Formal Reasoning 2015

Solutions Test 3: Languages and automata

 (21/10/15)1. Give a regular expression that defines the language:

$$
L_{1}:=\left\{w \in\{a, b\}^{*} \mid w \text { contains an even number of } a \text { 's }\right\}
$$

Possible solutions are:

$$
\begin{gathered}
\left(\left(a b^{*} a\right) \cup b\right)^{*} \\
b^{*}\left(a b^{*} a b^{*}\right)^{*} \\
\left(b^{*} a b^{*} a\right)^{*} b^{*} \\
\left(b^{*} a b^{*} a b^{*}\right) \cup b^{*}
\end{gathered}
$$

If r is one of these expressions, then $L_{1}=\mathcal{L}(r)$.
2. Give a right linear grammar G_{2} that defines the language:
$L_{2}:=\left\{w \in\{a, b\}^{*} \mid w\right.$ contains both an even number of a 's and an even number of b 's $\}$
Let G_{2} be the right linear grammar:

$$
\begin{aligned}
& S \rightarrow a A|b C| \lambda \\
& A \rightarrow a S \mid b B \\
& B \rightarrow a C \mid b A \\
& C \rightarrow a B \mid b S
\end{aligned}
$$

Then $\mathcal{L}\left(G_{2}\right)=L_{2}$. Recall that the nonterminals represent some kind of state:

- S the number of $a^{\prime} s$ and the number of b 's is even.
- A the number of $a^{\prime} s$ is odd and the number of b 's is even.
- B the number of $a^{\prime} s$ is odd and the number of b 's is odd.
- C the number of $a^{\prime} s$ is even and the number of b 's is odd.

3. Give a finite automaton M_{3} that matches the context-free grammar G_{3} :

$$
\begin{aligned}
& S \rightarrow A B \\
& A \rightarrow a A \mid \lambda \\
& B \rightarrow b B \mid \lambda
\end{aligned}
$$

In particular $L\left(M_{3}\right)=\mathcal{L}\left(G_{3}\right)$ must hold.
Note that $\mathcal{L}\left(G_{3}\right)=\left\{a^{m} b^{n} \mid m, n \in \mathbb{N}\right\}$. Let M_{3} be the automaton:

Then $L\left(M_{3}\right)=\mathcal{L}\left(G_{3}\right)$ holds.
An equivalent automaton, but minimal with respect to the number of states is:

4. (a) Let $|w|_{a}$ be the number of occurrences of the symbol a in word w, so for example $|a b c c b|_{b}=2,|S|_{S}=1$ and $|S|_{a}=0$. Somebody claims that:

$$
P(w):=w \text { contains } a a \text { and/or } 2|w|_{S}+2|w|_{A}+|w|_{a} \leq 2
$$

is an invariant for the context-free grammar G_{4} :

$$
\begin{aligned}
& S \rightarrow B A B \\
& A \rightarrow a a A|\lambda| a B a \\
& B \rightarrow b B|\lambda| b B a a A
\end{aligned}
$$

Is this person right? Explain your answer.
Yes, this person is right: P is an invariant for G_{4}. Note that the 'and/or' is basically nothing else but the normal, logical inclusive 'or'. Here comes the proof of the two properties of an invariant.

- $P(S)$ holds because $2|S|_{S}+2|S|_{A}+|S|_{a}=2+0+0 \leq 2$.
- Let v be a word such that $P(v)$ holds and let v^{\prime} be a word such that $v \rightarrow v^{\prime}$. If $P(v)$ holds because v contains the string $a a$, then we are done immediately, because v^{\prime} will also contain $a a$, because there are no rules that remove terminals and there are also no ways to put something in between two terminals. Hence we may assume that $2|v|_{S}+2|v|_{A}+|v|_{a} \leq 2$. This means that there are seven possibilities for the step $v \rightarrow v^{\prime}$:
$-S \rightarrow B A B$. In this case we have that $\left|v^{\prime}\right|_{S}=|v|_{S}-1,\left|v^{\prime}\right|_{A}=|v|_{A}+1$ and $\left|v^{\prime}\right|_{a}=|v|_{a}$. So

$$
\begin{aligned}
2\left|v^{\prime}\right|_{S}+2\left|v^{\prime}\right|_{A}+\left|v^{\prime}\right|_{a} & =2\left(|v|_{S}-1\right)+2\left(|v|_{A}+1\right)+|v|_{a} \\
& =2|v|_{S}-2+2|v|_{A}+2+|v|_{a} \\
& =2|v|_{S}+2|v|_{A}+|v|_{a} \\
& \leq 2
\end{aligned}
$$

And hence $P\left(v^{\prime}\right)$ holds.
$-A \rightarrow a a A$. In this case v^{\prime} contains the string $a a$, which implies that $P\left(v^{\prime}\right)$ also holds.
$-A \rightarrow \lambda$. In this case we have that $\left|v^{\prime}\right|_{S}=|v|_{S},\left|v^{\prime}\right|_{A}=|v|_{A}-1$ and $\left|v^{\prime}\right|_{a}=|v|_{a}$. So

$$
\begin{aligned}
2\left|v^{\prime}\right|_{S}+2\left|v^{\prime}\right|_{A}+\left|v^{\prime}\right|_{a} & =2|v|_{S}+2\left(|v|_{A}-1\right)+|v|_{a} \\
& =2|v|_{S}+2|v|_{A}-2+|v|_{a} \\
& =\left(2|v|_{S}+2|v|_{A}+|v|_{a}\right)-2 \\
& \leq 2-2 \\
& =0 \\
& \leq 2
\end{aligned}
$$

$-A \rightarrow a B a$. In this case we have that $\left|v^{\prime}\right|_{S}=|v|_{S},\left|v^{\prime}\right|_{A}=|v|_{A}-1$ en $\left|v^{\prime}\right|_{a}=$ $|v|_{a}+2$. So

$$
\begin{aligned}
2\left|v^{\prime}\right|_{S}+2\left|v^{\prime}\right|_{A}+\left|v^{\prime}\right|_{a} & =2|v|_{S}+2\left(|v|_{A}-1\right)+|v|_{a}+2 \\
& =2|v|_{S}+2|v|_{A}-2+|v|_{a}+2 \\
& =2|v|_{S}+2|v|_{A}+|v|_{a}-2+2 \\
& =2|v|_{S}+2|v|_{A}+|v|_{a} \\
& \leq 2
\end{aligned}
$$

$-B \rightarrow b B$. This step doesn't change anything to the numbers of S 's, A 's and a 's, hence $P\left(v^{\prime}\right)$ also holds.
$-B \rightarrow \lambda$. This step doesn't change anything to the numbers of S 's, A 's and a 's, hence $P\left(v^{\prime}\right)$ also holds.
$-B \rightarrow b B a a A$. In this case v^{\prime} contains the string $a a$, which implies that $P\left(v^{\prime}\right)$ also holds.
(b) Somebody else claims that:
(10 points)

$$
\mathcal{L}\left(G_{4}\right)=\left\{w \in\{a, b\}^{*} \mid w \text { contains an even number of } a \text { 's }\right\}
$$

Is this person right? If not, provide a word which is contained in exactly one of these two languages. Explain your answer. (Hint: have a look at $P(w)$ in Exercise 4a.)
No, this person is not correct. Consider the word $v=a b a b a b a$. This word v contains an even number of a 's (namely four) and hence

$$
v \in\left\{w \in\{a, b\}^{*} \mid w \text { contains an even number of } a \text { 's }\right\}
$$

However, $P(a b a b a b a)$ does not hold, because it doesn't contain the string $a a$ and $2|v|_{S}+$ $2|v|_{A}+|v|_{a}=2 \cdot 0+2 \cdot 0+4$ and $4 \not \leq 2$. So $v \notin \mathcal{L}\left(G_{4}\right)$.
5. (a) We define:

Explain why:

$$
L_{5}:=\left\{w \in\{a, b\}^{*} \mid w \text { starts with an } a\right\}
$$

$$
L_{5}^{*}=L_{5} \cup\{\lambda\}
$$

The proof is split into two parts:

- $L_{5} \cup\{\lambda\} \subseteq L_{5}^{*}$. For all languages L it holds that $L \subseteq L^{*}$, hence also for L_{5}. Furthermore, for all laguages L it holds that $\lambda \in L^{*}$, hence also for L_{5}. But from this it follows that $L_{5} \cup\{\lambda\} \subseteq L_{5}^{*}$.
- $L_{5}^{*} \subseteq L_{5} \cup\{\lambda\}$. Let $w \in L_{5}^{*}$. Then either $w=\lambda$ or $w=w_{1} w_{2} \ldots w_{k}$ for some $k \geq 1$ with $w_{i} \in L_{5}$ for all $i \in\{1,2, \ldots, k\}$. In the first case it immediately follows that $w \in L_{5} \cup\{\lambda\}$. In the second case it holds in particular that $w_{1} \in L_{5}$. So w_{1} start with an a. But if w_{1} starts with an a, then $w=w_{1} w_{2} \ldots w_{k}$ also starts with an a. So $w \in L_{5}$ and hence also $w \in L_{5} \cup\{\lambda\}$.
(b) Give two languages L and L^{\prime} over alphabet $\Sigma=\{a, b\}$ such that:

$$
L \cap L^{\prime}=\emptyset \quad L^{*} \neq \Sigma^{*} \quad L^{\prime *} \neq \Sigma^{*} \quad L \cup L^{\prime} \neq \Sigma^{*} \quad L^{*} \cup L^{\prime *}=\Sigma^{*}
$$

Explain your answer. (If you can't manage to comply to all these requirements, try to comply to as many as possible.)
Define $L_{5}^{\prime}:=\left\{w \in\{a, b\}^{*} \mid w\right.$ starts with a $\left.b\right\}$. Now take $L=L_{5}$ and $L^{\prime}=L_{5}^{\prime}$.

- $L \cap L^{\prime}=\emptyset$. Because words in L always start with an a and words in L^{\prime} always start with a b, the intersection $L \cap L^{\prime}$ must be empty, because there are no words that start with an a and start with a b at the same time.
- $L^{*} \neq \Sigma^{*}$. In exercise 5 a we have seen that $L^{*}=L \cup\{\lambda\}$. So if $w \in L^{*}$ then it holds that $w=\lambda$ or w starts with an a. But Σ^{*} also contains words that start with a b and therefore Σ is strictly larger than L^{*}.
- $L^{\prime *} \neq \Sigma^{*}$. Analogously, it alos holds for L^{\prime} that $L^{\prime *}=L^{\prime} \cup\{\lambda\}$. So if $w \in L^{\prime *}$ then it holds that $w=\lambda$ or w starts with a b. But Σ^{*} also contains words that start with an a and therefore Σ is strictly larger than $L^{\prime *}$.
- $L \cup L^{\prime} \neq \Sigma^{*}$. We know that $\lambda \in \Sigma^{*}$. However, λ does not start with an a and it does not start with a b. Therefore λ is not in L and also not in L^{\prime}. Hence also not in $L \cup L^{\prime}$.
- $L^{*} \cup L^{*}=\Sigma^{*}$. Because Σ^{*} contains all words over the alphabet $\{a, b\}$, it is clear that $L^{*} \cup L^{*} \subseteq \Sigma^{*}$. In addition, we have already seen that $L^{*}=L \cup\{\lambda\}$ and $L^{\prime *}=L^{\prime} \cup\{\lambda\}$. So $L^{*} \cup L^{\prime *}=L \cup L^{\prime} \cup\{\lambda\}$. But if $w \in \Sigma^{*}$ then it holds that $w=\lambda, w$ starts with an a or w starts with a b. And hence it follows that $w \in L \cup L^{\prime} \cup\{\lambda\}=L^{*} \cup L^{\prime *}$.

