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Abstract. The type theories λU and λU− are known to be logically
inconsistent. For λU , this is known as Girard’s paradox [Gir72]; for λU−

the inconsistency was proved by Coquand [Coq94]. It is also known that
the inconsistency gives rise to a so called ”looping combinator”: a family
of terms Ln such that Lnf is convertible with f(Ln+1f). It was unclear
whether a fixed point combinator exists in these systems. Later, Hurkens
[Hur95] has given a simpler version of the paradox in λU−, giving rise
to an actual proof term that can be analyzed.

In the present paper we analyze the proof of Hurkens and we study the
looping combinator that arises from it: it is a real looping combinator
(not a fixed point combinator) but in the Curry version of λU− it is a
fixed-point combinator. We also analyze the possibility of typing a fixed
point combinator in λU− and we prove that the Church and Turing fixed
point combinators cannot be typed in λU−.

1 Introduction

This paper deals with the subject of fixed point and looping combinators in typed
λ-calculi. We are mainly interested in the systems λU−, λU and λ?, which arose
in the early 70s as inconsistent extensions of (typed) higher order logic, following
the Curry-Howard formulas-as-types embedding. In a sense, the simplest system
is λ?, where ‘type is a type’ and therefore many constructions that are forbidden
in other type theories are possible. The system is inconsistent in the sense that
there are closed inhabitants of all types, also the ‘bottom’ type Πα : ?.α. This
makes the system logically inconsistent. However, the system is computationally
still interesting, because not all terms are β-convertible.

The first one to study the computational power of these inconsistent systems
was [How87], going back to earlier (unpublished) work of [Rei86]. Howe coined
the terminology looping combinator for a family of terms {Ln}n∈N such that
Ln f =β f(Ln+1 f), and he showed that a looping combinator can be defined in
λ?. With then use of a looping combinator, it can be shown that the equational
theory is undecidable and that the theory is Turing complete. The proof of this
last fact, we have not been able to find in the published literature, so we outline
it briefly in this paper.



When Girard proved the paradox in 1972, he did that for λU , an exten-
sion of higher order logic with polymorphic domains and quantification over all
domains. This system allows less type constructions than λ?, but that has the
advantage that it is somewhat easier to see what is going on. By that time, it
was unclear whether λU−: higher order logic with polymorphic domains (but no
quantification over all domains) was inconsistent.

In 1994, Coquand proved that λU− is inconsistent as well, the proof of which
was later considerably shortened by Hurkens. In the present paper we analyze
the paradox in λU− (but we believe that our results will apply to λU without
a change). The main question we are interested in is whether there exists a
fixed-point combinator in λU−. We give a partial answer by showing that the
well-known Turing and Church fixed-point combinators (Θ and Y ) cannot be
typed in λU−.

Before giving the negative result, we exhibit the proof of inconsistency of
[Hur95] and we extract the looping combinator from the proof (and show that
it is a looping combinator indeed). This analysis immediately shows that in the
Curry version of λU−, this looping combinator is ‘just’ a fixed point combinator.
So all the “extra structure” is in the types.

In this article we assume that the reader is familiar with the lambda calculus,
both in its untyped form and typed versions for the remainder of the article. For
details and background we refer to [BB98].

2 Untyped Lambda Calculus

In this section we study the expressive power of looping combinators. We will not
yet be specific about the type theory, because the expressive power deals mainly
with the computation (β-reduction) and not with the typing. So, basically the
results in this section can be cast in an untyped setting. First a precise definition
of the notion of “looping combinator”.

Definition 1. Given a type A in our type system, a Fixed Point Combinator of
type A is a term Y : (A→ A)→ A such that for all f : A→ A we have

Y f =β f (Y f).

a Looping Combinator of type A is a family of terms Ln : (A→ A)→ A for all
natural numbers n, such that for all f : A→ A we have

Ln f =β f (Ln+1 f).

Remark 1. We will usually refer to L0 as ‘the looping combinator’, not mention-
ing the whole family. Then, if L0 is a looping combinator then for all natural
numbers n, the term Ln (in the family {Ln}n∈N) is also a looping combinator.
Finally, every fixed point combinator is a looping combinator.

In order to represent the recursive functions in our type theory, we must be
able to represent natural numbers, with a zero element Z, a successor function S



and a predecessor function. Furthermore, we must be able to represent booleans
with a test-for-zero and an if-then-else construction. (This can also be achieved
by using the natural numbers and Z for true and S Z for false.) So, we assume a
type nat with Z : nat, S : nat→ nat, P− : nat→ nat such that P−(Sn+1(Z)) =β

Sn(Z)) and a type bool with tt : bool and ff : bool and Z? : nat→ bool and, for
b : bool, e1, e2 : nat, if b then e1 else e2 : nat such that Z?Z =β tt, Z?(S x) =β ff,
if tt then e1 else e2 =β e1 and if ff then e1 else e2 =β e2.

The untyped λ-calculus is Turing complete: all recursive functions are defin-
able as λ-terms. The power of the untyped λ calculus lies in the fact that one
can solve recursive equations, that is, one can solve questions of the following
kind:

– Is there a term M such that M x =β xM x?
– Is there a term N such that N x =β if (Z?x) then 1 else multx (N (P− x))?

In the untyped λ-calculus, these questions can be answered affirmative be-
cause we have a fixed point combinator. M := Y (λmλx.xmx) and N :=
Y (λnλx.if (Z?x) then 1 else multx (n (P− x))) do the job (for Y a fixed-point
combinator). So, a solution has the form Y F , where F is the functional that we
want to apply repeatedly:
N(S p) =β (λnλx.if (Z?x) then 1 else multx (n (P− x)))N p =β mult p (N p).

A looping combinator does the same thing: it allows the repeated application
of a functional: Y0 F =β F (Y1 F ) =β F (F ((Y2 F )) =β . . .. So, using a looping
combinator we should also be able to define all recursive functions. However,
a looping combinator does not provide a solution to a recursive equation, but
an ‘almost solution’. So let us make the proof that all recursive functions are
λ-definable in a type theory with a looping combinator precise here. The original
proof can be found in [S.C36]. Our proof follows the proof given in [BB98]. It
basically appears in the unpublished manuscript [Rei86].

Theorem 1. In a typed λ-calculus with a data type for natural numbers and for
booleans and a looping combinator L, the set of recursive functions is λ-definable.

We need to prove that the basic functions are λ-definable and that the class
of λ-definable functions is closed under composition, primitive recursion and
minimization. We will only show that the λ-definable functions are closed under
primitive recursion and minimization, because the other cases are immediate.
Consider the looping combinator L ≡ L0, L1, . . . Ln, . . .

Notation 1 We use the notation to denote the embedding of the natural num-
ber to the λ-term that λ-defines it. (So, n may be the Church numeral cn, but
we are not committed to a specific representation.)

Lemma 1. Given a looping combinator L the λ-definable functions are closed
under primitive recursion.

Proof. Let ϕ be defined by primitive recursion from χ and ψ:

ϕ(x, 0) = χ(x)
ϕ(x, n+ 1) = ψ(x, n, ϕ(x, n))



and suppose that χ, ψ are lambda-defined by G,H respectively. Define

Φ := λfxn.if (Z? n) then (Gx) else (Hx(P−n)(fx(P−n)))

We claim that for all natural numbers i

LiΦ lambda-defines ϕ

As the computation of L0Φ may result in computing L1Φ, which again may result
in computing L2Φ etc, it will not work to prove ∀nLiΦn =β φ(x, n) separately
for every i. Instead we prove ∀n∀i(LiΦn =β φ(x, n)) by induction on n.

Basis: Assume n = 0. Given a natural number i we have LiΦx0 =β Φ(Li+1Φ)x0 �β

if (Z 0) then (Gx) else (Hx(P−n)((Li+1Φ)x(P−n))) =β Gx

Induction: Assume that for all j, LjΦxn =β ϕ(x, n) (IH). Given a natural
number i, we have to prove that LiΦxn+ 1 =β ϕ(x, n+ 1).

LiΦxn+ 1 =β Φ(Li+1Φ)xn+ 1
�β if (Z n+ 1) then (Gx) else (Hx(P−n+ 1)((Li+1Φ)x(P−n+ 1)))
=β Hxn((Li+1Φ)xn)
=β ψ(x, n, φ(x, n))

The last equation uses the fact thatH lambda-defines ψ and that (Li+1Φ)xn =β

ϕ(x, n) (by IH). Thus for all i: LiΦ λ-defines ϕ.

Lemma 2. Given a looping combinator L the λ-definable functions are closed
under minimization.

Proof. Let ϕ be defined by

ϕ(x) = µz[χ(x, z) = 0]

Where χ is total and lambda-defined by G. We now need to prove that there is
a lambda term F without using a fixed point combinator such that

Fx =β n if Gxn =β 0 and Gxp 6=β 0(∀p < n)
Fx = ↑ if ∀p(Gxp 6=β 0)

Define
Φ ≡ (λhxz.if (Z? (Gxz)) then z else (hx(Sz)))
Hi ≡ λy.λz.LiΦyz

Now we have

Hiyz =β LiΦyz

=β Φ(Li+1Φ)yz
=β if (Z? (Gyz)) then z else (Li+1Φy(Sz))

If ∀p ≥ n(Gxp 6=β 0), then Hiyn =β Hi+kyn+ k (for all k) and we can prove
that Hiyn has no normal form. If ∀p(n ≤ p < m→ Gxp 6=β 0) and Gxm =β 0),
then ∀i(Hiyn =β m), by induction on m− n.

So, we can take any of the following terms Fi to λ-define φ: Fi := Hiy0. ut



3 Pure Type Systems

The systems we study can all be interpreted as Pure Type Systems (PTS). For
a thorough explanation on PTS’s see [BAG+92] and [Geu93].

Definition 2. A Pure Type System λ(S,A,R) is given by a set S (of sorts),
a set A ⊂ S × S (of axioms), and a set R ⊂ S × S × S (of rules), and is the
typed lambda calculus with the reduction rules presented below.

We assume s ∈ S. The elements of A are written as s1 : s2 with s1, s2 ∈ S.
The elements of R are written as (s1, s2, s3) with s1, s2, s3 ∈ S. If s2 = s3, we
write (s1, s2) instead.

(sort) ` s1 : s2 if s1 : s2 ∈ A)

(var)
Γ ` T : s

Γ, x:T ` x : T
if x /∈ Γ

(weak)
Γ ` T : s Γ `M : U

Γ, x:T `M : U
if x /∈ Γ

(Π)
Γ ` T : s1 Γ, x:T ` U : s2

Γ ` Πx:T.U : s3
if (s1, s2, s3) ∈ R

(λ)
Γ, x:T `M : U Γ ` Πx:T.U : s

Γ ` λx:T.M : Πx:T.U

(app)
Γ `M : Πx:T.U Γ ` N : T

Γ `MN : U [N/x]

(convβ)
Γ `M : T Γ ` U : s

Γ `M : U
T =β U

The expressions in the reduction rules are taken from the set of pseudo-terms
T defined by

T := S | V | (ΠV:T .T ) | (λV:T .T ) | T T

Where V is the collection of variables.

We can define a number of well known type systems as Pure Type Systems.
We give the PTS definitions of the type systems that are mentioned in this



article.

λU−
S ?,2,4
A ? : 2,2 : 4
R (?, ?), (2, ?), (2,2), (4,2)

λU
S ?,2,4
A ? : 2,2 : 4
R (?, ?), (2, ?), (2,2), (4,2), (4, ?)

λ?
(Type:Type)

S ?
A ? : ?
R (?, ?)

Throughout this article, we will be using these definitions.

3.1 Looping combinators in PTS’s

We can find a definition of looping combinators for a PTS in [CH94]. We can
define a fixed point combinator in the same way. Both will be defined below.
These combinators are of a polymorphic type and therefore connected to the
sort they can take types from.

Definition 3. Given a Pure Type System T = (S,A,R) and a sort s ∈ S. A
Fixed Point Combinator of sort s in T is a term Y : ΠA :s.(A→ A)→ A such
that for all natural numbers n, A : s and f : A→ A holds

(Y A f) =β f(Y A f)

Definition 4. Given a Pure Type System T = (S,A,R) and a sort s ∈ S. A
Looping Combinator of sort s in T is a term L0 : ΠA : s.(A → A) → A
such that there exists a sequence of terms L ≡ L0, L1, L2, . . . , Ln, . . . of type
ΠA : s(A → A) → A such that for all natural numbers n, A : s and f : A → A
holds

(Ln A f) =β f(Ln+1 A f)

3.2 The system λU−

We now further study λU− as a PTS, and present an erasure map from λU−

terms to untyped lambda terms.
[Miq00] gives a nice layered definition of (pseudo-)terms of λU−, which we

will copy and expand here:

Definition 5. We define three sets of variables var4, var2 and var? as follows

var4 = {k1, k2, k3, . . .}
var2 = {α, β, γ, . . .}
var? = {x, y, z, . . .}



Definition 6. We define the syntactical categories Kinds, Constructors and
Proof terms as follows (where k ∈ var4, α ∈ var2 and x ∈ var?)

Kinds K ::= k | ? | K → K | Πk :2.K

Constructors P ::= α | λα :K.P | PP | P → P
| λk :2.P | PK
| Πα :K.P

Proof terms t ::= x | λx :P.t | tt
| λα :K.t | tP

Remark 2. Apart from 2 and4, all λU− terms are part of one of the syntactical
categories as defined in definition 6.

Notation 2 We will use the following notation for terms and variables

variables terms
Kinds k1, k2, k3, . . . K1,K2,K3, . . .

Constructors α, β, γ, . . . P,Q,R, . . .
Proof terms x, y, z, . . . t, p, q, . . .

To see that this definition indeed gives us merely pseudo-terms, we only need
to look at the application rule for two proof terms. The rule t ::= tt does not
demand that the types of the two proof terms being applied match in any way.

Proposition 1. We have the following.

1. If there is a derivation of the form Γ ` M : U : 2 then U ∈ Kinds and
M ∈ Constructors

2. If there is a derivation of the form Γ ` M : U : ? then U ∈ Constructors
and M ∈ Proof terms

Definition 7. With proposition 1 we can define the category Types as a subset
of the Constructors. A term U is a Type iff we can make a derivation of the
form Γ ` U : ?.

Using these definitions it is easy to define a meaningful erasure function on
terms of λU− that maps proof terms onto untyped lambda calculus terms.

Definition 8. Given a pseudo-term of λU−, t, we define the erasure of t, |t|,
with induction on the construction of proof terms as given above.

|x| = x
|λx :P.p| = λx.|p| if P ∈ Constructors
|pq| = |p||q| if p, q ∈ Proof terms
|λα :K1.p| = |p| if K1 ∈ Kinds
|pP | = |p| if P ∈ Constructors
|λk :2.p| = |p|
|pK1| = |p| if K1 ∈ Kinds



4 Looping combinators in λU−

In this section we will take a look at looping combinators in λU−. Coquand and
Herbelin [CH94] have shown that in any inconsistent logical Pure Type System, a
looping combinator can be derived from any term of type ⊥. In addition, [Geu07]
has given a concrete looping combinator based on the proof of the inconsistency
of λU− as presented in [Hur95]. We take a look at the proof that Hurkens
presented, follow Geuvers’ formalization of that proof in Coq and show that this
yields a looping combinator. Also, given the erasure of this looping combinator,
we obtain a fixed point combinator in the untyped λ-calculus.

4.1 Inconsistency of λU−

The main example that we will study in this section is the Lego formalization
Geuvers and Pollack have made of Hurkens’ proof of the inconsistency of λU−.
We will extract lambda terms from the Lego code and analyze them. Lego uses
λ? as its logical system, where you have Type : Type, but we can read this as
λU− code with little effort. Following is a copy of the code as it appeared in
[Geu07] with the suggestion for the looping combinator applied.

[V = {A|Type}((A->Type)->(A->Type))->A->Type];
[U = V->Type];
[sb [A|Type][r:(A->Type)->(A->Type)][a:A] = [z:V]r (z r) a : U];
[le [i:U->Type][x:U] =

x ([A|Type][r:(A->Type)->(A->Type)][a:A]i (sb r a)) :
Type];
[induct [i:U->Type] = {x:U}(le i x)->i x : Type];
[WF = [z:V]induct (z le) : U];
[B:Type];
[F:B->B];
[I [x:U] = ({i:U->Type}(le i x)->i (sb le x))-> B :Type];

Goal i:U->Type(induct i)-> i WF;
intros i y;
Refine y WF ([x:U]y (sb le x));
Save omega;

Goal induct I;
intros x p q;
Refine F (q I p ([i:U->Type]q ([y:U]i (sb le y))));
Save lemma;

Goal ({i:U->Type}(induct i)->i WF)->B;
intros x;
Refine x I lemma ([i:U->Type]x ([y:U]i (sb le y)));
Save lemma2;



Goal B; Refine lemma2 omega;
Save paradox;

In terms of type theory, {x:U} denotes a Π-abstraction, [z:V] denotes a λ-
abstraction, and {A|Type} [A|Type] denote implicit arguments. For Coq users:
Refine is basically the apply tactic. It is important to note that if you read this
as λU−, then Type denotes ? in all but three cases. These three cases are the
first occurences of the word Type in the definitions of V, sb and le, in which
case it should be read as 21

We will use U to denote the term that lambda-defines U in the Lego code.
The term omega thus becomes:

omega ≡ λi : U → ?.λy : (induct i).y WF (λx : U.y (sb le x))
: Πi : U → ?.(induct i)→ i WF

If we take β : ? for B:Type, we get the following terms:

lemma ≡ λx : U.λp : (le I x).λq : (Πi : U → ?.(le i x)→ i(sb le x)).
f (q I p (λi : U → ?.q (λy : U.i (sb le y))))
: induct I

lemma2 ≡ λx : (Πi : U → ?.(induct i)→ i WF).
x I lemma (λi : U → ?.x (λy : U.i (sb le y)))
: (Πi : U → ?.(induct i)→ i WF)→ β

paradox ≡ lemma2 omega : β

We see here that paradox gives us a proof term for any proposition β2, thus
proving the inconsistency of λU−. In addition, we can now define a looping
combinator for the function f : β → β. The proof of this follows in the section
4.2.

The terms we generated have a notation close to the Lego code, but which
does not make clear distinction between proof terms and constructors. Therefore,
we will first rewrite the variable names to adhere to notation 2. In addition, we
will write G ≡ (sb le).

omega ≡ λα : U → ?.λy : (induct α).y WF (λγ : U.y (G γ))
: Πα : U → ?.(induct α)→ α WF

lemma ≡ λγ : U.λp : (le I γ).λq : (Πα : U → ?.(le α γ)→ γ(G α)).
f (q I p (λα : U → ?.q (λδ : U.α (G δ))))
: induct I

lemma2 ≡ λx : (Πα : U → ?.(induct α)→ α WF).
x I lemma (λα : U → ?.x (λγ : U.α (G γ)))
: (Πα : U → ?.(induct α)→ α WF)→ β

paradox ≡ lemma2 omega : β

1 These are exactly the three instances where A is an implicit argument.
2 The term contains a free variable f : β → β. One can leave this free variable out in

the proof term of β as its only purpose is to make a looping combinator out of the
proof term.



4.2 The looping combinator and its erasure

We now take a look at the looping combinator generated from the inconsis-
tency proof of λU−. First, we define domain free versions of terms in order
to make them easier to read [Br95]. This removes the type information in the
λ-abstraction. We introduce the abbreviation f ◦ g to denote λz.f (g z).

omega ≡ λαy.y WF (y ◦G)
lemmaf ≡ λγpq.f (q I p (λα.q (α ◦G)))

lemma2f ≡ λx.x I lemmaf (λα.x (λγ.α ◦G))
paradoxf ≡ lemma2f omega

WF1 ≡WF
WFn+1 ≡ (G WFn)

P f1 ≡ lemmaf ◦G
P fn+1 ≡ P fn ◦G ≡ lemmaf ◦G ◦ . . . ◦G︸ ︷︷ ︸

n+1

Q1 ≡ λα.omega (α ◦G)
Qn+1 ≡ λα.Qn (α ◦G) ≡ λα.omega(α ◦ . . . ◦ α︸ ︷︷ ︸

n+1

◦G)

The proof of the paradox centers around lemma omega:
paradoxf ≡ lemma2f omega �β omega I lemmaf (λα.omega (α ◦ G)) �β

lemmaf WF P f1 Q1.
We have the following two lemmas that basically give the looping combinator.

Lemma 3. For all natural numbers n we have Qn I P fn =β lemmaf WFn+1 P
f
n+1

and
lemmaf WFn P fn Qn =β f(lemmaf WFn+1 P

f
n+1 Qn+1)

Proof. Given a natural number n we have

Qn I P
f
n =β omega(I ◦ . . . ◦ I︸ ︷︷ ︸

n+1

◦G) P fn

=β P
f
n WF (P fn ◦G)

=β lemmaf (Gn (WF))P fn+1

=β lemmafWFn+1P
f
n+1.

For the second part of the lemma, we have (using the first part of the lemma for
the last equation):

lemmaf WFn P fn Qn ≡ (λγpq.f (q I p (λα.q (α ◦G)))) WFn P fn Qn
=β f(Qn I P fn (λα.Qn (α ◦G)))
=β f(Qn I P fn Qn+1)
=β f(lemmaf WFn+1 P

f
n+1 Qn+1)



Corollary 1. The term λβ : ?.λf : β → β.paradoxf is a looping combinator of
sort ?.

We now look at the erasure (definition 8) of the looping combinator (|λα :
?.λf : α→ α.paradoxf |). For this we need to isolate the terms of type a propo-
sition and erase the type information.

|omega| = |λα : U → ?.λy : (induct α).y WF (λγ : U.y (G γ))|
= λy.yy

We see that the erasure of omega is λy.yy ≡ ω. In the same way we find that

|lemmaf | ≡ λpq.f(qpq)
|lemma2f | ≡ λx.x|lemmaf |x

≡ λx.x(λpq.f(qpq))x
|paradoxf | ≡ |lemma2f | |omega|

≡ (λx.x(λpq.f(qpq))x) ω

The term |λα.λf.paradoxf | is a fixed point combinator in untyped lambda cal-
culus. For ease of presentation, we define the term Mf ≡ |lemmaf | ≡ λpq.f(qpq)
and we reduce |λα.λf.paradoxf | once obtaining the following easy to verify re-
sult.

Lemma 4. λf.(ω (λpq.f (q p q))ω) is a fixed point combinator in the untyped
lambda calculus.

Corollary 2. There is a fixed point combinator in the Curry version of λU−.

Proof. In the Curry version of λU−, the only abstractions are the first order
abstractions that remain after the erasure. A term M is typable in the Curry
version of λU− iff there is a term N , typable in the Church version of λU− with
|N | ≡M . ut

4.3 Untypability of Ω

We now explore the claim of [CH94] that the usual direct proof of Ω’s untypa-
bility for System F can be applied to λU−.

Definition 9. An untyped lambda term M is typable in λU− iff there exist
Γ, t, P such that Γ ` t : P and |t| = M .

We prove that the term Ω is not typable in λU−. The result we obtain is
even a bit stronger.

Theorem 2. If the untyped term M contains a subterm (λx.N)(λy.P ) such that
N contains a subterm xx and P contains a subterm yy, then M is untypable in
λU−.



Remark 3. Note that types in λU− (Kinds and Constructors) are SN, which
means that we can safely assume types to be in normal form at all times.

We are going to extend the notion of parse tree for a type, known from [Joe99]
for system F and extended to Fω in [Urz97].

Definition 10. Given Γ ` A : ?, we define the parse tree of A (written pt(A))
below. By remark 3 we may assume that A is in normal form.

– If A ≡ Q→ R then

pt(Q→ R) =
→

pt(Q)
�

pt(R)

-

– If A ≡ Πα : K1.Q with α a constructor variable, then

pt(Πα : K1.Q) = Πα : K1 pt(Q)

– In all other cases (A ≡ α, A ≡ QR or A ≡ QK1)

pt(A) = A

Definition 11. A left-going path of a type is a path that has no branches to
the right.

Definition 12. The left-most path of a type is the unique left-going path from
the root of the type to a leaf. We will write lmp(A) for the left-most path of a
type A

Definition 13. A variable α owns a path X ∈ {L,R}∗ in a type A if one of
the following holds:

– A = αT1T2 . . . Tn with n ≥ 0 and X is the empty sequence.
– A = Q1 → Q2, and either X = LX ′ and α owns X ′ in Q1, or X = RX ′

and α owns X ′ in Q2.
– A = Πβ : K1.Q and α owns X in Q.

In the last case, α and β may be the same variable.

Remark 4. It is a consequence of the so called ‘Stripping Lemma’ (see e.g.
[Geu93]) that, if Γ ` t p : C with Γ ` C : ?, then Γ ` t : A → B and
Γ ` p : A for some types A and B.
Note that length(lmp(A→ B)) = length(lmp(A)) + 1.

We also define the containment relation (�) for λU−, as an extension of the
notion for Fω in [Urz97].

Definition 14. Given two types σ and τ , the relation σ � τ holds iff σ =
Πα.σ′, for some (possibly empty) vector α and type σ′ such that there are no
quantifiers at the root of σ′, and τ = Πβ.σ′[ρ/α] for ρ of appropriate kinds and
the variables in β do not occur free in σ.



As in [Urz97], it is easy to see that this definition is a quasi-order, thus it’s
reflexive and transitive.

Lemma 5. Given two types σ, τ with σ � τ , then length(lmp(σ)) ≤ length(lmp(τ)).

Proof. This follows directly from the fact that the only parts of a type that are
affected by type-application are the leaves, which can only expand. (The only
way to reduce a tree is by proof term application.) ut

Corollary 3. By the same reasoning, the entire tree structure of σ remains
present in τ , thus for every path X ∈ {R,L}∗ in σ, there is a path X ′ in τ such
that X is a prefix of X ′.

Lemma 6. If σ � τ and lmp(σ) is not owned by a variable quantified at the
root of σ, then length(lmp(σ)) = length(lmp(τ)).

Proof. Given types τ, σ, such that σ � τ and lmp(σ) is not owned by a variable
quantified at the root of σ. Then by definition 14 there are α,β,ρ, σ′ such that
σ = Πα.σ′ and τ = Πβ.σ′[ρ/α]. The variable at the leaf on the end of the
left-most path is not replaced by the substitution [ρ/α], so the left most path
has the same length. ut

Lemma 7. If the proof term M : A contains a proof term variable x : Q which
is used in a self application (i.e. |M | contains the subterm xx), then lmp(()Q)
is owned by a variable that is quantified at the root of pt(()Q).

Proof. Given a proof term M , and a typing Γ ` M : A such that |M | contains
the subterm xx. There is a type Q such that x : Q: this may be as a declaration
in Γ or λx : Q.N is a subterm of M . The general form of the subterm xx in M
is xT (λβ : K.xR). Say that xT : S1 and λβ : Ki.xR : S2 then we know that
the length(lmp(S1)) = length(lmp(S2)) + 1 (by remark 4).

Also Q � S1 and Q � S2 and if the lmp(()Q)is not owned at the root,
then length(()lmp(()S1)) = length(()lmp(()Q)) = length(()lmp(()S2)) as a con-
sequence of Lemma!!. Contradiction, so lmp(Q) is owned by a variable quantified
at the root of pt(()Q). ut

Proof. of the Theorem Given an untyped termM containing a subterm (λx.N)(λy.P )
such that N contains a subterm xx and P contains a subterm yy. There are
Γ, t, A such that Γ ` t : A and |t| = (λx.N)(λy.P ). Thus, there are λU− terms
p, q such that pq is a subterm of t, |p| = (λx.N) and |q| = (λy.P ). There are
types Q,R such that Γ ` p : Q → R and Γ ` q : Q. Because p was created
by a lambda abstraction on the variable x, we know that x : Q. Because xx
is a subterm of N , we know that lmp(Q) is owned by a variable quantified at
the root of Q by lemma 7. Because q is created by a lambda abstraction on the
variable y, we know that Q is a tree with an arrow type of which the left hand
side is the type of y : S for some S. Because yy is a subterm of P , we know that
lmp(S) is owned by a variable quantified at the root of S. However, this means
that lmp(Q) is owned by a variable quantified at the left hand side of the root
arrow, and not at the root, which is a contradiction. Thus, M is not typable. ut



Corollary 4. The well-known untyped λ-terms Ω, Y and Θ are not typable in
λU−.

One may try to use the definition of parse trees for types (Definition 10) to
show that it is not possible to type L = λf.(λx.x(λpq.f(qpq))x)(λy.yy) in λU− as
a fixed-point combinator (So it can only be typed as a real looping combinator.)
For example by showing that the parse trees of the subterms expand, and that
therefore the types get larger and larger. However, we were not able to obtain
such a result through parse tree analysis. The reason for this is that for the
looping combinator we have analyzed in section 4, the trees of the types don’t
change in size, but only the information in the leafs.

When analyzing the possible typings of L = λf.(ω(λpq.f(qpq))ω), we can
leave out f and ask ourselves the question whether the typed version of this
term L′ := ω(λpq.qpq)ω is loops or not. We will write M = λpq.qpq, which gives
us L′ = ωMω. When analyzing the infinite reduction of the typed version of L′

in section 4, we see that every time that M and ω come to the head of the term,
their type has a similar parse tree:

M :

Πγ→

γ(. . .)
�

→
-

Πα→� β

-

γ(. . .)
�

α(. . .)

-

ω :

Πα →

Πγ→� α(. . .)

-

γ(. . .)
�

α(. . .)
-

5 Conclusion

We are confident that our results hold also for λU , so also there, Y , Ω and Θ
are not typable. For λ?, the situation is very much open. The techniques that
we have applied here don’t work, because types are not SN in λ?.

Another interesting question that remains is whether a fixed-point combina-
tor exists at all in λU− and whether the term L can be typed as a fixed point
combinator in λU−. We conjecture that no fixed point combinator exists in λU−.
Although we have not been able to prove this, the work here shows that seeing
types as trees isolates a lot of useful structure from them. This makes the types
appear less wild, as the branches of the tree often remain unchanged when the
type is manipulated. As the tree structure is a graphic representation of the prop
level of types, the definition of trees does not change much from System F to Fω
to λU−.
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