
Formal Reasoning 2016
Solutions Test Block 4: Discrete Mathematics

(30/11/16)

1. Give a connected planar graph that has an Euler circuit, and in which not
all vertices have degree two. Draw the graph in a planar representation,
and explain why it has the required properties.
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This graph has the required properties:

• It is connected since there is clearly only one component. In partic-
ular for each pair of distinct vertices x and y where x < y we have a
path x→ x + 1→ x + 2→ · · · → y.

• It is planar, because in the given representation there are no crossing
lines.

• It has an Euler circuit because the cycle 1→ 2→ 3→ 4→ 5→ 3→
1 includes every edge exactly once.

• Not all vertices have degree two, because vertex 3 has degree four.

2. (a) Does there exist a tree that has a Hamilton path?

Yes, a tree is a connected graph that has no cycles, so the following
graph is clearly a tree.
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And the path 1 → 2 visits each vertex exactly once, so this is a
Hamilton path.

(b) Does there exist a tree that does not have a Hamilton path?

Yes, the following graph is a tree that doesn’t have a Hamilton path.
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This graph has no Hamilton path. Because all vertices have to be
included in any Hamilton path and the vertices 1, 2 and 3 have degree
one, we know for sure that all edges (1, 4), (2, 4) and (3, 4) must be in
such a Hamilton path. But this implies that we have to visit vertex
4 at least two times, which is not allowed in a Hamilton path.

(c) Does there exist a tree that has a Hamilton circuit?

No, by definition a tree has no circuits at all, so in particular a tree
has no Hamilton circuits.

Explain your answer for each of these three questions.
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3. We define graphs Gn for n ≥ 1, in which the vertices are the legal positions
of the Towers of Hanoi with n disks, and the edges correspond to legal
moves between those positions. For example the graph G4 is:

We write en for the number of edges in Gn. The sequence en satisfies the
recursive equations:

e1 = 3

en+1 = 3en + 3

(a) How many isomorphisms are there from G1 to G1?

Let us first draw G1. Obviously G1 has three vertices, corresponding
with the situation that there is one disk on peg number 1, peg number
2 or peg number 3. Note that from each situation we can go in one
move to any other situation. In particular this means that K1 is
isomorphic with K3, so G1 looks like a triangle:
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Because G1 is basically K3 where each vertex is connected to any
other vertex, any bijective map of {1, 2, 3} to {1, 2, 3} is an isomor-
phism. For determining all isomorphisms we have to fix ϕ(1), ϕ(2)
and ϕ(3). So first for ϕ(1) we have three choices. And then for ϕ(2)
we have two choices. And then for ϕ(3) we only have one option left.
Hence the total number of isomorphisms of G1 to G1 is 3 · 2 · 1 = 6.

For the sake of completeness we list the isomorphisms:

f1 : 1 7→ 1 2 7→ 2 3 7→ 3
f2 : 1 7→ 1 2 7→ 3 3 7→ 2
f3 : 1 7→ 2 2 7→ 1 3 7→ 3
f4 : 1 7→ 2 2 7→ 3 3 7→ 1
f3 : 1 7→ 3 2 7→ 1 3 7→ 2
f4 : 1 7→ 3 2 7→ 2 2 7→ 1

(b) Give a formula without recursion for the number of vertices in Gn.
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We start by making a list with the values we can see in the picture
of G4:

n number of vertices in Gn

1 3
2 9
3 27
4 81

So the direct formula seems to be 3n.

By using recursion we can give another argument why this should be
the proper formula: if we go from Gn to Gn+1 it means that we have
to add one new disk that is larger than all other disks. This implies
that this disk can only be at the bottom of the pegs. Furthermore,
any legal position of Gn can be extended to put a larger disk below
the existing disks on any of the three pegs. So here we see that for
each extra disk, the number of legal positions is multiplied by three,
giving 3n for the game with n disks.

(c) Compute the number of edges in the graph G4 using the recursive
equations that were given above. Include your intermediate results.

e1 = 3
e2 = 3 · e1 + 3 = 3 · 3 + 3 = 9 + 3 = 12
e3 = 3 · e2 + 3 = 3 · 12 + 3 = 36 + 3 = 39
e4 = 3 · e3 + 3 = 3 · 39 + 3 = 117 + 3 = 120

(d) Prove by induction that en = 1
2 (3n+1− 3) for all n ≥ 1. In this proof

you may use the recursive equations that were given above.

Proposition: 0

en = 1
2 (3n+1 − 3) for all n ≥ 1.

Proof by induction on n. 1

We first define our predicate P as:
P (n) := en = 1

2 (3n+1 − 3) 2

Base Case. We show that P (1) holds, i.e. we show that 3
e1 = 1

2 (31+1 − 3)
This indeed holds, because by definition e1 = 3 and 4

1

2
(31+1 − 3) =

1

2
(32 − 3) =

1

2
(9− 3) =

1

2
· 6 = 3

Induction Step. Let k be any natural number such that k ≥ 1. 5
Assume that we already know that P (k) holds, i.e. we assume
that 6
ek = 1

2 (3k+1 − 3) (Induction Hypothesis IH)
We now show that P (k + 1) also holds, i.e. we show that 7
ek+1 = 1

2 (3k+1+1 − 3)
This indeed holds, because 8

3



ek+1 = 3ek + 3 (by definition of ek+1)
IH
= 3 · 12 (3k+1 − 3) + 3 (by applying the IH)
= 1

2 (3k+1+1 − 9) + 3 (elementary algebra)
= 1

2 · 3
k+1+1 − 4 1

2 + 3 (elementary algebra)
= 1

2 · 3
k+1+1 − 1 1

2 (elementary algebra)
= 1

2 (3k+1+1 − 3) (elementary algebra)

Hence it follows by induction that P (n) holds for all n ≥ 1. 9

4. Calculate (x+y)7 according to the binomial theorem, with the coefficients
as explicit numbers. Indicate where the relevant binomial coefficients oc-
cur, both in your answer as well as in Pascal’s triangle.

The general version of Newton’s binomial theory states that

(x + y)n =

(
n

0

)
xn +

(
n

1

)
xn−1y +

(
n

2

)
xn−2y2 + · · ·+

(
n

n

)
yn

So if we use n = 7 we get:

(x + y)7

=
(
7
0

)
x7 +

(
7
1

)
x6y +

(
7
2

)
x5y2 +

(
7
3

)
x4y3 +

(
7
4

)
x3y4 +

(
7
5

)
x2y5 +

(
7
6

)
xy6 +

(
7
7

)
y7

= 1x7 + 7x6y + 21x5y2 + 35x4y3 + 35x3y4 + 21x2y5 + 7xy6 + 1y7

The coefficients are marked in Pascal’s triangle below:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1
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