Lemma 7.11 The six congruences

0	$\pmod{2}$
0	$\pmod{3}$
1	$\pmod{4}$
3	$\pmod{8}$
$\overline{7}$	$\pmod{12}$
23	$\pmod{24}$

form a set of covering congruences.

Proof. First, we show that each of the 24 integers $0, 1, \ldots, 23$ satisfies at least one of these six congruences. Every even integer k satisfies $k \equiv 0 \pmod{2}$. For odd integers, we have

 $1 \equiv 1$ (mod 4) $3 \equiv 0$ (mod 3) $5 \equiv 1$ (mod 4) $7 \equiv 7$ (mod 12) $9 \equiv 0$ (mod 3) $11 \equiv 3$ (mod 8) $13 \equiv 1$ (mod 4) $15 \equiv 0$ (mod 3) $17 \equiv 1$ (mod 4) $19 \equiv 7$ (mod 12) $21 \equiv 0$ (mod 3) $23 \equiv 23 \pmod{24}$

For every integer k, there is a unique integer $r \in \{0, 1, ..., 23\}$ such that

$$k \equiv r \pmod{24}.$$

Choose i so that

$$r \equiv a_i \pmod{m_i},$$

where $a_i \pmod{m_i}$ is one of our six congruences. Each of the six moduli 2, 3, 4, 6, 12, and 24 divides 24, so m_i divides 24 and

$$k \equiv r \pmod{m_i}.$$

Therefore,

$$k \equiv a_i \pmod{m_i}.$$

This completes the proof.