
The QED manifesto revisited

Freek Wiedijk

Institute for Computing and Information Sciences
Radboud University Nijmegen

Toernooiveld 1, 6525 ED Nijmegen, The Netherlands

Abstract. We present an overview of the current state of formalization
of mathematics, and argue what will be needed to make the vision from
the QED manifesto come true.

This short and intentionally provocative paper is dedicated to Andrzej Trybulec.
When I first wrote about the Mizar system, Andrzej wrote to me:

I have looked to pages that you have prepared. [. . . ] I advertise them,
even if they are a bit enemical :-)

I hope that Andrzej will enjoy this paper, and will not consider it to be too
‘enemical’.

1 Why the QED manifesto has not been a success (yet)

One of the most interesting documents about the formalization of mathematics
is the QED manifesto [2]. This anonymous1 pamphlet from 1994 paints a future
in which most of mathematics will be put in the computer, even the proofs –
especially the proofs – in such a way that the computer will be able to check it
for correctness. The QED manifesto describes the development of a system, the
QED system, that mathematicians will adopt for this purpose.

The future that the QED manifesto sketches has not happened. There is no
such system as the QED system in regular use by mathematicians today.

There are two main reasons that the future from the QED manifesto currently
is not much closer than it was in 1994:

– The most important reason is that only very few people are working on
formalization of mathematics. If there had been a larger research community
interested in that subject, a system like the QED system would have been
realized long ago.
There are various reasons why not many people are working on the vision
from the QED manifesto. For one thing formalization has no ‘killer applica-
tion’. If one writes a formalization of a mathematical result, then one has

1 One of the main people behind the QED manifesto was Bob Boyer, but for idealistic
reasons the authors of the QED manifesto were not identified in it.



2 Freek Wiedijk

to work quite hard, and then at the end one has a tar.gz file with sev-
eral computer program-like files in it. However, unlike a computer program,
those files have no immediate further use. The fact that they fully describe
the mathematics has some aesthetic appeal, and it is nice that they make
it completely certain that the mathematics is correct, but the unformalized
version of the result already was beautiful and understandable, so not much
is gained.
There are people who think that education is a good application for this kind
of technology. The use of proof assistant would teach students what proof
is, and it would allow them to work on proofs in a non-threatening, crystal
clear environment. I strongly disagree with this point of view. The use of a
proof assistant is a way to keep students busy, but it cannot compete with
the more traditional way to do mathematics – which is much easier – to
actually make them understand something.
An application that might become important at some point is the correctness
of computer algebra. Computer algebra systems (the most important being,
in order of the number of users: Mathematica [22], Maple [15], MuPAD [3] and
Reduce [10]) are notorious for occasionally giving wrong answers. This can
be very irritating. Therefore, building an integrated system that combines
the automation of computer algebra with the correctness of proof assistants
might be seen as a real step forward. If that happens, it could make people
start using proof assistant technology without them even realizing it.
An aspect where ‘QED-like systems’ currently are notoriously bad at is com-
munication. A formalization is completely useless for communicating the
mathematics that is formalized in it. Here is the most to be gained for for-
mal mathematics. In particular the visual side of mathematics is currently
completely absent: there are no such things as graphs and diagrams in cur-
rent proof assistants.2

– The other reason that there has not been much progress on the vision from
the QED manifesto is that currently formalized mathematics does not resem-
ble real mathematics at all. Formal proofs look like computer program source
code. For people who do like reading program source code3 that is nice, but
most mathematicians, the target audience of the QED manifesto, do not fall
in that class.
To make things worse there are two choices made by large parts of the
formalization community that scare mathematicians away even more. Often
proof assistants are constructive instead of classical, and often they do proof
in a procedural way instead of in the more recognizable declarative way [7].
If we want to make some progress of getting people actually to use formal
mathematics, it has to be close to the way mathematics already is being

2 Proof assistants sometimes show diagrams about the structure of the proof process,
like for instance PVS does, but there never are diagrams about the mathematics.

3 Books that appeal to people like that are for instance Lions’ commentary on the Unix
kernel source code [13], Donald Knuth’s ‘TEX: The Program’ [12], and John Har-
rison’s forthcoming book on theorem proving [9]. However, proof assistants should
appeal to more than just those people.



The QED manifesto revisited 3

done for centuries. Improving on tradition is good, but ignoring tradition
is stupid. This means that the focus in formal mathematics should be on
classical & declarative systems.4 From this point of view, among the systems
from Section 2 the Mizar and Isabelle/HOL systems – the two systems in
that section that are both classical & declarative – are the most interesting.

2 The state of the art in formalization of mathematics

We define the QED-like systems to be the five highest ranking systems in an
investigation of which theorems already have been formalized from an arbitrary
list of 100 well-known theorems.5 The counts as of March 2007 are:

HOL Light 63

Coq 38
ProofPower 37
Mizar 35
Isabelle/HOL 33

PVS 15
nqthm & ACL2 12
NuPRL & MetaPRL 8

(At that point in time, in all systems together 77 of the 100 theorems have been
formalized.) Clearly there is some kind of gap after the fifth system, which is
why we put the boundary of being a ‘QED-like system’ there.

This means that the current QED-like systems are:

– Mizar [16, 21]
– HOLs

– HOL Light [8]
– Isabelle/HOL [17, 19]
– ProofPower [14]

– Coq [18]

We grouped the three systems from the HOL family together. They have (almost)
the same logic and share a very similar architecture.6

Projects in the spirit of the QED manifesto have been proposed again and again.
For instance, the Automath project from the seventies clearly already was one of

4 Georges Gonthier, the author of the most impressive formalization in existence today
– the formalization of the Four Color Theorem [6] –, disagrees with this opinion. He
uses Coq, which is a constructive & procedural system. He claims that a primarily
procedural approach is much more efficient than a declarative proof style, and that
for that reason the declarative proof style cannot compete.

5 The current state of this investigation can be found on the web page
〈http://www.cs.ru.nl/~freek/100/〉.

6 In one respect they are not similar: unlike the other HOLs, Isabelle/HOL provides
a declarative language called Isar, which is quite close in look and feel to Mizar.



4 Freek Wiedijk

these. Here is a list of projects that still are active and that might be considered
to aim at implementing the vision from the QED manifesto. We indicate with
each project which QED-like system it uses.

– MML, the Mizar Mathematical Library (Mizar)
– John Harrison’s work on the formalization of mathematics (HOL Light)
– Georges Gonthier’s project in the Microsoft/INRIA institute (Coq)
– The Archive of Formal Proofs (Isabelle/HOL)

The first and the fourth are just the ‘collected works’ of their respective provers.
(The ‘contribs’ of Coq is another of those, but it does not have a fancy name,
so I did not put it in the list.) The second and third are currently just the work
of one person. However for the third there are plans to extend it into something
that is more, in the joint Microsoft/INRIA institute in Paris.

I do not believe that these four projects are already implementing the vision
from the QED manifesto. None of these projects have solved the difficult problem
of how to integrate work by multiple people into a nice coherent whole. The
first and the fourth project have contributions from multiple people, but they
currently fail to build a coherent whole out of it.7 The second and the third
projects have a library that is a nice coherent whole, but these libraries do not
yet contain contributions by a significant number of people.

3 A benchmark of four statements

Here are four mathematical statements that most mathematicians will consider
to be totally non-problematic8:

1.
∫ 1

0

∫ 1

0

∞
∑

n=0

(xy)ndx dy =
π2

6

2. Every field has an algebraic closure.
3. Natural transformations are the morphisms of the functor category.
4. PFA (the proper forcing axiom) implies

2ℵ0 = ℵ2

We claim that currently none of the QED-like systems can express all four state-
ments in a good way. Either they do not have good syntax for it (statement 1
in Mizar), or their foundations do not give one enough power to define the no-
tions in these statements in a good way (statement 2 in the HOLs, statement 3
in Mizar, and statement 4 in Coq.) Here is a table that shows which of the
QED-like systems have the framework to express which of these four statements:

7 Try for instance finding a lemma in the MML!
8 Most of them will probably not know the statement of the proper forcing axiom, but

they will know the meaning of ℵ0 and ℵ2, and will consider that meaning to be –
again – non-problematic.



The QED manifesto revisited 5

Mizar HOLs Coq

1. Calculus − + +
2. Abstract algebra + − +
3. Category theory − − +
4. Set theory + − −

Of course one can easily extend the systems with axioms that allow one to write
down these statements. However, that really amounts to ‘changing the system’.
It would mean that both the library and the automation of the system will not
be very useful anymore. Classical & extensional reasoning in Coq or abstract
algebra in the HOLs by postulating the necessary types and axioms will not be
pleasant without re-engineering the system.

The first of these statements9 is from Proofs from the Book [1]. There we find
the following ‘calculation’10:

I =

∫ 1

0

∫ 1

0

∑

n≥0

(xy)ndx dy =
∑

n≥0

∫ 1

0

∫ 1

0

xnyndx dy

=
∑

n≥0

(

∫ 1

0

xndx
)(

∫ 1

0

yndy
)

=
∑

n≥0

1

n + 1

1

n + 1

=
∑

n≥0

1

(n + 1)2
=

∑

n≥1

1

n2
= ζ(2)

Now the Mizar system has support for ‘iterated equalities’ like this, but there is
no hope of writing this calculation in Mizar in a way that resembles the way it
is written in the book. Instead of being able to write

∫ 1

0

∫ 1

0

∞
∑

n=0

(xy)ndx dy

in Mizar one has to write

∫ 1

0
f(y)dy where f(y) =

∫ 1

0
g(x, y)dx

where g(x, y) =
∑∞

n=0 h(x, y, n)
where h(x, y, n) = (xy)n

9 Incidentally, computer algebra systems like Mathematica and Maple produce this
result without trouble. Now why is there no proof assistant that can do the same?
Also, note that the sum

P

∞

n=0
(xy)n diverges when xy → 1, so the inner integral is

improper for y = 1.
10 After this calculation it then is shown that I = π

2

6
. The goal in Proofs from the

Book is not to show the statement that we put in the benchmark (that is just an

intermediate result there), but to show that ζ(2) = π
2

6
. However, for the benchmark

we wanted an expression with many nested binders, which is the reason why we
selected this intermediate equality.



6 Freek Wiedijk

Since Mizar has no user-definable ‘binders ’, one has to introduce a name for
every sub-expression. (Another way of saying this is to say that Mizar is too
much of a ‘first order’ system.) This makes doing calculations like the one from
Proofs from the Book cumbersome in Mizar.

The second of the statements from this section is difficult to state in a nice way
in the HOLs. The reason for this is that the HOL type system is too poor. It
is not possible in HOL to define a type of fields in a uniform way. Therefore,
instead of writing the formal equivalent of

For all fields . . .

in HOL one has to write

For all fields of which the elements are from this given carrier type . . .

The quantification of this carrier type will be implicit. For that reason only
universal quantification over these carrier types is possible. Which means that
in HOL it is not possible to write

There exists a carrier type together with a field with that carrier type . . .

Instead one explicitly has to construct a carrier type from the already given
types. This makes the whole statement clumsy.

Also, one gets a copy of a given field for many different carrier types, and it
will need work to navigate these equivalences.

One would hope that with set theory – the foundation of Mizar – one does
not have the kind of problem that the HOLs had with the second statement.
Unfortunately, this is not true. Mizar has no problems with the statement about
fields, but it encounters a similar problem in a different subject.

If one formalizes category theory in set theory, one steps out of the set the-
oretic universe, and therefore one gets exactly the same kind of problem there
that the HOLs have with algebraic structures. Instead of being able to write

For all categories . . .

one needs to write

For all small categories . . .

or maybe

For all categories that are from this given universe . . .

In both cases the categories that one talks about will not be proper classes,
they will be small categories, and therefore the theorems that one proves will
not apply to categories like the category of all groups (which is not a small
category.) This is not acceptable. It means that one cannot talk categorically
about the most common kind of algebraic structure.

When one talks about ‘natural transformations’, one is not only talking about
natural transformations where only small categories are involved. Here is a state-
ment that one would like to be able to formalize without making it more com-
plicated than it informally is:



The QED manifesto revisited 7

Consider the category Grp of all groups with group homomorphisms
as morphisms. The identity functor idGrp : Grp → Grp is naturally
isomorphic to the opposite functor ·

op
: Grp → Grp.

Here the natural isomorphism that is being talked about is a natural transfor-
mation between functors that go from the category of groups to the category of
groups. That is, between large categories.

The ideal QED system should allow statements like this without one having
to talk (or even to think) about universes.

Finally, I have never seen the infinities from set theory – of which ℵ0 and ℵ2 are
the first and the third – been formalized in a proof assistant that is based on
type theory. For some reason the Coq system has not really been designed to
talk about set theoretical notions like the cardinal numbers.

Even worse, also more in general it seems that classical & extensional math-
ematics is much more difficult in Coq than one would like it to be.11

Intermezzo: on constructive proof assistants

A system that implements the QED manifesto should be usable to people who
are not aware of the existence of constructive mathematics. The possibility to do
constructive mathematics with the system, if at all present12, should be hidden
to people who are not interested in it.

Constructive mathematics seems to be all about being able to point your
finger at other people and say ‘Oh! They are bad!’ It is a very moralistic kind
of mathematics. The Coq people point at the NuPRL people and say ‘Oh! They
are extensional!’ (‘Type checking of proof terms is not even decidable!’) The
Agda people point at the Coq people and say ‘Oh! They are impredicative!’
(Apparently impredicativity is not to be trusted for philosophical reasons.) The
other people point at the Agda people and say ‘Oh! Their system does not even
check termination!’ Or maybe someone will say about someone else ‘Oh! They
use countable choice!’ And so on, and so forth.

Instead of trying to prove as many true statements as possible, constructive
mathematics is about making it difficult to prove something. (Of course, if you
then prove it, the proof contains a bit more information.) Constructivism also
takes a strange position with respect to a question like ‘does this mathematical
statement hold?’ The answer often is: ‘It depends on how you interpret the
statement’; or maybe: ‘It depends on what principles you allow yourself.’ I guess
that this would surprise many classical mathematicians.

Of course for logicians and other philosophers this is all very interesting, but
classical mathematicians should not be bothered by these issues. This kind of
fine structure of the axiomatics probably does not interest them.

11 Of course I would not mind being shown wrong here.
12 Henk Barendregt talks about a dial on a proof assistant that allows people to put it

in more or less constructive modes. This intermezzo describes some settings on such
a dial.



8 Freek Wiedijk

There are various ways in which you can be restrictive:

– First of all you can allow yourself the use of the law of the excluded middle13

or not. This is the distinction between being classical or constructive.
– Second, you can be extensional or intensional. If you are extensional there is

one equality, that behaves like you would expect equality to behave. If you
are not extensional you get into a morass of many different kinds of equality:
syntactic identity, convertibility (also called βδι-equality), Leibniz equality,
John-Major equality14, setoid equality, etc. etc.

– Third, there is predicativity. Predicativity means that you are not allowed
to define something by referring to a whole that contains the thing being
defined. Although this seems rather clear, logicians do not agree on which
systems are predicative and which are not. Some of them claim that the
natural formalization of predicativity is a system called Feferman-Schütte
[11]. Others think that ‘inductively generated structures’ are also predicative.
Here we agree with the second – less strict – opinion, because else no system
in our list below would turn out to be predicative.

– Finally there is the axiom of choice. Even most classical mathematicians
are aware of the fact that one might do mathematics without choice.15 Now
there are various levels of having choice:
• The weakest version of choice is to take the statement of the axiom of

choice
∀R

(

[∀x∃y R(x, y)
]

→ [∃f ∀x R(x, f(x))]
)

only to give existence of a function f that does not have to respect
equality. This is called intensional choice, and one gets it for free in
type theory because of the Curry-Howard-de Bruijn interpretation. (In
Coq this is slightly subtle: there this only works for the ‘informative’
existential quantifier.) In the table below we call this ‘weak choice’.

• Then there is the axiom of choice from set theory. Here one knows that
there is a choice function that respects equality, but one cannot nec-
essarily define one explicitly. This axiom is called extensional choice.
Constructivists think that this axiom is a confused version of their in-
tensional choice axiom.

• Finally there is the existence of a Hilbert choice operator ǫ, an operator
that returns a specific element for any given non-empty set.
In the table below we call both of these last two properties ‘strong
choice’.16

13 p ∨ ¬p.
14 Also called ‘heterogeneous equality’. This is a typed equality in which one allows

the terms that are being compared to have different types. Heterogeneous equality
generally is a good idea. The equality of the HOLs is homogeneous, but the equality
of Mizar is heterogeneous.

15 If you believe that the union of countably many countable sets is countable, then
you do believe in choice.

16 There are no systems in the table that have extensional choice but do not have a
Hilbert choice operator.



The QED manifesto revisited 9

Here is the table that shows which systems satisfy which restrictions:

Mizar HOLs Coq NuPRL Agda
CIC ITT IZF CZF

Classical + + − − − − −

Impredicative + + + − − + −

Extensional + + − + − + +
Weak choice + + + + + − −

Strong choice + + − − − − −

Surprisingly there is no ‘bottom’ proof assistant that has minuses everywhere,
one that both does not support extensionality nor any form of the axiom of
choice.17

4 A criticism of current systems

At one of the meetings of the TYPES project, Georges Gonthier was mentioning
a paper from the Mizar community to me in which Mizar was described as a
‘state of the art proof assistant’. This seemed to amuse him. As Mizar is certainly
in the same ball park as the proof assistant that he uses himself – Coq – I asked
him which of the proof assistants in his opinion are ‘state of the art’. His answer
was that ‘there is no state of the art proof assistant yet.’

I agree that the QED-like systems that exist today are not good enough to
start developing a library as is described in the QED manifesto. I will for each of
the three classes of the QED-like systems indicate what in my opinion are their
most important weaknesses:

Why Mizar is not acceptable as the QED system yet.
There are three major reasons why Mizar is not yet attractive enough to be
taken to be the QED system:
– In the previous section I already addressed the problem that Mizar has

no way to define binders. This means that common operations from

calculus, like
∑

b

x=a
f(x), limx→c f(x), d

dx
f(x),

∫ b

a
f(x) dx, etc., can not

be properly written down without naming sub-expressions.
– An aesthetic flaw of Mizar that is not very important but that is irritat-

ing, is that Mizar does not support empty types.18 For this reason the
Mizar library MML has many lemmas that are restricted to non empty
sets, while there really is no good mathematical reason for that.
Also it means that many natural mathematical notions cannot be ex-
pressed as a Mizar type. For instance it is not possible to talk about ‘the

17 The ‘logic-enriched type theories’ of Peter Aczel [5] are designed to remove the Curry-
Howard-de Bruijn interpretation from intensional type theory. However, currently
this seems primarily to be used as a logical framework, and not yet as a foundational
system for mathematics.

18 For a type theorist this restriction to non empty types is very strange.



10 Freek Wiedijk

normal form of a term in a given term rewriting system’ as a Mizar type
(because some terms might not have a normal form.)

– Finally, and I do not know how important this is but I expect it to be
very important, Mizar does not support ‘user automation’. If you, as a
user of the system, know a way to solve a certain class of mathematical
problems algorithmically, it is not possible to ‘teach’ this to the system.
The only people who can do that kind of automation are the developers
of the Mizar system itself, who can add so-called ‘requirements ’ to the
system. This ‘closed’ architecture is too restrictive.

Why the HOLs are not acceptable as the QED system yet.
There is one important reason why the HOLs are not yet attractive enough
to be taken to be the QED system:
– The HOL type system is too poor. As we already argued in the previous

section, it is too weak to properly do abstract algebra.
But it is worse than that. In the HOL type system there are no dependent
types, nor is there any form of subtyping. (Mizar and Coq both have
dependent types and some form of subtyping. In Mizar the subtyping
is built into the type system. In Coq a similar effect is accomplished
through the use of automatic coercions.)
For formal mathematics it is essential to both have dependent types and
some form of subtyping.

Why Coq is not acceptable as the QED system yet.
There are two important reasons why Coq is not yet attractive enough to
be taken to be the QED system:
– The foundations of Coq are too complicated. They are baroque to say

the least. Maybe they are even beyond baroque. They might even be
called rococo.
There is no paper in which the foundations of Coq are spelled out in full
mathematical precision. Bob Solovay told me that this was one of the
reasons for him to lose interest in Coq as a system.
Also, apparently giving a set theoretical interpretation to the foundations
of Coq in all its details – to show Coq’s consistency relative to some set
theory – might not be as easy as it sounds.
Also, the foundations of Coq are sufficiently complicated that they are
tinkered with, and therefore change between versions of the system.

– As already noted in the previous section, Coq is not designed for classical
mathematics, which means that doing classical & extensional mathemat-
ics in it is not as easy as one would like it to be.
At the very least one would need to add some axioms for that. For
instance axioms that would be needed are:
• excluded middle
• the K axiom19

19 The K axiom states that if two dependent pairs 〈x1, y1〉 and 〈x2, y2〉 are equal , then
y1 has to be equal to y2. In the Coq logic this is not provable. (It is provable that
x1 has to be equal to x2.) ‘Dependent pairs’ means that the types of the yi depend
on the xi.



The QED manifesto revisited 11

• axioms for extensionality/quotient types
• choice

and it is not very clear when enough axioms like that will have been
added.

5 What has to be done?

To realize the vision from the QED manifesto, three things need to happen:

– First of all, a project should be started that is not based on the expectation
that other people will do the work.
Currently people often just build a system and then hope that other people
will start using it for formalization of mathematics. The QED manifesto is an
even more extreme version of this: it just presents a vision, and then hopes
that other people will both make a system and start using it for formaliza-
tion of mathematics. That approach does not work. If you want something
accomplished, you should work on it yourself.
An important aspect of this project should be that it should involve a small
number of people,20 and have a clear focus. Only that way there will be
enough coherence to get a good result.
It seems important to focus on formalization of actual mathematical prac-
tice, and not also try to ‘improve’ on the way that people currently do
mathematics.

– In this project, a good system for formalization of mathematics should be
developed.
As I argued in the previous section, the current crop of systems is not yet
good enough to be the ‘QED system’ in which to build a library of all of
mathematics.
Ideally, the system should be set up in such a way, that the mathematics
that is formalized in it can survive a ‘redesign of the foundations’. Suppose
that one builds a QED-like library on top of Coq, and then changes one’s
mind and switches to a HOL-like system. Basically, this will mean that one
will have to start from scratch.21 It seems very arrogant to think that we
already know what the best foundations for our formal library should be,
and one would therefore prefer not to be ‘locked in’ to a specific version of
the foundations.
This is one more argument for having a declarative proof style over a proce-
dural proof style. Proofs in a declarative style are much more ‘robust’ with

20 The original Unix system was created by only two people (who shared an office at
the time), Ken Thompson and Dennis Ritchie. Starting something very good does
not need a large group of people.

21 Even if one does not mind having to start from scratch like that (taking that as the
way that science progresses), it still seems sensible to work with foundations that
are not too idiosyncratic.



12 Freek Wiedijk

respect to changes in foundation than proofs in a procedural style. An ar-
gument for this is the close similarity between the Mizar and Isar22 proof
languages, despite the wildly different foundations of their underlying sys-
tems.
I do not believe that the QED system will consist of many different systems
living peacefully together. One of the systems – hopefully the best one – will
kill the others. That is how evolution works. It is this system that should be
built.23

– Finally, a multi-contributor library of formal mathematics should be created
that is well-organized. As I claimed in Section 2, the sociological puzzle has
not been solved yet of how to set up a library in such a way that it both
admits many contributors, but also stays well-organized. Current attempts
that have not yet been very successful in this respect are:
• multi-contributor, but not really well-organized:

∗ MML

∗ Coq contribs
∗ AFP

• well-organized, but not really multi-contributor:
∗ HOL Light library
∗ C-CoRN [4]

A good first goal for this library will be to formalize ‘all of undergraduate
mathematics’. This will take more than a hundred man-years [20], which
means that it will need the involvement of a non-trivial number of con-
tributors. Also, with something like that it will be clear whether it is well-
organized or not.

The success of Wikipedia suggests that it might be possible to solve the
puzzle of having both many contributors and still also have a well-organized
whole. However, aiming for a ‘Wikipedia for formalized mathematics’ is for
me too much like hoping that someone else will do the work. I will believe
that such an approach can be successful when I see it happening.

6 What will happen?

Henk Barendregt always asks people when they expect the future from the QED

manifesto to arrive. He tells me that the more experience people have with proof
formalization, the more pessimistic they are about this. (The answers seem to
range from ‘it already is here!’ to ‘in about fifty years.’)

I myself certainly believe that the QED system will come. If we do not blow
up the world to a state that mathematics will not matter much anymore, then
at some point in the future people will formalize most of their proofs routinely
in the computer. And I expect that it will happen earlier than we now expect.

So I do believe that in a reasonable time
22 Isar is the proof language of the Isabelle/HOL system [19].
23 From that point of view, spending time on having different systems be able to com-

municate their mathematics is lost energy.



The QED manifesto revisited 13

– a proper system will be created
– a proper basic library for this system is made
– a proper infrastructure is set up for keeping this library well-organized de-

spite it having many contributors

I expect that if the first and third of these items arrive, then the second of these
items – the QED library – will flow from that in a natural way.

Acknowledgments. Thanks to Jacques Carette for interesting discussions about
the relation between formal mathematics and computer algebra. Thanks to Bas
Spitters for explaining to me that there is no consensus on what the word ‘pred-
icative’ means, by pointing out that there are people who claim that one can
predicatively prove Kruskal’s theorem. Finally, thanks to Michael Beeson, John
Harrison and Bob Solovay for helpful comments on a draft of this paper.

References

1. M. Aigner and G.M. Ziegler. Proofs from the Book. Springer-Verlag, second edition,
2001.

2. R. Boyer et al. The QED Manifesto. In A. Bundy, editor, Automated Deduction
– CADE 12, volume 814 of LNAI, pages 238–251. Springer-Verlag, 1994. 〈http:
//www.cs.ru.nl/~freek/qed/qed.ps.gz〉.

3. C. Creutzig and W. Oevel. MuPAD Tutorial. Springer-Verlag, second edition,
2004.

4. L. Cruz-Filipe, H. Geuvers, and F. Wiedijk. C-CoRN: the Constructive Coq
Repository at Nijmegen. In Andrea Asperti, Grzegorz Bancerek, and Andrzej Try-
bulec, editors, Mathematical Knowledge Management, Proceedings of MKM 2004,
Bia lowieza, Poland, volume 3119 of LNCS, pages 88–103. Springer-Verlag, 2004.

5. N. Gambino and P. Aczel. The generalised type-theoretic interpretation of con-
structive set theory. Journal of Symbolic Logic, 71(1):67–103, 2006.

6. G. Gonthier. A computer-checked proof of the Four Colour Theorem. 〈http:
//research.microsoft.com/~gonthier/4colproof.pdf〉, 2006.

7. J.R. Harrison. Proof style. In Eduardo Giménez and Christine Paulin-Möhring, ed-
itors, Types for Proofs and Programs: International Workshop TYPES’96, volume
1512 of LNCS, pages 154–172, Aussois, France, 1996. Springer-Verlag.

8. J.R. Harrison. The HOL Light manual (1.1), 2000. 〈http://www.cl.cam.ac.uk/
users/jrh/hol-light/manual-1.1.ps.gz〉.

9. J.R. Harrison. Introduction to Logic and Automated Theorem Proving. To be
published by Cambridge University Press, 2007.

10. A.C. Hearn. Reduce, User’s Manual Version 3.6. Santa Monica, CA, 1995.
11. K. Schütte. Proof theory. Springer-Verlag, 1977.
12. D.E. Knuth. TEX: The Program. Addison Wesley, 1986.
13. J. Lions. Lions’ Commentary on UNIX 6th Edition. Peer-to-Peer Communications,

San Jose, CA, 1977.
14. Lemma 1 Ltd. ProofPower – Description. Lemma 1 Ltd., 2000. 〈http://www.

lemma-one.com/ProofPower/doc/doc.html〉.
15. M. Monagan, K. Geddes, K. Heal, G. Labahn, and S. Vorkoetter. Maple V Pro-

gramming Guide for Release 5. Springer-Verlag, Berlin/Heidelberg, 1997.



14 Freek Wiedijk

16. Micha l Muzalewski. An Outline of PC Mizar. Fondation Philippe le Hodey, Brus-
sels, 1993. 〈http://www.cs.ru.nl/~freek/mizar/mizarmanual.ps.gz〉.

17. T. Nipkow, L.C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, volume 2283 of LNCS. Springer, 2002. 〈http://www.cl.cam.
ac.uk/Research/HVG/Isabelle/dist/Isabelle2004/doc/tutorial.pdf〉.

18. The Coq Development Team. The Coq Proof Assistant Reference Manual, 2006.
〈http://pauillac.inria.fr/coq/doc/main.html〉.

19. M. Wenzel. The Isabelle/Isar Reference Manual. TU München, 2002. 〈http:
//isabelle.in.tum.de/doc/isar-ref.pdf〉.

20. F. Wiedijk. Estimating the Cost of a Standard Library for a Mathematical Proof
Checker. 〈http://www.cs.ru.nl/~freek/notes/holl2coq.ps.gz〉, 2002.

21. F. Wiedijk. Writing a Mizar article in nine easy steps. 〈http://www.cs.ru.
nl/~freek/mizar/mizman.ps.gz〉, 2007.

22. S. Wolfram. The Mathematica book. Cambridge University Press, Cambridge, 1996.


