
Type Theory and Coq 2012

23-01-2013

Write your name on each paper that you hand in. Each subexercise is worth 5
points, 10 points are free, and the final mark is the number of points divided
by 10. Write proofs, terms and types in this test according to the conventions
of Femke’s course notes. Good luck!

1. (a) Prove the formula

(a → a → c) → (b → a) → (b → c)

in minimal propositional logic. Indicate whether the proof has
any detours.

(b) Give the lambda term of Church-style simple type theory that
corresponds to this proof.

2. (a) Prove the formula

a → ∀b. (∀c. a → c) → b

in second order propositional logic.

(b) Give the lambda term of λ2 that corresponds to this proof, and
give its type.

3. The rules for the eight systems from the Barendregt cube are given by
the following table:

λ→ R = {(∗, ∗)}
λP R = {(∗, ∗), (∗,�)}
λ2 R = {(∗, ∗), (�, ∗)}
λP2 R = {(∗, ∗), (∗,�), (�, ∗)}
λω R = {(∗, ∗), (�,�)}
λPω R = {(∗, ∗), (∗,�), (�,�)}
λω R = {(∗, ∗), (�, ∗), (�,�)}
λC R = {(∗, ∗), (∗,�), (�, ∗), (�,�)}

in which (s1, s2) is an abbreviation of (s1, s2, s2).

1



Furthermore, the PTS product and abstraction rules are:

Γ ⊢ A : s1 Γ, x : A ⊢ B : s2

Γ ⊢ Πx : A.B : s3

(s1, s2, s3) ∈ R

Γ, x : A ⊢ M : B Γ ⊢ Πx : A.B : s

Γ ⊢ λx : A.M : Πx : A.B

Finally we have the typings:

nat : ∗

vec : nat → ∗

For each of the following three terms, list in which of the systems from
the Barendregt cube the term is typable:

(a)
nat → nat

(b)
λa : ∗. a → a

(c)
Πn : nat. vec n

4. (a) Consider the Coq definition

Inductive nat : Set :=

| O : nat

| S : nat -> nat.

Give the dependent induction principle nat_ind of this type.

(b) Give the normal form of the term

nat_ind P c f (S (S O))

that uses the principle from the previous exercise. In this term
the variables P, c, f and n are variables from the context.

(c) Give the non-dependent induction principle that corresponds to
the induction principle from 4(a).

2



5. (a) Consider the Coq definition

Inductive le (n : nat) : nat -> Prop :=

| le_n : le n n

| le_S : forall m : nat, le n m -> le n (S m).

Give the non-dependent induction principle le_ind of this type.
(Hint: first determine the dependent induction principle, and then
remove the dependence on the elements of le n m in the predi-
cate.)

(b) Prove that 1 ≤ 2, i.e., give an inhabitant of

le (S O) (S (S O))

where le is the type from the previous exercise.

6. Which of the following four inductive definitions are allowed by Coq?
For the definitions that are not allowed, explain what requirement is
not satisfied.

(a) Inductive T1 : Type :=

| b1 : T1

| c1 : (T1 -> T1) -> T1.

(b) Inductive T2 (A : Type) : Type :=

| b2 : T2 A

| c2 : T2 (A -> A) -> T2 A.

(c) Inductive T3 (A : Type) : Type :=

| b3 : T3 A

| c3 : T3 A -> T3 (A -> A).

(d) Inductive T4 : Type :=

| b4 : T4

| c4 : (nat -> T4) -> T4.

3



7. We recursively define an operation M∗ on untyped lambda terms:

x∗ := x

(λx.M)∗ := λx.M∗

((λx.M)N)∗ := M∗[x := N∗]

(MN)∗ := M∗N∗ when MN is not a beta redex

and we inductively define a relation M ⇒ N on untyped lambda terms:

x ⇒ x

M ⇒ M ′

λx.M ⇒ λx.M ′

M ⇒ M ′ N ⇒ N ′

MN ⇒ M ′N ′

M ⇒ M ′ N ⇒ N ′

(λx.M)N ⇒ M ′[x := N ′]

(a) State the diamond property for this relation M ⇒ N .

(b) What is the relation between the M∗ operation and the M ⇒ N

relation that allows one to prove this property? (Note that the
exercise does not ask you to prove that this relation holds.)

4


