
FROM FINITE STATE MACHINES TO

PROVABLY CORRECT JAVA CARD APPLETS

Engelbert Hubbers, Martijn Oostdijk, and Erik Poll
Nijmegen Institute for Information and Computing Sciences, University of Nijmegen,

P.O.Box 9010, 6500GL, Nijmegen, The Netherlands

{hubbers,martijno,erikpoll}@cs.kun.nl

Abstract This paper presents a systematic approach to developing Java Card ap-
plets and/or formal specifications for them, starting from descriptions in
the form of finite state machines. The formal specifications are written
in the specification language JML, and can be checked against Java Card
source code using the static checker ESC/Java.

1. Introduction

Specification of software, let alone formal specification of software, is
difficult, as is checking that source code actually conforms to a given
specification. Often finite state machines (FSMs) provide a convenient
notation for specification, for example for the life cycle of an applet or
the access control it enforces. The aim of this paper is to show that, for
the kind of software running on small devices such as smart cards, it is
possible to automatically generate machine-checkable formal specifica-
tions from such FSMs, just as it is possible to generate (a skeleton of)
the actual source code itself.

Our approach is to automatically generate prototype Java Card ap-
plets and formal specifications in JML [Leavens et al., 1999], starting
from a description in the form of an FSM. Additional functionality is
to be manually added to the generated applet source code afterwards.
Also, more details can be added to the generated specifications.

Instead of contributing any grand new theories to the field of software
engineering, this paper explores the above approach using mainly exist-
ing technologies and tools, as described in Section 1.2. How Java Card
applets and JML specifications are automatically generated is described
in Section 1.3. Possibilities for future work and some conclusions can be
found in Section 1.4.

2

2. Applied Technologies

Several tools and languages are used in the transformation from FSM
to Java code and JML specifications.

The Uppaal model checker [Pettersson and Larsen., 2000] is used to
draw diagrams of FSMs which can be saved as XML documents. We do
not use Uppaal’s verification capabilities. An FSM in Uppaal consists of
states (of which one is marked as initial) and transitions between these
states. Every transition has a label and possibly additional attributes,
such as guards and assignments.

The Java Modeling Language (JML) [Leavens et al., 1999] is a spec-
ification language tailored to Java. JML specifications consist of class
invariants, global constraints, and pre- and postconditions for individual
methods. These are all written as special comments in the Java source
code, so that Java compilers do not notice them, but JML-aware tools
can make use of them. One of the strengths of JML is that its syn-
tax resembles normal Java syntax, so that Java programmers can easily
understand it. Another strength of JML is that there are several tools
available for it: the JML runtime assertion checker [Leavens et al., 1999],
ESC/Java [Detlefs et al., 1998], and the LOOP tool [Van den Berg and
Jacobs, 2001].

The F2J tool is a simple translator of our own creation which takes
a Uppaal XML document as input and generates Java source code and
JML specifications. This tool is described in Section 1.3.

The ESC/Java ‘extended static checker’ is a tool developed at Compaq
SRC for automatically checking JML-annotated code. It detects, at com-
pile time, possible violations of specifications by a program. ESC/Java
is extremely good at spotting for example where one might potentially
dereference a null pointer or access an array outside its bounds, which
typically violates some postcondition or invariant. ESC/Java uses a the-
orem prover to verify assertions in code, without any user interaction.
The tool is neither sound nor complete, which means that ESC/Java
might complain about errors that will never arise when the program is
run, and that ESC/Java might miss errors that may occur at runtime.
However, this drawback usually only occurs in more complicated pro-
grams and specifications, whereas the applets and their properties we
look at are relatively simple. Moreover, the bold step to give up on
soundness and completeness is what makes ESC/Java such an effective
tool, as attempting either of these two properties would probably result
in a tool far too complicated and slow to be useful in practice.

From Finite State Machines toProvably Correct Java Card Applets 3

3. Generating Applets and Specifications

Java Card applets have a very standard structure. They all imple-
ment a process method which deals with so-called application protocol

data units (APDUs), instruction packets that are sent to the card by a
terminal (and back). APDUs have a header which encodes the instruc-
tion to be performed by the applet, while the rest of the APDU is just
data. Typically, the process method inspects the header, to determine
which operation is to be performed, and calls dedicated helper methods
to process the rest of the data. Depending on the state of the applet
an instruction may be valid or invalid. A typical applet will throw an
exception when it receives an invalid instruction.

In order to generate Java code from the FSM, a special mode field
is introduced to encode the state of the FSM. The transitions in the
FSM correspond to the possible instructions that are valid for the ap-
plet. The mode field implements a life cycle model for the applet, similar
to those in [Marlet and Métayer, 2001; Mostowski, 2002]. The process
method is generated as a nested switch. The outer switch is a case dis-
tinction on mode. The inner switches are case distinctions on the header
of the incoming APDU. A dedicated helper method is generated for
each possible instruction. The generated code ensures that, in case the
corresponding guard is true in the FSM, mode is changed to the result
state of the transition and all corresponding assignments are executed.
Invalid instructions result in exceptions being thrown, leaving mode un-
changed. The generated code is a legal Java Card applet with limited
functionality. Typically one will want to manually add some code to the
generated skeleton code. Our example in this paper is a simple purse ap-
plet whose Uppaal specification is given in Figure 1. Since Uppaal does
not distinguish between normal and abnormal transitions, the labels in
our diagrams have names ending with Nor! or Exc!.

The generated JML specification consists of a global invariant, a
global constraint, and pre- and postconditions for all methods. The
generated invariant enumerates the different possible values of mode.

/*@ invariant

@ (mode==INIT || mode==ISSUED || mode==CHARGING || mode==LOCKED);

@*/

An invariant is a predicate that has to be preserved by every method. A
constraint in JML is a relation between pre- and post-states of methods
that has to be respected by every method. Contrary to an invariant, a
constraint can make use of JML’s \old keyword to refer to the value of a
field in the pre-state of a method. The generated constraint captures the

4

Init

Issued

Charging

Locked

SetKey_Nor!

counter >= 5
GetChallenge_Exc!

GetChallenge_Nor!
counter < 5
counter := counter + 1

Respond_Nor!
balance := newbalance, counter := 0

DecBalance_Nor!
balance > 0
balance := balance - 1

Respond_Exc!

GetBalance_Exc!

DecBalance_Exc!

GetBalance_Nor!

Figure 1. Life cycle model of a simple purse applet.

flow of control throughout the applet’s life, by listing logical implications
describing the different transitions.

/*@ constraint

@ (mode==LOCKED ==> \old(mode)==ISSUED || \old(mode)==LOCKED) &&

@ (mode==INIT ==> \old(mode)==INIT) &&

@ (mode==ISSUED ==> \old(mode)==INIT || \old(mode)==ISSUED

@ || \old(mode)==CHARGING) &&

@ (mode==CHARGING ==> \old(mode)==ISSUED || \old(mode)==CHARGING) &&

@ (\old(mode)==LOCKED ==> mode==LOCKED) &&

@ (\old(mode)==INIT ==> mode==ISSUED || mode==INIT) &&

@ (\old(mode)==ISSUED ==> mode==ISSUED || mode==CHARGING

@ || mode==LOCKED) &&

@ (\old(mode)==CHARGING ==> mode==ISSUED || mode==CHARGING);

@*/

The generated constraint only describes the control flow. Additional
constraints could be added, for instance to relate mode to the other
fields. For example, an interesting relation between mode and balance

is that ‘once the applet is ISSUED, the balance can only decrease’. It
should not be very difficult to generate such additional constraints based
on more advanced analysis of the FSM.

Verifying the kind of properties discussed above is well within the
capabilities of ESC/Java, so it can be used to check that a Java Card
applet behaves conform the generated JML specification. Applets will,
of course, invoke methods from the Java Card API. Fortunately, JML
specifications for all these methods are available [Poll et al., 2000]. Note
that control flow, even in a simple Java Card program, can be hard to
follow due to all the possible exceptions. So the verification performed
by ESC/Java is more complicated than it may appear.

From Finite State Machines toProvably Correct Java Card Applets 5

4. Discussion

We have discussed an approach to use FSMs to automatically gener-
ate Java Card source code, that can serve as the skeleton for a smart
card applet, and to generate formal JML specifications, that are well-
suited to automatic verification using ESC/Java. The F2J translation
described in this paper is still under development, and is currently just
a prototype. The invariant and constraint generation can certainly be
improved through more advanced analysis of the FSM.

One obvious next step is to use Uppaal not just as a graphical edi-
tor, but to use it as a model checker. It could be used to check some
interesting properties of an FSM (for example, for our example, that the
balance always remains non-negative) even before we generate source
code or specifications. In addition to just modeling the smart card ap-
plet, one could also model the behavior of the terminal application that
communicates with the smart card, and then check more interesting
properties of the applet and the terminal interacting. Another possibil-
ity for further work is to extend the syntax allowed in FSMs, notably in
the guards and assignments, so that more of the behavior of the Java
applet can be described in the FSM. Finally, a more ambitious project
for future work would be to extract an FSM from given Java Card source
code, rather than the reverse as we do now.

References

Detlefs, D. L., Leino, K. R. M., Nelson, G., and Saxe, J. B. (1998). Extended Static
Checking. Technical Report 159, Compaq Systems Research Center.

Leavens, G. T., Baker, A. L., and Ruby, C. (1999). JML: A notation for detailed
design. In Kilov, H., Rumpe, B., and Harvey, W., editors, Behavioral Specifications

for Businesses and Systems, pages 175–188. Kluwer Academic Publishers.

Marlet, R. and Métayer, D. L. (2001). Security properties and Java Card specificities
to be studied in the SecSafe project. Technical Report SECSAFE-TL-006, Trusted
Logic.

Mostowski, W. (2002). Rigorous development of JavaCard applications. In Clarke, T.,
Evans, A., and Lano, K., editors, ROOM 4, London.

Pettersson, P. and Larsen., K. G. (2000). Uppaal2k. Bulletin of the European Asso-

ciation for Theoretical Computer Science, 70:40–44.

Poll, E., van den Berg, J., and Jacobs, B. (2000). Specification of the Java Card API
in JML. In CARDIS’2000, pages 135–154. Kluwer.

Van den Berg, J. and Jacobs, B. (2001). The LOOP compiler for Java and JML. In
TACAS’01, volume 2031 of LNCS, pages 299–312. Springer-Verlag.

