
Type Theory and Coq 2014
26-01-2015

1. Consider the term of the untyped lambda calculus:

(λx.x)(λy. (λz.z) y (λw.w))

(a) Give the normal form of this term.

λy.y (λw.w)

(b) Give a most general type of this term, where the term is taken to
be a term of Curry-style simple type theory. (You do not need to
explain how you obtained this type, nor why it is a most general
type.)

((a→ a)→ b)→ b

(c) Give the term of Church-style simple type theory that corresponds
to the untyped lambda term and that has the type from part (b).

(λx:((a→a)→b)→b. x)(λy:(a→a)→b. (λz:(a→a)→b. z) y (λw:a. w))

(d) Give a type of this term in Curry-style simple type theory that is
not a most general type.

((a→ a)→ a)→ a

2. Consider the formula of first order propositional logic:

((a→ b→ a)→ b)→ b

1



(a) Give a proof in first order propositional logic of this formula.
(Write all the names of the proof rules in the proof tree.)

[(a→ b→ a)→ bx]

[ay]

b→ a
I[z]→

a→ b→ a
I[y]→

b
E→

((a→ b→ a)→ b)→ b
I[x]→

(b) Give the proof term of Church-style simple type theory of this
proof.

λx : (a→ b→ a)→ b. x (λy : a. λz : b. y)

(c) Give the type judgment for the term from part (b).

` λx:(a→b→a)→b. x (λy:a. λz:b. y) : ((a→b→a)→b)→b

(d) Give a derivation of the type judgment from part (c). (You do
not need to give names for the typing rules in the derivation tree,
and you may use abbreviations for contexts.)

x : (a→b→a)→b ` x : (a→b→a)→b

x : (a→b→a)→b, y : a, z : b ` y : a

x : (a→b→a)→b, y : a ` λz:b. y : b→a
x : (a→b→a)→b ` λy:a. λz:b. y : a→b→a

x : (a→b→a)→b ` x (λy:a. λz:b. y) : b

` λx:(a→b→a)→b. x (λy:a. λz:b. y) : ((a→b→a)→b)→b

3. Consider the formula of first order predicate logic:

(∀x.∀y.R(x, y))→ (∀x.∀y.R(y, x))

(a) Give a proof in first order predicate logic of this formula. (Write
all the names of the proof rules in the proof tree.)

2



We prove the formula

(∀x′.∀y′.R(x′, y′))→ (∀x.∀y.R(y, x))

which is an alpha-renamed version of the formula from the exer-
cise:

[∀x′.∀y′.R(x′, y′)H ]

∀y′.R(y, y′)
E∀

R(y, x)
E∀

∀y.R(y, x)
I∀

∀x.∀y.R(y, x))
I∀

(∀x′.∀y′.R(x′, y′))→ (∀x.∀y.R(y, x))
I[H]→

(b) Which of the rules in this proof has a variable condition, what is
this condition, and why is it satisfied?

The I∀ rule has the variable condition that the variable that is
generalized should not be free in any uncanceled assumption. The
only assumption in this proof is ∀x′.∀y′.R(x′, y′) which has no free
variables, so this condition is trivially satisfied.

(c) Give the type of λP that corresponds to the formula.

(Πx:D.Πy:D.Rx y)→ (Πx:D.Πy:D.R y x)

(d) Give a λP proof term for the type from part (c).

λH : (Πx:D.Πy:D.Rx y). λx:D.λy:D.H y x

4. Consider the term of λC:

or2 :≡ λA : ∗. λB : ∗.ΠC : ∗. (A→ C)→ (B → C)→ C

(a) Give the type of or2 in λC. (See page 9 for the typing rules of λC,
in case you need those.)

∗ → ∗ → ∗

3



(b) Is or2 also typeable in λ2? Explain your answer.

No, this term is only typable in systems that contain λω.

The type ∗ → ∗ is not allowed in λ2, because it needs the rule
(�,�), and λ2 only has the rules (∗, ∗) and (�, ∗).

(c) Give a term of λC that inhabits the following λC type:

ΠA : ∗.ΠB : ∗. A→ or2AB

λA:∗. λB:∗. λH:A. λC:∗. λH1:A→C. λH2:B→C.H1A

(d) Give a term of λC that inhabits the following λC type:

ΠA : ∗.ΠB : ∗.ΠC : ∗. or2AB → (A→ C)→ (B → C)→ C

λA:∗. λB:∗. λC:∗. λH0:(or2AB). λH1:A→C. λH2:A→C.H0C H1H2

5. Consider the λC type a→ a in the context a : ∗.

(a) Give the λC typing judgment (without a derivation) that gives
the kind of this type.

a : ∗ ` (a→ a) : ∗

(b) Give a derivation in λC of the judgment from part (a). (See page 9
for the typing rules of λC. You do not need to give names for the
typing rules in the derivation tree.)

` ∗ : �

a : ∗ ` a : ∗

` ∗ : �

a : ∗ ` a : ∗
` ∗ : �

a : ∗ ` a : ∗
a : ∗, x : a ` a : ∗

a : ∗ ` (Πx : a. a) : ∗

(c) Give also an inhabitant in λC of this type.

λx : a. x

4



(d) Give the λC typing judgment (without a derivation) for this in-
habitant.

a : ∗ ` (λx : a. x) : a→ a

6. Consider the Coq inductive type for binary positive numbers:

Inductive positive : Set :=

| xH : positive

| xO : positive -> positive

| xI : positive -> positive.

In this representation of binary numbers, xH stands for the number 1,
xO stands for the function λn.2n (which adds a zero at the end of the
number), and xI stands for the functin λn.2n+ 1 (which adds a one).

(a) Give a Coq term that represents the binary form of the decimal
number 18.

18 has binary representation 10010 and therefore the term is

xO (xI (xO (xO xH)))

(b) Give the type of the dependent induction principle positive_

rect for this inductive type. (You can write this induction prin-
ciple using Coq syntax or using PTS syntax, whatever is your
preference.)

forall P : positive -> Type,

P xH ->

(forall n : positive, P n -> P (xO n)) ->

(forall n : positive, P n -> P (xI n)) ->

forall n : positive, P n

(c) Give the type of the corresponding non-dependent induction prin-
ciple positive_rect_nondep for this inductive type.

5



forall A : Type,

A ->

(positive -> A -> A) ->

(positive -> A -> A) ->

positive -> A

(d) Write a function succ : positive -> positive that adds one to
its argument using a combination of Fixpoint and match.

For instance

succ (xI xH) = xO (xO xH)

should hold, because succ(3) = 4.

Fixpoint succ (n : positive) {struct n} : positive :=

match n with

| xH => xO xH

| xO n’ => xI n’

| xI n’ => xO (succ n’)

end.

(e) Now also write the succ function using the non-dependent induc-
tion priciple used as a primitive recursor.

positive_rect_nondep positive

(xO xH)

(fun n’ : positive => fun _ : positive => xI n’)

(fun _ : positive => fun succ’ : positive => xO succ’)

7. We define the extended (untyped) lambda terms and the subclass called
values by:

t ::= x | t1t2 | v
v ::= λx.t | [x̃ v1 . . . vn]

On these terms we define weak reduction by the three rules:

(λx.t)v →v t[x := v] (βv)

[x̃ v1 . . . vn]v →v [x̃ v1 . . . vn v] (βs)

Ev(t)→v Ev(t
′) if t→v t

′ (contextv)

6



where the one step contexts are defined as:

Ev(�) ::= � v | t�

We write V(t) for the unique normal form of t under →v reduction (if
it exists), the function V is a partial function. Using this we define
functions R(t) and N (v) recursively by:

N (t) = R(V(t)) (1)

R(λx.t) = λy.N ((λx.t) [ỹ]) (y fresh) (2)

R([x̃ v1 . . . vn]) = xR(v1) . . .R(vn) (3)

Finally we define the term t7 by

t7 := (λx.x)(λy. (λz.z) y (λw.w))

(a) Does there exist an extended lambda term that has two different
one step →v reductions? If so, give an example.

No, weak reduction →v is deterministic.

First note that a value v will never reduce, because all the left
hand sides of the reduction rules are an application, and values
are never an application.

Now there are four rules:

(λx.t)v →v . . .

[x̃ v1 . . . vn]v →v . . .

uv →v . . .

tu→v . . . . . .

where u is a term that reduces. Clearly there is no overlap between
these left hand sides. This means that by following the rules we
will find at most one redex, which can be reduced in only one way.

(b) Is there an extended lambda term t for which V(t) does not ex-
ist (because the reduction does not terminate)? If so, give an
example.

Yes, take t = Ω = ωω = (λx.xx)(λx.xx). We have Ω →v Ω by
rule βv because ω is a value, so clearly Ω does not have a normal
form under →v.

7



(c) Is there an extended lambda term t that is typable in Curry-style
simple type theory (and therefore does not contain subterms of
the shape [x̃ v1 . . . vn]) for which V(t) does not exist? If so, give
an example.

No, such at term does not exist. Weak reduction is a restriction
of normal beta reduction, and simple type theory is strongly nor-
malizing under beta reduction.

(d) Show how the value V(t7) is calculated, and give the result.

Write down all the →v reduction steps that are used in this cal-
culation.

We have the reduction

(λx.x)(λy. (λz.z) y (λw.w))→v λy. (λz.z) y (λw.w) (βv)

using rule βv, and the latter term is a value and does not reduce.
Therefore we have:

V(t7) = λy. (λz.z) y (λw.w)

(e) Show how the value N (t7) is calculated, and give the result.

Whenever in this calculation you calculate a weak normal form
V(t), write down all the →v reduction steps like in part (d).

We have

V((λx.x)(λy.(λz.z) y (λw.w))) = λy.(λz.z) y (λw.w)

V((λy.(λz.z) y (λw.w))[ỹ]) = [ỹ (λw.w)]

V((λw.w)[w̃]) = [w̃]

because of the following reduction paths:

(λx.x)(λy. (λz.z) y (λw.w))→v λy.(λz.z) y (λw.w) (βv)

(λz.z)[ỹ]→v [ỹ] (βv)

(λy.(λz.z) y (λw.w))[ỹ]→v (λz.z)[ỹ](λw.w) (βv)

→v [ỹ](λw.w) (contextv)

→v [ỹ (λw.w)] (βs)

(λw.w)[w̃]→v [w̃] (βv)

8



Using these equalities we then calculate:

N (t7) = R(V(t7))

= R(λy.(λz.z) y (λw.w))

= λy.N ((λy.(λz.z) y (λw.w))[ỹ])

= λy.R(V((λy.(λz.z) y (λw.w))[ỹ]))

= λy.R([ỹ (λw.w)])

= λy.yR(λw.w)

= λy.y (λw.N ((λw.w)[w̃]))

= λy.y (λw.R(V((λw.w)[w̃])))

= λy.y (λw.R([w̃]))

= λy.y (λw.w)

9


