Matrix Calculations

Assignment 3, Tuesday, Feb. 23, 2016

Exercise teachers. Recall the following split-up of students:

teacher	lecture room	email
Abdullahi Ali	HG00.310	abdullahi154@gmail.com
Michiel de Bondt	HG00.308	debondt@math.ru.nl
Bart Gruppen	HG01.028	b.gruppen@student.ru.nl
Sander Uijlen	HG00.086	s.uijlen@cs.ru.nl

All (blue) delivery boxes are located in the Mercator building on the ground floor where computing science is located.

Handing in your answers: There are two options, depending on your exercise class teacher:

- 1. Delivery box (default): Put your solutions in the appropriate delivery box. Before putting your solutions in the box make sure:
 - your name and student number are written clearly on the document.
- 2. E-mail (in case your exercise class teacher agrees): Send your solutions by e-mail to your exercise class teacher (see above) with subject 'assignment 3'. This e-mail should only contain a single PDF document as attachment. Before sending an e-mail make sure:
 - the file is a PDF document that is well readable
 - your name is part of the filename (for example MyName_assignment-3.pdf)
 - your name and student number are included in the document (since they may be printed).

Deadline: Monday, February 29, 12:00 sharp!

Goals: After completing these exercises successfully you should be able to prove that a set of vectors forms a basis, the (non-)linearity of maps and you should be able to do basic matrix operations like matrix-vector multiplications. The total number of points is 20.

Note In your answers you should **explain** what you are doing: just a series of matrices or a computation is (often) not sufficient; you should **use words and sentences** to give an argument or draw a conclusion.

1. (4 points) Show, that the following vectors are basis in \mathbb{R}^2 . Explain in detail how you proceed.

$$v_1 = (1, 2)$$
 $v_2 = (1, 3)$

- 2. (2 points) Prove explicitly that the following map is linear $G: \mathbb{R}^2 \to \mathbb{R}^3$ defined by $G(x,y) = (ax + by, cx + y, b^2x)$, (for parameters $a, b, c \in \mathbb{R}$).
- 3. (4 points) Show that the following maps are not linear
 - (i) $F_1: \mathbb{R}^3 \to \mathbb{R}^2$ defined by $F_1(x, y, z) = (x + y, xy)$;
 - (ii) $F_2: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $F_2(x, y) = (x + 2(y + 3), x + 2y)$.
- 4. (6 points) We consider the following homogeneous sets of equations G and H

- (i) Find a basis for the solution space of G. What is its dimension?
- (ii) Find a basis for the solution space of H. What is its dimension?
- 5. (4 points) Consider the following matrices and vectors:

$$A = \begin{pmatrix} 1 & 2 & 1 \\ 3 & 3 & 4 \\ 1 & 1 & 2 \end{pmatrix} \qquad B = \begin{pmatrix} 0 & 1 & 1 \\ 2 & 3 & 4 \\ 1 & 3 & 1 \end{pmatrix} \qquad C = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \qquad D = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} \qquad E = \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}$$

Compute (i) AD (ii) BC, (iii) B^TE , (iv) E^TD .