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Vector spaces
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Points in plane

The set of points in a plane is usually written as
R*={(x,y) | x,y €R} oras R*={(})|x,y €R}
e Two points can be added, as in:
(x1, 1) + (2, y2) = (31 + X2, y1 + y2)
What is this geometrically?
e Also, points can be multiplied by a number (‘scalar’):
a-(xy)=(a-xa-y)

Several nice properties hold, like:

a- ((X17Y1) + (Xza)’z)) =a-(x1,y1) +a- (x,¥)
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Points in space

e Points in 3-dimensional space are described as:

R*={(x.y,2) | xy.z€R} oras B ={(}) |xy.zeR)

e Again such 3-dimensional points can be added and multiplied:

(x1,51,21) + (2, ¥2, 22) = (x1 + X2, )1 + y2, 21 + 22)
a'(X7y7Z) = (a‘x,a-y,a~z)
And similar nice properties hold.

e We like to capture such similarities in a general abstract
definition
e sometimes the definition is so abstract one gets lost
e but then it is good to keep the main examples in mind.

H. Geuvers Version: spring 2016 Matrix Calculations 5/ 44



Vector spaces

Radboud University Nijmegen

Vector space

A vector space consists of a set V, whose elements
e are called vectors
e can be added
e can be multiplied with a real number

satisfying precise requirements (to be detailed in later slides).

Example
For each n € N, n-dimensional space R” is a vector space, where
R™ = {(x1,x2,...,Xn) | X1,...,xn € R}.

This includes the 2-dimensional plane (n = 2) and 3-dimensional
space (n = 3).
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Vector space example

Example
The set of solutions of a homogeneous system of equations is a

vector space.
Solutions of a homogeneous system of equations

e can be added

e can be multiplied with a real number

to form new solutions.
(This is what we have seen last week.)

e Vector spaces occur at many places in many disguises.

e In general a vector space is a set V with two operations
“addition” and “scalar multiplication” that satisfy certain
requirements.
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Vector spaces
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Addition for vectors: precise requirements

@ Vector addition is commutative: summands can be swapped:

v4+w=w-+yv

® addition is associative: grouping of summands is irrelevant:
ut+(v+w)=(u+v)+w
© there is a zero vector 0 such that:
v+0=v, and hence by (1) also: 0+v=v.
@ each vector v has an additive inverse (minus) —v such that:
v+(—v)=0

One writes v — w for v + (—w).
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Scalar multiplication for vectors: precise requirements

@ 1 € R is unit for scalar multiplication:

l-v=v

® two scalar multiplications can be done as one:

a-(b-v) = (ab) - v
N——— ~~
twice scalar mult. mult. in R
© distributivity
a-(v+w

~
|
—_~
[\5)
<
~— —
+
—~~
[\5)
2
~

(a+b)-v =

Exercise

Check for yourself that all these properties hold for R” and for a
set of sulutions of a homogeneous set of equations.
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Base in space

e In R3 we can distinguish three special vectors:
(1,0,00eR®  (0,1,00eR®*  (0,0,1) € R3
e These vectors form a basis:

@ each vector (x,y,z) can be expressed in terms of these three
special vectors:

(x,y,2) = (x,0,0)+(0,y,0) + (0,0, z)
= x-(1,0,0)+y-(0,1,0)+z-(0,0,1)

@® Moreover, these three special vectors are linearly independent
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Remember: Independence

From last week:

Vectors vi, ..., V, in a vector space V are called independent if for
all scalars a;,...,a, € R one has:
as-vit+---+a,-vp,=0inV implies ay=a=---=a,=0

Remember: (in)dependence can be proved via equation solving

1 2 0
2], 1-1],and | 5] are dependent
3 4 2
if there are non-zero aj, ap, az € R with:
1 2 0 0
a2l +a|-1])+a3]|5] =10
3 4 2 0
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Dependence (or non-independence)

In the plane two vectors v, w € R? are dependent if and only if:
e they are on the same line
e thatis: v = a- w, for some scalar a

Example: for v = (1,2) and w = (—2, —4) we have:

e v=—1w, so they are on the same line

e ap-vt+a-w=0eg foraz=2#0and ap =1#0.

In space, three vectors u, v, w € R3 are dependent if they are
in the same plane (or even line)

e One can prove: vi,...,v, € V are dependent, if and only if
some v; can be expressed as a linear combination of the others
(the v; with j # i).
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Vectors vi,...,v, € V form a basis for a vector space V if these
Vi, ...y Vp

e are independent, and

e span V in the sense that each w € V can be written as linear

combination of these vi,...,v,, namely as:

w=av; +---+apv, forcertain aj,...,a,€R

e These scalars a; are uniquely determined by w € V' (see below)

e A space V may have several bases, but the number of
elements of a basis for V is always the same; it is called the
dimension of V/, usually written as dim(V) € N.
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The standard basis for R”

For the space R” = {(x1,...,%n) | xi € R} there is a standard
choice of base vectors:

(1,0,0...,0), (0,1,0,...,0), --- (0,...,0,1)

We have already seen that they are independent; it is easy to see
that they span R”

This enables us to state precisely that R” has n dimensions.
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An alternative basis for R?

e The standard basis for R? is (1,0), (0,1).
e But many other choices are possible, eg. (1,1), (1,—1)
e independence: if a-(1,1)+ b-(1,—1) = (0,0), then:

at+b =20 a=20
{a—b:O and thus {b:O

e spanning: each point (x,y) can written in terms of
(1,1),(1,—1), namely:
(x,y) = F4(L,1) + 54 (1, 1)
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The space of solutions to a set of equations |

e The set of solutions to a set of homogeneous equations forms
a vector space.
e How do we compute its basis?

Example:
X1 +2x0 —3x3 =
2x1+3x0 +x3 =
3X1 +4x + 5X3
—2x1 —4xp + 6x3 =

O O O o

with associated coefficient matrix

1 2 -3
2 3 1
3 4 5
2 -4 6
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The space of solutions to a set of equations Il

We transform the coefficient matrix to Echelon form:

1 2 -3 1 2 -3
2 3 1 . 0-17

3 4 5 0 0 O
-2 -4 6 0 0 O

There are 3 variables and 2 pivots, so there is one basic solution
(and the (0,0, 0) solution).
Example of a basic solution: x; = —11,x = 7,x3 = 1.
e A basis for the solution space is (—11,7,1),
but also (—22,14,2) forms a basis
e The dimension of the solution space (of this set of eqns) is 1.
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Uniqueness of representations

e Suppose V is a vector space, with basis vi, ..., vy

e assume x € V can be represented in two ways:
X=avi+- -+ apvy and also X=bivi+ -+ byv,

Then: a1 = by and ...and a, = b,.

Proof: This follows from independence of vy, ..., v, since:

0 =x—x = (31V1+"‘+3nvn)_(blvl+"‘+bnvn)
= (al—bl)V1+"'+(an—bn)Vn.

Hence a; — b; = 0, by independence, and thus a; = b;. [ |
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e A map (or ‘function’) f is an operation that sends elements of
one set X to another set Y.

o in that case we write f: X — Y or sometimes X -3 Y
e this f sends x € X to f(x) € Y
e X is called the domain and Y the codomain of the map f

e Example. f(n) = ﬁ can be seen as map N — Q, that is

from the natural numbers N to the rational numbers Q

e A map is sometimes also called a mapping or a function

e On each set X there is the identity map id: X — X that does
nothing: id(x) = x.

e Also one can compose 2 maps X Y& Zt0a map:

gof: X — Z givenby (gof)(x)=g(f(x))
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Linear maps

We have seen that the two relevant operations of a vector space
are addition and scalar multiplication. A linear map is required to
preserve these two.

Definition

Let V, W be two vector spaces, and f: V — W a map between
them; f is called linear if it preserves both:

e addition: for all v,v/ € V,

flv+ V)= f(v)+f(V)
in V in W

e scalar multiplication: for each v € V and a € R,
fla-v)=a-f(v)
in V in W
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Linear maps preserve zero and minus

Lemma

Each linear map f: V. — W preserves:
e zero: f(0) =0.

e minus: f(—v) = —f(v)

Proof: Nice illustration of axiomatic reasoning:
f(-v) = f(—v)+0

f(0) = f(0)+0 = f(—v)—f—(f(v)—f(v))
= £(0) + (£(0) — £(0)) = (f(=v) +f(v)) = f(v)
= (f(0)+f(0))—f(0) = f(—v+v)—"~f(v)
= f(0+0)—£(0) = f(0) — f(v)
= f(0) — f(0) = 0-—"f(v)
=0 = —f(v) [ |
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Linear map examples |

First we consider maps f: R — R. Most of them are not linear,
like, for instance:

e f(x)=1+x,since f(0)=1+#0
o f(x) = x2, since f(—1) =1=f(1) # —f(1).

So: linear maps R — R can only be very simple.

Lemma

Each linear map f: R — R is of the form f(x) = c - x, for some
ceR (this constant ¢ depends on f)

Proof: Scalar multiplication on R is ordinary multiplication.
Hence:

f(x)=Ff(x-1)=x-f(1)=f(1)-x=c-x, forc=1f(1). A
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Linear map examples Il

Consider the map f: R3 — R? given by

f(X17X27X3) = (Xl — X2, X2 +X3)

We show in detail that this f is linear, following the definition.
Preservation of scalar multiplication (from R3 to R?):
f(a . (xl,XQ,X3)> = f(a - X1,d°Xp,a- X3>
= (a-x1—a-xp, a-x2—|—a-X3)
a-(x1 —x2), a-(x —I—X3)>

= a~(x1 — X2, X2+X3)
= a- f(X]_’X2,X3).
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Linear map examples Il (cntd)

Preservation of addition of f from R3 to R? given by:

f(x1,x2,x3) = (x1 — X2, X2 + x3)

f((Xl,X2,X3) + (}/1,)/2,)/3))
= f(xl +y1, %2+ Y2, X3 +y3>
= ((Ca+x1) = (e +y2), (e+y2)+ (X3 + ys)
= ((a =)+ (1 —y2), (2+x3)+ (v2+y3)

X1 — X2, X2 ~I-X3) + ()/1 — Y2, +)/3>
= f(x1,x2,x3) + f(y1, Y2, ¥3). u
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Linear map examples Il

Consider the map f: R? — R? given by
f(x,y) = (xcos(p) — ysin(g), xsin(p) +y cos(p) )

This map describes rotation in the plane, with angle :

(—sin(p), cos(¢)) 0,1)

& (cos(i),sin(p))

L (1,0)

In the same way one can show that f is linear [Do it yourself!]
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Linear maps and matrices

Linear maps and bases, example |

e Recall the linear map f(x1, x2,x3) = (x1 — x2, x2 + x3)
e Claim: this map is entirely determined by what it does on the
base vectors (1,0,0),(0,1,0),(0,0,1) € R3, namely:
f(1,0,0) = (1,0) £(0,1,0)=(-1,1) £(0,0,1)=(0,1).
e Indeed, using linearity:
f(XlaX27X3)

=f (X17O7O) + (07X27 0) + (O7O7X3)>

—f xl-(1,0,0)+X2-(0,1,0)+X3-(0,0,1))

— fx- (1,0,0)) n f(X2 (0, 1,0)) + f(X3 (0,0, 1))

= x3-f(1,0,0) + x2 - 7(0,1,0) + x3 - f(0,0,1)

= X1-(1,0)+X2'(—1,1)+X3‘(0,1)

= (1 —x2, x2 + x3)
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Linear maps and matrices

Linear maps and bases, example | (cntd)

e Our f(x1,x2,x3) = (x1 — x2, X2 + x3) is thus determined by:

f(1,0,0) = (1,0) f(0,1,0) = (—1,1) f(0,0,1) =(0,1)

e We can organise these data in a 2 x 3 matrix:

1-10
011

The f(v;), for base vector v;, appears as the i-the column.

e Applying f can be done by a new kind of multiplication:
1 -10 ' f def [1-x1+—-1-x+0-x3\  [x31—x
011 X2 Tl 0xi+lootlxg ) e+
3
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Linear maps and matrices

The general case

The aim is to obtain a matrix for an arbitrary linear map.
e Assume a linear map 7: V — W, where:
e the vector space V has basis {vq,...,v,} C V;
e W has basis {wy, ..., wp}
e Each x € V can be written as x = ajv; + - -- + anv,. Hence:
f(x) = f(alvl + -+ anv,,)
= aif(vi) + -+ anf(va) by linearity of f
Thus, f is determined by its values f(v1),...,f(v,) on base
vectors v; € V.
e By writing f(vj) = bijwy + - - - + bmjwm we obtain an m x n
matrix with entries (b"f)igm,jgn
H. Geuvers Version: spring 2016 Matrix Calculations
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Linear maps and matrices

Towards matrix-vector multiplication

In this setting, we have:
f(x)
= f(aivi+ -+ apvn)
= alf(vl) + -+ a,,f(v,,)
= ap(buws + -+ bmiWm) + -+ + ap(b1awi + -+ - + bpnWin)
= (aibi1 + -+ + anbip)wi + -+ + (a1bm1 + -+ + anbmn) Wi
= (bllal + e blnan) e e (bmlal +ee bmnan) Wm

This motivates the definition of matrix-vector multiplication:

bi1 --- bin a byia; + - + bipan

bmi -+ bmn dn bmiar + -+ -+ bmnan
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Linear maps and matrices

Matrix-vector multiplication: Definition

For vectors v = (x1,...,Xn),w = (¥1,...,¥n) € R" define their
inner product (or dot product) as the real number:

(viw) = x1y1 + -+ Xn¥n

b1 --- bin ar
If B= : : andw=| : |, then B-w
bmi -+ bmn dn

is the vector whose i-th element is the dot product of the i-th row
of matrix B with the (input) vector w.
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Linear maps and matrices

Matrix-vector multiplication, concretely

e Recall f(x1,x2,x3) = (x1 — X2, X2 + x3) with matrix:

1-10
011
e We can directly calculate
f(1,2,-1)=(1-2,2—-1)=(-1,1)
e We can also get the same result by matrix-vector
multiplication:
1 -10)\ ; (114 -1-240--1\ [—1
011 1 ~\0-1+1-2+1--1 ) {1
e This multiplication can be understood as: putting the

argument values x; = 1,xp = 2, x3 = —1 in variables of the
underlying equations, and computing the outcome.
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Linear maps and matrices

Another example, to learn the mechanics

93297 g

85663 5

45893 5

34334 7
9-94+3-5+2-24+9-5+7-7

8:945.-5+6-24+6-5+3-7
4.945.5+8-24+9-54+3-7
3.944.5+3.2+4+3.54+4.7

81+ 15+4+45+49 194
| 72+25+124+30+21|  [160
~ [36+25+16+45+21 )  |143

27 4+20+ 6+ 15+ 28 96
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Linear maps and matrices

Linear map from matrix

e We have seen how a linear map can be described via a matrix

e One can also read each matrix as a linear map

: . (20 -1
e Consider the matrix (5 1 _3>

e It has 3 columns/inputs and two rows/outputs. Hence it
describes a map f: R3 — R?

e Namely: f(x1,x2,x3) = (2x1 — x3, 5x1 + x2 — 3x3).
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Linear maps and matrices

Examples of linear maps and matrices |

Projections are linear maps. Consider f : R3 — R?
x X
flyl] = < ) .
2 y

f maps 3d space to the the 2d plane.
The matrix of f is the following 2 x 3 matrix:

100
010/)°
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Linear maps and matrices

Examples of linear maps and matrices |l

We have already seen: Rotation over an angle ¢ is a linear map
(—sin(yp), cos(p)) 0,1)

A

\

/ 4 (cos(p). sin())
r A (1,0)

This rotation is described by f: R? — R? given by
f(x,y) = (xcos(p) — ysin(p), xsin(¢) +y cos())

The matrix that describes f is

(COS(sO) - Sin(¢)> '

sin(p) cos(y)
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Linear maps and matrices

Examples of linear maps and matrices |l

Reflection through an axis is a linear map
e Reflection through the y-axis: (x,y) — (—x,y) is given by

(1)

e Reflection in a different straight line that goes through (0, 0),
for example the line y = 2x:
e We first choose a different basis E for R?, with one vector
orthogonal to the axis and one on the axis.
e We choose E = {(2,-1),(1,2)}.
e In terms of the basis E, the matrix for f is just

-10
0 1/°
e We will learn how to transform this back to a matrix for the

standard basis!
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Linear maps and matrices

Matrix summary

Assume bases {vi,...,vp} C V and {wy,...,wn} C W

Each linear map f: V — W corresponds to an m X n matrix,
and vice-versa.
We often write the matrix of f as My

The i-th column in this matrix My is given by the coefficients
of f(v;), wrt. the basis wy, ..., wy, of W

Matrix-vector multiplication corresponds to application of a
map to an input: f(v) is the same as My - v.

This matrix M¢ of f depends on the choice of basis: for
different bases of V and W a different matrix is obtained

(Matrix-vector multiplication forms itself a linear map)
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Linear maps and matrices

The identity matrix

Consider the following n x n identity matrix with diagonal of 1's:

OO O
O O = O
= O O O

e To which map does /, correspond?
The identity map R” — R".

e To which system of equations does /,, correspond?
X1 = 0
xp = 0
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Linear maps and matrices

Matrices as vectors |

e Write Mat,,, , = {M | M is an m x n matrix}
e Thus each M € Mat,, , can be written as M = (a;;), for
1<i<mand1<;<n
e We can add two such matrices M, N € Mat,, ,, giving
M+ N € Mat,, .
e the matrices are added entry-wise, that is:
o if M= (a,-j), N = (bU)' M+ N = (C,'j), then Cjj = ajj + bU
e Similarly, matrices can be multiplied by a scalar s € R
e 5-M € Mat,, , has entries s - aj;
e Finally, there is a zero matrix 0, , € Matp, 5, with only zeros
as entries

[ Mat,, , is a vector space (of dimension m - n)j
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Linear maps and matrices

Matrices as vectors |I: example

e Addition:

201+112_313
-1 -35 2 -25) \1 -510

e Scalar multiplication:

s (2 01\ _ (10 0 5
-1 -35) ~ \-5 —15 25
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Linear maps and matrices

Matrices as vectors |ll: transpose

e For a matrix M € Mat,, , write MT e Mat,, ,, for the
transpose of M
e |t is obtained by mirroring:
e if M = (a;) then MT has entries aj;
e For example

201T 2 —1
1 -35) = |93
15

Transposition is a linear map (—)7 : Mat,, , — Mat, ,,. That is:
e (M+NT =MT +NT
o (a-MT =a-MT
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