
PATE 2007

Teaching logic using a state-of-the-art
proof assistant

Cezary Kaliszyk Freek Wiedijk

Radboud Universiteit Nijmegen, The Netherlands

Maxim Hendriks Femke van Raamsdonk

Vrije Universiteit Amsterdam, The Netherlands

Abstract

This article describes the system ProofWeb that is currently being developed
in Nijmegen and Amsterdam for teaching logic to undergraduate computer science
students. This system is based on the higher order proof assistant Coq, and is made
available to the students through an interactive web interface. Part of this system
will be a large database of logic problems. This database will also hold the solutions
of the students. This means that the students do not need to install anything to be
able to use the system (not even a browser plug-in), and that the teachers will be
able to centrally track progress of the students.

The system makes the full power of Coq available to the students, but simultane-
ously presents the logic problems in a way that is customary in undergraduate logic
courses. Both styles of presenting natural deduction proofs (Gentzen-style ‘tree
view’ and Fitch-style ‘box view’) are supported. Part of the system is a parser that
indicates whether the students used the automation of Coq to solve their problems
or that they solved it themselves using only the inference rules of the logic. For
these inference rules dedicated tactics for Coq have been developed.

The system has already been used in a type theory course, and is currently being
further developed in the first year logic course of computer science in Nijmegen.

Key words: Logic Education, Proof Assistants, Coq, Web
Interface, AJAX, DOM, Natural Deduction, Gentzen, Fitch

1 Email: {cek,freek}@cs.ru.nl {mhendri,femke}@few.vu.nl
2 This research was funded by SURF project ‘Web-deductie voor het onderwijs in formeel
denken’.

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Hendriks, Kaliszyk, van Raamsdonk & Wiedijk

1 Introduction

1.1 Motivation

At every university, part of the undergraduate computer science curriculum is
an introductory course that teaches the rules of propositional and predicate
logic. At the Radboud Universiteit (RU) in Nijmegen this course is taught
in the first year and is called ‘Beweren en Bewijzen’ (Dutch for ‘Stating and
Proving’). At the Vrije Universiteit (VU) in Amsterdam this course is taught
in the second year and is called ‘Inleiding Logica’ (‘Introduction to Logic’).
Almost all computer science curricula will have similar undergraduate courses.

For learning this kind of elementary mathematical logic it is crucial to make
many exercises. Those exercises can of course be made in the traditional way,
using pen and paper. The student is completely on his own, and in practice it
often happens that proofs that are almost-but-not-completely-right are pro-
duced. Alternatively, they can be made using some computer program, which
guides the student through the development of a completely correct proof.
A disadvantage of the computerized way of practicing mathematical logic is
that a student often will be able to finish proofs by random experimentation
with the commands of the system (accidentally hitting a solution), without
really having understood how the proof works. Of course, a combination of
the two styles of practicing formal proofs seems to be the best option. So com-
puter assistance for learning to construct derivations in mathematical logic is
desirable. Currently the most popular program that is used for this kind of
‘computer-assisted logic teaching’ is a system called Jape [2], developed at the
university of Oxford.

Besides exercises there is also the issue of examination. It would be good
if the student has the opportunity to do at any moment a (part of the) logic
exam by logging in to the system and be presented with a set of exercises from
a database that have to be solved within a certain time. This may require
human supervision to prevent cheating. We did not yet work on this, but
just mention it as a possible interesting application of computer-assisted logic
teaching.

1.2 Our contribution

This paper describes a system, currently named ProofWeb, that is in de-
velopment at the RU in Nijmegen and at the VU in Amsterdam. This system
is much like Jape (it might be considered to be an ‘improved Jape-clone’).

The two main innovations that our system offers over other similar systems
are:

• The system makes the students work on a centralized server that has to be
accessed through a web interface. The proof assistant that the students use
will not run on their computer, but instead will run on the server.

A first advantage is flexibility. The web interface is extremely light: the

2

Hendriks, Kaliszyk, van Raamsdonk & Wiedijk

student will not need to install anything to be able to use it, not even a
plug-in. When designing our system we tried to make it as low-threshold
and non-threatening as possible. The student can work from any internet-
connection at any time.

A second advantage is that the student does not need to worry about
version problems with the software or the exercises. Since everything is on
the same centralized server, the students have at any time the right version
of the software, exercises, and possibly solutions to exercises available, and
moreover the teachers know at any time the current status of the work of
the students.

• The system makes use of a state-of-the-art proof assistant, namely Coq [3],
and not of a ‘toy’ system.

Coq has been in development since 1984 at the INRIA institute in France.
It is based on a type theoretical system called the Calculus of Inductive Con-
structions. It has been implemented in the dialect of the ML programming
language called Objective Caml, and has been used for the formal verifica-
tion of many proofs, both from mathematics and from computer science.
The most impressive verification using Coq is the verification of the proof
of the Four Colour Theorem by Georges Gonthier [5]. Another important
verification has been the development of a verified C compiler by Xavier
Leroy and others [9].

The choice for a state-of-the-art proof assistant fell on Coq because both
at the RU and at the VU it is already used in research and teaching.

An advantage of using a state-of-the-art proof assistant is again flexibil-
ity. The same interface can be used (possibly adapted) for teaching more
advanced courses in logic or concerning the use of the proof assistant.

The system ProofWeb comes equipped with two more products.

• A large collection of logic exercises. The exercises range from very easy
to very difficult, and will be graded for their difficulty. The exercise set is
sufficiently large (presently over 200 exercises) so the student will not soon
run out of practice material. More about the exercise set can be found in
Section 6.

• Course notes, with a basic presentation of propositional and predicate logic,
and a description of how to use the system ProofWeb. We want the
presentation of the proofs in the system to be identical to the presentation
of the proofs in the textbook. Therefore we develop both the ‘Gentzen-style’
and the ‘Fitch-style’ natural deduction variants. The course notes are still
under development.

1.3 Related work

There are already numerous systems for doing logic by computer, of which
Jape is the best known. A relatively comprehensive list is maintained by

3

Hendriks, Kaliszyk, van Raamsdonk & Wiedijk

Hans van Ditmarsch [10]. Of course many of these system are quite similar to
our system (as well as to each other.) For instance, quite a number of these
systems are already web-based.

The distinctive features of our system are the use of a serious proof as-
sistant, together with a centralized ‘web application’ architecture. The work
of the students remains on the web server, can be saved and loaded back in,
and the progress of the student is at all times available both to the student,
the teacher and the system (i.e., the system has at all times an accurate ‘user
model’ of the abilities of the student).

1.4 Contents

In the rest of the paper we present both our project and the current state
of the system that we are building. We start with a short description of our
project in Section 2, and discuss our experiences so far in Section 3. Next, in
Section 4 we present the architecture of the interface. Section 5 is concerned
with the supporting infrastructure of tactics and exercises, and Section 6 with
the presentation of the collection of exercises. Finally, in Section 7 we give an
outlook on future work and work that is currently in progress.

2 Structure of the project

The project of developing ProofWeb is financed by the SURF founda-
tion [12] (the Dutch organization for computers in academic teaching) and
runs in the period fall 2006 till fall 2007 (three semesters). Cezary Kaliszyk
is employed for a full year at half time to program the system, while Maxim
Hendriks is employed for half a year at full time to develop the educational ma-
terials (the database of problems and the course notes), as well as to evaluate
the educational success of the project.

We identified the following nine sub-tasks, called ‘work packages’:

(i) the database of the system,

(ii) Coq tactics that exactly correspond to the rules the logic,

(iii) graphical representations for the proofs,

(iv) checking a Coq file against an exercise,

(v) a large set of logic problems,

(vi) course notes that explain the system,

(vii) using the system in actual courses,

(viii) dissemination of the results of the project,

(ix) evaluation of the project.

4

Hendriks, Kaliszyk, van Raamsdonk & Wiedijk

3 Experience so far

The system ProofWeb is used in the following advanced courses:

(i) In fall 2006: the course ‘Logical Verification’ [11] at the VU, taught by
Femke van Raamsdonk. This is a computer science master’s course about
the type theory of the Coq system. The course is meant for more mature
students but also recapitulates some undergraduate logic. It is therefore
suitable for testing a first version of ProofWeb. Natural deduction is
taught in Gentzen style, that is, proofs have a tree-like structure, and
grow upward from the conclusion of the proof.

(ii) In spring 2007: the course ‘Type Theory’ at the RU, taught by Freek
Wiedijk and Milad Niqui. This course is also a master’s level course
about the type theory of the Coq system, and corresponds to the Logical
Verification course at the VU.

(iii) In spring 2007: the course ‘Type Theory and Proof Assistants’ in the
‘Master Class Logic 2006-2007’, taught by Herman Geuvers and Bas
Spitters. This course is similar to the previous one, but is not exclu-
sively aimed at students of the RU but at master’s students from all over
the Netherlands.

Moreover, ProofWeb is or will be used in the following introductory courses:

(i) In spring 2007: the course ‘Beweren en Bewijzen’ [1] at the RU, taught
by Hanno Wupper and Erik Barendsen. This is a computer science un-
dergraduate course in logic, with natural deduction in Gentzen style.

(ii) In fall 2007: the course ‘Inleiding Logica’ [6] at the VU, taught by Roel
de Vrijer. This is a computer science undergraduate course in logic, with
natural deduction in Fitch style (cf. Section 7), that is, proofs have a
structure of nested boxes, which structure a sequential list of proof steps.
Another name for this kind of proofs is ‘flag-style proofs’, because often
the assumptions of a subproof are written in the shape of ‘flags’.

The course ‘Logical Verification’ at the VU in fall 2006 was a first opportunity
to test the system. About 25 students followed and completed the course.
They were all mature (graduate) students, very well able to deal with a system
that was still in beta. A part of the course consists of learning type theory
and Coq via basic (undergraduate) logic exercises, which were done using the
system ProofWeb. We learned the following from the use of the system
ProofWeb in this course.

Initially we did not have a dedicated server, so it was running on one of the
group servers of the research group in Nijmegen on a non-standard port. One
of the issues was, that the web-proxy at the VU did not allow the students
to access pages running on non-standard ports, so they were required to turn
the proxy off.

5

Hendriks, Kaliszyk, van Raamsdonk & Wiedijk

One of the assignments involves program extraction. Of course we did not
allow running the extracted programs on the server, and therefore a mecha-
nism allowing the students to obtain the extracted program was implemented.

The efficiency of the server turned out not to be a problem. At peak times
the twenty-five students were able to use about 400Mb memory and a fraction
of a CPU. This might be thanks to the fact that the students were not using
tactics that involve automation.

During this course there was not yet support for visualizing proofs. Instead
the students had to do their proofs using the customary Coq proof style, which
consists of building a tactic script using the standard Coq tactics. This was
not problematic, since one of the aims of the course is to learn Coq.

The second course in which ProofWeb is used is the course ‘Type The-
ory’ in spring 2007 at the RU. The first half of this course is basically an
accelerated clone of the ‘Logical Verification’ course. As it turned out that
initially there were only very few students who wanted to follow this course,
it was decided that there would be no lectures, and that the students just
would be given the course notes of ‘Logical Verification’ together with access
to the server. They then would work on their own, with an opportunity to
call for help if needed. It turns out that this worked unexpectedly well. The
students just studied the lecture notes and did the exercises of the course.
And even without much pressure on them in the form of requiring them to
meet deadlines, they managed to keep on schedule reasonably well. The only
thing that at some point confused them (after which a lecture was organized
to make things clear) was the part of the course that did not correspond to
Coq work: derivations in Pure Type Systems.

All in all our experience so far is that the system ProofWeb seems to
work very well in teaching. Indeed, hardly any students used more traditional
Coq interfaces like Proof General or CoqIDE. The courses so far are more
advanced ones, so it remains to be seen whether ProofWeb also works well
for larger numbers of undergraduate students, but we are optimistic about
that. In addition, as of May 2007, the progress on all of the nine work packages
seems to be well on target.

4 Architecture of the interface

In this section we shortly describe the architecture of the interface to Coq
used in ProofWeb. The interface is an implementation of an architecture
for creating responsive web interfaces for proof assistants [7]. It combines the
current web development technologies with the functionality of local interfaces
for proof assistants to create an interface that behaves like a local one, but is
available completely with just a web browser (no Java, Flash or plugins are
required).

To obtain this it uses the asynchronous DOM modification technology
(sometimes referred to as AJAX or Web Application). This technique is a

6

Hendriks, Kaliszyk, van Raamsdonk & Wiedijk

combination of three available web technologies: JavaScript - a scripting pro-
gramming language interpreted by the web browsers, Document Object Model
(DOM) - a way of referring to sub elements of a web page that allows modi-
fication of the page on the fly creating dynamic elements and XmlHttp - an
API available to client side scripts, that allows requesting information from
the web server without reloading the page.

The technique consists in creating a web page that captures events on the
client side and processes them without reloading the page. Events that require
information from the server send the data in asynchronous XmlHttp requests
and modify the web page in place. Other events are processed only locally.

ProofWeb uses an implementation of this architecture that is used to
create a web interface for proof assistants. The server keeps prover sessions
for all users on the server (see Figure 1) and the clients are presented with an
interface that is completely available in a web-browser but resembles and is
comparably responsive to a local interface.

The architecture described in [7] was designed as a publicly available web
service. Using it for teaching required the creation of groups of logins for
particular courses. The students are allowed to access only their own files
via the web interface, and teachers of particular courses have access to the
directories of the students of these courses.

User of ProofWeb

Web
Browser

JavaScript

Web
Server

User’s
Session

User’s
Session

Presented page

handling of
keypresses
and clicks

DOM

Callback

XmlHttp

User’s
Prover

User’s
Prover

Fig. 1. ProofWeb architecture.

An example of the use of the interface in the ‘Logical Verification’ course

7

Hendriks, Kaliszyk, van Raamsdonk & Wiedijk

can be seen in Figure 2.

Fig. 2. ProofWeb in the ‘Logical Verification’ course.

5 Natural deduction for first-order logic

This section is concerned with natural deduction proofs for first-order logic in
‘Gentzen style’, where a proof is a tree.

5.1 Tactics

A first aim is to enable students of logic courses to construct derivations that
correspond exactly to the derivations in the presentation of natural deduction
that they use. Because in principle the full power of Coq is available, this
means that we had to write tactics (in effect, to dumb Coq down) to match
the traditional logic rules. What then arose was that, whereas in a Coq proof
one can look at a hypothesis and eliminate it, ending up in a new proof state,
traditional natural deduction offers no such jumps. So we naturally arrived
at a set of backward working tactics: every proposition (the current goal) is
deduced from another proposition (the new goal) using a deduction rule. The
display style that fits most naturally to this kind of proof is a proof tree (for
flag-style proofs see Section 7).

This imposes a relatively strict way of working. The proof trees have to be
constructed from ‘bottom to top’. On the one hand, this makes the construc-
tion of a deduction more difficult than on paper, because there is no possibility
of building snippets of the proof in a forward way, using what is known from
the hypotheses and their consequences. But on the other hand, the method

8

Hendriks, Kaliszyk, van Raamsdonk & Wiedijk

forces the student to ponder the general structure of the proof before deciding
by what step he will eventually end up with the current proposition. And
the imposed rigidity is congenial with the aim of a logic course to encourage
rigorous analytical thinking. Moreover, it becomes very clear where ingenuity
comes in, such as with the disjunction elimination rule. The student is sup-
posed to prove some proposition C. It is a creative step to find a disjunction
A∨B, prove this, and also prove that C follows from both A and B separately.
The same goes for the introduction and elimination of negation.

As an example we present the tactic for disjunction elimination, which
gives a good impression of the way additional tactics are implemented:

Ltac dis_el X H1 H2 :=

match X with

| (_ \/ _) =>

assert X;

[idtac |

match goal with

| x : X |- _ =>

elim x; [intro H1 | intro H2]; clear x

end

]

| _ => fail "The first argument is not a disjunction"

end.

If the current goal is C, the tactic dis_el (A \/ B) G H will create the fol-
lowing three new goals:

(i) A ∨B;

(ii) C, but now with the extra assumption A with name (or proof, if viewed
constructively) G;

(iii) C, but now with the extra assumption B with name (or proof, if viewed
constructively) H.

Also, the tactic gives a nice and understandable error message. All the tactics
have been given a name by using three letters of the connective’s name and
indicating whether the tactic implements an introduction rule or an elimina-
tion rule (and if necessary, if that is a left or a right variant). We give a small
example of a proof with our set of tactics, and hope it speaks for itself:

Theorem example : ((A \/ B) /\ ~A) -> B.

Proof.

imp_in z.

dis_el (A \/ B).

con_ell (~A).

ass z.

imp_in y.

neg_el A.

9

Hendriks, Kaliszyk, van Raamsdonk & Wiedijk

con_elr (A \/ B).

ass z.

ass y.

imp_in x.

ass x.

Qed.

5.2 Visualization

A second aim is a visual presentation of proofs as in Jape. This meant re-
questing the proof information from Coq and converting it to a graph format.
Coq internally keeps a proof state. This proof state is a recursive OCaml
structure, that holds a goal, a rule which allows to obtain this goal from the
subgoals, and the subgoals themselves. It is not just a tree structure, since a
rule can be a compound rule that contains another proof state. Tactics and
tacticals modify the proof state. Coq includes commands that allow inspect-
ing the proof state. Show allows the user to see a non-current goal, Show Tree

shows the succession of conclusions, hypotheses and tactics used to obtain the
current goal and Show Proof displays the CIC term (possibly with holes).

The output of these commands was not sufficient to build a natural de-
duction tree for the proof. We added a new command Dump Tree to Coq that
allows exporting the whole proof state in an XML format. An example of the
output of the Dump Tree command for a very simple Coq proof:

<tree><goal><concl type="A -> A"/></goal>

<cmpdrule><tactic cmd="intro x"/>

<tree><goal><concl type="A -> A"/></goal>

<cmpdrule><tactic cmd="intro x"/>

<tree><goal><concl type="A -> A"/></goal>

<rule text="intro x"/>

<tree><goal><concl type="A"/><hyp id="x" type="A"/>

</goal></tree></tree>

</cmpdrule>

<tree><goal><concl type="A"/><hyp id="x" type="A"/>

</goal></tree></tree>

</cmpdrule><tree><goal><concl type="A"/><hyp id="x" type="A"/>

</goal></tree></tree>

We modified ProofWeb to be able to parse XML trees dumped by Coq
and generate natural deduction diagrams (see Figure 3). Those diagrams may
be requested by the user’s browser in special query requests. The diagrams
are displayed in a separate frame in the interface along with the usual Coq
proof state. If the user switches on the display of the diagrams, the client side
requests them when no text is being processed.

10

Hendriks, Kaliszyk, van Raamsdonk & Wiedijk

Fig. 3. A natural deduction tree as seen on the webpage (cropped screenshot).

6 The exercise set

Also part of the project is the development of a set of exercises for the students.
For a particular course, a number of exercises assigned to the students. It is
desirable that ProofWeb can be used as a complete course environment. So
when a student logs in via the web interface as participant to a specific course,
he is able to see the list of all the assigned tasks (see Figure 4). Every task
has a certain status. The status can be one of the following:

• Not touched — When a particular exercise has not been opened, or has
been opened but has not been saved.

• Does not compile — When the file has been edited and saved, but is not
a correct Coq file. It can be because of real errors or because proofs are
missing.

• Incorrect — The students are supposed to modify the given file only in
designated places and to use only a set of allowed tactics. If the student
uses a non-allowed too powerful tactic or just removes a task from the file
it is marked as incorrect.

• Correct — Passed the verification by our tool.

Fig. 4. Tasks assigned to students and their status.

11

Hendriks, Kaliszyk, van Raamsdonk & Wiedijk

The verification tool lexes the original task and the student’s solution in paral-
lel. The original solution includes placeholders that are valid Coq comments.
Those placeholders mean that a particular place needs to contain a valid Coq
term or a valid proof. For proofs the kind of proof determines the set of al-
lowed tactics. For proofs and terms of given types the automatic verification
is enough. However, there are tasks where students are required to give a
definition of a particular object in type theory. For this kind of tasks manual
verification by a teaching assistant of a course is required.

7 Outlook

At the moment of writing, the project ProofWeb is more or less half way, so
this paper reports on work in progress. In this section we first discuss a main
issue we are currently working on: adding the possibility of using the system
for ‘Fitch-style’ natural deduction derivations. We then briefly comment on
further points of current and future work.

7.1 Fitch-style deductions

The most important improvement is to add the possibility to use the system
for so-called Fitch-style natural deduction proofs. 3 Fitch-style proofs have
the graphical advantage over Gentzen-style proofs of being linear (as opposed
to having a branching tree structure), which makes them more convenient to
display for large proofs, like the ones constructed by the students for final
assignments. Another name for these kind of proofs is flag-style proofs, be-
cause the assumptions of a subproof are often written in the shape of ‘flags’.
We are working on having the system display Fitch-style deductions. A basic
version of this has already been implemented (see Figure 5), but needs further
development. A number of issues arise. When a tactic creates a number of
assumptions, should these be kept in one flag or should the system create
multiple flags? Also, Fitch-style deductions may include repetitions of asser-
tions assumed by flags. Most of these repetitions are redundant. However,
not repeating assumptions immediately before they are used leads to very un-
readable proofs. What should be done? We are currently looking at adapting
the approach presented in [4] to Coq tactics.

7.2 Future work

Some of the other issues that currently are being worked on are:

• The course notes that are to accompany the system. These are still in a
rudimentary stage.

3 This style of proof was initially developed by Stanis law Jaśkowski in 1934 and perfected
by Frederic Brenton Fitch in 1952.

12

Hendriks, Kaliszyk, van Raamsdonk & Wiedijk

Fig. 5. A Fitch-style deduction as currently displayed by the system (implementa-
tion in progress).

• There is no separate web interface yet for the teacher to manage the student
logins and the set of exercises for the course, nor to inspect the work of
the students. At the moment this is only possible by logging on to the
server through an ssh connection, and then listing and editing files manually.
Clearly, a proper web interface for this is necessary.

• The deduction trees are currently rendered in an HTML IFrames, and can
be optionally opened in a separate browser window to allow easy printing
as PostScript or PDF. However students may need to use the trees in texts,
and for that a dedicated TEX or image rendering of the trees could be
implemented.

• The interface uses some web technologies that are not implemented in the
same way in all browsers. It includes a small layer that is supposed to
abstract over incompatible functionalities. Currently this works well with
Mozilla compatible browsers (Firefox, Galeon, Epiphany, Netscape, . . .).
Also, some effort has been made to make the system work reasonably well
with the most common versions of Internet Explorer. However, the com-

13

Hendriks, Kaliszyk, van Raamsdonk & Wiedijk

patibility of the system with most common web browsers is something that
will need further attention.

• At the moment there is hardly any documentation of how to install and
maintain the server. Our server currently is available to everyone who wants
to experiment with our system, but there is no good guide available that
explains how to install a server of his own. Because the server is still very
much in a constant state of flux, documenting the installation and main-
tenance processes is at this moment not yet reasonable. However, in the
final phase of the project it will be important to also create this kind of
documentation.

• With the current version of the system a log of each interaction of each
student session is already stored on the server. Using these logs, it is possible
to develop software for ‘replaying’ such a student session (possibly speeded
up or slowed down). We are currently discussing whether it is useful to
develop such an extension of the system.

• The system was designed in a way to be used in standard university courses.
It might be useful to create a more complete online environment that would
include introductory explanations and adaptive user profiles, therefore al-
lowing students to learn logic without teacher interaction.

7.3 Beyond the project

If the development of ProofWeb is finished, a possibility is to integrate it
with a system that supports the development of more serious proofs with the
Coq system. One of the other projects that currently is being pursued in
Nijmegen is the creation of a so-called ‘math wiki’ [8]. Here, traditional wiki
technology is integrated with the same Coq front end that our system is based
on.

7.4 Using the system

We think that it is important that our system is experimented with (and
hopefully someday frequently used) by as many people as possible. For this
reason, we currently offer the use of our system to anyone on the internet,
even without any registration. The ProofWeb system can be tried at

http://prover.cs.ru.nl

References

[1] Beweren en Bewijzen.
URL http://www.cs.ru.nl/∼wupper/B&B/index.html

[2] Bornat, R. and B. Sufrin, Jape’s quiet interface, in: N. Merriam, editor, User

14

http://prover.cs.ru.nl
http://www.cs.ru.nl/~wupper/B&B/index.html

Hendriks, Kaliszyk, van Raamsdonk & Wiedijk

Interfaces for Theorem Provers (UITP ’96), Technical Report (1996), pp. 25–
34.

[3] Coq Development Team, “The Coq Proof Assistant Reference Manual
Version 8.1,” INRIA-Rocquencourt (2005).
URL http://coq.inria.fr/doc-eng.html

[4] Geuvers, H. and R. Nederpelt, Rewriting for Fitch style natural deductions., in:
V. van Oostrom, editor, RTA, Lecture Notes in Computer Science 3091 (2004),
pp. 134–154.

[5] Gonthier, G., A computer-checked proof of the Four Colour Theorem (2006).
URL http://research.microsoft.com/∼gonthier/4colproof.pdf

[6] Inleiding Logica.
URL http://www.cs.vu.nl/∼tcs/il/

[7] Kaliszyk, C., Web interfaces for proof assistants, in: S. Autexier and
C. Benzmüller, editors, Proceedings of the FLoC Workshop on User Interfaces
for Theorem Provers (UITP’06), Seattle, 2006, pp. 53–64, to be published in
ENTCS.

[8] Kaliszyk, C. and P. Corbineau, Cooperative repositories for formal proofs
(2007), to be published in the proceedings of MKM 2007.

[9] Leroy, X., Formal certification of a compiler back-end or: programming a
compiler with a proof assistant, in: POPL ’06: Conference record of the 33rd
ACM SIGPLAN-SIGACT symposium on Principles of programming languages
(2006), pp. 42–54.

[10] Logic courseware.
URL http://www.cs.otago.ac.nz/staffpriv/hans/

[11] Logical Verification.
URL http://www.cs.vu.nl/∼tcs/lv/

[12] SURF foundation.
URL http://www.surf.nl/

15

http://coq.inria.fr/doc-eng.html
http://research.microsoft.com/~gonthier/4colproof.pdf
http://www.cs.vu.nl/~tcs/il/
http://www.cs.otago.ac.nz/staffpriv/hans/
http://www.cs.vu.nl/~tcs/lv/
http://www.surf.nl/

	Introduction
	Motivation
	Our contribution
	Related work
	Contents

	Structure of the project
	Experience so far
	Architecture of the interface
	Natural deduction for first-order logic
	Tactics
	Visualization

	The exercise set
	Outlook
	Fitch-style deductions
	Future work
	Beyond the project
	Using the system

	References

