
the next generation of proof assistants

Freek Wiedijk

Radboud University Nijmegen
The Netherlands

2010 08 31 , 16 : 30

LSFA 2010
Natal, Brazil

the next generation of proof assistants:

ten questions

Freek Wiedijk

Radboud University Nijmegen
The Netherlands

2010 08 31 , 16 : 30

LSFA 2010
Natal, Brazil

the state of the art

1
some of the best current proof assistants

ACL2

B method

PVS

HOL

Isabelle

Coq

Mizar

Twelf

Metamath

1
some of the best current proof assistants

ACL2

B method

PVS

HOL
����:

-XXXXXz
HOL4

HOL Light

ProofPowerIsabelle

Coq

Mizar

Twelf

Metamath

1
some of the best current proof assistants

ACL2

B method

PVS

HOL
����:

-XXXXXz?
HOL4

HOL Light

ProofPowerIsabelle

Coq

Mizar

Twelf

Metamath

1
some of the best current proof assistants

ACL2

B method

PVS

HOL
����:

-XXXXXz?
HOL4

HOL Light

ProofPowerIsabelle

Coq -XXXXXz
ssreflect

MatitaMizar

Twelf

Metamath

1
some of the best current proof assistants

ACL2

B method

PVS

HOL
����:

-XXXXXz?
HOL4

HOL Light

ProofPowerIsabelle

Coq -XXXXXz
ssreflect

MatitaMizar

Twelf

Metamath

+

+

+

+

IT
P

2
0
1
0

1
some of the best current proof assistants

ACL2

B method

PVS

HOL
����:

-XXXXXz?
HOL4

HOL Light

ProofPowerIsabelle

Coq -XXXXXz
ssreflect

MatitaMizar

Twelf

Metamath

+

+

+

+

IT
P

2
0
1
0

+

+

+

P
O

P
L
m

ark

1
some of the best current proof assistants

ACL2

B method

PVS

HOL
����:

-XXXXXz?
HOL4

HOL Light

ProofPowerIsabelle

Coq -XXXXXz
ssreflect

MatitaMizar

Twelf

Metamath

+

+

+

+

IT
P

2
0
1
0

+

+

+

P
O

P
L
m

ark

+

+

+

+

1
0
0

th
eo

rem
s

1
some of the best current proof assistants

ACL2

B method

PVS

HOL
����:

-XXXXXz?
HOL4

HOL Light

ProofPowerIsabelle

Coq -XXXXXz
ssreflect

MatitaMizar

Twelf

Metamath

+

+

+

+

co
m

p
u
ters

+

+

+

lo
g
ic

+

+

+

+

m
a
th

em
a
tics

1
some of the best current proof assistants

ACL2

B method

PVS

HOL
����:

-XXXXXz?
HOL4

HOL Light

ProofPowerIsabelle

Coq -XXXXXz
ssreflect

MatitaMizar

Twelf

Metamath

+

+

+

+

+

+

co
m

p
u
ters

+

+

+

lo
g
ic

+

+

+

+

m
a
th

em
a
tics

1
some of the best current proof assistants

ACL2

B method

PVS

HOL
����:

-XXXXXz?
HOL4

HOL Light

ProofPowerIsabelle

Coq -XXXXXz
ssreflect

MatitaMizar

Twelf

Metamath

+

+

+

+

+

+

co
m

p
u
ters

+

+

+

lo
g
ic

+

+

+

+

+

m
a
th

em
a
tics

2
the computer science spectrum of formal proof

2
the computer science spectrum of formal proof

circuits made of electronic components like transistors

2
the computer science spectrum of formal proof

circuits made of logical gates as described in a netlist

↑

circuits made of electronic components like transistors

2
the computer science spectrum of formal proof

circuits specified on the register transfer level like in Verilog

↑

circuits made of logical gates as described in a netlist

↑

circuits made of electronic components like transistors

2
the computer science spectrum of formal proof

machine code

↑

circuits specified on the register transfer level like in Verilog

↑

circuits made of logical gates as described in a netlist

↑

circuits made of electronic components like transistors

2
the computer science spectrum of formal proof

assembly programming languages

↑

machine code

↑

circuits specified on the register transfer level like in Verilog

↑

circuits made of logical gates as described in a netlist

↑

circuits made of electronic components like transistors

2
the computer science spectrum of formal proof

low level programming languages like C

assembly programming languages

↑

machine code

↑

circuits specified on the register transfer level like in Verilog

↑

circuits made of logical gates as described in a netlist

↑

circuits made of electronic components like transistors

2
the computer science spectrum of formal proof

high level programming languages like Haskell

low level programming languages like C

assembly programming languages

↑

machine code

↑

circuits specified on the register transfer level like in Verilog

↑

circuits made of logical gates as described in a netlist

↑

circuits made of electronic components like transistors

2
the computer science spectrum of formal proof

system level programs like operating systems and device drivers

↑

high level programming languages like Haskell

low level programming languages like C

assembly programming languages

↑

machine code

↑

circuits specified on the register transfer level like in Verilog

↑

circuits made of logical gates as described in a netlist

↑

circuits made of electronic components like transistors

2
the computer science spectrum of formal proof

programmer level programs like compilers and databases engines

↑

system level programs like operating systems and device drivers

↑

high level programming languages like Haskell

low level programming languages like C

assembly programming languages

↑

machine code

↑

circuits specified on the register transfer level like in Verilog

↑

circuits made of logical gates as described in a netlist

↑

circuits made of electronic components like transistors

2
the computer science spectrum of formal proof

user level programs like word processors and web browsers

programmer level programs like compilers and databases engines

↑

system level programs like operating systems and device drivers

↑

high level programming languages like Haskell

low level programming languages like C

assembly programming languages

↑

machine code

↑

circuits specified on the register transfer level like in Verilog

↑

circuits made of logical gates as described in a netlist

↑

circuits made of electronic components like transistors

2
the computer science spectrum of formal proof

non-user level programs like computer games

user level programs like word processors and web browsers

programmer level programs like compilers and databases engines

↑

system level programs like operating systems and device drivers

↑

high level programming languages like Haskell

low level programming languages like C

assembly programming languages

↑

machine code

↑

circuits specified on the register transfer level like in Verilog

↑

circuits made of logical gates as described in a netlist

↑

circuits made of electronic components like transistors

2
the computer science spectrum of formal proof

non-user level programs like computer games

user level programs like word processors and web browsers

programmer level programs like compilers and databases engines

↑

system level programs like operating systems and device drivers

↑

high level programming languages like Haskell

low level programming languages like C

assembly programming languages

↑

machine code

↑

circuits specified on the register transfer level like in Verilog

↑

circuits made of logical gates as described in a netlist

↑

circuits made of electronic components like transistors

2
the computer science spectrum of formal proof

non-user level programs like computer games

user level programs like word processors and web browsers

programmer level programs like compilers and databases engines

↑

system level programs like operating systems and device drivers

↑

high level programming languages like Haskell

low level programming languages like C

assembly programming languages

↑

machine code

↑

circuits specified on the register transfer level like in Verilog

↑

circuits made of logical gates as described in a netlist

↑

circuits made of electronic components like transistors

2
the computer science spectrum of formal proof

non-user level programs like computer games

user level programs like word processors and web browsers

programmer level programs like compilers and databases engines

↑

system level programs like operating systems and device drivers

↑

high level programming languages like Haskell

low level programming languages like C

assembly programming languages

↑

machine code

↑

circuits specified on the register transfer level like in Verilog

↑

circuits made of logical gates as described in a netlist

↑

circuits made of electronic components like transistors

2
the computer science spectrum of formal proof

non-user level programs like computer games

user level programs like word processors and web browsers

programmer level programs like compilers and databases engines

↑

system level programs like operating systems and device drivers

↑

high level programming languages like Haskell

low level programming languages like C

assembly programming languages

↑

machine code

↑

circuits specified on the register transfer level like in Verilog

↑

circuits made of logical gates as described in a netlist

↑

circuits made of electronic components like transistors

2
the computer science spectrum of formal proof

non-user level programs like computer games

user level programs like word processors and web browsers

programmer level programs like compilers and databases engines

↑

system level programs like operating systems and device drivers

↑

high level programming languages like Haskell

low level programming languages like C

assembly programming languages

↑

machine code

↑

circuits specified on the register transfer level like in Verilog

↑

circuits made of logical gates as described in a netlist

↑

circuits made of electronic components like transistors

3
formally proving a processor correct

ARM6 architecture ARMv3 instruction set

Anthony Fox, HOL4, University of Cambridge, 2002

4
formally proving a compiler correct

Xavier Leroy, Coq, INRIA, 2006

5
formally proving an operating system correct

Gerwin Klein, Isabelle, NICTA, 2009

L4.verified project = verification of seL4 microkernel

1 microkernel
8,700 lines of C

0 bugs∗

qed

∗conditions apply

5
formally proving an operating system correct

Gerwin Klein, Isabelle, NICTA, 2009

L4.verified project = verification of seL4 microkernel

1 microkernel
8,700 lines of C

0 bugs∗

qed

5,700 lines of Haskell

∗conditions apply

5
formally proving an operating system correct

Gerwin Klein, Isabelle, NICTA, 2009

L4.verified project = verification of seL4 microkernel

1 microkernel
8,700 lines of C

0 bugs∗

qed

5,700 lines of Haskell

117,000 lines of Isabelle
20 person-years

∗conditions apply

5
formally proving an operating system correct

Gerwin Klein, Isabelle, NICTA, 2009

L4.verified project = verification of seL4 microkernel

1 microkernel
8,700 lines of C

0 bugs∗

qed

5,700 lines of Haskell

117,000 lines of Isabelle
20 person-years

∗conditions apply

6
the mathematics spectrum of formal proof

6
the mathematics spectrum of formal proof

elementary school mathematics = arithmetic

6
the mathematics spectrum of formal proof

high school mathematics = basic algebra and calculus

↑

elementary school mathematics = arithmetic

6
the mathematics spectrum of formal proof

undergraduate mathematics

↑

high school mathematics = basic algebra and calculus

↑

elementary school mathematics = arithmetic

6
the mathematics spectrum of formal proof

graduate mathematics

↑

undergraduate mathematics

↑

high school mathematics = basic algebra and calculus

↑

elementary school mathematics = arithmetic

6
the mathematics spectrum of formal proof

research mathematics

↑

graduate mathematics

↑

undergraduate mathematics

↑

high school mathematics = basic algebra and calculus

↑

elementary school mathematics = arithmetic

6
the mathematics spectrum of formal proof

research mathematics

graduate mathematics

↑

undergraduate mathematics

↑

high school mathematics = basic algebra and calculus

↑

elementary school mathematics = arithmetic

6
the mathematics spectrum of formal proof

research mathematics

graduate mathematics prime number theorem

↑ Jordan curve theorem

undergraduate mathematics fundamental theorem of algebra

↑

high school mathematics = basic algebra and calculus

↑

elementary school mathematics = arithmetic

6
the mathematics spectrum of formal proof

proofs with large computer calculations four color theorem

↑

research mathematics

graduate mathematics prime number theorem

↑ Jordan curve theorem

undergraduate mathematics fundamental theorem of algebra

↑

high school mathematics = basic algebra and calculus

↑

elementary school mathematics = arithmetic

6
the mathematics spectrum of formal proof

recent solutions to famous open problems

↑

proofs with large computer calculations four color theorem

↑

research mathematics

graduate mathematics prime number theorem

↑ Jordan curve theorem

undergraduate mathematics fundamental theorem of algebra

↑

high school mathematics = basic algebra and calculus

↑

elementary school mathematics = arithmetic

6
the mathematics spectrum of formal proof

recent solutions to famous open problems P 6= NP?

↑

proofs with large computer calculations four color theorem

↑

research mathematics

graduate mathematics prime number theorem

↑ Jordan curve theorem

undergraduate mathematics fundamental theorem of algebra

↑

high school mathematics = basic algebra and calculus

↑

elementary school mathematics = arithmetic

6
the mathematics spectrum of formal proof

proofs that are a large team effort classification of finite simple groups

↑

recent solutions to famous open problems P 6= NP?

↑

proofs with large computer calculations four color theorem

↑

research mathematics

graduate mathematics prime number theorem

↑ Jordan curve theorem

undergraduate mathematics fundamental theorem of algebra

↑

high school mathematics = basic algebra and calculus

↑

elementary school mathematics = arithmetic

6
the mathematics spectrum of formal proof

proofs that are a large team effort classification of finite simple groups

↑

recent solutions to famous open problems P 6= NP?

↑ Kepler conjecture

proofs with large computer calculations four color theorem

↑

research mathematics

graduate mathematics prime number theorem

↑ Jordan curve theorem

undergraduate mathematics fundamental theorem of algebra

↑

high school mathematics = basic algebra and calculus

↑

elementary school mathematics = arithmetic

6
the mathematics spectrum of formal proof

proofs that are a large team effort classification of finite simple groups

↑ Fermat’s last theorem

recent solutions to famous open problems P 6= NP?

↑ Kepler conjecture

proofs with large computer calculations four color theorem

↑

research mathematics

graduate mathematics prime number theorem

↑ Jordan curve theorem

undergraduate mathematics fundamental theorem of algebra

↑

high school mathematics = basic algebra and calculus

↑

elementary school mathematics = arithmetic

6
the mathematics spectrum of formal proof

proofs that are a large team effort classification of finite simple groups

↑ Fermat’s last theorem

recent solutions to famous open problems P 6= NP?

↑ Kepler conjecture

proofs with large computer calculations four color theorem

↑

research mathematics

graduate mathematics prime number theorem

↑ Jordan curve theorem

undergraduate mathematics fundamental theorem of algebra

↑

high school mathematics = basic algebra and calculus

↑

elementary school mathematics = arithmetic

6
the mathematics spectrum of formal proof

proofs that are a large team effort classification of finite simple groups

↑ Fermat’s last theorem

recent solutions to famous open problems P 6= NP?

↑ Kepler conjecture

proofs with large computer calculations four color theorem

↑

research mathematics

graduate mathematics prime number theorem

↑ Jordan curve theorem

undergraduate mathematics fundamental theorem of algebra

↑

high school mathematics = basic algebra and calculus

↑

elementary school mathematics = arithmetic

6
the mathematics spectrum of formal proof

proofs that are a large team effort classification of finite simple groups

↑ Fermat’s last theorem

recent solutions to famous open problems P 6= NP?

↑ Kepler conjecture

proofs with large computer calculations four color theorem

↑

research mathematics

graduate mathematics prime number theorem

↑ Jordan curve theorem

undergraduate mathematics fundamental theorem of algebra

↑

high school mathematics = basic algebra and calculus

↑

elementary school mathematics = arithmetic

6
the mathematics spectrum of formal proof

proofs that are a large team effort classification of finite simple groups

↑ Fermat’s last theorem

recent solutions to famous open problems P 6= NP?

↑ Kepler conjecture

proofs with large computer calculations four color theorem

↑

research mathematics

graduate mathematics prime number theorem

↑ Jordan curve theorem

undergraduate mathematics fundamental theorem of algebra

↑

high school mathematics = basic algebra and calculus

↑

elementary school mathematics = arithmetic

6
the mathematics spectrum of formal proof

proofs that are a large team effort classification of finite simple groups

↑ Fermat’s last theorem

recent solutions to famous open problems P 6= NP?

↑ Kepler conjecture

proofs with large computer calculations four color theorem

↑

research mathematics

graduate mathematics prime number theorem

↑ Jordan curve theorem

undergraduate mathematics fundamental theorem of algebra

↑

high school mathematics = basic algebra and calculus

↑

elementary school mathematics = arithmetic

7
formally proving the prime number theorem

John Harrison, HOL Light, Intel, 2008

2πiF (w) =

∫

Γ
F (z + w)N z

(

1

z
+

z

R2

)

dz

&%
'$qq

q
etcetera

ALL_TAC] THEN

SUBGOAL_THEN

‘((\z. f(w + z) * Cx(&N) cpow z * (Cx(&1) / z + z / Cx(R) pow 2))

has_path_integral (Cx(&2) * Cx pi * ii * f(w))) (A ++ B)‘

ASSUME_TAC THENL

[MP_TAC(ISPECL

etcetera

8
formally proving the four color theorem

Georges Gonthier, Coq/ssreflect, Microsoft + INRIA, 2006

◮ Appel & Haken, 1976
assembly program

◮ Robertson, Sanders, Seymour & Thomas, 1997
C program

◮ Gonthier
purely functional (= no state) OCaml program

8
formally proving the four color theorem

Georges Gonthier, Coq/ssreflect, Microsoft + INRIA, 2006

◮ Appel & Haken, 1976
assembly program

◮ Robertson, Sanders, Seymour & Thomas, 1997
C program

◮ Gonthier
purely functional (= no state) OCaml→Coq program

proof assistants: the next generation

9
an email from Tobias Nipkow

Message-ID: <4785C81D.2090607@in.tum.de>

Date: Thu, 10 Jan 2008 08:24:13 +0100

From: Tobias Nipkow <nipkow@in.tum.de>

To: Freek Wiedijk <freek@cs.ru.nl>

Subject: Re: [Fwd: free ultrafilters]

[. . .]

> I personally _hate_ the totality of the HOL logic. Don’t

> you?

Occasionally I do. But mostly not.

The next generation of proof assistants will take it into account.

[. . .]

9
an email from Tobias Nipkow

�
�+

me

Message-ID: <4785C81D.2090607@in.tum.de>

Date: Thu, 10 Jan 2008 08:24:13 +0100

From: Tobias Nipkow <nipkow@in.tum.de>

To: Freek Wiedijk <freek@cs.ru.nl>

Subject: Re: [Fwd: free ultrafilters]

[. . .]

> I personally _hate_ the totality of the HOL logic. Don’t

> you?

Occasionally I do. But mostly not.

The next generation of proof assistants will take it into account.

[. . .]

9
an email from Tobias Nipkow

�
�+

me

Q
Qk

Tobias

Message-ID: <4785C81D.2090607@in.tum.de>

Date: Thu, 10 Jan 2008 08:24:13 +0100

From: Tobias Nipkow <nipkow@in.tum.de>

To: Freek Wiedijk <freek@cs.ru.nl>

Subject: Re: [Fwd: free ultrafilters]

[. . .]

> I personally _hate_ the totality of the HOL logic. Don’t

> you?

Occasionally I do. But mostly not.

The next generation of proof assistants will take it into account.

[. . .]

9
an email from Tobias Nipkow

�
�+

me

Q
Qk

Tobias

Message-ID: <4785C81D.2090607@in.tum.de>

Date: Thu, 10 Jan 2008 08:24:13 +0100

From: Tobias Nipkow <nipkow@in.tum.de>

To: Freek Wiedijk <freek@cs.ru.nl>

Subject: Re: [Fwd: free ultrafilters]

[. . .]

> I personally _hate_ the totality of the HOL logic. Don’t

> you?

Occasionally I do. But mostly not.

The next generation of proof assistants will take it into account.

[. . .]

I

should the next generation of proof assistants
be based on ZFC set theory?

I

should the next generation of proof assistants
be based on ZFC set theory?

ACL2
B method

PVS
HOL

Isabelle
Coq
Mizar
Twelf

Metamath

I

should the next generation of proof assistants
be based on ZFC set theory?

ACL2
B method

PVS
HOL

Isabelle
Coq
Mizar
Twelf

Metamath

I

should the next generation of proof assistants
be based on ZFC set theory?

ACL2
B method

PVS
HOL

Isabelle
Coq
Mizar
Twelf

Metamath

I

should the next generation of proof assistants
be based on ZFC set theory?

ACL2
B method

PVS
HOL

Isabelle/ZF
Coq
Mizar
Twelf

Metamath

10
foundations for proof assistants

◮ set theory (Mizar, Isabelle/ZF, Metamath, B method)

Zermelo-Fraenkel axioms + axiom of Choice

◮ type theory (Coq, Twelf)

Curry-Howard isomorphism

◮ higher order logic (HOL, Isabelle/HOL, PVS)

◮ primitive recursive arithmetic (ACL2)

10
foundations for proof assistants

◮ set theory (Mizar, Isabelle/ZF, Metamath, B method)

Zermelo-Fraenkel axioms + axiom of Choice
untyped, not computational, classical, canonical

◮ type theory (Coq, Twelf)

Curry-Howard isomorphism

◮ higher order logic (HOL, Isabelle/HOL, PVS)

◮ primitive recursive arithmetic (ACL2)

10
foundations for proof assistants

◮ set theory (Mizar, Isabelle/ZF, Metamath, B method)

Zermelo-Fraenkel axioms + axiom of Choice
untyped, not computational, classical, canonical

◮ type theory (Coq, Twelf)

Curry-Howard isomorphism
typed, computational, intuitionistic, many variations

◮ higher order logic (HOL, Isabelle/HOL, PVS)

◮ primitive recursive arithmetic (ACL2)

10
foundations for proof assistants

◮ set theory (Mizar, Isabelle/ZF, Metamath, B method)

Zermelo-Fraenkel axioms + axiom of Choice
untyped, not computational, classical, canonical

◮ type theory (Coq, Twelf)

Curry-Howard isomorphism, predicative? intensional?

typed, computational, intuitionistic, many variations

◮ higher order logic (HOL, Isabelle/HOL, PVS)

◮ primitive recursive arithmetic (ACL2)

10
foundations for proof assistants

◮ set theory (Mizar, Isabelle/ZF, Metamath, B method)

Zermelo-Fraenkel axioms + axiom of Choice
untyped, not computational, classical, canonical

◮ type theory (Coq, Twelf)

Curry-Howard isomorphism, predicative? intensional?

typed, computational, intuitionistic, many variations

◮ higher order logic (HOL, Isabelle/HOL, PVS)

typed, not computational, classical, canonical

◮ primitive recursive arithmetic (ACL2)

10
foundations for proof assistants

◮ set theory (Mizar, Isabelle/ZF, Metamath, B method)

Zermelo-Fraenkel axioms + axiom of Choice
untyped, not computational, classical, canonical

◮ type theory (Coq, Twelf)

Curry-Howard isomorphism, predicative? intensional?

typed, computational, intuitionistic, many variations

◮ higher order logic (HOL, Isabelle/HOL, PVS)

typed, not computational, classical, canonical

◮ primitive recursive arithmetic (ACL2)

untyped, computational, classical, canonical

10
foundations for proof assistants

◮ set theory (Mizar, Isabelle/ZF, Metamath, B method)

Zermelo-Fraenkel axioms + axiom of Choice
untyped, not computational, classical, canonical

◮ type theory (Coq, Twelf)

Curry-Howard isomorphism, predicative? intensional?

typed, computational, intuitionistic, many variations
as expressive as set theory

◮ higher order logic (HOL, Isabelle/HOL, PVS)

typed, not computational, classical, canonical

◮ primitive recursive arithmetic (ACL2)

untyped, computational, classical, canonical

10
foundations for proof assistants

◮ set theory (Mizar, Isabelle/ZF, Metamath, B method)

Zermelo-Fraenkel axioms + axiom of Choice
untyped, not computational, classical, canonical

◮ type theory (Coq, Twelf)

Curry-Howard isomorphism, predicative? intensional?

typed, computational, intuitionistic, many variations
as expressive as set theory

◮ higher order logic (HOL, Isabelle/HOL, PVS)

typed, not computational, classical, canonical
less expressive

◮ primitive recursive arithmetic (ACL2)

untyped, computational, classical, canonical

10
foundations for proof assistants

◮ set theory (Mizar, Isabelle/ZF, Metamath, B method)

Zermelo-Fraenkel axioms + axiom of Choice
untyped, not computational, classical, canonical

◮ type theory (Coq, Twelf)

Curry-Howard isomorphism, predicative? intensional?

typed, computational, intuitionistic, many variations
as expressive as set theory

◮ higher order logic (HOL, Isabelle/HOL, PVS)

typed, not computational, classical, canonical
less expressive

◮ primitive recursive arithmetic (ACL2)

untyped, computational, classical, canonical
even less expressive

11
first order logic versus higher order logic

‘canonical logic’ = classical first order predicate logic with equality

11
first order logic versus higher order logic

‘canonical logic’ = classical first order predicate logic with equality

first order logic
∩

higher order logic
∩

first order logic + set theory

11
first order logic versus higher order logic

‘canonical logic’ = classical first order predicate logic with equality

first order logic
∩

higher order logic
∩

first order logic + schemes + set theory

11
first order logic versus higher order logic

‘canonical logic’ = classical first order predicate logic with equality

first order logic
∩

higher order logic
∩

first order logic + schemes + set theory

binders
{x ∈ A | P (x)}

∑n
i=1 ai

limx→a f(x)
∫

f(x)dx

II

should the next generation of proof assistants
have an advanced type system?

II

should the next generation of proof assistants
have an advanced type system?

ACL2
B method

PVS
HOL

Isabelle
Coq
Mizar
Twelf

Metamath

12
soft types

◮ no types (Metamath)

◮ hard types (PVS, HOL, Isabelle, Coq, Twelf)

types are part of the foundation

◮ soft types (ACL2, B method, Mizar)

types are a layer on top of an untyped foundation

12
soft types

◮ no types (Metamath)

◮ hard types (PVS, HOL, Isabelle, Coq, Twelf)

types are part of the foundation

◮ soft types (ACL2, B method, Mizar)

types are a layer on top of an untyped foundation

‘types as predicates’
type inference = automated predicate proving

∀x : A.P (x) is syntax for ∀x.A(x) ⇒ P (x)

12
soft types

◮ no types (Metamath)

◮ hard types (PVS, HOL, Isabelle, Coq, Twelf)

types are part of the foundation

◮ soft types (ACL2, B method, Mizar)

types are a layer on top of an untyped foundation

‘types as predicates’
type inference = automated predicate proving

∀x : A(y, . . .). P (x) is syntax for ∀x.A(x, y, . . .) ⇒ P (x)

natural interpretation for dependent types

12
soft types

◮ no types (Metamath)

◮ hard types (PVS, HOL, Isabelle, Coq, Twelf)

types are part of the foundation

◮ soft types (ACL2, B method, Mizar)

types are a layer on top of an untyped foundation

‘types as predicates’
type inference = automated predicate proving

∀x : A(y, . . .). P (x) is syntax for ∀x.A(x, y, . . .) ⇒ P (x)

natural interpretation for dependent types
no natural interpretation for function types A→ B

13
dependent types and empty types

◮ dependent types

element of a given set
element of a given algebraic structure

array of a given length
normal form of a given lambda term
vector space of a given dimension

field extension of a given field by a given degree

13
dependent types and empty types

◮ dependent types

element of a given set
element of a given algebraic structure

array of a given length
normal form of a given lambda term
vector space of a given dimension

field extension of a given field by a given degree

essential for implicit arguments in notations
x+ y for x+G y when x, y are elements of a group G

13
dependent types and empty types

◮ dependent types

element of a given set
element of a given algebraic structure

array of a given length
normal form of a given lambda term
vector space of a given dimension

field extension of a given field by a given degree

essential for implicit arguments in notations
x+ y for x+G y when x, y are elements of a group G

◮ empty types

unavoidable with natural definitions of dependent types

13
dependent types and empty types

◮ dependent types

element of a given set
element of a given algebraic structure

array of a given length
normal form of a given lambda term
vector space of a given dimension

field extension of a given field by a given degree

essential for implicit arguments in notations
x+ y for x+G y when x, y are elements of a group G

◮ empty types

unavoidable with natural definitions of dependent types

set →֒ class ↔ type

III

should the next generation of proof assistants
take partiality seriously?

III

should the next generation of proof assistants
take partiality seriously?

ACL2
B method

PVS
HOL

Isabelle
Coq
Mizar
Twelf

Metamath

14
the value of

1

0

◮
1

0
= 0 is provable (ACL2, HOL, Isabelle/HOL, Mizar)

◮
1

0
= 0 is disprovable (Metamath)

◮
1

0
= 0 is neither provable nor disprovable (Coq)

◮
1

0
= 0 is illegal (ACL2/gold, B method, PVS, Coq/CoRN, Twelf)

14
the value of

1

0

◮
1

0
= 0 is provable (ACL2, HOL, Isabelle/HOL, Mizar)

◮
1

0
= 0 is disprovable (Metamath, IMPS)

proof
1

0
is undefined, 0 is defined qed

◮
1

0
= 0 is neither provable nor disprovable (Coq)

◮
1

0
= 0 is illegal (ACL2/gold, B method, PVS, Coq/CoRN, Twelf)

14
the value of

1

0

◮
1

0
= 0 is provable (ACL2, HOL, Isabelle/HOL, Mizar)

◮
1

0
= 0 is disprovable (Metamath, IMPS)

proof
1

0
is undefined, 0 is defined qed

1

0
=

1

0
?

◮
1

0
= 0 is neither provable nor disprovable (Coq)

◮
1

0
= 0 is illegal (ACL2/gold, B method, PVS, Coq/CoRN, Twelf)

14
the value of

1

0

◮
1

0
= 0 is provable (ACL2, HOL, Isabelle/HOL, Mizar)

◮
1

0
= 0 is disprovable (Metamath, IMPS)

proof
1

0
is undefined, 0 is defined qed

1

0
=

1

0
?

◮
1

0
= 0 is neither provable nor disprovable (Coq)

◮
1

0
= 0 is illegal (ACL2/gold, B method, PVS, Coq/CoRN, Twelf)

14
the value of

1

0

◮
1

0
= 0 is provable (ACL2, HOL, Isabelle/HOL, Mizar)

◮
1

0
= 0 is disprovable (Metamath, IMPS)

proof
1

0
is undefined, 0 is defined qed

1

0
=

1

0
?

◮
1

0
= 0 is neither provable nor disprovable (Coq)

◮
1

0
= 0 is illegal (ACL2/gold, B method, PVS, Coq/CoRN, Twelf)

1

x
= y

div(1, x, 〈proof object for x 6= 0〉) = y

14
the value of

1

0

◮
1

0
= 0 is provable (ACL2, HOL, Isabelle/HOL, Mizar)

◮
1

0
= 0 is disprovable (Metamath, IMPS)

proof
1

0
is undefined, 0 is defined qed

1

0
=

1

0
?

◮
1

0
= 0 is neither provable nor disprovable (Coq)

◮
1

0
= 0 is illegal (ACL2/gold, B method, PVS, Coq/CoRN, Twelf)

1

0
= 0

div(1, 0, 〈proof object for 0 6= 0〉) = 0

14
the value of

1

0

◮
1

0
= 0 is provable (ACL2, HOL, Isabelle/HOL, Mizar)

◮
1

0
= 0 is disprovable (Metamath, IMPS)

proof
1

0
is undefined, 0 is defined qed

1

0
=

1

0
?

◮
1

0
= 0 is neither provable nor disprovable (Coq)

◮
1

0
= 0 is illegal (ACL2/gold, B method, PVS, Coq/CoRN, Twelf)

1

0
= 0

div(1, 0, 〈proof object for 0 6= 0〉) = 0

14
the value of

1

0

◮
1

0
= 0 is provable (ACL2, HOL, Isabelle/HOL, Mizar)

◮
1

0
= 0 is disprovable (Metamath, IMPS)

proof
1

0
is undefined, 0 is defined qed

1

0
=

1

0
?

◮
1

0
= 0 is neither provable nor disprovable (Coq)

◮
1

0
= 0 is illegal (ACL2/gold, B method, PVS, Coq/CoRN, Twelf)

1

0
= 0

div(1, 0, 〈proof object for 0 6= 0〉) = 0

15
definedness conditions

each function f(x1, . . . , xn) has a domain predicate Df (x1, . . . , xn)

Ddiv(x, y) ⇔ (y 6= 0)

each formula φ has a definedness condition ∆(φ)

∆(
1

0
= 0) ⇔ Ddiv(1, 0) ⇔ (0 6= 0) ⇔ ⊥

15
definedness conditions

each function f(x1, . . . , xn) has a domain predicate Df (x1, . . . , xn)

Ddiv(x, y) ⇔ (y 6= 0)

each formula φ has a definedness condition ∆(φ)

∆(
1

0
= 0) ⇔ Ddiv(1, 0) ⇔ (0 6= 0) ⇔ ⊥

∆(∀x ∈ R. x 6= 0 ⇒ 1

x
6= 0) ?

15
definedness conditions

each function f(x1, . . . , xn) has a domain predicate Df (x1, . . . , xn)

Ddiv(x, y) ⇔ (y 6= 0)

each formula φ has a definedness condition ∆(φ)

∆(
1

0
= 0) ⇔ Ddiv(1, 0) ⇔ (0 6= 0) ⇔ ⊥

∆(∀x ∈ R. x 6= 0 ⇒ 1

x
6= 0)

∆(φ⇒ ψ) ⇔ (∆(φ) ∧ (φ⇒ ∆(ψ)))

15
definedness conditions

each function f(x1, . . . , xn) has a domain predicate Df (x1, . . . , xn)

Ddiv(x, y) ⇔ (y 6= 0)

each formula φ has a definedness condition ∆(φ)

∆(
1

0
= 0) ⇔ Ddiv(1, 0) ⇔ (0 6= 0) ⇔ ⊥

∆(∀x ∈ R. x 6= 0 ⇒ 1

x
6= 0)

∆(φ⇒ ψ) ⇔ (∆(φ) ∧ (φ⇒ ∆(ψ)))

∆(φ ∧ ψ) ⇔ (∆(φ) ∧ (φ⇒ ∆(ψ)))

15
definedness conditions

each function f(x1, . . . , xn) has a domain predicate Df (x1, . . . , xn)

Ddiv(x, y) ⇔ (y 6= 0)

each formula φ has a definedness condition ∆(φ)

∆(
1

0
= 0) ⇔ Ddiv(1, 0) ⇔ (0 6= 0) ⇔ ⊥

∆(∀x ∈ R. x 6= 0 ⇒ 1

x
6= 0)

∆(φ⇒ ψ) ⇔ (∆(φ) ∧ (φ⇒ ∆(ψ)))

∆(φ ∧ ψ) ⇔ (∆(φ) ∧ (φ⇒ ∆(ψ)))

∆ does not respect logical equivalence

∆(φ ∧ ψ) 6⇔ ∆(ψ ∧ φ)

IV

should the next generation of proof assistants
take category theory seriously?

IV

should the next generation of proof assistants
take category theory seriously?

ACL2
B method

PVS
HOL

Isabelle
Coq
Mizar
Twelf

Metamath

16
the snake lemma and the category of Abelian groups

•

��

// •

��

// •

��

// 0

0 // • // • // •

16
the snake lemma and the category of Abelian groups

•

��

// •

��

// •

��

// 0

0 // • // • // •

0

��

0

��

0

��•

��

•

��

•

��

�� �� ��•
��

•
��

•
��

0 0 0

16
the snake lemma and the category of Abelian groups

•

��

// •

��

// •

��

// 0

0 // • // • // •

0

��

0

��

0

��•

��

•

��

•

��

�� �� ��•
��

•
��

•
��

0 0 0

• // • // •
ED

BC

GF

@A
// • // • // •

16
the snake lemma and the category of Abelian groups

•

��

// •

��

// •

��

// 0

0 // • // • // •

0

��

0

��

0

��•

��

•

��

•

��

�� �� ��•
��

•
��

•
��

0 0 0

• // • // •
ED

BC

GF

@A
// • // • // •

I don’t like universes!

17
Vladimir Voevodsky and the formalization of the real numbers

Vladimir Voevodsky, Institute for Advanced Study
Fields medal in 2002

17
Vladimir Voevodsky and the formalization of the real numbers

Vladimir Voevodsky, Institute for Advanced Study
Fields medal in 2002

homotopy type theory, 2006

17
Vladimir Voevodsky and the formalization of the real numbers

Vladimir Voevodsky, Institute for Advanced Study
Fields medal in 2002

homotopy type theory, 2006

I will speak about type systems. It is difficult for a mathematician

since a type system is not a mathematical notion.

17
Vladimir Voevodsky and the formalization of the real numbers

Vladimir Voevodsky, Institute for Advanced Study
Fields medal in 2002

homotopy type theory, 2006

I will speak about type systems. It is difficult for a mathematician

since a type system is not a mathematical notion.

R =
set of Dedekind cuts?

set of equivalence classes of Cauchy sequences?

17
Vladimir Voevodsky and the formalization of the real numbers

Vladimir Voevodsky, Institute for Advanced Study
Fields medal in 2002

homotopy type theory, 2006

I will speak about type systems. It is difficult for a mathematician

since a type system is not a mathematical notion.

R =
set of Dedekind cuts?

set of equivalence classes of Cauchy sequences?
set of equivalence classes of pairs of positive real numbers?

17
Vladimir Voevodsky and the formalization of the real numbers

Vladimir Voevodsky, Institute for Advanced Study
Fields medal in 2002

homotopy type theory, 2006

I will speak about type systems. It is difficult for a mathematician

since a type system is not a mathematical notion.

R =
set of Dedekind cuts?

set of equivalence classes of Cauchy sequences?
set of equivalence classes of pairs of positive real numbers?

any field isomorphic to the real numbers?

17
Vladimir Voevodsky and the formalization of the real numbers

Vladimir Voevodsky, Institute for Advanced Study
Fields medal in 2002

homotopy type theory, 2006

I will speak about type systems. It is difficult for a mathematician

since a type system is not a mathematical notion.

R =
set of Dedekind cuts?

set of equivalence classes of Cauchy sequences?
set of equivalence classes of pairs of positive real numbers?

any field isomorphic to the real numbers?
any set of the cardinality of the real numbers?

17
Vladimir Voevodsky and the formalization of the real numbers

Vladimir Voevodsky, Institute for Advanced Study
Fields medal in 2002

homotopy type theory, 2006

I will speak about type systems. It is difficult for a mathematician

since a type system is not a mathematical notion.

R =
set of Dedekind cuts?

set of equivalence classes of Cauchy sequences?
set of equivalence classes of pairs of positive real numbers?

any field isomorphic to the real numbers?
any set of the cardinality of the real numbers?

abstract datatypes in mathematics?

17
Vladimir Voevodsky and the formalization of the real numbers

Vladimir Voevodsky, Institute for Advanced Study
Fields medal in 2002

homotopy type theory, 2006

I will speak about type systems. It is difficult for a mathematician

since a type system is not a mathematical notion.

R =
set of Dedekind cuts?

set of equivalence classes of Cauchy sequences?
set of equivalence classes of pairs of positive real numbers?

any field isomorphic to the real numbers?
any set of the cardinality of the real numbers?

abstract datatypes in mathematics?
hardwire ‘up to isomorphism’ in the logical foundations?

V

should the next generation of proof assistants
be based on a logical framework?

V

should the next generation of proof assistants
be based on a logical framework?

ACL2
B method

PVS
HOL

Isabelle
Coq
Mizar
Twelf

Metamath

18
logical frameworks

◮ Twelf = LF
minimal type theory

◮ Isabelle/Pure
minimal higher order logic

◮ Metamath
minimal string manipulation

18
logical frameworks

◮ Twelf = LF
minimal type theory

◮ Isabelle/Pure
minimal higher order logic

◮ Metamath
minimal string manipulation
not HOAS: not invariant under variable renaming

18
logical frameworks

◮ Twelf = LF
minimal type theory

◮ Isabelle/Pure
minimal higher order logic

◮ Metamath
minimal string manipulation
not HOAS: not invariant under variable renaming

◮ Automath = AUT-SL = ∆Λ
N.G. de Bruijn, Eindhoven University of Technology, 1987
very similar to LF but more elegant

18
logical frameworks

◮ Twelf = LF
minimal type theory

◮ Isabelle/Pure
minimal higher order logic

◮ Metamath
minimal string manipulation
not HOAS: not invariant under variable renaming

◮ Automath = AUT-SL = ∆Λ
N.G. de Bruijn, Eindhoven University of Technology, 1987
very similar to LF but more elegant

◮ ∆Λ with a bounded conversion rule?

19
reasons for using a logical framework

◮ varying the logic
taking Gödel’s incompleteness theorem seriously
tracking what is used in a proof

classical logic?
K axiom about equality of equality proofs?

axiom of choice?
large cardinal axioms?

Hilbert’s ǫ choice operator?
universes?

19
reasons for using a logical framework

◮ varying the logic
taking Gödel’s incompleteness theorem seriously
tracking what is used in a proof

classical logic?
K axiom about equality of equality proofs?

axiom of choice?
large cardinal axioms?

Hilbert’s ǫ choice operator?
universes?

◮ simplifying the logical kernel
DNA of formal mathematics

19
reasons for using a logical framework

◮ varying the logic
taking Gödel’s incompleteness theorem seriously
tracking what is used in a proof

classical logic?
K axiom about equality of equality proofs?

axiom of choice?
large cardinal axioms?

Hilbert’s ǫ choice operator?
universes?

◮ simplifying the logical kernel
DNA of formal mathematics

∆Λ ‘term’ = directed graph with four kinds of nodes
out-degrees: 2, 2, 1, 0

VI

should the next generation of proof assistants
have a self-verified kernel?

VI

should the next generation of proof assistants
have a self-verified kernel?

ACL2
B method

PVS
HOL

Isabelle
Coq
Mizar
Twelf

Metamath

20
state of the art in self-verification

◮ Coq in Coq = Coc
Bruno Barras, Université Paris 7, 1999

version of Coq kernel as a Coq program, extracted to OCaml
not close to Coq source, can check proofs from real Coq

20
state of the art in self-verification

◮ Coq in Coq = Coc
Bruno Barras, Université Paris 7, 1999

version of Coq kernel as a Coq program, extracted to OCaml
not close to Coq source, can check proofs from real Coq

◮ HOL in HOL
John Harrison, Intel, 2006

simplified HOL kernel as a HOL program
very close to HOL source, cannot check HOL proofs

20
state of the art in self-verification

◮ Coq in Coq = Coc
Bruno Barras, Université Paris 7, 1999

version of Coq kernel as a Coq program, extracted to OCaml
not close to Coq source, can check proofs from real Coq

◮ HOL in HOL
John Harrison, Intel, 2006

simplified HOL kernel as a HOL program
very close to HOL source, cannot check HOL proofs

◮ ACL2 in ACL2 = Milawa
Jared Davis, University of Texas, 2009

various approximations to ACL2 as an ACL2 program
not close to ACL2 source, can check proofs from real ACL2

21
the philosophy of certainty

◮ reliability of hardware and software infrastructure?

21
the philosophy of certainty

◮ reliability of hardware and software infrastructure?

◮ how can a system validate itself?

if it is incorrect it can falsely claim to be correct

21
the philosophy of certainty

◮ reliability of hardware and software infrastructure?

◮ how can a system validate itself?

if it is incorrect it can falsely claim to be correct

◮ Gödel’s second incompleteness theorem?
no consistent logical system can prove its own consistency

21
the philosophy of certainty

◮ reliability of hardware and software infrastructure?

◮ how can a system validate itself?

if it is incorrect it can falsely claim to be correct

◮ Gödel’s second incompleteness theorem?
no consistent logical system can prove its own consistency

not: system cannot prove false
but: system implements logic

21
the philosophy of certainty

◮ reliability of hardware and software infrastructure?

◮ how can a system validate itself?

if it is incorrect it can falsely claim to be correct

◮ Gödel’s second incompleteness theorem?
no consistent logical system can prove its own consistency

not: system cannot prove false
but: system implements logic

just one additional line

logic cannot prove false ⊢ system cannot prove false

21
the philosophy of certainty

◮ reliability of hardware and software infrastructure?

◮ how can a system validate itself?

if it is incorrect it can falsely claim to be correct

◮ Gödel’s second incompleteness theorem?
no consistent logical system can prove its own consistency

not: system cannot prove false
but: system implements logic

just one additional line

logic has a model ⊢ system cannot prove false

21
the philosophy of certainty

◮ reliability of hardware and software infrastructure?

◮ how can a system validate itself?

if it is incorrect it can falsely claim to be correct

◮ Gödel’s second incompleteness theorem?
no consistent logical system can prove its own consistency

not: system cannot prove false
but: system implements logic

just one additional line

inaccessible cardinal axiom ⊢ system cannot prove false

VII

should the next generation of proof assistants
be programmed in itself?

VII

should the next generation of proof assistants
be programmed in itself?

ACL2
B method

PVS
HOL

Isabelle
Coq
Mizar
Twelf

Metamath

22
languages in proof assistants

◮ implementation language
language the implementer uses to implement the system

22
languages in proof assistants

◮ implementation language
language the implementer uses to implement the system

◮ scripting language
language the user uses to automate proofs in the system

22
languages in proof assistants

◮ implementation language
language the implementer uses to implement the system

◮ scripting language
language the user uses to automate proofs in the system

◮ mathematical language
language the user uses to write mathematics

22
languages in proof assistants

◮ implementation language
language the implementer uses to implement the system

◮ scripting language
language the user uses to automate proofs in the system

◮ mathematical language
language the user uses to write mathematics
. . . and mathematical algorithms

22
languages in proof assistants

◮ implementation language
language the implementer uses to implement the system

Coq: OCaml

◮ scripting language
language the user uses to automate proofs in the system

◮ mathematical language
language the user uses to write mathematics
. . . and mathematical algorithms

22
languages in proof assistants

◮ implementation language
language the implementer uses to implement the system

Coq: OCaml

◮ scripting language
language the user uses to automate proofs in the system

Coq: Ltac

◮ mathematical language
language the user uses to write mathematics
. . . and mathematical algorithms

22
languages in proof assistants

◮ implementation language
language the implementer uses to implement the system

Coq: OCaml

◮ scripting language
language the user uses to automate proofs in the system

Coq: Ltac

◮ mathematical language
language the user uses to write mathematics
. . . and mathematical algorithms

Coq: Gallina

22
languages in proof assistants

◮ implementation language
language the implementer uses to implement the system

Coq: OCaml

◮ scripting language
language the user uses to automate proofs in the system

Coq: Ltac

◮ mathematical language
language the user uses to write mathematics
. . . and mathematical algorithms

Coq: Gallina

OCaml, Ltac, Gallina: three very similar programming languages

22
languages in proof assistants

◮ implementation language
language the implementer uses to implement the system

Coq: OCaml

◮ scripting language
language the user uses to automate proofs in the system

Coq: Ltac

◮ mathematical language
language the user uses to write mathematics
. . . and mathematical algorithms

Coq: Gallina, Program

OCaml, Ltac, Gallina, Program: four similar programming languages

23
programming language versus mathematical language

◮ type theory:

mathematical language
∩

programming language

mathematical functions = terminating programs

23
programming language versus mathematical language

◮ type theory:

mathematical language
∩

programming language

mathematical functions = terminating programs

◮ better:

programming language
∩

mathematical language

programs = executable function definitions

24
the mathematical function versus the executable object

all actual computers are finite state machines

24
the mathematical function versus the executable object

all actual computers are finite state machines

let rec fac n = if n=0 then 1 else n*(fac(n-1));;

24
the mathematical function versus the executable object

all actual computers are finite state machines

let rec fac n = if n=0 then 1 else n*(fac(n-1));;

�
�	

mathematical function

&

theorem about
the definition of the

mathematical function

fac : Z≥0 → Z

24
the mathematical function versus the executable object

all actual computers are finite state machines

let rec fac n = if n=0 then 1 else n*(fac(n-1));;

�
�	

mathematical function

&

theorem about
the definition of the

mathematical function

fac : Z≥0 → Z

@
@R

executable object

2 ACC0

3 BNEQ 0, 9

6 CONST1

7 RETURN 1

9 ACC0

10 OFFSETINT -1

12 PUSHOFFSETCLOSURE0

13 APPLY1

14 PUSHACC1

15 MULINT

16 RETURN 1

24
the mathematical function versus the executable object

all actual computers are finite state machines

let rec fac n = if n=0 then 1 else n*(fac(n-1));;

�
�	

mathematical function

&

theorem about
the definition of the

mathematical function

fac : Z≥0 → Z

@
@R

executable object

2 ACC0

3 BNEQ 0, 9

6 CONST1

7 RETURN 1

9 ACC0

10 OFFSETINT -1

12 PUSHOFFSETCLOSURE0

13 APPLY1

14 PUSHACC1

15 MULINT

16 RETURN 1

?
theorem about the relation between the two

VIII

should the next generation of proof assistants
be competitive with commercial computer algebra?

VIII

should the next generation of proof assistants
be competitive with commercial computer algebra?

ACL2
B method

PVS
HOL

Isabelle
Coq
Mizar
Twelf

Metamath

25
the reliability of computer algebra systems

> 2*infinity-infinity;

25
the reliability of computer algebra systems

> 2*infinity-infinity;

undefined

25
the reliability of computer algebra systems

> 2*infinity-infinity, 2*x-x;

undefined, x

25
the reliability of computer algebra systems

> 2*infinity-infinity, 2*x-x;

undefined, x

> subs(x=infinity, 2*x-x);

infinity

25
the reliability of computer algebra systems

> 2*infinity-infinity, 2*x-x;

undefined, x

> subs(x=infinity, 2*x-x);

infinity

> 1/(1-x) = simplify(1/(1-x))

1

1 − x
= − 1

−1 + x

25
the reliability of computer algebra systems

> 2*infinity-infinity, 2*x-x;

undefined, x

> subs(x=infinity, 2*x-x);

infinity

> int(1/(1-x),x) = int(simplify(1/(1-x)),x);

− ln(1 − x) = − ln(−1 + x)

25
the reliability of computer algebra systems

> 2*infinity-infinity, 2*x-x;

undefined, x

> subs(x=infinity, 2*x-x);

infinity

> int(1/(1-x),x) = int(simplify(1/(1-x)),x);

− ln(1 − x) = − ln(−1 + x)

> evalf(subs(x=-1, %));

−0.6931471806 = −0.6931471806 − 3.141592654i

26
killer app for proof assistants?

◮ reliable software and hardware development

26
killer app for proof assistants?

◮ reliable software and hardware development

◮ mathematics education

teaching students about mathematical proof
Christophe Rafalli, Université de Savoie, 2002

26
killer app for proof assistants?

◮ reliable software and hardware development

◮ mathematics education

teaching students about mathematical proof
Christophe Rafalli, Université de Savoie, 2002

◮ mathematically sound computer algebra

26
killer app for proof assistants?

◮ reliable software and hardware development

◮ mathematics education

teaching students about mathematical proof
Christophe Rafalli, Université de Savoie, 2002

◮ mathematically sound computer algebra

performance? features?

26
killer app for proof assistants?

◮ reliable software and hardware development

◮ mathematics education

teaching students about mathematical proof
Christophe Rafalli, Université de Savoie, 2002

◮ mathematically sound computer algebra

performance? features?

computers cannot do high school mathematics

x 6= 0 ∧
∣

∣ ln |x|
∣

∣ > 2 ∧
∫ |x|

0
t dt ≤ 1 ⇒ − 1

e2
< x <

1

e2

26
killer app for proof assistants?

◮ reliable software and hardware development

◮ mathematics education

teaching students about mathematical proof
Christophe Rafalli, Université de Savoie, 2002

◮ mathematically sound computer algebra

performance? features?

computers cannot do high school mathematics yet

x 6= 0 ∧
∣

∣ ln |x|
∣

∣ > 2 ∧
∫ |x|

0
t dt ≤ 1 ⇒ − 1

e2
< x <

1

e2

IX

should the next generation of proof assistants
use a declarative proof style?

IX

should the next generation of proof assistants
use a declarative proof style?

ACL2
B method

PVS
HOL

Isabelle
Coq
Mizar
Twelf

Metamath

27
proof styles in proof assistants

◮ tactic scripts (HOL, Isabelle, Coq, PVS, B method, Metamath)

procedural

◮ controlled natural language (Mizar, Isabelle/Isar, Twelf)

declarative

◮ generated natural language (ACL2)

◮ actual natural language

27
proof styles in proof assistants

◮ tactic scripts (HOL, Isabelle, Coq, PVS, B method, Metamath)

procedural

◮ controlled natural language (Mizar, Isabelle/Isar, Twelf)

declarative

◮ generated natural language (ACL2)

◮ actual natural language

‘computer should be able to parse mathematical LATEX’

27
proof styles in proof assistants

◮ tactic scripts (HOL, Isabelle, Coq, PVS, B method, Metamath)

procedural

◮ controlled natural language (Mizar, Isabelle/Isar, Twelf)

declarative

◮ generated natural language (ACL2)

◮ actual natural language (not practically possible)

‘computer should be able to parse mathematical LATEX’

27
proof styles in proof assistants

◮ tactic scripts (HOL, Isabelle, Coq, PVS, B method, Metamath)

procedural
only understandable by interactively replaying the proof

◮ controlled natural language (Mizar, Isabelle/Isar, Twelf)

declarative

◮ generated natural language (ACL2)

◮ actual natural language (not practically possible)

‘computer should be able to parse mathematical LATEX’

27
proof styles in proof assistants

◮ tactic scripts (HOL, Isabelle, Coq, PVS, B method, Metamath)

procedural
only understandable by interactively replaying the proof

◮ controlled natural language (Mizar, Isabelle/Isar, Twelf)

declarative
similar in look to programming language

◮ generated natural language (ACL2)

◮ actual natural language (not practically possible)

‘computer should be able to parse mathematical LATEX’

27
proof styles in proof assistants

◮ tactic scripts (HOL, Isabelle, Coq, PVS, B method, Metamath)

procedural
only understandable by interactively replaying the proof

◮ controlled natural language (Mizar, Isabelle/Isar, Twelf)

declarative
similar in look to programming language

◮ generated natural language (ACL2)

◮ actual natural language (not practically possible)

‘computer should be able to parse mathematical LATEX’

27
proof styles in proof assistants

◮ tactic scripts (HOL, Isabelle, Coq, PVS, B method, Metamath)

procedural
only understandable by interactively replaying the proof

◮ controlled natural language (Mizar, Isabelle/Isar, Twelf)

declarative
similar in look to programming language

◮ generated natural language (ACL2)

rather verbose: screens and screens of text

◮ actual natural language (not practically possible)

‘computer should be able to parse mathematical LATEX’

27
proof styles in proof assistants

◮ tactic scripts (HOL, Isabelle, Coq, PVS, B method, Metamath)

procedural
only understandable by interactively replaying the proof

◮ controlled natural language (Mizar, Isabelle/Isar, Twelf)

declarative
similar in look to programming language

◮ generated natural language (ACL2, Theorema)

rather verbose: screens and screens of text

◮ actual natural language (not practically possible)

‘computer should be able to parse mathematical LATEX’

28
Mohan Ganesalingam and the language of mathematics

Mohan Ganesalingam, University of Cambridge
senior wrangler of his year

The Language of Mathematics, 2009
277 page master’s thesis → PhD thesis

articficial language as close as possible to actual language

28
Mohan Ganesalingam and the language of mathematics

Mohan Ganesalingam, University of Cambridge
senior wrangler of his year

The Language of Mathematics, 2009
277 page master’s thesis → PhD thesis

articficial language as close as possible to actual language

Andrzej Trybulec, Mizar
Makarius Wenzel, Isabelle/Isar
Andriy Paskevych, SAD/ForTheL

28
Mohan Ganesalingam and the language of mathematics

Mohan Ganesalingam, University of Cambridge
senior wrangler of his year

The Language of Mathematics, 2009
277 page master’s thesis → PhD thesis

articficial language as close as possible to actual language

Andrzej Trybulec, Mizar
Makarius Wenzel, Isabelle/Isar
Andriy Paskevych, SAD/ForTheL (= ‘Evidence Algorithm’)

28
Mohan Ganesalingam and the language of mathematics

Mohan Ganesalingam, University of Cambridge
senior wrangler of his year

The Language of Mathematics, 2009
277 page master’s thesis → PhD thesis

articficial language as close as possible to actual language

Andrzej Trybulec, Mizar
Makarius Wenzel, Isabelle/Isar
Andriy Paskevych, SAD/ForTheL (= ‘Evidence Algorithm’)

Steven Kieffer, A language for mathematical knowledge management

Peter Koepke, Naturalness in formal mathematics

Claus Zinn, Understanding Informal Mathematical Discourse

Aarne Ranta, Syntactic categories in the language of mathematics

29
formal proof sketches

Theorem 43 (Pythagoras’ theorem).
√

2 is irrational.

The traditional proof ascribed to Pythagoras runs as follows.
If
√

2 is rational, then the equation

a2 = 2b2 (4.3.1)

is soluble in integers a, b with (a, b) = 1. Hence a2 is even, and
therefore a is even. If a = 2c, then 4c2 = 2b2, 2c2 = b2, and
b is also even, contrary to the hypothesis that (a, b) = 1. �

29
formal proof sketches

theorem :: Pythagoras’ theorem

Th43: sqrt 2 is irrational
proof
:: the traditional proof ascribed to Pythagoras :

assume sqrt 2 is rational;
consider a, b such that

4 3 1: aˆ2 = 2 ∗ bˆ2 and
a,b are relative prime;

then aˆ2 is even;
then a is even;
consider c such that a = 2 ∗ c;
then 4 ∗ cˆ2 = 2 ∗ bˆ2;
2 ∗ cˆ2 = bˆ2;
b is even;
hence contradiction;

end;

29
formal proof sketches

theorem
Th43: sqrt 2 is irrational

proof
:: the traditional proof ascribed to Pythagoras :

assume sqrt 2 is rational;
consider a, b such that

4 3 1: aˆ2 = 2 ∗ bˆ2 and
a,b are relative prime;

then aˆ2 is even;
then a is even;
consider c such that a = 2 ∗ c;
then 4 ∗ cˆ2 = 2 ∗ bˆ2;
2 ∗ cˆ2 = bˆ2;
b is even;
hence contradiction;

end;

:: (Pythagoras’ theorem)

29
formal proof sketches

proof
:: the traditional proof ascribed to Pythagoras :

assume sqrt 2 is rational;
consider a, b such that

4 3 1: aˆ2 = 2 ∗ bˆ2 and
a,b are relative prime;

then aˆ2 is even;
then a is even;
consider c such that a = 2 ∗ c;
then 4 ∗ cˆ2 = 2 ∗ bˆ2;
2 ∗ cˆ2 = bˆ2;
b is even;
hence contradiction;

end;

theorem Th43: sqrt 2 is irrational :: (Pythagoras’ theorem)

29
formal proof sketches

assume sqrt 2 is rational;
consider a, b such that

4 3 1: aˆ2 = 2 ∗ bˆ2 and
a,b are relative prime;

then aˆ2 is even;
then a is even;
consider c such that a = 2 ∗ c;
then 4 ∗ cˆ2 = 2 ∗ bˆ2;
2 ∗ cˆ2 = bˆ2;
b is even;
hence contradiction;

end;

theorem Th43: sqrt 2 is irrational :: (Pythagoras’ theorem)

proof :: the traditional proof ascribed to Pythagoras :

29
formal proof sketches

consider a, b such that
4 3 1: aˆ2 = 2 ∗ bˆ2 and

a,b are relative prime;
then aˆ2 is even;
then a is even;
consider c such that a = 2 ∗ c;
then 4 ∗ cˆ2 = 2 ∗ bˆ2;
2 ∗ cˆ2 = bˆ2;
b is even;
hence contradiction;

end;

theorem Th43: sqrt 2 is irrational :: (Pythagoras’ theorem)

proof :: the traditional proof ascribed to Pythagoras :
assume sqrt 2 is rational;

29
formal proof sketches

4 3 1: aˆ2 = 2 ∗ bˆ2 and
a,b are relative prime;

then aˆ2 is even;
then a is even;
consider c such that a = 2 ∗ c;
then 4 ∗ cˆ2 = 2 ∗ bˆ2;
2 ∗ cˆ2 = bˆ2;
b is even;
hence contradiction;

end;

theorem Th43: sqrt 2 is irrational :: (Pythagoras’ theorem)

proof :: the traditional proof ascribed to Pythagoras :
assume sqrt 2 is rational; consider a, b such that

29
formal proof sketches

aˆ2 = 2 ∗ bˆ2 and
a,b are relative prime;

then aˆ2 is even;
then a is even;
consider c such that a = 2 ∗ c;
then 4 ∗ cˆ2 = 2 ∗ bˆ2;
2 ∗ cˆ2 = bˆ2;
b is even;
hence contradiction;

end;

theorem Th43: sqrt 2 is irrational :: (Pythagoras’ theorem)

proof :: the traditional proof ascribed to Pythagoras :
assume sqrt 2 is rational; consider a, b such that

4 3 1 :

29
formal proof sketches

and
a,b are relative prime;

then aˆ2 is even;
then a is even;
consider c such that a = 2 ∗ c;
then 4 ∗ cˆ2 = 2 ∗ bˆ2;
2 ∗ cˆ2 = bˆ2;
b is even;
hence contradiction;

end;

theorem Th43: sqrt 2 is irrational :: (Pythagoras’ theorem)

proof :: the traditional proof ascribed to Pythagoras :
assume sqrt 2 is rational; consider a, b such that

4 3 1 : aˆ2 = 2 ∗ bˆ2

29
formal proof sketches

a,b are relative prime;
then aˆ2 is even;
then a is even;
consider c such that a = 2 ∗ c;
then 4 ∗ cˆ2 = 2 ∗ bˆ2;
2 ∗ cˆ2 = bˆ2;
b is even;
hence contradiction;

end;

theorem Th43: sqrt 2 is irrational :: (Pythagoras’ theorem)

proof :: the traditional proof ascribed to Pythagoras :
assume sqrt 2 is rational; consider a, b such that

4 3 1 : aˆ2 = 2 ∗ bˆ2

and

29
formal proof sketches

then aˆ2 is even;
then a is even;
consider c such that a = 2 ∗ c;
then 4 ∗ cˆ2 = 2 ∗ bˆ2;
2 ∗ cˆ2 = bˆ2;
b is even;
hence contradiction;

end;

theorem Th43: sqrt 2 is irrational :: (Pythagoras’ theorem)

proof :: the traditional proof ascribed to Pythagoras :
assume sqrt 2 is rational; consider a, b such that

4 3 1 : aˆ2 = 2 ∗ bˆ2

and a, b are relative prime;

29
formal proof sketches

then a is even;
consider c such that a = 2 ∗ c;
then 4 ∗ cˆ2 = 2 ∗ bˆ2;
2 ∗ cˆ2 = bˆ2;
b is even;
hence contradiction;

end;

theorem Th43: sqrt 2 is irrational :: (Pythagoras’ theorem)

proof :: the traditional proof ascribed to Pythagoras :
assume sqrt 2 is rational; consider a, b such that

4 3 1 : aˆ2 = 2 ∗ bˆ2

and a, b are relative prime; then aˆ2 is even;

29
formal proof sketches

consider c such that a = 2 ∗ c;
then 4 ∗ cˆ2 = 2 ∗ bˆ2;
2 ∗ cˆ2 = bˆ2;
b is even;
hence contradiction;

end;

theorem Th43: sqrt 2 is irrational :: (Pythagoras’ theorem)

proof :: the traditional proof ascribed to Pythagoras :
assume sqrt 2 is rational; consider a, b such that

4 3 1 : aˆ2 = 2 ∗ bˆ2

and a, b are relative prime; then aˆ2 is even; then a is even;

29
formal proof sketches

then 4 ∗ cˆ2 = 2 ∗ bˆ2;
2 ∗ cˆ2 = bˆ2;
b is even;
hence contradiction;

end;

theorem Th43: sqrt 2 is irrational :: (Pythagoras’ theorem)

proof :: the traditional proof ascribed to Pythagoras :
assume sqrt 2 is rational; consider a, b such that

4 3 1 : aˆ2 = 2 ∗ bˆ2

and a, b are relative prime; then aˆ2 is even; then a is even;
consider c such that a = 2 ∗ c;

29
formal proof sketches

2 ∗ cˆ2 = bˆ2;
b is even;
hence contradiction;

end;

theorem Th43: sqrt 2 is irrational :: (Pythagoras’ theorem)

proof :: the traditional proof ascribed to Pythagoras :
assume sqrt 2 is rational; consider a, b such that

4 3 1 : aˆ2 = 2 ∗ bˆ2

and a, b are relative prime; then aˆ2 is even; then a is even;
consider c such that a = 2 ∗ c; then 4 ∗ cˆ2 = 2 ∗ bˆ2;

29
formal proof sketches

b is even;
hence contradiction;

end;

theorem Th43: sqrt 2 is irrational :: (Pythagoras’ theorem)

proof :: the traditional proof ascribed to Pythagoras :
assume sqrt 2 is rational; consider a, b such that

4 3 1 : aˆ2 = 2 ∗ bˆ2

and a, b are relative prime; then aˆ2 is even; then a is even;
consider c such that a = 2 ∗ c; then 4 ∗ cˆ2 = 2 ∗ bˆ2;
2 ∗ cˆ2 = bˆ2;

29
formal proof sketches

hence contradiction;
end;

theorem Th43: sqrt 2 is irrational :: (Pythagoras’ theorem)

proof :: the traditional proof ascribed to Pythagoras :
assume sqrt 2 is rational; consider a, b such that

4 3 1 : aˆ2 = 2 ∗ bˆ2

and a, b are relative prime; then aˆ2 is even; then a is even;
consider c such that a = 2 ∗ c; then 4 ∗ cˆ2 = 2 ∗ bˆ2;
2 ∗ cˆ2 = bˆ2; b is even;

29
formal proof sketches

end;

theorem Th43: sqrt 2 is irrational :: (Pythagoras’ theorem)

proof :: the traditional proof ascribed to Pythagoras :
assume sqrt 2 is rational; consider a, b such that

4 3 1 : aˆ2 = 2 ∗ bˆ2

and a, b are relative prime; then aˆ2 is even; then a is even;
consider c such that a = 2 ∗ c; then 4 ∗ cˆ2 = 2 ∗ bˆ2;
2 ∗ cˆ2 = bˆ2; b is even; hence contradiction;

29
formal proof sketches

theorem Th43: sqrt 2 is irrational :: (Pythagoras’ theorem)

proof :: the traditional proof ascribed to Pythagoras :
assume sqrt 2 is rational; consider a, b such that

4 3 1 : aˆ2 = 2 ∗ bˆ2

and a, b are relative prime; then aˆ2 is even; then a is even;
consider c such that a = 2 ∗ c; then 4 ∗ cˆ2 = 2 ∗ bˆ2;
2 ∗ cˆ2 = bˆ2; b is even; hence contradiction; end;

29
formal proof sketches

Theorem 43 (Pythagoras’ theorem).
√

2 is irrational.

The traditional proof ascribed to Pythagoras runs as follows.
If
√

2 is rational, then the equation

a2 = 2b2 (4.3.1)

is soluble in integers a, b with (a, b) = 1. Hence a2 is even, and
therefore a is even. If a = 2c, then 4c2 = 2b2, 2c2 = b2, and
b is also even, contrary to the hypothesis that (a, b) = 1. �

29
formal proof sketches

Theorem 43 (Pythagoras’ theorem).
√

2 is irrational.

The traditional proof ascribed to Pythagoras runs as follows.
If
√

2 is rational, then the equation

a2 = 2b2 (4.3.1)

is soluble in integers a, b with (a, b) = 1. Hence a2 is even, and
therefore a is even. If a = 2c, then 4c2 = 2b2, 2c2 = b2, and
b is also even, contrary to the hypothesis that (a, b) = 1. �

29
formal proof sketches

theorem Th43: sqrt 2 is irrational :: (Pythagoras’ theorem)

proof :: the traditional proof ascribed to Pythagoras :
assume sqrt 2 is rational; consider a, b such that

4 3 1 : aˆ2 = 2 ∗ bˆ2

and a, b are relative prime; then aˆ2 is even; then a is even;
consider c such that a = 2 ∗ c; then 4 ∗ cˆ2 = 2 ∗ bˆ2;
2 ∗ cˆ2 = bˆ2; b is even; hence contradiction; end;

30
integrating the procedural and declarative proof styles

Freek Wiedijk, Radboud University Nijmegen, 2009

Mizar Light =
Mizar proof language on top of HOL Light system

30
integrating the procedural and declarative proof styles

Freek Wiedijk, Radboud University Nijmegen, 2009

Mizar Light =
Mizar proof language on top of HOL Light system

three ways to create Mizar Light texts

◮ editing manually = declarative proof style

◮ growing by executing tactics = procedural proof style

30
integrating the procedural and declarative proof styles

Freek Wiedijk, Radboud University Nijmegen, 2009

Mizar Light =
Mizar proof language on top of HOL Light system

three ways to create Mizar Light texts

◮ editing manually = declarative proof style

check-fix-extend cycle

◮ growing by executing tactics = procedural proof style

30
integrating the procedural and declarative proof styles

Freek Wiedijk, Radboud University Nijmegen, 2009

Mizar Light =
Mizar proof language on top of HOL Light system

three ways to create Mizar Light texts

◮ editing manually = declarative proof style

check-fix-extend cycle

◮ growing by executing tactics = procedural proof style

lines without correct justification are the subgoals

30
integrating the procedural and declarative proof styles

Freek Wiedijk, Radboud University Nijmegen, 2009

Mizar Light =
Mizar proof language on top of HOL Light system

three ways to create Mizar Light texts

◮ editing manually = declarative proof style

check-fix-extend cycle

◮ growing by executing tactics = procedural proof style

lines without correct justification are the subgoals

◮ converting existing HOL Light scripts

X

how should the next generation of proof assistants
be arrived at?

31
evolution versus revolution

◮ next generation of an existing system?

◮ new system from scratch?

31
evolution versus revolution

◮ next generation of an existing system?

HOL Light → Mizar Light was an attempt at this

◮ new system from scratch?

31
evolution versus revolution

◮ next generation of an existing system?

HOL Light → Mizar Light was an attempt at this

best starting points = systems that answered ‘yes’ most

Isabelle

Coq

◮ new system from scratch?

31
evolution versus revolution

◮ next generation of an existing system?

HOL Light → Mizar Light was an attempt at this

best starting points = systems that answered ‘yes’ most

Isabelle

Coq

◮ new system from scratch?

throw away all that existing work?

31
evolution versus revolution

◮ next generation of an existing system?

HOL Light → Mizar Light was an attempt at this

best starting points = systems that answered ‘yes’ most

Isabelle

Coq

◮ new system from scratch?

throw away all that existing work?

many interoperable systems, or let the best system win?

31
evolution versus revolution

◮ next generation of an existing system?

HOL Light → Mizar Light was an attempt at this

best starting points = systems that answered ‘yes’ most

Isabelle

Coq

◮ new system from scratch?

throw away all that existing work?

many interoperable systems, or let the best system win!

the three bottlenecks

32
main improvements needed for wide adaptation of proof assistants

◮ better automation

◮ better mathematical libraries

◮ better match with existing mathematical culture

32
main improvements needed for wide adaptation of proof assistants

◮ better automation

◮ better mathematical libraries

◮ better match with existing mathematical culture

◮ better visual reasoning

32
main improvements needed for wide adaptation of proof assistants

◮ better automation

◮ better mathematical libraries

◮ better match with existing mathematical culture

◮ better visual reasoning

theorem arctan
1

2
+ arctan

1

3
=
π

4
proof

32
main improvements needed for wide adaptation of proof assistants

◮ better automation

◮ better mathematical libraries

◮ better match with existing mathematical culture

◮ better visual reasoning

theorem arctan
1

2
+ arctan

1

3
=
π

4
proof

> simplify(arctan(1/2) + arctan(1/3) - Pi/4);

32
main improvements needed for wide adaptation of proof assistants

◮ better automation

◮ better mathematical libraries

◮ better match with existing mathematical culture

◮ better visual reasoning

theorem arctan
1

2
+ arctan

1

3
=
π

4
proof

�

> simplify(arctan(1/2) + arctan(1/3) - Pi/4);

0

32
main improvements needed for wide adaptation of proof assistants

◮ better automation

◮ better mathematical libraries

◮ better match with existing mathematical culture

◮ better visual reasoning

theorem arctan
1

2
+ arctan

1

3
=
π

4
proof

32
main improvements needed for wide adaptation of proof assistants

◮ better automation

◮ better mathematical libraries

◮ better match with existing mathematical culture

◮ better visual reasoning

theorem arctan
1

2
+ arctan

1

3
=
π

4
proof

32
main improvements needed for wide adaptation of proof assistants

◮ better automation

◮ better mathematical libraries

◮ better match with existing mathematical culture

◮ better visual reasoning

theorem arctan
1

2
+ arctan

1

3
=
π

4
proof

32
main improvements needed for wide adaptation of proof assistants

◮ better automation

◮ better mathematical libraries

◮ better match with existing mathematical culture

◮ better visual reasoning

theorem arctan
1

2
+ arctan

1

3
=
π

4
proof

32
main improvements needed for wide adaptation of proof assistants

◮ better automation

◮ better mathematical libraries

◮ better match with existing mathematical culture

◮ better visual reasoning

theorem arctan
1

2
+ arctan

1

3
=
π

4
proof

�

	the next generation of proof assistants in ten questions
	the state of the art
	1. some of the best current proof assistants
	2. the computer science spectrum of formal proof
	3. formally proving a processor correct
	4. formally proving a compiler correct
	5. formally proving an operating system correct
	6. the mathematics spectrum of formal proof
	7. formally proving the prime number theorem
	8. formally proving the four color theorem

	proof assistants: the next generation
	9. an email from Tobias Nipkow

	I. should ... be based on ZFC set theory?
	10. foundations for proof assistants
	11. first order logic versus higher order logic

	II. should ... have an advanced type system?
	12. soft types
	13. dependent types and empty types

	III. should ... take partiality seriously?
	14. the value of 1/0
	15. definedness conditions

	IV. should ... take category theory seriously?
	16. the snake lemma and the category of Abelian groups
	17. Vladimir Voevodsky and the formalization of the real numbers

	V. should ... be based on a logical framework?
	18. logical frameworks
	19. reasons for using a logical framework

	VI. should ... have a self-verified kernel?
	20. state of the art in self-verification
	21. the philosophy of certainty

	VII. should ... be programmed in itself?
	22. languages in proof assistants
	23. programming language versus mathematical language
	24. the mathematical function versus the executable object

	VIII. should ... be competitive with commercial computer algebra?
	25. the reliability of computer algebra systems
	26. killer app for proof assistants?

	IX. should ... use a declarative proof style?
	27. proof styles in proof assistants
	28. Mohan Ganesalingam and the language of mathematics
	29. formal proof sketches
	30. integrating the procedural and declarative proof styles

	X. how should ... be arrived at?
	31. evolution versus revolution

	the three bottlenecks
	32. main improvements needed for wide adaptation of proof assistants

