
the next generation of proof assistants

Freek Wiedijk

Radboud University Nijmegen
The Netherlands

2010 08 31 , 16 : 30

LSFA 2010
Natal, Brazil



the next generation of proof assistants:

ten questions

Freek Wiedijk

Radboud University Nijmegen
The Netherlands

2010 08 31 , 16 : 30

LSFA 2010
Natal, Brazil



the state of the art



1
some of the best current proof assistants

ACL2

B method

PVS

HOL

Isabelle

Coq

Mizar

Twelf

Metamath



1
some of the best current proof assistants

ACL2

B method

PVS

HOL
����:

-XXXXXz
HOL4

HOL Light

ProofPowerIsabelle

Coq

Mizar

Twelf

Metamath



1
some of the best current proof assistants

ACL2

B method

PVS

HOL
����:

-XXXXXz?
HOL4

HOL Light

ProofPowerIsabelle

Coq

Mizar

Twelf

Metamath



1
some of the best current proof assistants

ACL2

B method

PVS

HOL
����:

-XXXXXz?
HOL4

HOL Light

ProofPowerIsabelle

Coq -XXXXXz
ssreflect

MatitaMizar

Twelf

Metamath



1
some of the best current proof assistants

ACL2

B method

PVS

HOL
����:

-XXXXXz?
HOL4

HOL Light

ProofPowerIsabelle

Coq -XXXXXz
ssreflect

MatitaMizar

Twelf

Metamath

+

+

+

+

IT
P

2
0
1
0



1
some of the best current proof assistants

ACL2

B method

PVS

HOL
����:

-XXXXXz?
HOL4

HOL Light

ProofPowerIsabelle

Coq -XXXXXz
ssreflect

MatitaMizar

Twelf

Metamath

+

+

+

+

IT
P

2
0
1
0

+

+

+

P
O

P
L
m

ark



1
some of the best current proof assistants

ACL2

B method

PVS

HOL
����:

-XXXXXz?
HOL4

HOL Light

ProofPowerIsabelle

Coq -XXXXXz
ssreflect

MatitaMizar

Twelf

Metamath

+

+

+

+

IT
P

2
0
1
0

+

+

+

P
O

P
L
m

ark

+

+

+

+

1
0
0

th
eo

rem
s



1
some of the best current proof assistants

ACL2

B method

PVS

HOL
����:

-XXXXXz?
HOL4

HOL Light

ProofPowerIsabelle

Coq -XXXXXz
ssreflect

MatitaMizar

Twelf

Metamath

+

+

+

+

co
m

p
u
ters

+

+

+

lo
g
ic

+

+

+

+

m
a
th

em
a
tics



1
some of the best current proof assistants

ACL2

B method

PVS

HOL
����:

-XXXXXz?
HOL4

HOL Light

ProofPowerIsabelle

Coq -XXXXXz
ssreflect

MatitaMizar

Twelf

Metamath

+

+

+

+

+

+

co
m

p
u
ters

+

+

+

lo
g
ic

+

+

+

+

m
a
th

em
a
tics



1
some of the best current proof assistants

ACL2

B method

PVS

HOL
����:

-XXXXXz?
HOL4

HOL Light

ProofPowerIsabelle

Coq -XXXXXz
ssreflect

MatitaMizar

Twelf

Metamath

+

+

+

+

+

+

co
m

p
u
ters

+

+

+

lo
g
ic

+

+

+

+

+

m
a
th

em
a
tics



2
the computer science spectrum of formal proof



2
the computer science spectrum of formal proof

circuits made of electronic components like transistors



2
the computer science spectrum of formal proof

circuits made of logical gates as described in a netlist

↑

circuits made of electronic components like transistors



2
the computer science spectrum of formal proof

circuits specified on the register transfer level like in Verilog

↑

circuits made of logical gates as described in a netlist

↑

circuits made of electronic components like transistors



2
the computer science spectrum of formal proof

machine code

↑

circuits specified on the register transfer level like in Verilog

↑

circuits made of logical gates as described in a netlist

↑

circuits made of electronic components like transistors



2
the computer science spectrum of formal proof

assembly programming languages

↑

machine code

↑

circuits specified on the register transfer level like in Verilog

↑

circuits made of logical gates as described in a netlist

↑

circuits made of electronic components like transistors



2
the computer science spectrum of formal proof

low level programming languages like C

assembly programming languages

↑

machine code

↑

circuits specified on the register transfer level like in Verilog

↑

circuits made of logical gates as described in a netlist

↑

circuits made of electronic components like transistors



2
the computer science spectrum of formal proof

high level programming languages like Haskell

low level programming languages like C

assembly programming languages

↑

machine code

↑

circuits specified on the register transfer level like in Verilog

↑

circuits made of logical gates as described in a netlist

↑

circuits made of electronic components like transistors



2
the computer science spectrum of formal proof

system level programs like operating systems and device drivers

↑

high level programming languages like Haskell

low level programming languages like C

assembly programming languages

↑

machine code

↑

circuits specified on the register transfer level like in Verilog

↑

circuits made of logical gates as described in a netlist

↑

circuits made of electronic components like transistors



2
the computer science spectrum of formal proof

programmer level programs like compilers and databases engines

↑

system level programs like operating systems and device drivers

↑

high level programming languages like Haskell

low level programming languages like C

assembly programming languages

↑

machine code

↑

circuits specified on the register transfer level like in Verilog

↑

circuits made of logical gates as described in a netlist

↑

circuits made of electronic components like transistors



2
the computer science spectrum of formal proof

user level programs like word processors and web browsers

programmer level programs like compilers and databases engines

↑

system level programs like operating systems and device drivers

↑

high level programming languages like Haskell

low level programming languages like C

assembly programming languages

↑

machine code

↑

circuits specified on the register transfer level like in Verilog

↑

circuits made of logical gates as described in a netlist

↑

circuits made of electronic components like transistors



2
the computer science spectrum of formal proof

non-user level programs like computer games

user level programs like word processors and web browsers

programmer level programs like compilers and databases engines

↑

system level programs like operating systems and device drivers

↑

high level programming languages like Haskell

low level programming languages like C

assembly programming languages

↑

machine code

↑

circuits specified on the register transfer level like in Verilog

↑

circuits made of logical gates as described in a netlist

↑

circuits made of electronic components like transistors



2
the computer science spectrum of formal proof

non-user level programs like computer games

user level programs like word processors and web browsers

programmer level programs like compilers and databases engines

↑

system level programs like operating systems and device drivers

↑

high level programming languages like Haskell

low level programming languages like C

assembly programming languages

↑

machine code

↑

circuits specified on the register transfer level like in Verilog

↑

circuits made of logical gates as described in a netlist

↑

circuits made of electronic components like transistors



2
the computer science spectrum of formal proof

non-user level programs like computer games

user level programs like word processors and web browsers

programmer level programs like compilers and databases engines

↑

system level programs like operating systems and device drivers

↑

high level programming languages like Haskell

low level programming languages like C

assembly programming languages

↑

machine code

↑

circuits specified on the register transfer level like in Verilog

↑

circuits made of logical gates as described in a netlist

↑

circuits made of electronic components like transistors



2
the computer science spectrum of formal proof

non-user level programs like computer games

user level programs like word processors and web browsers

programmer level programs like compilers and databases engines

↑

system level programs like operating systems and device drivers

↑

high level programming languages like Haskell

low level programming languages like C

assembly programming languages

↑

machine code

↑

circuits specified on the register transfer level like in Verilog

↑

circuits made of logical gates as described in a netlist

↑

circuits made of electronic components like transistors



2
the computer science spectrum of formal proof

non-user level programs like computer games

user level programs like word processors and web browsers

programmer level programs like compilers and databases engines

↑

system level programs like operating systems and device drivers

↑

high level programming languages like Haskell

low level programming languages like C

assembly programming languages

↑

machine code

↑

circuits specified on the register transfer level like in Verilog

↑

circuits made of logical gates as described in a netlist

↑

circuits made of electronic components like transistors



2
the computer science spectrum of formal proof

non-user level programs like computer games

user level programs like word processors and web browsers

programmer level programs like compilers and databases engines

↑

system level programs like operating systems and device drivers

↑

high level programming languages like Haskell

low level programming languages like C

assembly programming languages

↑

machine code

↑

circuits specified on the register transfer level like in Verilog

↑

circuits made of logical gates as described in a netlist

↑

circuits made of electronic components like transistors



3
formally proving a processor correct
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Anthony Fox, HOL4, University of Cambridge, 2002
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formally proving the prime number theorem

John Harrison, HOL Light, Intel, 2008

2πiF (w) =

∫

Γ
F (z + w)N z

(

1

z
+

z

R2

)

dz

&%
'$qq

q
etcetera

ALL_TAC] THEN

SUBGOAL_THEN

‘((\z. f(w + z) * Cx(&N) cpow z * (Cx(&1) / z + z / Cx(R) pow 2))

has_path_integral (Cx(&2) * Cx pi * ii * f(w))) (A ++ B)‘

ASSUME_TAC THENL

[MP_TAC(ISPECL

etcetera
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◮ Appel & Haken, 1976
assembly program

◮ Robertson, Sanders, Seymour & Thomas, 1997
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an email from Tobias Nipkow

Message-ID: <4785C81D.2090607@in.tum.de>

Date: Thu, 10 Jan 2008 08:24:13 +0100

From: Tobias Nipkow <nipkow@in.tum.de>

To: Freek Wiedijk <freek@cs.ru.nl>

Subject: Re: [Fwd: free ultrafilters]

[ . . . ]

> I personally _hate_ the totality of the HOL logic. Don’t

> you?

Occasionally I do. But mostly not.

The next generation of proof assistants will take it into account.

[ . . . ]
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◮ set theory (Mizar, Isabelle/ZF, Metamath, B method)

Zermelo-Fraenkel axioms + axiom of Choice
untyped, not computational, classical, canonical

◮ type theory (Coq, Twelf)
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as expressive as set theory

◮ higher order logic (HOL, Isabelle/HOL, PVS)

typed, not computational, classical, canonical
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◮ primitive recursive arithmetic (ACL2)

untyped, computational, classical, canonical
even less expressive
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first order logic versus higher order logic

‘canonical logic’ = classical first order predicate logic with equality

first order logic
∩

higher order logic
∩

first order logic + schemes + set theory

binders
{x ∈ A | P (x)}

∑n
i=1 ai

limx→a f(x)
∫

f(x)dx



II

should the next generation of proof assistants
have an advanced type system?



II

should the next generation of proof assistants
have an advanced type system?

ACL2
B method

PVS
HOL

Isabelle
Coq
Mizar
Twelf

Metamath



12
soft types

◮ no types (Metamath)

◮ hard types (PVS, HOL, Isabelle, Coq, Twelf)

types are part of the foundation

◮ soft types (ACL2, B method, Mizar)

types are a layer on top of an untyped foundation



12
soft types

◮ no types (Metamath)

◮ hard types (PVS, HOL, Isabelle, Coq, Twelf)

types are part of the foundation

◮ soft types (ACL2, B method, Mizar)

types are a layer on top of an untyped foundation

‘types as predicates’
type inference = automated predicate proving

∀x : A.P (x) is syntax for ∀x.A(x) ⇒ P (x)



12
soft types

◮ no types (Metamath)

◮ hard types (PVS, HOL, Isabelle, Coq, Twelf)

types are part of the foundation

◮ soft types (ACL2, B method, Mizar)

types are a layer on top of an untyped foundation

‘types as predicates’
type inference = automated predicate proving

∀x : A(y, . . .). P (x) is syntax for ∀x.A(x, y, . . .) ⇒ P (x)

natural interpretation for dependent types



12
soft types
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◮ hard types (PVS, HOL, Isabelle, Coq, Twelf)

types are part of the foundation

◮ soft types (ACL2, B method, Mizar)

types are a layer on top of an untyped foundation

‘types as predicates’
type inference = automated predicate proving

∀x : A(y, . . .). P (x) is syntax for ∀x.A(x, y, . . .) ⇒ P (x)

natural interpretation for dependent types
no natural interpretation for function types A→ B
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element of a given algebraic structure

array of a given length
normal form of a given lambda term
vector space of a given dimension

field extension of a given field by a given degree

essential for implicit arguments in notations
x+ y for x+G y when x, y are elements of a group G

◮ empty types

unavoidable with natural definitions of dependent types

set →֒ class ↔ type
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each function f(x1, . . . , xn) has a domain predicate Df (x1, . . . , xn)

Ddiv(x, y) ⇔ (y 6= 0)

each formula φ has a definedness condition ∆(φ)

∆(
1

0
= 0) ⇔ Ddiv(1, 0) ⇔ (0 6= 0) ⇔ ⊥

∆(∀x ∈ R. x 6= 0 ⇒ 1

x
6= 0)

∆(φ⇒ ψ) ⇔ (∆(φ) ∧ (φ⇒ ∆(ψ)))

∆(φ ∧ ψ) ⇔ (∆(φ) ∧ (φ⇒ ∆(ψ)))

∆ does not respect logical equivalence

∆(φ ∧ ψ) 6⇔ ∆(ψ ∧ φ)
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I don’t like universes!
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Vladimir Voevodsky and the formalization of the real numbers

Vladimir Voevodsky, Institute for Advanced Study
Fields medal in 2002

homotopy type theory, 2006

I will speak about type systems. It is difficult for a mathematician

since a type system is not a mathematical notion.

R =
set of Dedekind cuts?

set of equivalence classes of Cauchy sequences?
set of equivalence classes of pairs of positive real numbers?

any field isomorphic to the real numbers?
any set of the cardinality of the real numbers?

abstract datatypes in mathematics?
hardwire ‘up to isomorphism’ in the logical foundations?
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minimal higher order logic

◮ Metamath
minimal string manipulation
not HOAS: not invariant under variable renaming

◮ Automath = AUT-SL = ∆Λ
N.G. de Bruijn, Eindhoven University of Technology, 1987
very similar to LF but more elegant

◮ ∆Λ with a bounded conversion rule?
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◮ varying the logic
taking Gödel’s incompleteness theorem seriously
tracking what is used in a proof

classical logic?
K axiom about equality of equality proofs?

axiom of choice?
large cardinal axioms?

Hilbert’s ǫ choice operator?
universes?

◮ simplifying the logical kernel
DNA of formal mathematics

∆Λ ‘term’ = directed graph with four kinds of nodes
out-degrees: 2, 2, 1, 0
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◮ Coq in Coq = Coc
Bruno Barras, Université Paris 7, 1999

version of Coq kernel as a Coq program, extracted to OCaml
not close to Coq source, can check proofs from real Coq

◮ HOL in HOL
John Harrison, Intel, 2006

simplified HOL kernel as a HOL program
very close to HOL source, cannot check HOL proofs

◮ ACL2 in ACL2 = Milawa
Jared Davis, University of Texas, 2009

various approximations to ACL2 as an ACL2 program
not close to ACL2 source, can check proofs from real ACL2
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the philosophy of certainty

◮ reliability of hardware and software infrastructure?

◮ how can a system validate itself?

if it is incorrect it can falsely claim to be correct

◮ Gödel’s second incompleteness theorem?
no consistent logical system can prove its own consistency

not: system cannot prove false
but: system implements logic

just one additional line

inaccessible cardinal axiom ⊢ system cannot prove false
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◮ implementation language
language the implementer uses to implement the system

Coq: OCaml

◮ scripting language
language the user uses to automate proofs in the system

Coq: Ltac

◮ mathematical language
language the user uses to write mathematics
. . . and mathematical algorithms

Coq: Gallina, Program

OCaml, Ltac, Gallina, Program: four similar programming languages
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◮ type theory:

mathematical language
∩

programming language

mathematical functions = terminating programs

◮ better:

programming language
∩

mathematical language

programs = executable function definitions
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all actual computers are finite state machines

let rec fac n = if n=0 then 1 else n*(fac(n-1));;

�
�	

mathematical function

&

theorem about
the definition of the

mathematical function

fac : Z≥0 → Z

@
@R

executable object

2 ACC0

3 BNEQ 0, 9

6 CONST1

7 RETURN 1

9 ACC0

10 OFFSETINT -1

12 PUSHOFFSETCLOSURE0

13 APPLY1

14 PUSHACC1

15 MULINT

16 RETURN 1

?
theorem about the relation between the two
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the reliability of computer algebra systems

> 2*infinity-infinity, 2*x-x;

undefined, x

> subs(x=infinity, 2*x-x);

infinity

> int(1/(1-x),x) = int(simplify(1/(1-x)),x);

− ln(1 − x) = − ln(−1 + x)

> evalf(subs(x=-1, %));

−0.6931471806 = −0.6931471806 − 3.141592654i
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◮ mathematically sound computer algebra

performance? features?



26
killer app for proof assistants?

◮ reliable software and hardware development

◮ mathematics education

teaching students about mathematical proof
Christophe Rafalli, Université de Savoie, 2002
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Steven Kieffer, A language for mathematical knowledge management

Peter Koepke, Naturalness in formal mathematics
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Theorem 43 (Pythagoras’ theorem).
√

2 is irrational.

The traditional proof ascribed to Pythagoras runs as follows.
If
√

2 is rational, then the equation

a2 = 2b2 (4.3.1)

is soluble in integers a, b with (a, b) = 1. Hence a2 is even, and
therefore a is even. If a = 2c, then 4c2 = 2b2, 2c2 = b2, and
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Freek Wiedijk, Radboud University Nijmegen, 2009

Mizar Light =
Mizar proof language on top of HOL Light system

three ways to create Mizar Light texts

◮ editing manually = declarative proof style

check-fix-extend cycle

◮ growing by executing tactics = procedural proof style

lines without correct justification are the subgoals

◮ converting existing HOL Light scripts
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