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Abstract. In the FTA project in Nijmegen we have formalized a con-
structive proof of the Fundamental Theorem of Algebra. In the formal-
ization, we have first defined the (constructive) algebraic hierarchy of
groups, rings, fields, etcetera. For the reals we have then defined the
notion of real number structure, which is basically a Cauchy complete
Archimedean ordered field. This boils down to axiomatizing the con-
structive reals. The proof of FTA is then given from these axioms (so
independent of a specific construction of the reals), where the complex
numbers are defined as pairs of real numbers.
The proof of FTA that we have chosen to formalize is the one in the
seminal book by Troelstra and van Dalen [17], originally due to Manfred
Kneser [12]. The proof by Troelstra and van Dalen makes heavy use
of the rational numbers (as suitable approximations of reals), which is
quite common in constructive analysis, because equality on the rationals
is decidable and equality on the reals isn’t. In our case, this is not so
convenient, because the axiomatization of the reals doesn’t ‘contain’ the
rationals. Moreover, we found it rather unnatural to let a proof about the
reals be mainly dealing with rationals. Therefore, our version of the FTA
proof doesn’t refer to the rational numbers. The proof described here is
a faithful presentation of a fully formalized proof in the Coq system.

1 Introduction

The Fundamental Theorem of Algebra states that the field of complex numbers
is algebraically closed. More explicitly, it says that

For every non-constant polynomial

f(z) = anz
n + an−1z

n−1 + . . .+ a1z + a0

with coefficients in C, the equation f(z) = 0 has a solution.

This theorem has a long and illustrious history (see [6] or [11] for an overview).
It was proved for the first time in Gauss’s Ph.D. thesis from 1799. Many proofs
of the Fundamental Theorem of Algebra are known, most of which have a con-
structive version.
The proof that we’re presenting here was invented by Manfred Kneser [12]

(inspired by a proof of his father, Hellmuth Kneser, in [11]), and is a constructive



version of the simple proof that derives a contradiction from the assumption that
the (non-constant) polynomial f is minimal at z0 with |f(z0)| 6= 0. We briefly
repeat the classical proof here. Let f(z) = anz

n + an−1z
n−1 + . . .+ a1z + a0 be

a non-constant polynomial.
First note that |f(z)| must have a minimum somewhere, because |f(z)| → ∞

if |z| → ∞. We may assume the minimum to be reached for z = 0. (If the
minimum is reached for z0, consider the polynomial g(z) = f(z + z0).) Now,
assume the minimum of |f(z)| is not 0 (i.e. f(0) 6= 0). The function f(z) has the
form

f(z) = a0 + akz
k +O

(

zk+1
)

with ak 6= 0. Because of this, f(0) = a0 6= 0 and we can take

z = ε k

√

−a0

ak

with ε ∈ R>0, and if ε is small enough, the part O
(

zk+1
)

will be negligible
compared to the rest, and we get a z 6= 0 for which

|f(z)| = a0 + ak(ε k

√

−a0

ak
)k

= a0(1− εk)

< |f(0)|

So |f(0)| is not the minimum and we have derived a contradiction.
By iterating this idea, one can try to construct a Cauchy sequence to a zero

of the polynomial. The main difficulty with this approach is that we have two
conflicting requirements for the choice of ε:

– if ε is chosen too small each time, we may not reach the zero in countably
many steps (we will go down, but might not go down all the way to zero).

– if ε is not small enough, we are not allowed to ignore the O
(

zk+1
)

part.

The solution to this is that, instead of using the above representation (in which
the term akz

k is the smallest power with a non-zero coefficient), in the construc-
tive proof one just takes some appropriate k (not necessarily the smallest) and
writes f(z) as

f(z) = a0 + ak(z − z0)
k + the other terms

That way one can make sure that not only |f(z)| < |f(0)|, but in fact |f(z)| <
q |f(0)| for some fixed q < 1.
The FTA proof along these lines presented by Manfred Kneser in [12] is clas-

sical (‘to improve readability’), but it is stated that it can be made constructive
without any serious problems. In [17], a constructive version of this proof is
given, using rational approximations to overcome the undecidability of equality
on the reals. Another constructive version of the Kneser proof is presented by
Schwichtenberg in [15], also using rational approximations, but along different
lines. The constructive version of FTA reads as follows.



For every polynomial

f(z) = anz
n + an−1z

n−1 + . . .+ a1z + a0

with coefficients in C, such that ak # 0 for some k > 0, the equation
f(z) = 0 has a solution.

As the equality on R (and therefore on C) is not decidable (we don’t have ∀x, y ∈
R(x = y ∨ x 6= y)) we can’t just write f(z) as anz

n + an−1z
n−1 + . . .+ a1z + a0

with an 6= 0. Therefore, in constructive analysis, one works with the notion of
apartness, usually denoted by #, which is a ‘positive inequality’: a # b if we
positively know them to be distinct, i.e. we know a distance ε between them.
Now, one can constructively find a root of f if we positively know some coefficient
ak (k > 0) to be distinct from 0. The proof of constructive FTA proceeds by
first proving it for monic polynomials (i.e. where an = 1).
The original Kneser proof of FTA for monic polynomials makes use of an

approximation of the polynomial with coefficients in Q, because it needs to
compare the size of various expressions (which is not decidable in R). We found
this unsatisfactory: the rational numbers don’t seem to have anything to do with
the Fundamental Theorem of Algebra! Also, in our Coq formalization of Kneser’s
proof, we introduced the real numbers axiomatically (so a priori we didn’t have
Q in our formalization), and it seemed silly to reconstruct the rational numbers
inside our real numbers just to be able to formalize this proof. Therefore, instead
of constructing Q, we modified the proof so that it no longer referred to the
rationals. The result is presented here.
The main idea behind the modification of the proof is that we introduce

‘fuzziness’ in the comparisons. The proof will contains a ‘fuzziness parameter’ ε
Instead of having to decide whether

x < y ∨ x = y ∨ x > y,

all we need to establish is whether

x < y + ε ∨ x > y − ε

(which we might write as
x ≤ε y ∨ x ≥ε y

using a relation ≤ε). Constructively we have cotransitivity of the order relation

x < y ⇒ x < z ∨ z < y

from which it follows that the disjunction with the ε’s is decidable.
Apart from not needing Q, another difference between the proof presented

here and the proof in [17] is that we have avoided using Vandermonde deter-
minants. In the original proof, this is used to prove FTA from FTA for monic
polynomials. We prove this implication directly, using some polynomial arith-
metic. Therefore there’s no use of linear algebra in the proof anymore.



We have formalized the proof presented here using the Coq system: this was
known as the FTA project [7]. In the formalization, we treat the real numbers
axiomatically. More precisely, the reals form a part of a constructive algebraic
hierarchy, which consists (among other things) of the abstract notions of rings,
fields and ordered fields. See [8] for details. The base level of this hierarchy
consists of the notion of constructive setoid, which is basically a pair of a type
and an apartness relation over the type. (For constructive reals, ‘being apart’
is more basic then ‘being equal’, so we start from apartness.) In this hierarchy,
a real number structure is defined as a Cauchy complete Archimedean ordered
field. In the FTA project, the Fundamental Theorem of Algebra was proven
for any real number structure, so as a matter of fact the theorem was proven
from the axioms for the constructive reals. Also it was shown that real number
structures exist by actually constructing one. Details on this construction can
be found in [9], where also other axiomatizations are discussed and it is shown
that any two real number structures are isomorphic.
The whole formalization turned out to be 930K of Coq source code, which

includes the construction of the real numbers by Milad Niqui, see [9]. The parts
that directly correspond to the mathematics in this paper is about 65K of Coq
source. The final lemma that was proved in the formalization was, in Coq syntax:

(f:(cpoly_cring CC))(nonConst ? f) -> (EX z | f!z [=] Zero)

The plan of the paper is as follows: for an overview we first present the root-
finding algorithm that’s implicit in Kneser’s proof (for simplicity we give the clas-
sical version of that algorithm). After that we give the full constructive Kneser
proof, which contains a correctness proof of the algorithm.

2 The Kneser Algorithm, Classically

Let
f(z) = zn + an−1z

n−1 + . . .+ a1z + a0

be a monic polynomial over the complex numbers of degree n > 0. Let be given
an arbitrary complex number z0. We are going to describe an algorithm that
computes a Cauchy sequence

z0, z1, z2, . . .

that converges to a zero of this polynomial.
Suppose that zi has already been established. From this we have to determine

the next term in the sequence, zi+1. There are two possibilities:

– In the case that f(zi) = 0 we already are at a zero, and so we will take
zi+1 = zi.

– In the case that f(zi) 6= 0 we consider the polynomial fzi
, defined by1

fzi
(z) ≡ f(z+ zi), find an appropriate offset δi and then take zi+1 = zi+ δi.

1 The shift from f to fzi corresponds to the step in the classical FTA proof (see Section
1) where the polynomial is shifted so that the alleged minimum is reached in 0



So in the second case we have the polynomial

fzi
(z) = bnz

n + bn−1z
n−1 + . . .+ b1z + b0

(the coefficients bk really depend on zi, but we won’t write this dependency to
keep the formulas simple), with bn = 1 and b0 = fzi

(0) = f(zi) 6= 0, and we
have to determine δi.
First, we will determine |δi|. Define

r0 = min
k∈{1,...,n},bk 6=0

k
√

|b0|/|bk|

and from this define a sequence of radii

r0 > r1 > r2 > . . .

by
rj = 3

−jr0

(so every radius is 1
3 of the previous one).

Now for each j let kj be the element of {1, . . . , n} such that
∣

∣bkj

∣

∣ rj
kj

is maximal (if there are more elements of {1, . . . , n} for which the maximum is
attained, then take the least one). This will give a decreasing sequence2

k0 ≥ k1 ≥ k2 ≥ . . .

Take the least j > 0 for which

kj−1 = kj = kj+1

and let r = rj and k = kj . We will define δi such that |δi| = r, and such that

bkδi
k points opposite to b0 in the complex plane. This means that we take

δi = r k

√

− b0/bk
|b0/bk|

and zi+1 = zi + δi. This concludes the description of the classical version of the
Kneser algorithm.
Note that this last step introduces ambiguity, because there are k different

complex roots. So the sequence

z0, z1, z2, . . .

2 That this sequence is decreasing is seen by the following argument: if
∣

∣bkj

∣

∣ rj
kj is the

maximum among {|b1| rj , . . . , |bn| rj
n}, then

∣

∣bkj

∣

∣ rj+1
kj > |bi| rj+1

i for all i > kj ,

because |bi| rj+1
i = 1

3i |bi| rj
i ≤ 1

3i

∣

∣bkj

∣

∣ rj
kj < 1

3
kj

∣

∣bkj

∣

∣ rj
kj =

∣

∣bkj

∣

∣ rj+1
kj .



really is a path in an infinite tree which this algorithm computes. Of course,
following different paths in this tree one might find different zeroes.

The correctness of the algorithm is a consequence of the following properties
of the choice for δi (and r). (These properties and the correctness will be proved
in detail in the next Section.)

|fzi
(δi)| < q |fzi

(0)| for some fixed q < 1,

rn < |fzi
(0)| .

The first inequality says that |f(zi+1)| < q |f(zi)|, so the f -values of the sequence
z0, z1, z2, . . . converge to 0. The second inequality says that |zi+1 − zi|n = |δi|n =
rn < |f(zi)|, so the sequence z0, z1, z2, . . . converges.

3 The Kneser Proof, Constructively

We will now present our variation on Kneser’s proof of the Fundamental Theorem
of Algebra. This variant of the proof doesn’t make use of Q, unlike the proof
from [17] that it was based on. In the proof we have isolated the parts that are
about the reals and the parts that really need the complex numbers.

The only essential property of the complex numbers that is used is the ex-
istence of k-th roots, which can be proved independently of FTA. The most
well-known proof of this fact proceeds by first moving to a polar coordinate
representation of C. As we have chosen R2 as a representation of C, this is not
an easy proof to formalize. (One would first have to define the arctan function
and establish an isomorphism between the two representations.) Therefore we
have chosen a different proof, which appears e.g. in [5], and [13] and is basi-
cally constructive. Here, the existence of k-th roots in C is derived directly from
the existence of square roots in C and the fact that all polynomials over R of
odd degree have a root. The proof of these properties have all been completely
formalized in Coq. Note here that the intermediate value theorem (which im-
plies directly that all polynomials over R of odd degree have a root) is not valid
constructively. However, the intermediate value theorem can be proved for poly-
nomials. (In our formalization we have followed the proof of [17], using Lemma
6 for a substantial shortcut.)

The proof of FTA goes through three lemmas, which in the Coq formaliza-
tion have been called ‘the Key Lemma’, ‘the Main Lemma’ and ‘the Kneser
Lemma’. The presentation that we give here directly corresponds to the way it
was formalized in Coq.

We first state an auxiliary lemma, that says that constructively it’s possible
to find the maximum of a sequence of numbers ‘up to ε’:

Lemma 1. For n > 0, ε > 0 and c1, . . . , cn ∈ R, there is a k such that for all
i ∈ {1, . . . , n}:

ck > ci − ε



The proof is a straightforward induction using the cotransitivity of the < rela-
tion: to determine the ‘maximum up to ε’ of c1, . . . , cn+1, first determine (induc-
tion hypothesis) the ‘maximum up to ε/2’ of c1, . . . , cn, say ck and then choose
ck if cn+1 < ck + ε and cn+1 if cn+1 > ck − ε/2. The latter choice can be made
because of cotransitivity of <.
We now state the Key Lemma:

Lemma 2 (Key Lemma). For every n > 0, ε > 0 and a0 > ε, a1 . . . , an−1 ≥ 0,
an = 1, there exist r0 > 0 and kj ∈ {1, . . . , n} with k0 ≥ k1 ≥ k2 ≥ . . . such that

ak0
r0

k0 = a0 − ε

and for all j ∈ N, if we define rj = 3
−jr0, for all i ∈ {1, . . . , n} it holds that

akj
rj

kj > airj
i − ε

This lemma corresponds directly to the part of the algorithm from the previous
section that establishes r0 and the sequence k0 ≥ k1 ≥ k2 ≥ . . . (what is called
|bi| there, is called ai here, because that way the Key Lemma doesn’t need
to refer to complex numbers). The choice for r0 in the classical situation as
r0 = mink∈{1,...,n},bk 6=0

k
√

|b0|/|bk| is is here represented by choosing r0 such that

|b0| = maxk∈{1,...,n} |bk|rk0 .
The real difference with the classical situation is that ‘taking the maximum’

during the selection of the kj is just ‘up to ε’: a term airj
i different from akj

rj
kj

may actually be the biggest, but it may not exceed the selected one by more
than ε.
We will now prove the Key Lemma:

Proof. We first select k0 and r0. This is done by taking initial values for k0 and
r0 and then considering in turn for i the values n− 1 down to 1, preserving the
following invariant:

ak0
r0

k0 = a0 − ε,

ak0
r0

k0 > alr0
l − ε for all l ∈ {i, . . . , n}.

Start with the initial values k0 = n and r0 = n
√

a0 − ε. Then, at each i (from
n− 1 down to 1) we update the values of k0 and r0 as follows.

– If air
i
0 < a0, do nothing. The invariant trivially remains to hold.

– If air
i
0 > a0 − ε, set k0 to i and r0 to

i
√

(a0 − ε)/ai (in which case r0 will
decrease). The first part of the invariant trivially remains to hold. For the
second part: ak0

r0
k0 = a0 − ε, which is larger than each of the alr0

l − ε (by
the invariant for the previous choice of i and the fact that r0 has decreased).

After this, k0 and r0 have the appropriate values.
To get kj+1 from kj , let k = kj , r = 3

−jr0 and apply Lemma 1 with ε/2 to
the sequence

a1(r/3), a2(r/3)
2, . . . , ak(r/3)

k



to get k′ = kj+1. (So kj ≥ kj+1.) Then for i ≤ k the inequality ak′(r/3)k
′

>
ai(r/3)

i − ε follows directly, while for i > k we have:

ak(r/3)
k = 3−kakr

k > 3−k
(

air
i − ε

)

= 3−kair
i − 3−kε > ai(r/3)

i − ε/2

and so:
ak′(r/3)k

′

> ak(r/3)
k − ε/2 > ai(r/3)

i − ε

2

We will now state and prove the Main Lemma, which isolates the part of the
proof that’s about the real numbers from the part that involves the complex
numbers.

Lemma 3 (Main Lemma). For every n > 0, ε > 0, a0 > ε, a1 . . . , an−1 ≥ 0,
an = 1, there exists an r > 0 and a k ∈ {1, . . . , n} that satisfy the inequalities

rn < a0

3−2n2

a0 − 2ε < akr
k < a0

and have the property

k−1
∑

i=1

air
i +

n
∑

i=k+1

air
i < (1− 3−n)akr

k + 3nε

The Main Lemma corresponds to the choice for r and k in the description of
the classical algorithm. The first condition states that r cannot be too large in
comparison to the previous value: this corresponds to the property rn < |fzi

(0)|,
mentioned in the discussion of the classical algorithm. The second condition is
to make sure that, if we let bkδ

k
i point in the opposite direction of b0, then

∣

∣b0 + bkδ
k
i

∣

∣ gets sufficiently smaller. (The Main Lemma is about reals, but it will
be applied by taking ai = |bi|, where the bi are the coefficients of the polynomial.)
Moreover, the second and the third condition together make sure that the sum
of the remaining terms air

i is negligible.
We will now prove the Main Lemma.

Proof. Apply the Key Lemma to get sequences k0, k1, k2 . . . and r0, r1, r2 . . .
Because the sequence kj is non-increasing in the finite set {1, . . . , n} there exists
a (smallest) j < 2n with

kj−1 = kj = kj+1

Take k = kj and r = rj .
Because r = 3−jr0 ≤ r0, for all i we have air

i ≤ air0
i < ak0

r0
k0 + ε = a0.

Of this statement rn < a0 and akr
k < a0 are special cases. From ak0

rk0 =
3−jk0ak0

r0
k0 ≥ 3−jnak0

r0
k0 = 3−jn(a0 − ε) ≥ 3−jna0 − ε it follows that akr

k >

ak0
rk0 − ε ≥ 3−jna0 − 2ε > 3−2n2

a0 − 2ε.
From k = kj+1 we get that for all i ∈ {1, . . . , n}

ak(r/3)
k > ai(r/3)

i − ε



and from that it follows that

air
i < 3i−kakr

k + 3iε

and therefore

k−1
∑

i=1

air
i <

(

k−1
∑

i=1

3i−k
)

akr
k +

(

k−1
∑

i=1

3i
)

ε

=
1

2
(1− 31−k)akr

k +
1

2
(3k − 3)ε

<
1

2
(1− 3−n)akr

k +
1

2
3nε

In exactly the same way we get from k = kj−1 that

air
i < 3k−iakr

k + 3−iε

and so
n
∑

i=k+1

air
i <

1

2
(1− 3−n)akr

k +
1

2
3nε

Together this gives

k−1
∑

i=1

air
i +

n
∑

i=k+1

air
i < (1− 3−n)akr

k + 3nε

2

We now state and prove the ‘Kneser Lemma’. This lemma states that we can
find what was called δi in the previous Section: an appropriate vector that moves
us sufficiently closer to a zero. In the classical version of the Kneser proof, one
distinguishes cases according to f(0) = 0 or f(0) 6= 0. In the first case we are
done, while in the second case one finds a z ∈ C such that

|z|n < |f(0)|

and
|f(z)| < q |f(0)|

(where q < 1 is some fixed multiplication factor that only depends on the degree
of the polynomial).
However, we don’t know f(0) = 0 ∨ f(0) 6= 0 constructively. Therefore, we

here have a c > 0 that takes the role of |f(0)|. This c can get arbitrary close to
|f(0)| from above. Here is the constructive version of the Kneser Lemma:

Lemma 4 (Kneser Lemma). For every n > 0 there is a q with 0 < q < 1,
such that for all monic polynomials f(z) of degree n over the complex numbers,
and for all c > 0 such that

|f(0)| < c



there exists a z ∈ C such that
|z|n < c

and

|f(z)| < qc

Proof. First of all, we give the factor q explicitly:

q = 1− 3−2n2−n

We now show how to find z.
Write the polynomial f(z) as

f(z) = bnz
n + bn−1z

n−1 + . . .+ b1z + b0

Because f(z) is monic we have that bn = 1, Also, we have that b0 = f(0), so the
condition about c states that |b0| < c. As qc > 0 we can make the following case
distinction

|f(0)| < qc ∨ |f(0)| > 0.
In the first case we are done by taking z := 0. In the second case we proceed as
follows. Define ai = |bi| for i ∈ {0, . . . , n} and choose an ε > 0 such that

2ε < 3−2n2

a0 (1)

(3n + 1)ε < q(c− a0) (2)

Then ε < a0 and we apply the Main Lemma (Lemma 3) to a0, . . . , an to obtain
r > 0 and k ∈ {1, . . . , n} satisfying

rn < a0

3−2n2

a0 − 2ε < akr
k < a0

∑k−1
i=1 air

i +
∑n

i=k+1 air
i < (1− 3−n)akr

k + 3nε

Finally take

z = r k

√

− b0/bk
a0/ak

(This makes use of inequality (1) 2ε < 3−2n2

a0, because we need to know that
ak > 0.) Then because |b0| = a0 and |bk| = ak we have

|z| = r

From this, we get
|z|n = rn < a0 < c

For the second property of z we start by computing |b0 + bkz
k|:

|b0 + bkz
k| =

∣

∣

∣
b0 + bkr

k
(

− b0/bk
a0/ak

)∣

∣

∣

=
∣

∣

b0
a0
(a0 − akr

k)
∣

∣

= |a0 − akr
k|

= a0 − akr
k



(Using the inequality akr
k < a0.)

By the triangle inequality for the complex numbers, we then get

∣

∣

n
∑

i=0

biz
i
∣

∣ ≤
∣

∣b0 + bkz
k
∣

∣+

k−1
∑

i=1

air
i +

n
∑

i=k+1

air
i

< a0 − akr
k + (1− 3−n)akr

k + 3nε

= a0 − 3−nakr
k + 3nε

< a0 − 3−n(3−2n2

a0 − 2ε) + 3nε
= (1− 3−2n2−n)a0 + 3

nε+ 3−n2ε

< qa0 + 3
nε+ ε

< qc,

where the final inequality follows from (2) (3n + 1)ε < q(c− a0). 2

Next we prove the special case of the Fundamental Theorem of Algebra for monic
polynomials:

Lemma 5 (Fundamental Theorem of Algebra for monic polynomials).
For every monic polynomial f(z) of degree n > 0 over the complex numbers,
there exists z ∈ C such that f(z) = 0.

Proof. Take any c > 0 with c > |f(0)|. We construct a sequence zi ∈ C such
that for all i

|f(zi)| < qic (3)

|zi+1 − zi| < (qic)1/n (4)

where q < 1 is given by the Kneser Lemma 4. This sequence is constructed by
iteratively applying the Kneser Lemma to fzi

(z) ≡ f(z+zi) to find zi+1−zi. The
required properties of zi then follow directly from the properties in the Kneser
Lemma, by induction on i.
Because of 4, the zi form a Cauchy sequence:

|zm+i − zm| ≤ |zm+i − zm+i−1|+ . . .+ |zm+1 − zm|
< (q(m+i−1)/n + q(m+i−2)/n + . . .+ qm/n)c1/n

=
qm/n − q(m+i)/n

1− q1/n
c1/n

= qm/n 1− qi/n

1− q1/n
c1/n

< qm/n c1/n

1− q1/n
.

By choosing m sufficiently large (n is fixed), this last expression can be made
arbitrarily small.



Then, because zi is a Cauchy sequence, the limit z = limi→∞ zi exists and
by continuity of f one has

|f(z)| = lim
i→∞

|f(zi)| ≤ lim
i→∞

qic = 0

so f(z) = 0. 2

Finally we prove the full Fundamental Theorem of Algebra. A polynomial is
called non-constant if for some k > 0 one of its coefficients ak is apart from
zero. We denote this by f # 0. This ak doesn’t necessarily need to be the head
coefficient an of the polynomial. In fact the head coefficient an might be zero
(we can’t know this), so proving the full Fundamental Theorem of Algebra is
not as easy as just dividing by an and then applying Lemma 5.
We need one more important property stating, in a sense, the opposite of the

Fundamental Theorem of Algebra: instead of showing that there is an argument
for which the polynomial is zero, it shows that there is an argument for which
the polynomial is apart from zero. This fact comes as an immediate corollary of
the following lemma.

Lemma 6. Given a polynomial f of degree at most n and n+ 1 distinct points
z0, z1, . . . , zn ∈ C, f(zi) # 0 for at least one of the zi.

Proof. Write f(z) in the form

f(z) = anz
n + an−1z

n−1 + . . .+ a1z + a0

which means that f(z) has at most degree n. Then for any n + 1 different
z0, z1, . . . , zn ∈ C one can write

f(z) =
n
∑

i=0

f(zi)
(z − z0) · · · (z − zi−1)(z − zi+1) · · · (z − zn)

(zi − z0) · · · (zi − zi−1)(zi − zi+1) · · · (zi − zn)

because both sides have at most degree n, and coincide on n + 1 points (and
hence they are equal). This means that we can write f(z) in the form

f(z) =

n
∑

i=0

f(zi)fi(z)

for some n + 1 polynomials fi. Because this sum is # 0, there is some i ∈
{0, . . . , n} for which the polynomial f(zi)fi # 0 and therefore for this i we have
that f(zi) # 0. 2

Corollary 1. For every polynomial f # 0 over the complex numbers, there
exists z ∈ C such that f(z) # 0.

Theorem 1 (Fundamental Theorem of Algebra). For every non-constant
polynomial f(z) over the complex numbers, there exists z ∈ C such that f(z) = 0.



Proof. We write

f(z) = anz
n + an−1z

n−1 + . . .+ a1z + a0

Because an might be zero, we call n the length of f instead of calling it the
degree of f . We’ll prove the theorem with induction on this length n.
With Corollary 1 find a z0 ∈ C such that f(z0) # 0. Then if we define

fz0
(z) ≡ f(z + z0), it is sufficient to find a zero of fz0

, because if z is a zero of
fz0
then z+ z0 will be a zero of f . So all we need to prove is that fz0

has a zero.
We write

fz0
(z) = bnz

n + bn−1z
n−1 + . . .+ b1z + b0

with b0 = fz0
(0) = f(z0) # 0. We define the reverse fz0

rev (z) of this polynomial
to be the polynomial

b0z
n + b1z

n−1 + . . .+ bn−1z + bn

so with the coefficients in the opposite order. This reverse operation has the
property that the reversal of a product is the product of the reversals: (gh)rev =
grevhrev .
Now fz0

rev (z)/b0 is monic, so by Lemma 5 it has a zero c, and so it can be
written as (z − c)g(z). Because, as we noted, reversals commute with products,
this implies that the original fz0

can be written as

fz0
(z) = (c1z + c0)h(z)

where h(z) is a lower length polynomial of the form

h(z) = dn−1z
n−1 + . . .+ d1z + d0

Because fz0
is non-constant, we have bi # 0 for some i > 0. And because

bi = c0di + c1di−1

we find that either c0di # 0 or c1di−1 # 0.

– In the case that c0di # 0, we get di # 0 and therefore h(z) is non-constant,
has a zero by induction, and this zero will also be a zero of fz0

.
– In the case that c1di−1 # 0, we get c1 # 0 and then −c0/c1 will be a zero of

fz0
.

2

4 Convergence Speed of the Kneser Algorithm

The Kneser proof (and the algorithm that is implicit in it) as presented in this
paper differs from the Kneser proof from [17] in an important respect. In this
paper we define the sequence

r0 > r1 > r2 > . . .



(and the matching sequence k0 ≥ k1 ≥ k2 ≥ . . .) to start at zero. In [17] the rj
sequence starts at minus one

r−1 > r0 > r1 > r2 > . . .

Each rj is three times as small as the previous one, so in the other variant of
the proof the search for an appropriate r starts at a radius that is three times
as big as the radius r0. To distinguish the two proofs we’ll call the proof that is
in this paper the slow variant of the proof and the one where the sequences rj
and kj start at −1 the fast variant of the proof.
In Coq we formalized the slow variant of the proof. It is a simpler proof and

we wanted to finish the formalization as fast as possible. Also in Coq it’s easier
to formalize a sequence starting at 0 than a sequence starting at −1. (One could
shift the sequence by one but that would complicate the formulas in various
places.)
The fast variant of the proof has the advantage that the corresponding algo-

rithm behaves like Newton-Raphson when the algorithm gets close to the zero
of the polynomial. The algorithm from the slow variant of the proof converges
slower, because close to a zero it only takes one third of a Newton-Raphson step.
In the slow variant of the proof, close to a zero we get k0 = k1 = k2 = . . . = 1,
which means that j = 1 and so r = r1 =

1
3r0, where r0 is the Newton-Raphson

distance. Note that close to the zero, the value of the polynomial will then be
multiplied with approximately a factor of 2/3 at each step, which is much better

than the ‘worst case’ factor of q = 1 − 3−2n2−n which appears in the proof. As
an example of the behavior of the algorithm from the slow variant of the proof
we calculate

√
2 ≈ 1.41421 by finding a root of z2 − 2, starting from z0 = 1:

z0 = 1 = 1
z1 = 7/6 ≈ 1.16667
z2 = 317/252 ≈ 1.25794
z3 = 629453/479304 ≈ 1.31326
z4 = 2440520044877/1810196044272 ≈ 1.34821
z5 = . . . ≈ 1.37075
z6 = . . . ≈ 1.38547

In this sequence the Kneser algorithm takes log(1/10)/ log(2/3) ≈ 5.7 steps to
gain one decimal of precision.
In the fast variant of the proof we get, close to a zero k−1 = k0 = k1 = k2 =

. . . = 1, which means that then j = 0 and so r = r0. In the case of
√
2 this gives

z0 = 1 = 1
z1 = 3/2 ≈ 1.5
z2 = 17/12 ≈ 1.4166666666666666666666667
z3 = 577/408 ≈ 1.4142156862745098039215686
z4 = 665857/470832 ≈ 1.4142135623746899106262956
z5 = 886731088897/627013566048 ≈ 1.4142135623730950488016896
z6 = . . . ≈ 1.4142135623730950488016887

This is the same sequence that the Newton-Raphson algorithm calculates. This
particular sequence consists of continued fraction approximations of

√
2 and



the correct number of decimals doubles with every step. Note that the Kneser
algorithm of the fast variant of the proof only coincides with Newton-Raphson
close to the zero. With Newton-Raphson not all start values lead to a convergent
sequence, but with the Kneser algorithm it does.

To change the proof in this paper to the fast variant (where the sequences
rj and kj start at -1), only the proof of the Key Lemma needs to be modified.
Apart from going from kj to kj+1 we will also need to go from k0 to k−1. To
be able to do that, the k0 and r0 will need to satisfy a stricter restriction than
before. It needs to satisfy

ak0
rk0

0 > air
i
0 − ε′

where

ε′ = 3−nε

To find such k0 and r0 one proceeds like before, but this time distinguishing
between

air
i
0 < a0 − ε+ ε′

and

air
i
0 > a0 − ε

at every iteration. Then to get k−1 from k0 one applies Lemma 1 to the sequence

ak0
(3r0)

k0 , . . . , an(3r0)
n

with a reasoning similar to the kj+1 from kj case.

5 Brief overview of other constructive proofs

The first constructive proof of FTA (for monic polynomials) is from Weyl [18],
where the winding number is used to simultaneously find all zeros of a (monic)
polynomial. A similar but more abstract proof, also using the winding number,
occurs in [1], where FTA is proved for arbitrary non-constant polynomials. Based
on Weyl’s approach, [10] presents an implementation of an algorithm for the
simultaneous determination of the zeros of a polynomial.

In [2], Brouwer and De Loor give a constructive proof of FTA for monic
polynomials by first proving it for polynomials with rational complex coeffi-
cients (which have the advantage that equality is decidable) and then make the
transition (viewing a complex number as the limit of a series of rational complex
numbers) to general monic polynomials over C. This proof – and also Weyl’s
and other FTA proofs – are discussed and compared in [14].

Brouwer [3] was the first to generalize the constructive FTA proof to arbitrary
non-constant polynomials (where we just know some coefficient to be apart from
0). In [16] it is shown that, for general non-constant polynomials, there is a
continuous map from the coefficients to the set of zeros.
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