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Abstract. Unraveling the community structure of real-world networks is an important
and challenging problem. Recently, it has been shown that methods based on optimizing a
clustering measure, in particular modularity, have a resolution bias, e.g. communities with
sizes below some threshold remain unresolved. This problem has been tackled by incorpo-
rating a parameter in the method which influences the size of the communities. Methods
incorporating this type of parameter are also called multi-resolution methods. In this paper
we consider fast greedy local search optimization of a clustering objective function with
two different objective functions incorporating a resolution parameter: modularity and a
function we introduced in a recent work, called w-log-v. We analyze experimentally the
performance of the resulting algorithms when applied to protein-protein interaction (PPI)
networks. Specifically, publicly available yeast protein networks from past studies, as well
as the present BioGRID database, are considered. Furthermore, to test robustness of the
methods, various types of randomly perturbed networks obtained from the BioGRID data
are also considered. Results of extensive experiments show improved or competitive per-
formance over MCL, a state-of-the-art algorithm for complex detection in PPI networks,
in particular on BioGRID data, where w-log-v obtains excellent accuracy and robustness
performance.

1 Introduction

The development of advanced high-throughput technologies and mass spectrometry has boosted
the generation of experimental data on protein-protein interaction and shifted the study of pro-
tein interaction to a global, network level. In particular, it has been shown that groups of proteins
interacting more with each other than with other proteins, often participate in similar biological
processes and often form protein complexes performing specific tasks in the cell. Detecting protein
complexes, consisting of proteins sharing a common function, is important, for instance for pre-
dicting a biological function of uncharacterized proteins. To this aim protein-protein interaction
(PPI) networks have been used as a convenient graph-based representation for the comparative
analysis and detection of (putative) protein complexes [18]. A PPI network is a graph where nodes
are proteins and edges represent interactions between proteins.

Detecting protein complexes in a PPI network can be formalized as a graph-clustering problem.
Clustering amounts to divide data objects into groups (clusters) in such a way that objects in the
same cluster are more similar to each other than to objects in the other clusters. Since clustering
is an ill-posed and computationally intractable problem, many methods have been introduced, in
particular for graph-clustering (see e.g. the recent review by Fortunato [7]). Effective methods for
graph-clustering contain a parameter whose tuning affects the community structure at multiple
resolution scales. These methods are also called multi-resolution methods (see e.g. [15]). The
resolution parameter(s) can be used in two main ways: as a parameter to be tuned; or as a
way to generate clusterings at multiple resolution scales, which can then be used to analyze the
clustering behavior of objects across multiple resolutions [17], or to ensemble the results to produce
a consensus clustering [22].
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In [27], the resolution bias of state-of-the-art community detection methods has been analyzed,
and a simple yet effective objective function was introduced. Results indicated that methods based
on greedy local search optimization are robust to the choice of the clustering objective function,
when a multi-resolution parameter is added to the objective function.

The goal of this paper is to investigate experimentally the performance of such multi-resolution
methods when applied to PPI networks, with respect to data generated from different laboratory
technologies as well as with respect to random removal or shuffling of edges in the network. This
latter investigation is motivated by the fact that PPI data are still not fully reliable, with the
potential inclusion of both false positive and false negative interactions (see e.g. the discussion
in [18]). Specifically, we consider fast greedy local search optimization of a clustering objective
function with two different objective functions incorporating a resolution parameter: modularity
[11] and a function we introduced in a recent work, called w-log-v [27].

To analyze their performance we consider the yeast Saccharomyces cerevisiae, which is a well
studied model organism for higher eukaryotes with several protein interaction data generated from
diverse laboratory technologies. Specifically, we consider six PPI networks from past studies and
the present BioGRID curated database of protein interactions [24]. In order to assess robustness
with respect to random perturbations of the graph, we generate a large collection of networks using
the BioGRID data, by either removing or by adding a percentage of randomly selected edges, or
by randomly shuffling edges while keeping the original degree of each node.

Results of the experiments indicate improved performance of modularity and w-log-v over MCL
(the Markov Cluster Algorithm) [26], a state-of-the art method for community detection in PPI
networks based on stochastic flow in graphs. MCL was found to achieve best overall performance
in yeast PPI networks [2] and competitive performance with methods for overlapping community
detection in PPI networks [20].

In particular best performance is achieved by w-log-v on the BioGRID data, and excellent ro-
bustness on randomly perturbed versions of this network. Since PPI networks are known to be
noisy with respect to the presence of both false positive and false negative interactions, the high
robustness shown by the proposed algorithm substantiates its effectiveness on this type of data.

1.1 Related work

A vast literature on protein complex detection with PPI networks exists (see e.g. the review [18]).
Previous related works on multi resolution algorithms for clustering PPI networks either apply an
algorithm multiple times with different values of the resolution parameter in order to investigate
how proteins cluster at different resolution scales, e.g. [17], or tune the resolution parameter in
order to choose a best setting for the considered type of networks, e.g. [2, 20]. Here we aim
at investigating thoroughly effectiveness and robustness of two such algorithms by means of an
extensive experimental analysis.

In [2] a comparative assessment of clustering algorithms for PPI networks was conducted. In par-
ticular, robustness was analyzed, with respect to alterations (addition and/or removal of randomly
selected edges) of a test graph which was constructed using a number of yeast complexes anno-
tated in the MIPS database, by linking each pair of proteins belonging to the same complex.
The considered algorithms with parameters tuned on the test graph, were then applied to various
yeast datasets. Results showed that MCL with inflation (resolution) parameter value equal to 1.8
was performing best on the considered datasets. Robustness of MCL when applied to yeast PPI
networks has previously also been analyzed in [21]. According to their results, MCL is rather ro-
bust across different networks and with respect to missing or noisy information on protein-protein
associations. Here we show that greedy local search optimization of a clustering objective function
(e.g. w-log-v) incorporating a resolution parameter achieves improved robustness (and accuracy)
on the BioGRID data.
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2 Methods

2.1 Greedy Local Search Optimization

A recent experimental study by Lancichinetti and Fortunato [16] showed that the best methods
for graph community detection are those of Blondel et al. [1] and Rosvall and Bergstrom [23]. Both
of these methods use a similar greedy local search optimization procedure (LSO), which is based
on moving nodes between clusters, and constructing a clustering bottom-up. The only difference
between these methods is the objective that is optimized. We briefly outline this LSO method
here.

LSO is a discrete optimization method that finds a clustering without overlapping clusters. Initially,
each node is assigned to a singleton cluster. Then, iteratively, nodes are moved between neighboring
clusters as long as the objective improves.

Eventually a local optimum will be reached, but the clusters in this local optimum will often be
too small. The next step is to repeat the optimization procedure, but this time moving these
small clusters instead of single nodes. Effectively, we are then clustering a condensed graph, where
each node in the condensed graph is a small cluster. When another local optimum is reached, the
condensed graph is further condensed and clustered, and so on.

Because the condensed graphs are much smaller than the original graph, most of the time is spend
clustering the original graph. Since this is done in an local and greedy fashion, the overall algorithm
is very fast. For instance, it takes less than a second to cluster a graph with 6000 nodes.

2.2 Objectives

The considered optimization method is independent of the objective function that is optimized.
Hence we are essentially free to choose the objective to best fit the application. In this paper we
will limit ourselves to two objectives. The first is the popular modularity [12],

modularity(Cl) =
∑
A∈Cl

−nwithin(A) + nvol(A)2.

Here Cl denotes a clustering, i.e. a set of clusters. For a particular cluster A ∈ Cl, its volume
is vol(A) =

∑
i∈A,j∈V wij , i.e. the sum of the weight of edges incident to nodes in A, which

is equivalent to the sum of degrees. Based on the volume we define the normalized volume as
nvol(A) = vol(A)/ vol(V ), where V is the set of all nodes. Finally within(A) =

∑
i,j∈A wij is the

within cluster volume, and nwithin(A) = within(A)/ vol(V ) is its normalized variant.

The second objective we consider is w-log-v, which was introduced in van Laarhoven and Marchiori
[27]. An advantage of this objective over modularity is that it allows more diverse cluster sizes.
Because the sizes of protein complexes can differ widely, we believe that this is a useful property.
The w-log-v objective is defined as

w-log-v(Cl) =
∑
A∈Cl

nwithin(A) log(nvol(A)).

Using either of the above objectives directly for the task of clustering a PPI network is not
advisable. Both objectives were designed for community detection; and communities are usually
relatively large, much larger than protein complexes. Therefore, optimizing these objectives will
lead to a clustering with a small number of large clusters. This inability to find small clusters is
termed the resolution limit of the objective [8].
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Table 1. Sizes of the different datasets. The last column lists the number of MIPS complexes that are
(partially) contained in each dataset.

Dataset Nodes Edges Complexes

Uetz et al. (2000) [25] 927 823 20
Ho et al. (2002) [13] 1563 3596 43
Gavin et al. (2002) [9] 1352 3210 50
Gavin et al. (2006) [10] 1430 6531 53
Krogan et al. (2006) [14] 2674 7075 75
Collins et al. (2007) [5] 1620 9064 63
BioGRID, all physical 5967 68486 97

To overcome the resolution limit, we add a parameter to the objectives as follows,

modularityα(Cl) = modularity(Cl) + α
∑
A∈Cl

nwithin(A),

w-log-vα(Cl) = w-log-v(Cl) + α
∑
A∈Cl

nwithin(A).

By increasing the parameter α, the clustering is punished for within cluster edges, and hence the
optimal clustering will have smaller clusters. Alternatively, by decreasing the parameter α, the
clustering is rewarded for within cluster edges, so the optimal clustering will then have larger
clusters.

It can be shown that, because the overall scale of the objective is irrelevant for optimization, the
modification is equivalent to assuming that the overall volume of the graph is different. For mod-
ularity, the adjustment corresponds to assuming that the graph has volume (1− α) vol(V ), while
for w-log-v it corresponds to assuming the volume is e−α vol(V ). This equivalent interpretation
provides some intuition for the resolution parameter: when we tune α to find smaller clusters, the
objective is equivalent to that for finding the clusters in a smaller graph.

3 Experiments

3.1 PPI networks

We downloaded a set of protein interactions from version 3.1.881 of the BioGRID database [24].
This database contains a collection of protein interactions from different sources, and discovered
with different methods. In this work we only consider interactions found by physical experiments,
not those based on genetics.

The BioGRID also contains in full several datasets from high throughput experimental studies,
including Uetz et al. [25], Ho et al. [13], Gavin et al. [9, 10], Krogan et al. [14], Collins et al. [5]. We
consider these subnetworks as separate datasets in our experiments. These datasets are generated
with different experimental techniques: the Collins [5], Krogan [14] and Gavin [10] datasets include
the results of TAP tagging experiments only, while the BioGRID dataset contains a mixture of
TAP tagging, Y2H and low-throughput experimental results [20]. Table 1 lists the sizes of these
datasets.

1 This version was released on April 25th, 2012
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3.2 Complex validation

For validation, we compare clusters with the complexes from the MIPS database [19]2, which we
take as the gold standard. MIPS specified a hierarchy of complexes and subcomplexes. Since we
deal only with non-overlapping clustering, we only include (sub)complexes at the bottom of this
hierarchy. And to avoid degenerate cases, we include only complexes with at least 3 proteins. We
also exclude the complexes in category 550, since these are unconfirmed. They were found with
computational clustering methods, using as input the same high throughput datasets that we
consider.

In addition to the complexes from MIPS, we also use a set of complexes derived from the Gene
Ontology annotations of the Saccharomyces Genome Database [3]. This dataset was created and
also used by [20].

To compare clusters found by a method to either of these sets of gold standard complexes, we use
the overlap score [2],

ω(A,B) =
|A ∩B|2

|A||B|
.

We consider a cluster to match a complex if their overlap score is at least 0.25. This threshold
is also used in other works, e.g. [20, 4]. When the cluster and complex have the same size, a
match then corresponds to the intersection containing at least half of the nodes in the complex
and cluster.

Based on this matching we define precision as the fraction of clusters that are matched to any
complex. Conversely, we define recall as the fraction of complexes that are matched to any cluster.
Note that we use the terminology from other works such as [4]. These notions differ from the more
standard definitions of precision and recall, because a cluster can match more than one complex
and vice versa.

It is clearly possible to achieve a high precision or a high recall with a degenerate clustering. For
example, by returning just a single easy to find cluster that matches a complex, the precision will
be 1 at the cost of a low recall. And by returning all possible (overlapping) clusters, the recall will
be 1 at the cost of a low precision. We therefore use the F1 score, which is the harmonic mean of
precision and recall, as a trade-off between the two scores.

For each of the methods, we include only clusters that contain at least 3 proteins. As a result, not
all proteins will be in a cluster. We call the fraction of proteins that are in a cluster the coverage
of a clustering.

The precision and recall as defined above depend heavily on the chosen threshold; and when few
complexes are matched, the scores are very sensitive to noise. Therefore, we also look at the
positive predictive value (PPV) and cluster-wise sensitivity scores [2], which are based directly on
the size of the intersection between complexes and clusters,

PPV =

∑
A∈Cl maxB∈Co |A ∩B|∑
A∈Cl

∑
B∈Co |A ∩B|

Sensitivity =

∑
B∈Co maxA∈Cl |A ∩B|∑

B∈Co |B|
,

where Cl is the set of predicted clusters and Co is the set of gold standard complexes. Note that
the asymmetry between the denominators is to account for the case of overlapping clusters.

3.3 Precision vs recall

We took the BioGRID all physical dataset, and computed the precision and recall for a wide range
of settings of the resolution control parameter α. These results are shown in figure 1 (left). For

2 We used the latest version at the time of writing, which was released on May 18th, 2006
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Fig. 1. Precision vs. Recall (left) and Sensitivity vs. PPV (right) on the BioGRID dataset.

comparison we also include results with the MCL algorithm for different settings of the inflation
parameter. For readability we have applied smoothing in the form of merging points that are very
close together.

The first thing that we observe is that despite smoothing, the figure is very noisy in some places.
This is not very surprising considering how precision and recall are calculated. Consider a small
change in the clustering, such as removing a protein from a cluster. This change might cause the
cluster to no longer match a particular complex. If there are no other clusters that matched that
complex, then the recall goes down, otherwise it stays the same. Similarly, if this are no other
complexes matching the cluster, then the precision goes down. While obviously the change in the
two scores is related, the relation is not monotonic, one can change while the other does not.

As the resolution control parameter α goes up, the methods find more clusters; and as a result the
recall goes up while the precision goes down. However, after a certain point many of the clusters
will become too small, and they will be removed before matching. This decreased coverage causes
the recall to go down again.

To get a less noisy picture, we have also plotted the PPV and sensitivity scores, in figure 1 (right).
The overall trend in this plot is the same as for the precision and recall: the w-log-v method slightly
dominates modularity optimization, which in turn has significantly better results than MCL.

The best parameter settings according to the F1 score are α = 2.8 for w-log-v, α = 0.97 for
modularity, and inflation 2.7 for MCL. We will use these settings for the remainder of the exper-
iments. As discussed in section 2.2, the parameter α corresponds to assuming a different volume
of the graph. The optimal setting for w-log-v corresponds to considering a graph with 16 times
fewer edges, while the optimal setting for modularity corresponds to 33 times fewer edges. The
difference between the two objectives comes from their inherent resolution bias, by default w-log-v
has a bias towards smaller clusters compared to modularity, and therefore the objective needs less
adjustment.

3.4 Networks from Single Studies

We next compare the scores on the subnetworks from single studies. The results of this experiment
are shown in table 2. The “MIPS method” is based on the gold standard complexes, but including
only proteins that occur in the dataset under investigation. It represents the best possible scores.
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Table 2. Results of applying the different methods to subnetworks for single studies. The best result for
each dataset is highlighted in bold.

Dataset Method Clusters Coverage Precision Recall Sens. PPV F1

Uetz et al. (2000) MIPS 20 2.5% 85.0% 11.6% 9.3% 69.1% 20.5%
w-log-v 173 21.1% 4.6% 6.2% 6.7% 73.6% 5.3%
modularity 160 21.8% 5.0% 5.5% 7.0% 70.1% 5.2%
MCL 143 17.2% 4.2% 4.1% 5.3% 75.0% 4.2%

Ho et al. (2002) MIPS 43 5.2% 88.4% 26.0% 17.5% 67.8% 40.2%
w-log-v 278 46.0% 2.5% 6.8% 11.8% 69.3% 3.7%
modularity 257 46.2% 2.7% 6.2% 12.0% 67.4% 3.8%
MCL 227 35.5% 1.8% 2.7% 10.7% 64.4% 2.1%

Gavin et al. (2002) MIPS 50 7.9% 92.0% 32.9% 27.9% 62.5% 48.4%
w-log-v 202 39.7% 12.4% 21.2% 21.6% 72.0% 15.6%
modularity 199 39.0% 11.6% 19.9% 19.9% 69.6% 14.6%
MCL 177 34.5% 14.7% 21.2% 21.4% 71.1% 17.4%

Gavin et al. (2006) MIPS 53 7.8% 92.5% 34.9% 28.3% 63.6% 50.7%
w-log-v 193 40.9% 13.5% 21.2% 23.3% 72.3% 16.5%
modularity 188 37.9% 13.3% 19.9% 22.6% 70.6% 15.9%
MCL 164 33.4% 16.5% 21.9% 24.0% 71.6% 18.8%

Krogan et al. (2006) MIPS 75 8.6% 97.3% 50.7% 38.3% 66.1% 66.7%
w-log-v 401 58.9% 8.0% 25.3% 26.6% 72.6% 12.1%
modularity 314 60.4% 9.6% 23.3% 26.8% 70.3% 13.5%
MCL 380 43.9% 7.4% 21.2% 22.4% 73.5% 10.9%

Collins et al. (2007) MIPS 63 8.9% 98.4% 43.8% 32.9% 65.6% 60.7%
w-log-v 194 38.8% 20.1% 32.2% 27.3% 75.1% 24.8%
modularity 177 34.3% 20.3% 29.5% 26.7% 72.8% 24.1%
MCL 172 36.8% 20.9% 30.1% 29.1% 69.9% 24.7%

BioGRID, all physical MIPS 97 7.9% 96.9% 64.4% 55.3% 70.2% 77.4%
w-log-v 505 84.5% 5.9% 22.6% 38.6% 69.4% 9.4%
modularity 599 83.6% 4.2% 19.2% 35.6% 72.1% 6.9%
MCL 283 69.0% 5.3% 11.6% 28.7% 40.6% 7.3%

On most datasets w-log-v has the best recall and F1 score, except on the datasets from Gavin
et al. Gavin et al. [9, 10], where MCL performs significantly better. The precision of modularity
optimization is often slightly better than that for w-log-v optimization. This is due to the fact that
with the settings chosen in the previous paragraph, we find more clusters with w-log-v optimization.
Hence, in general recall will be higher at the cost of lower precision.

3.5 Randomly perturbed graphs

To further test the robustness of the methods, we applied them to randomly perturbed networks.
We performed three different experiments, all starting from the BioGRID network.

1. Removing a randomly chosen subset of the interactions.

2. Randomly adding new spurious interactions between pairs of proteins.

3. Randomly rewire a subset of the edges, while maintaining the degree of each node. Note that
such a move both removes an observed interaction and adds a new spurious one.

We varied the amount of edges affected by each type of perturbation. Each experiment was repeated
10 times with different seeds for the random number generator, we calculated the mean and
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standard deviation of the F1 score across these repetitions. The results are shown in figure 2. When
edges are removed, the performance of all methods degrades similarly. On the other hand, the
LSO methods are much more robust to the addition of extra edges than MCL. Also note that the
standard deviation is much larger with the MCL method. That means that for some rewired graphs
the method gives reasonably good results, while for others the result is very bad. Unsurprisingly,
the experiment with rewired edges sits somewhere in between the two other experiments.

4 Discussion

Because of the incompleteness of both the PPI data and of knowledge on true complexes, care
must be taken in the interpretation of the results. The “MIPS method”, that is, the best possible
method based on the MIPS complexes, covers only a small part of the proteins present in each of
the datasets. Conversely, not all MIPS complexes are covered by the datasets, so the recall is always
smaller than the precision. In general, results show that for each dataset, the majority of clusters
induced by the intersection of that dataset with the complexes in MIPS, match a complex; with a
percentage varying between 85% and 98%. These values provide upper bounds on the maximum
precision and recall achievable on the considered dataset.

On all datasets the algorithms obtain precision smaller than recall: the difference of these values
provides information on the fraction of clusters matching more than one complex. For instance
on the Uetz dataset, there is almost a one-to-one correspondence between clusters and matched
complexes (e.g. 4.6% precision and 6.2% recall for w-log-v), while on the BioGRID this relation is
clearly one-to-many (e.g. 5.9% precision and 22.6% recall for w-log-v).

There are complexes that are matched by only one method: specifically, 6 complexes are matched
only by w-log-v, 5 only by modularity, and 4 only by MCL. Comparing w-log-v and MCL, there
are 18 complexes found only by w-log-v and 4 found only by MCL. This is not too surprising,
since MCL has a rather low recall. An example of a complex detected by w-log-v and not by MCL
is the Signal recognition particle (SRP) complex, consisting of six proteins, one of the complexes
involved in Transcription and/or in the Nucleus 3.

The improved performance of w-log-v on the BioGRID data appears mainly due to its capability
to generate a large number of clusters matching multiple complexes (high recall). Nevertheless,
figure 1 shows that the precision vs. recall curve of w-log-v dominates the curve of the other two
methods.

Robustness of a community detection method is and important issue also in the context of PPI
networks, since they are known to contain a high amount of false negative and false positive
interactions. Indeed, limitations of experimental techniques as well as the dynamic nature of
protein interaction are responsible for the high rate of false-positives and false-negatives generated
by high-throughput methods. For instance, Y2H screens have false negative rates in the range from
43% to 71% and TAP has false negative rates of 15%-50%, and false positive rates for Y2H could
be as high as 64% and for TAP experiments they could be as high as 77% [6]. Results show that
w-log-v achieves best robustness the under random addition, removal and rewiring of a percentage
of edges in the BioGRID network. Such high robustness substantiates the effectiveness of w-log-v
on this type of data.

5 Conclusions

This paper analyzed the performance of two fast algorithms on PPI networks that optimize in a
greedy way a clustering objective function with resolution parameter. An extensive experimental

3 see e.g. http://pin.mskcc.org/web/align.SubtreeServlet?dbms=mysql&db=interaction&species=

SC

http://pin.mskcc.org/web/align.SubtreeServlet?dbms=mysql&db=interaction&species=SC
http://pin.mskcc.org/web/align.SubtreeServlet?dbms=mysql&db=interaction&species=SC
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Fig. 2. F1 score when a fraction of the edges is added (top), removed (middle) or rewired (bottom) at
random in the BioGRID dataset. Error bars indicate standard deviation, measured over 10 runs. The left
plots use MIPS complexes as the gold standard, the right plots use SGD complexes.
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analysis was conducted on PPI data from previous studies as well as on the present BioGRID
database. Results indicated improved performance of the considered algorithms over a state-of-the-
art method for complex detection in PPI networks, in particular with respect to robustness. These
results indicate that the considered algorithms provide an efficient, robust and effective approach
for protein complex discovery with PPI networks. Interesting issues for future work include the
assessment of the algorithms’ robustness with respect to tailored models of false positive and false
negative interactions which are present in data generated by specific technologies, as well as the
extension of the considered methods to detect overlapping clusters of high quality.

Our implementation of the LSO method in Octave/C++ is available from http://cs.ru.nl/~T.

vanLaarhoven/prib2012/.
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