〉qt + log

∫

dxt eγT
t f(xt)

]}

.

(16)
Now that we have eliminated the concave term, the remaining functional in (16) is convex in p̂.
The price that we had to pay is an extra minimization with respect to γ.

An alternative and in fact equivalent interpretation of the Legendre transformation is the
linear bound ∫

dxt qt(xt) log qt(xt) ≤

∫

dxt qt(xt) log qold
t (xt) ,

where qold
t (xt) can be any distribution and is typically the solution given the old parameter

settings (here the two-slice marginals p̂t(xt−1,t) and p̂t+1(xt,t+1)). In the following we will stick
to the explicit minimization over γ to make the connection with expectation propagation below.

Both formulations suggest a double-loop algorithm: in the inner loop we keep γ fixed and
minimize with respect to p̂ under the appropriate constraints; in the outer loop we keep p̂ fixed
and minimize with respect to γ.

5 A convergent algorithm

5.1 The inner loop

Let us first focus on the inner loop for fixed γ. We are left with a convex minimization problem
with linear constraints, which can be turned into a dual unconstrained concave maximization
problem in terms of Lagrange multipliers (see e.g. [21]).

3For ease of notation, γ and p̂ without subscript refer to all relevant γt and p̂t (here γ1:T−1, often γ1:T ).
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5.1.1 The dual objective

To get rid of any dependency on qt(xt), we substitute the constraint4

〈f(xt)〉qt =
1

2

[

〈f(xt)〉p̂t
+ 〈f(xt)〉p̂t+1

]

(t = 1 : T − 1)

in (16) and neglect terms independent of p̂t to arrive at the objective

min′

p̂

{
T∑

t=1

∫

dxt−1,t p̂t(xt−1,t) log

[

p̂t(xt−1,t)

ψt(xt−1,t)

]

−
1

2

T−1∑

t=1

γTt

[

〈f(xt)〉p̂t
+ 〈f(xt)〉p̂t+1

]
}

. (17)

The only remaining constraints are now “forward equals backward”, i.e.,

〈f(xt)〉p̂t
= 〈f(xt)〉p̂t+1

. (t = 1 : T − 1)

Introducing Lagrange multipliers δt/2 and collecting all terms in the Lagrangian that depend
on p̂t(xt−1,t), we obtain

∫

dxt−1,t p̂t(xt−1,t)

{

log

[

p̂t(xt−1,t)

ψt(xt−1,t)

]

−
1

2
(γt − δt)

T f(xt) −
1

2
(γt−1 + δt−1)

T f(xt−1)

}

, (t = 1 : T )

(18)
where we have the convention that γ0 ≡ δ0 ≡ γT ≡ δT ≡ 0. Taking the functional derivative
with respect to p̂t(xt−1,t) we regain the form (6) if we substitute

αt−1 =
1

2
(γt−1 + δt−1) and βt =

1

2
(γt − δt) . (t = 1 : T ) (19)

Substitution into the Lagrangian (18) and back into (17) yields the dual objective

max
δ

F1(δ) where F1(δ) = −
T∑

t=1

log

∫

dxt−1,t e
1
2
(γt−1+δt−1)T f(xt−1)ψt(xt−1,t)e

1
2
(γt−δt)T f(xt) .

(20)
Again recall that qT (xT ) does not appear in the primal objective, and there is no optimization
with respect to δT in the dual objective. We can always compute the approximate belief qT (xT )
afterwards from p̂T (xT−1,T ).

5.1.2 Unconstrained maximization

With the primal (17) being convex in p̂, the dual F1(δ) is concave in δ, and thus has a unique
solution. In principle, any optimization algorithm will do, but here we will propose a specific
one, which can be interpreted as a damped version of fixed-point iteration.

In terms of the standard forward and backward updates α̃t ≡ α̃t(αt−1,βt) and β̃t ≡
β̃t(αt,βt+1), with αt and βt related to δt and γt as in (19), the gradient with respect to
δt reads

∂F (δ)

∂δt
=

1

2

[

g(α̃t + βt) − g(αt + β̃t)
]

. (21)

Setting the gradient to zero suggests the update

δnew
t = δ̃t ≡ α̃t − β̃t . (22)

Without any projections, i.e., with α̃t = α̃t(αt−1) and β̃t = β̃t(βt+1), this fixed point iteration
can be interpreted as finding the maximum of F (δ) in the direction of δ t, keeping the other

4Any other convex linear combination of forward and backward expectations will do as well, but this symmetric
choice appears to be most natural.
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δt′ fixed. Each update (22) would guarantee an increase of F (δ), unless the corresponding
gradient (21) vanishes.

However, in expectation propagation both α̃t and β̃t do depend on δt (through αt and βt,
respectively) and the full update (22) does not necessarily go uphill. A simple suggestion is to
consider a damped version of the form

δnew
t = δt + εδ(δ̃t − δt) . (23)

It is easy to show5 that this update is “aligned” with the gradient (21) and thus, with sufficiently
small εδ, will always lead to an increase in F1(δ). Expecting the dependency of δ̃t on δt to be
rather small, the hope is that we can take a rather large εδ.

In terms of the moments, the update (23) reads

δnew
t = δt + εδ

[

g−1
(

〈f(xt)〉p̂t

)

− g−1
(

〈f(xt)〉p̂t+1

)]

, (24)

i.e., to update a single δt we have to compute one forward and one backward moment.

5.2 The outer loop

As could have been expected, especially in the interpretation of the Legendre transformation as
a bounding technique, the outer loop is really straightforward. Setting the gradient of (16) with
respect to γt(xt) to zero yields the update

g(γnew
t ) = 〈f(xt)〉qt =

1

2

[

〈f(xt)〉p̂t
+ 〈f(xt)〉p̂t+1

]

, (t = 1 : T − 1) (25)

with p̂ the solution of the inner loop. In terms of the messages αt and βt and their standard
expectation propagation updates α̃t and β̃t this is equivalent to

γnew
t = g−1

(
1

2

[

g(αt + β̃t) + g(α̃t + βt)
])

. (26)

With αt and βt the result of the maximization in the inner loop, we have δ t = δ̃t and thus
αt + β̃t = α̃t + βt. This can be used to simplify the update (26) to

γnew
t = γt +

1

2

[

α̃t + β̃t − γt

]

. (27)

5.3 Link with Yuille’s CCCP

In [39], Yuille proposes a double-loop algorithm for (loopy) belief propatation and Kikuchi
approximations. We will show the link with the above double-loop algorithm by describing
what Yuille’s CCCP amounts to when applied to approximate inference in dynamic Bayesian
networks.

We rewrite the primal objective (14) as

min′

p̂

{
T∑

t=1

∫

dxt−1,t p̂t(xt−1,t) log

[

p̂t(xt−1,t)

ψt(xt−1,t)

]

+ κ
T−1∑

t=1

∫

dxt qt(xt) log qt(xt)

−(1 + κ)
T−1∑

t=1

∫

dxt qt(xt) log qt(xt)

}

,

5In terms of γ1 ≡ α̃t + βt and γ2 ≡ αt + β̃t, the update (23) is proportional to δ̃t − δt = γ2 − γ1 and we can
write

2(δ̃t − δt)
T ∂F (δ)

∂δt

= (γ2 − γ1)
T [g(γ2) − g(γ1)] = KL(q1|q2) + KL(q2|q1) ≥ 0 ,

with q1 and q2 the exponential distributions with canonical parameters γ1 and γ2 and link function g(·).
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where κ can be any positive number (Yuille takes κ = 1). Now we apply the Legendre transfor-
mation (15) only to the second (negative) term to arrive at [compare with (16)]

min
γ

min′

p̂,q

{
T∑

t=1

∫

dxt−1,t p̂t(xt−1,t) log

[

p̂t(xt−1,t)

ψt(xt−1,t)

]

+ κ
T−1∑

t=1

∫

dxt qt(xt) log qt(xt)−

+(1 + κ)
T−1∑

t=1

[

−γTt 〈f(xt)〉qt + log

∫

dxt eγT
t f(xt)

]}

. (28)

For convenience, we treat the one-slice marginals q as free parameters. Yuille’s CCCP algorithm
is now nothing but an iterative minimization procedure on the objective (28).

In the inner loop, we keep γ fixed and try and find the minimum with respect to p̂ and
q under the constraints (13). Since the objective is convex in p̂ and q for fixed γ, we can
turn this into an unconstrained maximization problem over Lagrange multipliers. Introducing
Lagrange multipliers γ − β and γ − α for the forward and backward constraints, respectively,
and minimizing with respect to p̂t and qt, we obtain

qt(xt) ∝ eγ̂tft(xt)

p̂t(xt−1,t) ∝ e(γt−1−βt−1)T f(xt−1)ψt(xt−1,t)e
(γt−αt)T f(xt) . (t = 1 : T ) ,

with

γ̂t ≡ γt −
1

κ
[γt − (αt + βt)] .

Substitution into (28) yields for the inner loop

max
α,β

{

−κ
T−1∑

t=1

log

∫

dxt eγ̂T
t f(xt) −

T∑

t=1

log

∫

dxt−1,t e(γt−1−βt−1)
T f(xt−1)ψt(xt−1,t)e

(γt−αt)T f(xt)

}

.

(29)
In the limit κ → 0, we regain the inner loop described in Section 5.1: the first term induces
the constraint αt + βt = γt, which we could get rid of by introducing δt ≡ αt − βt. In Yuille’s
CCCP inner loop the maximization is unconstrained. The extra q log q term complicates the
analysis, but with the introduction of extra Lagrange multipliers for the normalization of p̂ and
q, similar fixed point iterations can be found, at least in the situation without projections (as
for loopy belief propagation). In any case, the unique solution of (29) obeys

αt = α̃t +
1

2 + κ

[

γt − (α̃t + β̃t)
]

and βt = β̃t +
1

2 + κ

[

γt − (α̃t + β̃t)
]

, (30)

which corresponds to our δt = δ̃t with an additional change in αt + βt. This latter change
vanishes in the limit κ→ 0.

The outer loop in Yuille’s CCCP algorithm minimizes (28) with respect to γ, keeping q fixed,
and yields, after some manipulations using (30),

γnew
t = γ̂t = γt +

1

2 + κ

[

α̃t + β̃t − γt

]

, (31)

to be compared with (27).
Summarizing, the crucial trick to turn the constrained minimization of the primal, which

consists of a convex and concave part, into something doable, is to get rid of the concave part
through a Legendre transformation (or an equivalent bounding technique). The remaining func-
tional in the two-slice marginals p̂ is then convex and can be “dualized”, yielding a maximization
with respect to the Lagrange multipliers. Taking over part of the concave term to the convex
side is unnecessary and makes the bound introduced through the Legendre transformation less
accurate, yielding a (slightly and unnecessarily) less efficient algorithm.
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6 Faster alternatives

6.1 Saddle-point problem

Explicitly writing out the constrained minimization in the inner loop into maximization over
Lagrange multipliers δ, we can turn the minimization in (16) into the equivalent saddle-point
problem

min
γ

max
δ

F (γ, δ) with F (γ, δ) ≡ F0(γ) + F1(γ, δ) ,

where

F0(γ) =
T−1∑

t=1

log

∫

dxt eγT
t f(xt) ,

and where F1(γ, δ) follows from (20) if we take into account its dependency on γ as well.
Note that F (γ, δ) is concave in δ, but, through the dependency of F1(γ, δ) on γ, non-convex

in γ. We can guarantee convergence to a correct saddle-point with a double-loop algorithm
that completes the concave maximization procedure in the inner loop before making the next
step going downhill in the outer loop. This is, of course, exactly the procedure described in
Section 5. The full completion of the inner loop seems quite inconvenient and a straightforward
simplification is then to intermix updates in the inner and the outer loop.

The first alternative that we will consider can be interpreted as a kind of natural gradient
descent in γ and ascent in δ: decrease with respect to γ and increase with respect to δ can
be guaranteed at each step, but this can, alas, not guarantee convergence to the correct saddle
point. The second alternative is a damped version of “standard” expectation propagation as
outlined in Section 3. In a first-order expansion around a saddle-point, both algorithms will be
shown to be equivalent.

6.2 Combined gradient descent and ascent

Our first proposal is to apply the inner loop updates (24) in δ and outer loop updates (25) in γ

sequentially. With each update, we can guarantee

F (γnew, δ) ≤ F (γ, δ) ≤ F (γ, δnew) , (32)

where to satisfy the second inequality, we may have to resort to a damped update in δ with
εδ < 1. Note that the update (25) minimizes the primal objective with respect to γ t for any
qt(xt), not necessarily one that results from the optimization in the inner loop. However, the
perhaps simpler update (27) is specific to δ being at a maximum of F1(γ, δ) and cannot guarantee
a decrease in F (γ, δ) for general δ.6

Alternatively, we can update δt and γt at the same time, for example damping the update
in γt as well, e.g. taking

γnew
t = γt + εγ

[

g−1
(

1

2

[

〈f(xt)〉p̂t
+ 〈f(xt)〉p̂t+1

])

− γt

]

6In fact, even a damped version does not work. If it did, we should be able to show that the update in γ t is
always in the direction of the gradient ∂γ

t
F (γ, δ), which boils down to

(2γ0 − γ1 − γ2)
T [2g(γ0) − g(γ1) − g(γ2)] ≥ 0

for all γ0, γ1, and γ2. This inequality is valid everywhere if and only if g(γ) is linear in γ. Otherwise we can
construct cases that violate the inequality. For example, take γ1 = γ0 + ε1 and γ2 = γ0 − ε2 with ε1 and ε2 small
and expand up to second order to get (in one-dimensional notation)

(2γ0 − γ1 − γ2) [2g(γ0) − g(γ1) − g(γ2)] = 4g′(γ0)(ε1 − ε2)
2 + g

′′(γ0)(ε
2
1 + ε

2
2)(ε1 − ε2) .

Now we can always construct a situation in which the second term dominates the first (ε21 + ε22 � ε1 − ε2 ≈ 0)
and choose ε1 − ε2 such that this dominating term is negative. Such a situation is perhaps unlikely to occur in
practice, but it shows that a downhill step cannot be guaranteed, not even for εγ small.
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δnew
t = δt + εδ

[

g−1
(

〈f(xt)〉p̂t

)

− g−1
(

〈f(xt)〉p̂t+1

)]

. (33)

We can either update the canonical parameters for all t at the same time or one after the other,
e.g., by going forward and backward as one would do in standard message passing.

Both update schemes can be loosely interpreted as doing combined gradient descent in γ and
gradient ascent in δ. Gradient descent-ascent is a standard approach in the field of optimization
for finding saddle points of an objective function. Convergence to an, in fact unique, saddle
point can be guaranteed if F (γ, δ) is convex in γ for δ and concave in δ for all γ, provided
that the step sizes εδ and εγ are sufficiently small [30]. In our more general case, where F (γ, δ)
need not be convex in γ for all δ, gradient descent-ascent may not be a reliable way of finding a
saddle point. For example, it is possible to construct situations in which gradient descent-ascent
leads to a limit cycle [33].

The most we can therefore say is that the above update schemes with sufficient damping are
locally stable, i.e., will converge back to the saddle point if slightly perturbed away from it, if
the functional F (γ, δ) is locally convex-concave.7 A more detailed proof for the updates (33) is
given in the Appendix.

6.3 Damped expectation propagation

The joint updates (33) have the flavor of a damped update in the direction of “standard”
expectation propagation, but are not exactly the same. Straightforwardly damping the full
updates αnew

t = α̃t = α̃t(αt−1,βt) and βnew
t = β̃t = β̃t(αt,βt+1), we get

αnew
t = αt + ε(α̃t − αt)

βnew
t = βt + ε(β̃t − βt) , (34)

or, in terms of γ and δ,

γnew
t = γt + ε(γ̃t − γt)

δnew
t = δt + ε(δ̃t − δt) , (35)

with γ̃t ≡ α̃t + β̃t.
This update for δt is the same as in (33) if we take εδ = ε. The updates for γt are slightly

different. The connection between them becomes clearer when we take εγ = 2ε and rewrite (33)
as

γnew
t = γt + ε(∆t + γ̃t − γt) ,

with

∆t ≡ 2g−1
(

1

2

[

g(αt + β̃t) + g(α̃t + βt)
])

−
(

[αt + β̃t] + [α̃t + βt]
)

.

This term ∆t is then the only difference between the gradient descent-ascent updates (33)
and the damped expectation propagation updates (35). Recall that it is zero at a particular
maximum δ∗(γ), but not in general for all δ.

However, local stability only depends on properties of the linearized versions of the updated
close to the saddle point. In the Appendix it is shown that these coincide for the gradient
descent-ascent and damped expectation propagation updates. Basically, both ∆t and its deriva-
tives with respect to γ and δ vanish at a fixed point. Therefore, we can conclude that the
damped expectation propagation updates (35) and (34) have the same local stability properties.
Furthermore, since the ordering of updates does not affect these notions of stability in the limit
of small ε, this also applies to a standard sequential message passing scheme.

7While turning this report into a submission, we extended this argumentation and managed to prove the
stronger statement that a stable fixed point of damped expectation propagation must correspond to a minimum

of the Bethe free energy (but not necessarily the other way around). See the conference paper [12].
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7 Simulation results

We have tested our algorithms on randomly generated switching linear dynamical systems. The
structure of a switching linear dynamical system is visualized in Figure 5 and Section 3.3.1
describes “standard” expectation propagation propagation.

We generated many random instances. Each instance is a combination of a switching linear
dynamical system, consisting of all parameters specifying the model (observation and transition
matrices, covariance matrices, and priors) and evidence y1:T . Each instance then corresponds to
a particular setting of the potentials ψt(xt−1,xt). We generated all model parameters randomly
and independently from “normal” distributions (e.g., elements of the observation matrices from
a Gaussian with mean zero and unit variance, covariance matrices of order one from Wishart
distributions, rows of the transition matrices between switches and continuous latent variables
independently, and so on). We varied the length of the time sequence between 3 and 5, the
number of switches between 2 and 4, and the dimension of the continuous latent variables and
the observations between 2 and 4. The evidence that we used was generated by a switching linear
dynamical system with the same “structure” (length of time sequence, number of switches, and
dimensions), but different model parameters.

In the following we will focus on the quality of the approximated beliefs P̂ (xt|y1:T ) and com-
pare them with the exact beliefs that result from the algorithm of [18] based on strong marginal-
ization. As a quality measure we consider the Kullback-Leibler divergence KL ≡

∑T
t=1 KL(Pt|P̂t)

between the exact beliefs Pt(xt) and the approximate beliefs P̂t(xt), both of which are condi-
tional Gaussians. Although any particular choice is somewhat arbitrary and depends on the
application at hand, for the problems considered here (relatively small time sequences) we tend
to make the following crude characterization.

KL > 101 useless
101 > KL > 100 doubtful
100 > KL > 10−2 useful
10−2 > KL excellent

In most cases (more than 95% of all instances generated following the procedure described
above), “standard” (undamped) expectation propagation works fine and converges within a
couple of iterations. For a typical instance (see Figure 7 on the left), the Kullback-Leibler
divergence drops after a single forward pass (equivalent to GPB2, the standard procedure for
inference in switching linear dynamical systems) to an acceptably low value, decreases a little
more in the smoothing step, and perhaps a little further in one or two more sweeps until no
more significant changes can be seen. Damped expectation propagation and the double-loop
algorithm converge to the same fixed point, but are less efficient.

The instances for which undamped expectation propagation does not converge can be roughly
subdivided into two categories. The first category consists of instances that run into numerical
problems, in some cases already in the forward pass. Damping as well as the double-loop
algorithm seem to help in some cases, but in the end often also run into trouble when getting
close to the fixed point. Instability is a well-known problem for inference in hybrid networks.
It can occur especially when covariance matrices corresponding to the conditional probabilities
of the continuous latent variables become singular. Solving this is an important subject, see
e.g. [19], but beyond the scope of the current study.

We therefore focus on the second category, where undamped expectation propagation gets
stuck in a limit cycle. A typical instance is shown in Figure 7 on the right. Here the period
of the limit cycle is 8 (eight sweeps, each consisting of a forward pass and a backward pass);
smaller and even larger periods can be found as well. The approximate beliefs jump between 16
different solutions, ranging from “useful” to “useless”.

Damping the belief updates a little, say with ε = 0.5 as in Figure 7, is for almost all instances
sufficient to converge to a stable solution. Occasionally, in less than 1% of all “cyclical” instances
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Figure 7: Typical examples of “easy” (left) and “difficult” (right) problems. Both are randomly
generated instances of a switching linear dynamical systems with 3 switch states, 3-dimensional
continuous latent variables, 4-dimensional observations, and sequence length T = 5. The KL-
divergence between exact and approximated beliefs is plotted as a function of the number of
iterations. Each iteration consists of a forward and a backward pass of expectation propagation.
For the “easy” instance, nondamped expectation belief propagation converges in a few iterations.
Without damping (solid line), the “difficult” instance gets stuck in a limit cycle of period 8.
Damping with step size ε = 0.5 (dashed line) is sufficient to convergence to a stable fixed point.

that we encountered, we did not manage to damp expectation propagation to a stable solution
with reasonable values of the step size ε. An example is given in Figure 8. Lowering the step size ε
mainly affects the period of the cycle, hardly its amplitude. The double-loop algorithm converges
in several iterations (comparable to the number of iterations required for other instances) to a
stable fixed point, which, in this case, happens to be rather far from the exact beliefs. A simple
check reveals that this fixed point, by construction of the double-loop algorithm a local minimum
of the free energy, is unstable under damped expectation propagation with step size as low as
ε = 0.018.

In the recent literature, it has been suggested at several places (see e.g. [37, 23]) that when
undamped (loopy) belief propagation does not converge, it makes no sense to search for the
minimum of the Bethe free energy with a more complicated algorithm: the failure of undamped
belief propagation to converge indicates that the solution is inaccurate anyways. To check this
hypothesis, we did the following experiment. For each of the 138 nonconvergent cyclic instances
that we found, we generated another converging instance with the same “structure” (length of
time sequence, number of switch states, and dimensions). As before, we refer to the former set
of nonconvergent instances as “difficult” and the latter set of convergent instances as “easy”. In
Figure 9 we have plotted the KL-divergences after a single forward pass (corresponding to GPB2)
and after convergence (with damped expectation propagation or the double-loop algorithm for
the difficult instances). Two important conclusions can be drawn.

• It makes sense to search for the minimum of the free energy. For almost all instances,
the beliefs corresponding to the minimum of the free energy are closer to the exact beliefs
than the ones obtained after a single forward pass. This is not only the case for all 138
“easy” instances that we have seen, but also for almost all (132 out of 138) “difficult” ones.
Given our crude subdivision between “useful” and “useless” or “doubtful” approximations
based on the value of the KL-divergence (KL <> 1), the improvement can be considered
relevant for many instances: for 64 out of 138 “easy” instances and for even 92 out of 138

8See [12] for a possible explanation of this effect.
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Figure 8: A rare instance in which damping with reasonable values of the step size ε does not lead
to convergence to a stable fixed point. Changing the step size ε from 1 (upper left: no damping)
to 0.5 (upper right) and further to 0.1 (lower left) lengthened the period of the cycle, but (going
from 0.5 to 0.1) hardly its amplitude. The double-loop algorithm (lower right) converges within
a few iterations (each iteration consists of a full inner-loop maximization and outer-loop step).
The KL-divergence corresponding to the minimum of the free energy obtained with the double-
loop algorithm is indicated with a dashed line in all plots for reference. This particular instance
has 2 switch states, 3-dimensional continuous latent variables and observations, and T = 3.
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Figure 9: KL-divergences for “easy” (‘o’, converging without damping) and “difficult” (‘+’, get-
ting stuck in a limit cycle without damping) instances after a single forward pass of expectation
propagation versus after convergence to a minimum of the free energy. The dashed line corre-
sponds to no improvement (y = x). The dotted grid lines crudely subdivide the KL-divergences
between more and less “useful” (KL smaller than or larger than 1, which is obviously somewhat
arbitrary). It can be seen that searching for the minimum in almost all instances leads to an
improvement in the accuracy of the approximate beliefs, often making the difference between
more or less “useful” (all instances in the lower right corner). The histograms visualize the dis-
tributions of the KL-divergences along the corresponding axes (dashed for “easy” instances, solid
for “difficult” ones). The overlap between both distributions indicates that (non-)convergence
of undamped expectation propagation is not a clear-cut indicator for the applicability of the
minimum of the free energy for approximate inference.
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“difficult” instances.

• Convergence of undamped belief propagation is not a clear-cut criterion for the quality of
the approximation. Although the “easy” instances typically have a smaller KL-divergence
than the “difficult” ones, there is considerable overlap both for the KL-divergence after
a single forward pass and after convergence. For example, in 8 of the 138 cases the
“difficult” instance happened to converge to a better (lower KL-divergence) solution than
the corresponding “easy” one.

8 Discussion and conclusions

We have derived expectation propagation as a straightforward extension of exact belief propa-
gation. The following ingredients are crucial to this simple interpretation.

1. A description of belief propagation that is symmetric with respect to the forward and
backward messages.

2. The notion that we should better project the beliefs and derive the messages from these
approximate beliefs, rather than approximating the messages themselves.

The symmetric description dramatically simplifies smoothing in switching linear dynamical
systems. In [26] an attempt has been made to derive an approximate smoothing procedure based
on the asymmetric description of belief propagation in terms of filtered and smoothed estimates.
The derivation of this procedure requires quite some additional assumptions, making it rather
complicated and resulting in a highly specific implementation. The symmetric algorithm outlined
in Section 3.3.1 is easy to implement and mainly boils down to the computation of the moments
of a mixture of Gaussians, transformation of moment to canonical form and vice versa, and
simple subtractions and additions of canonical parameters. Generalization of this procedure to
message propagation in singly-connected or even loopy networks is straightforward. Applied to
these networks, it would improve the “weak marginalization approach” outlined in [18].

Approximating the messages rather than the beliefs is tempting, especially when the messages
themselves have a direct interpretation (e.g., αt(xt) being proportional to the filtered estimate
P (xt|y1:t) and βt(xt) to P (xt|yt+1:T )). Both are equivalent when the messages in the opposite
direction are still the initial ones (i.e., set to 1), but can yield quite different approximate beliefs
otherwise. Furthermore, when we approximate the beliefs, the forward and backward passes
start to interfere, suggesting iterations as an attempt to improve our estimates. An iterative
variant of the Boyen-Koller algorithm [5] has been applied in [27] with clear improvements.

An important difference between greedy projection methods and variational approaches as
in [14, 9, 8] is that the latter minimize a clearly and globally defined Kullback-Leibler diver-
gence. A disadvantage of the variational approaches is that they minimize the Kullback-Leibler
divergence with the approximate distribution Q and exact distribution P in the “wrong order”,
i.e., they minimize KL(Q|P ), where minimizing KL(P |Q) seems to make better sense. Expec-
tation propagation minimizes the “right” KL-divergence, as can be seen in (5), but does this in
a greedy and local manner. The relationship between the variational approach and expectation
propagation can be clarified in two different ways.

• The Kullback-Leibler divergence corresponding to the variational approach is obtained if
we substitute the two-slice marginal in the free energy (14) by the product of corresponding
one-slice marginals, i.e.,

p̂t(xt−1,t) = qt(xt−1)qt(xt) ,
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and take the minimum with respect to the one-slice marginals qt of the chosen exponential
form:

min′

q1:T

{
∑

t

∫

dxt−1,t qt−1(xt−1)qt(xt) log

[

qt−1(xt−1)qt(xt)

ψt(xt−1,t)

]

−
∑

t

∫

dxt qt(xt) log qt(xt)

}

= min
Q

KL(Q|P ) with Q(x1:T ) =
∏

t

qt(xt) and P (x1:T ) ∝
∏

t

ψt(xt−1,t) . (36)

• An equivalent definition of step 2 in expectation propagation (beginning of Section 3) is
as follows.

2. Project the two-slice marginal P̂ (xt−1,t) on to the distribution qt−1(xt−1)qt(xt), by
minimizing the KL-divergence

KL(P̂t−1,t|qt−1qt) =

∫

dxt−1,t P̂ (xt−1,t) log

[

P̂ (xt−1,t)

qt−1(xt−1)qt(xt)

]

, (37)

with respect to qt′(xt′) (keeping the other approximate belief fixed).

This yields exactly the same procedure since integrating out all variables except xt′ , as in
the original formulation, is then implicitly done while matching the moments. The varia-
tional approach can be obtained when we reverse the role of P̂ (xt−1,t) and qt−1(xt−1)qt(xt)
in the above KL-divergence.9

In much the same way as loopy belief propagation is an improvement over mean-field approx-
imations [38], we expect expectation propagation to outperform a variational approach that is
based on the same approximate structure (independent time slices in the above case of dynamic
Bayesian networks). Some evidence for that can be found in [8], where the variational approach
did not lead to better results than generalized pseudo-Bayes, which is just a single forward pass
of expectation propagation.

An important question is how the results obtained for chains in this article generalize to
tree-like or even loopy structures. Analyzing loopy belief propagation (no projections, but a
network structure containing loops) along the same lines, we arrive at a quite similar double-loop
algorithm for guaranteed convergence and single-loop short-cuts [11]. Our current interpretation
is that, as soon as messages start to interfere, which happens both with approximations and
with loops but not with exact inference on trees, we have to take special care that we update the
messages in a special way: going uphill relative to each other to satisfy the constraints, going
downhill together to minimize the free energy. That damped versions of expectation propagation
and loopy belief propagation seem to move in the right uphill/downhill directions might explain
why single-loop algorithms converge well in many practical cases.
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Appendix: Local stability

We consider the local stability of the updates (33) near a fixed point with canonical parameters
γ∗ and δ∗. First note that, with shorthand notation

m−
t ≡ 〈f(xt)〉p̂t

, m+
t ≡ 〈f(xt)〉p̂t+1

, and m0
t ≡ 〈f(xt)〉qt ,

the gradients with respect to γ t and δt can be written

∂F (γ, δ)

∂γt
= m0

t −
1

2
(m−

t + m+
t ) and

∂F (γ, δ)

∂δt
=

1

2
(m+

t −m−
t ) . (38)

An infinitesimal change in the parameters γ and δ has the following effect on the gradient-ascent
update (25) in γt,

∂∆γt = ε
∂g−1(mt)

∂mT
t

∣
∣
∣
∣
∣
mt=

1
2
(m−

t +m
+
t )

(

∂m−
t + ∂m+

t

)

− 2ε∂γt .

At the fixed point itself we have m− = m+ = m0 = m∗. Defining

∂g−1(mt)

∂mT
t

∣
∣
∣
∣
∣
mt=

1
2
(m−

t +m
+
t )=m∗

t

=




∂g(γt)

∂γTt

∣
∣
∣
∣
∣
γt=γ∗

t





−1

≡ H−1
t ,

with Ht a positive definite Hessian, we have for an infinitesimal perturbation away from the
fixed point,

∂∆γt = εH−1
t

(

∂m−
t + ∂m+

t − 2∂m0
t

)

. (39)

Comparing with the gradient above, it is easy to see that a small change in ∆γ t is proportional
to a small change in the gradient ∂γt

F (γ), where the “Hessian” Ht can be loosely interpreted as
the “Riemannian metric” in Amari’s work on natural gradients [1, 10]. Similarly, for a damped
version of the update (24) in δ as in (33) we have, close to the fixed point,

∂∆δt = εH−1
t

(

∂m+
t − ∂m−

t

)

. (40)

Combination of (39) and (40) with (38) yields, in a first-order expansion around the fixed point
{γ∗, δ∗},

∆γt = −2ε
∑

s

H−1
t

[

∂2F

∂γtγ
T
s

(γs − γ∗
s) +

∂2F

∂γtδs
(δs − δ∗

s)

]

∆δt = 2ε
∑

s

H−1
t

[

∂2F

∂δtδ
T
s

(δs − δ∗
s) +

∂2F

∂δtγs
(γs − γ∗

s)

]

, (41)
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with all second derivatives evaluated at the fixed point. Let us consider the distance to the fixed
point with “natural” metric Ht:

L ≡
1

2

∑

t

[

(γt − γ∗
t )
THt(γt − γ∗

t ) + (δt − δ∗
t )
THt(δt − δ∗

t )
]

.

In lowest order of ε, the change in L due to the changes (41) reads

∆L = −2ε
∑

t,s

(γt − γ∗
t )

∂2F

∂γtγ
T
s

(γs − γ∗
s) + 2ε

∑

t,s

(δt − δ∗
t )
T ∂2F

∂δtδ
T
s

(δs − δ∗
s) + O(ε2) ≤ 0 ,

where the cross-terms cancelled and where the inequality follows when the Hessian w.r.t. γ is
negative definite (which it does not have to be, see [12]) and the Hessian w.r.t. δ is positive
definite (which it is by construction). The decrease in L brings the canonical parameters back
to the saddle point, which proves that the saddle point is indeed stable under the gradient
updates (33).

Taking the derivative of the damped update of γ t in (35) we have

∂∆γt = ε




∂g−1(mt)

∂mT
t

∣
∣
∣
∣
∣
mt=m

−

t

∂m−
t +

∂g−1(mt)

∂mT
t

∣
∣
∣
∣
∣
mt=m

+
t

∂m+
t



 − 2ε∂γt .

Considering an infinitesimal perturbation away from the fixed point, where m−
t = m+

t , we
obtain (39) above: the same as for the gradient update (25). The update for δ being equivalent
everywhere, we conclude that the local stability of the partial updates (35) and thus (34) is the
same is that of the gradient updates (33).
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