

H. Geuvers (and A. Kissinger)

Institute for Computing and Information Sciences Radboud University Nijmegen

Version: spring 2016

Radboud University Nijmegen

Outline

Vector spaces

Bases & dimension

Linear maps

Linear maps and matrices

Radboud University Nijmegen

Points in plane

• The set of points in a plane is usually written as

$$\mathbb{R}^2 = \{(x,y) \mid x,y \in \mathbb{R}\}$$
 or as $\mathbb{R}^2 = \{(\begin{smallmatrix} x \\ y \end{smallmatrix}) \mid x,y \in \mathbb{R}\}$

• Two points can be added, as in:

$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$$

What is this geometrically?

• Also, points can be multiplied by a number ('scalar'):

$$a \cdot (x, y) = (a \cdot x, a \cdot y)$$

• Several nice properties hold, like:

$$a \cdot ((x_1, y_1) + (x_2, y_2)) = a \cdot (x_1, y_1) + a \cdot (x_2, y_2)$$

Radboud University Nijmegen

Points in space

• Points in 3-dimensional space are described as:

$$\mathbb{R}^3 = \{(x, y, z) \mid x, y, z \in \mathbb{R}\} \text{ or as } \mathbb{R}^3 = \{\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mid x, y, z \in \mathbb{R}\}$$

• Again such 3-dimensional points can be added and multiplied:

$$(x_1, y_1, z_1) + (x_2, y_2, z_2) = (x_1 + x_2, y_1 + y_2, z_1 + z_2)$$

 $a \cdot (x, y, z) = (a \cdot x, a \cdot y, a \cdot z)$

And similar nice properties hold.

- We like to capture such similarities in a general abstract definition
 - sometimes the definition is so abstract one gets lost
 - but then it is good to keep the main examples in mind.

Radboud University Nijmegen

Vector space

Definition

A vector space consists of a set V, whose elements

- are called vectors
- can be added
- can be multiplied with a real number

satisfying precise requirements (to be detailed in later slides).

Example

For each $n \in \mathbb{N}$, *n*-dimensional space \mathbb{R}^n is a vector space, where

$$\mathbb{R}^n = \{ (x_1, x_2, \ldots, x_n) \mid x_1, \ldots, x_n \in \mathbb{R} \}.$$

This includes the 2-dimensional plane (n = 2) and 3-dimensional space (n = 3).

Radboud University Nijmegen

Vector space example

Example

The set of solutions of a homogeneous system of equations is a vector space.

Solutions of a homogeneous system of equations

- can be added
- can be multiplied with a real number

to form new solutions.

(This is what we have seen last week.)

- Vector spaces occur at many places in many disguises.
- In general a vector space is a set V with two operations "addition" and "scalar multiplication" that satisfy certain requirements.

Radboud University Nijmegen

Addition for vectors: precise requirements

1 Vector addition is commutative: summands can be swapped:

$$v + w = w + v$$

2 addition is associative: grouping of summands is irrelevant:

$$u + (v + w) = (u + v) + w$$

3 there is a zero vector 0 such that:

v + 0 = v, and hence by (1) also: 0 + v = v.

4 each vector v has an additive inverse (minus) -v such that:

$$v+(-v)=0$$

One writes v - w for v + (-w).

Radboud University Nijmegen

Scalar multiplication for vectors: precise requirements

() $1 \in \mathbb{R}$ is unit for scalar multiplication:

 $1 \cdot v = v$

2 two scalar multiplications can be done as one:

twice scalar mult. mult. in \mathbb{R}

 $a \cdot (b \cdot v)$

 $= \underbrace{(ab)}_{\text{mult. in } \mathbb{R}} \cdot v$

3 distributivity

$$\begin{array}{l} a\cdot(v+w) \ = \ (a\cdot v)+(a\cdot w) \\ (a+b)\cdot v \ = \ (a\cdot v)+(b\cdot v). \end{array}$$

Exercise

Check for yourself that all these properties hold for \mathbb{R}^n and for a set of sulutions of a homogeneous set of equations.

H. Geuvers

Radboud University Nijmegen

- In \mathbb{R}^3 we can distinguish three special vectors:
 - $(1,0,0)\in \mathbb{R}^3 \qquad (0,1,0)\in \mathbb{R}^3 \qquad (0,0,1)\in \mathbb{R}^3$
- These vectors form a basis:
 - each vector (x, y, z) can be expressed in terms of these three special vectors:

$$\begin{aligned} (x, y, z) &= (x, 0, 0) + (0, y, 0) + (0, 0, z) \\ &= x \cdot (1, 0, 0) + y \cdot (0, 1, 0) + z \cdot (0, 0, 1) \end{aligned}$$

2 Moreover, these three special vectors are linearly independent

Radboud University Nijmegen

Remember: Independence

From last week:

Definition

Vectors v_1, \ldots, v_n in a vector space V are called independent if for all scalars $a_1, \ldots, a_n \in \mathbb{R}$ one has:

 $a_1 \cdot v_1 + \cdots + a_n \cdot v_n = 0$ in V implies $a_1 = a_2 = \cdots = a_n = 0$

Remember: (in)dependence can be proved via equation solving $\begin{pmatrix} 1\\2\\3 \end{pmatrix}, \begin{pmatrix} 2\\-1\\4 \end{pmatrix}, \text{ and } \begin{pmatrix} 0\\5\\2 \end{pmatrix}$ are dependent if there are non-zero $a_1, a_2, a_3 \in \mathbb{R}$ with: $a_1 \begin{pmatrix} 1\\2\\3 \end{pmatrix} + a_2 \begin{pmatrix} 2\\-1\\4 \end{pmatrix} + a_3 \begin{pmatrix} 0\\5\\2 \end{pmatrix} = \begin{pmatrix} 0\\0\\0 \end{pmatrix}$

Dependence (or non-independence)

- In the plane two vectors $v, w \in \mathbb{R}^2$ are dependent if and only if:
 - they are on the same line
 - that is: $v = a \cdot w$, for some scalar a
- **Example**: for v = (1, 2) and w = (-2, -4) we have:
 - $v = -\frac{1}{2}w$, so they are on the same line
 - $a_1 \cdot v + a_2 \cdot w = 0$, e.g. for $a_1 = 2 \neq 0$ and $a_2 = 1 \neq 0$.
- In space, three vectors u, v, w ∈ ℝ³ are dependent if they are in the same plane (or even line)
- One can prove: v₁,..., v_n ∈ V are dependent, if and only if some v_i can be expressed as a linear combination of the others (the v_j with j ≠ i).

Basis

Definition

Vectors $v_1, \ldots, v_n \in V$ form a basis for a vector space V if these v_1, \ldots, v_n

- are independent, and
- span V in the sense that each $w \in V$ can be written as linear combination of these v_1, \ldots, v_n , namely as:

 $w = a_1v_1 + \cdots + a_nv_n$ for certain $a_1, \ldots, a_n \in \mathbb{R}$

- These scalars a_i are uniquely determined by $w \in V$ (see below)
- A space V may have several bases, but the number of elements of a basis for V is always the same; it is called the dimension of V, usually written as dim(V) ∈ N.

Radboud University Nijmegen

The standard basis for \mathbb{R}^n

For the space $\mathbb{R}^n = \{(x_1, \ldots, x_n) \mid x_i \in \mathbb{R}\}$ there is a standard choice of base vectors:

$$(1, 0, 0..., 0), (0, 1, 0, ..., 0), \cdots (0, ..., 0, 1)$$

We have already seen that they are independent; it is easy to see that they span \mathbb{R}^n

This enables us to state precisely that \mathbb{R}^n has *n* dimensions.

Radboud University Nijmegen

An alternative basis for \mathbb{R}^2

- The standard basis for \mathbb{R}^2 is (1,0), (0,1).
- But many other choices are possible, eg. (1,1), (1,-1)
 - independence: if $a \cdot (1,1) + b \cdot (1,-1) = (0,0)$, then:

$$\begin{cases} a+b = 0 \\ a-b = 0 \end{cases} \quad \text{and thus} \quad \begin{cases} a = 0 \\ b = 0 \end{cases}$$

spanning: each point (x, y) can written in terms of (1, 1), (1, -1), namely:

$$(x,y) = \frac{x+y}{2}(1,1) + \frac{x-y}{2}(1,-1)$$

The space of solutions to a set of equations I

- The set of solutions to a set of homogeneous equations forms a vector space.
- How do we compute its basis?

Example:

$$x_1 + 2x_2 - 3x_3 = 0$$

$$2x_1 + 3x_2 + x_3 = 0$$

$$3x_1 + 4x_2 + 5x_3 = 0$$

$$-2x_1 - 4x_2 + 6x_3 = 0$$

with associated coefficient matrix

$$\begin{pmatrix} 1 & 2 & -3 \\ 2 & 3 & 1 \\ 3 & 4 & 5 \\ -2 & -4 & 6 \end{pmatrix}$$

The space of solutions to a set of equations II

We transform the coefficient matrix to Echelon form:

$$\begin{pmatrix} 1 & 2 & -3 \\ 2 & 3 & 1 \\ 3 & 4 & 5 \\ -2 & -4 & 6 \end{pmatrix} \mapsto \begin{pmatrix} 1 & 2 & -3 \\ 0 & -1 & 7 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

There are 3 variables and 2 pivots, so there is one basic solution (and the (0, 0, 0) solution).

Example of a basic solution: $x_1 = -11, x_2 = 7, x_3 = 1$.

- A basis for the solution space is (-11, 7, 1), but also (-22, 14, 2) forms a basis
- The dimension of the solution space (of this set of eqns) is 1.

Radboud University Nijmegen

Uniqueness of representations

Theorem

- Suppose V is a vector space, with basis v_1, \ldots, v_n
- assume $x \in V$ can be represented in two ways:

 $x = a_1v_1 + \dots + a_nv_n$ and also $x = b_1v_1 + \dots + b_nv_n$ Then: $a_1 = b_1$ and \dots and $a_n = b_n$.

Proof: This follows from independence of v_1, \ldots, v_n since:

$$0 = x - x = (a_1v_1 + \dots + a_nv_n) - (b_1v_1 + \dots + b_nv_n) = (a_1 - b_1)v_1 + \dots + (a_n - b_n)v_n.$$

Hence $a_i - b_i = 0$, by independence, and thus $a_i = b_i$.

Radboud University Nijmegen

Maps

- A map (or 'function') f is an operation that sends elements of one set X to another set Y.
 - in that case we write $f: X \to Y$ or sometimes $X \stackrel{f}{\to} Y$
 - this f sends $x \in X$ to $f(x) \in Y$
 - X is called the domain and Y the codomain of the map f
- Example. f(n) = 1/(n+1) can be seen as map N → Q, that is from the natural numbers N to the rational numbers Q
- A map is sometimes also called a mapping or a function
- On each set X there is the identity map id: X → X that does nothing: id(x) = x.
- Also one can compose 2 maps $X \xrightarrow{f} Y \xrightarrow{g} Z$ to a map:

$$g \circ f \colon X \longrightarrow Z$$
 given by $(g \circ f)(x) = g(f(x))$

Linear maps

We have seen that the two relevant operations of a vector space are addition and scalar multiplication. A linear map is required to preserve these two.

Definition

Let V, W be two vector spaces, and $f: V \rightarrow W$ a map between them; f is called linear if it preserves both:

• addition: for all
$$v, v' \in V$$
,

$$f(\underbrace{v+v'}_{\text{in }V}) = \underbrace{f(v) + f(v')}_{\text{in }W}$$

• scalar multiplication: for each $v \in V$ and $a \in \mathbb{R}$,

$$f(\underbrace{a \cdot v}_{in \ V}) = \underbrace{a \cdot f(v)}_{in \ W}$$

Linear maps preserve zero and minus

Lemma

Each linear map $f: V \rightarrow W$ preserves:

• minus:
$$f(-v) = -f(v)$$

Proof: Nice illustration of axiomatic reasoning:

$$f(-v) = f(-v) + 0$$

$$f(0) = f(0) + 0$$

$$= f(0) + (f(0) - f(0))$$

$$= (f(0) + f(0)) - f(0)$$

$$= f(0 + 0) - f(0)$$

$$= f(0) - f(0)$$

$$= 0$$

$$f(-v) + 0$$

$$= f(-v) + (f(v) - f(v))$$

$$= f(-v + v) - f(v)$$

$$= f(0) - f(v)$$

$$= -f(v)$$

Linear map examples I

First we consider maps $f : \mathbb{R} \to \mathbb{R}$. Most of them are *not linear*, like, for instance:

- f(x) = 1 + x, since $f(0) = 1 \neq 0$
- $f(x) = x^2$, since $f(-1) = 1 = f(1) \neq -f(1)$.

So: linear maps $\mathbb{R} \to \mathbb{R}$ can only be very simple.

Lemma

Each linear map $f : \mathbb{R} \to \mathbb{R}$ is of the form $f(x) = c \cdot x$, for some $c \in \mathbb{R}$ (this constant c depends on f)

Proof: Scalar multiplication on \mathbb{R} is ordinary multiplication. Hence:

$$f(x)=f(x\cdot 1)=x\cdot f(1)=f(1)\cdot x=c\cdot x, \quad ext{for } c=f(1).$$

Linear map examples II

Consider the map $f: \mathbb{R}^3 \to \mathbb{R}^2$ given by

$$f(x_1, x_2, x_3) = (x_1 - x_2, x_2 + x_3)$$

We show in detail that this f is linear, following the definition.

Preservation of scalar multiplication (from \mathbb{R}^3 to \mathbb{R}^2):

$$f(a \cdot (x_1, x_2, x_3)) = f(a \cdot x_1, a \cdot x_2, a \cdot x_3)$$

= $(a \cdot x_1 - a \cdot x_2, a \cdot x_2 + a \cdot x_3)$
= $(a \cdot (x_1 - x_2), a \cdot (x_2 + x_3))$
= $a \cdot (x_1 - x_2, x_2 + x_3)$
= $a \cdot f(x_1, x_2, x_3).$

Linear map examples II (cntd)

Preservation of addition of *f* from \mathbb{R}^3 to \mathbb{R}^2 given by:

$$f(x_1, x_2, x_3) = (x_1 - x_2, x_2 + x_3)$$

$$f\left((x_1, x_2, x_3) + (y_1, y_2, y_3)\right)$$

= $f\left(x_1 + y_1, x_2 + y_2, x_3 + y_3\right)$
= $\left((x_1 + y_1) - (x_2 + y_2), (x_2 + y_2) + (x_3 + y_3)\right)$
= $\left((x_1 - x_2) + (y_1 - y_2), (x_2 + x_3) + (y_2 + y_3)\right)$
= $\left(x_1 - x_2, x_2 + x_3\right) + \left(y_1 - y_2, y_2 + y_3\right)$
= $f(x_1, x_2, x_3) + f(y_1, y_2, y_3).$

Radboud University Nijmegen

Linear map examples III

Consider the map $f: \mathbb{R}^2 \to \mathbb{R}^2$ given by

$$f(x,y) = (x\cos(\varphi) - y\sin(\varphi), x\sin(\varphi) + y\cos(\varphi))$$

This map describes rotation in the plane, with angle φ :

In the same way one can show that f is linear [Do it yourself!]

Linear maps and bases, example I

- Recall the linear map $f(x_1, x_2, x_3) = (x_1 x_2, x_2 + x_3)$
- Claim: this map is entirely determined by what it does on the base vectors (1,0,0), (0,1,0), (0,0,1) ∈ ℝ³, namely:

f(1,0,0) = (1,0) f(0,1,0) = (-1,1) f(0,0,1) = (0,1).

• Indeed, using linearity:

$$\begin{aligned} f(x_1, x_2, x_3) \\ &= f\left((x_1, 0, 0) + (0, x_2, 0) + (0, 0, x_3)\right) \\ &= f\left(x_1 \cdot (1, 0, 0) + x_2 \cdot (0, 1, 0) + x_3 \cdot (0, 0, 1)\right) \\ &= f\left(x_1 \cdot (1, 0, 0)\right) + f\left(x_2 \cdot (0, 1, 0)\right) + f\left(x_3 \cdot (0, 0, 1)\right) \\ &= x_1 \cdot f(1, 0, 0) + x_2 \cdot f(0, 1, 0) + x_3 \cdot f(0, 0, 1) \\ &= x_1 \cdot (1, 0) + x_2 \cdot (-1, 1) + x_3 \cdot (0, 1) \\ &= (x_1 - x_2, x_2 + x_3) \end{aligned}$$

Linear maps and bases, example I (cntd)

- Our $f(x_1, x_2, x_3) = (x_1 x_2, x_2 + x_3)$ is thus determined by: f(1, 0, 0) = (1, 0) f(0, 1, 0) = (-1, 1) f(0, 0, 1) = (0, 1)
- We can organise these data in a 2×3 matrix:

$$\begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

The $f(v_i)$, for base vector v_i , appears as the *i*-the column.

• Applying f can be done by a new kind of multiplication:

$$\begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \stackrel{\text{def}}{=} \begin{pmatrix} 1 \cdot x_1 + -1 \cdot x_2 + 0 \cdot x_3 \\ 0 \cdot x_1 + 1 \cdot x_2 + 1 \cdot x_3 \end{pmatrix} = \begin{pmatrix} x_1 - x_2 \\ x_2 + x_3 \end{pmatrix}$$

Radboud University Nijmegen

The general case

The aim is to obtain a matrix for an arbitrary linear map.

- Assume a linear map $f: V \rightarrow W$, where:
 - the vector space V has basis {v₁,..., v_n} ⊆ V;
 - W has basis $\{w_1, \ldots, w_m\}$
- Each $x \in V$ can be written as $x = a_1v_1 + \cdots + a_nv_n$. Hence:

$$f(x) = f(a_1v_1 + \dots + a_nv_n)$$

= $a_1f(v_1) + \dots + a_nf(v_n)$ by linearity of f

Thus, f is determined by its values $f(v_1), \ldots, f(v_n)$ on base vectors $v_j \in V$.

• By writing $f(v_j) = b_{1j}w_1 + \cdots + b_{mj}w_m$ we obtain an $m \times n$ matrix with entries $(b_{ij})_{i \le m, j \le n}$

Towards matrix-vector multiplication

In this setting, we have:

$$f(x) = f(a_1v_1 + \dots + a_nv_n) \\ = a_1f(v_1) + \dots + a_nf(v_n) \\ = a_1(b_{11}w_1 + \dots + b_{m1}w_m) + \dots + a_n(b_{1n}w_1 + \dots + b_{mn}w_m) \\ = (a_1b_{11} + \dots + a_nb_{1n})w_1 + \dots + (a_1b_{m1} + \dots + a_nb_{mn})w_m \\ = (b_{11}a_1 + \dots + b_{1n}a_n)w_1 + \dots + (b_{m1}a_1 + \dots + b_{mn}a_n)w_m$$

This motivates the definition of matrix-vector multiplication:

$$\begin{pmatrix} b_{11} & \cdots & b_{1n} \\ \vdots & & \vdots \\ b_{m1} & \cdots & b_{mn} \end{pmatrix} \cdot \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} = \begin{pmatrix} b_{11}a_1 + \cdots + b_{1n}a_n \\ & \vdots \\ b_{m1}a_1 + \cdots + b_{mn}a_n \end{pmatrix}$$

Radboud University Nijmegen

Matrix-vector multiplication: Definition

Definition

For vectors $v = (x_1, ..., x_n), w = (y_1, ..., y_n) \in \mathbb{R}^n$ define their inner product (or dot product) as the real number:

 $\langle \mathbf{v}, \mathbf{w} \rangle = x_1 y_1 + \cdots + x_n y_n$

Definition

If
$$B = \begin{pmatrix} b_{11} & \cdots & b_{1n} \\ \vdots & & \vdots \\ b_{m1} & \cdots & b_{mn} \end{pmatrix}$$
 and $w = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}$, then $B \cdot w$

is the vector whose *i*-th element is the dot product of the *i*-th row of matrix B with the (input) vector w.

Radboud University Nijmegen

Matrix-vector multiplication, concretely

• Recall
$$f(x_1, x_2, x_3) = (x_1 - x_2, x_2 + x_3)$$
 with matrix:
 $\begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$

• We can directly calculate
$$f(1,2,-1) = (1-2,2-1) = (-1,1)$$

 We can also get the same result by matrix-vector multiplication:

$$\begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \cdot 1 + -1 \cdot 2 + 0 \cdot -1 \\ 0 \cdot 1 + 1 \cdot 2 + 1 \cdot -1 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

• This multiplication can be understood as: putting the argument values $x_1 = 1, x_2 = 2, x_3 = -1$ in variables of the underlying equations, and computing the outcome.

Radboud University Nijmegen

Another example, to learn the mechanics

$$\begin{pmatrix}
9 & 3 & 2 & 9 & 7 \\
8 & 5 & 6 & 6 & 3 \\
4 & 5 & 8 & 9 & 3 \\
3 & 4 & 3 & 3 & 4
\end{pmatrix} \cdot \begin{pmatrix}
9 \\
5 \\
2 \\
5 \\
7
\end{pmatrix}$$

$$= \begin{pmatrix}
9 \cdot 9 + 3 \cdot 5 + 2 \cdot 2 + 9 \cdot 5 + 7 \cdot 7 \\
8 \cdot 9 + 5 \cdot 5 + 6 \cdot 2 + 6 \cdot 5 + 3 \cdot 7 \\
4 \cdot 9 + 5 \cdot 5 + 8 \cdot 2 + 9 \cdot 5 + 3 \cdot 7 \\
3 \cdot 9 + 4 \cdot 5 + 3 \cdot 2 + 3 \cdot 5 + 4 \cdot 7
\end{pmatrix}$$

$$= \begin{pmatrix}
81 + 15 + 4 + 45 + 49 \\
72 + 25 + 12 + 30 + 21 \\
36 + 25 + 16 + 45 + 21 \\
27 + 20 + 6 + 15 + 28
\end{pmatrix} = \begin{pmatrix}
194 \\
160 \\
143 \\
96
\end{pmatrix}$$

Radboud University Nijmegen

Linear map from matrix

- We have seen how a linear map can be described via a matrix
- One can also read each matrix as a linear map

Example

• Consider the matrix
$$\begin{pmatrix} 2 & 0 & -1 \\ 5 & 1 & -3 \end{pmatrix}$$

- It has 3 columns/inputs and two rows/outputs. Hence it describes a map f: ℝ³ → ℝ²
- Namely: $f(x_1, x_2, x_3) = (2x_1 x_3, 5x_1 + x_2 3x_3)$.

Radboud University Nijmegen

Examples of linear maps and matrices I

Projections are linear maps. Consider $f : \mathbb{R}^3 \to \mathbb{R}^2$

$$f\begin{pmatrix}x\\y\\z\end{pmatrix} = \begin{pmatrix}x\\y\end{pmatrix}$$

f maps 3d space to the the 2d plane. The matrix of f is the following 2×3 matrix:

 $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}.$

Examples of linear maps and matrices II

We have already seen: Rotation over an angle φ is a linear map

This rotation is described by $f: \mathbb{R}^2 \to \mathbb{R}^2$ given by

$$f(x,y) = (x\cos(\varphi) - y\sin(\varphi), x\sin(\varphi) + y\cos(\varphi))$$

The matrix that describes f is

$$egin{pmatrix} \cos(arphi) & -\sin(arphi) \ \sin(arphi) & \cos(arphi) \end{pmatrix}$$

Examples of linear maps and matrices III

Reflection through an axis is a linear map

• Reflection through the y-axis: $(x,y)\mapsto (-x,y)$ is given by

• Reflection in a different straight line that goes through
$$(0,0)$$
, for example the line $y = 2x$:

 $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}.$

- We first choose a different basis *E* for ℝ², with one vector orthogonal to the axis and one on the axis.
- We choose $E = \{(2, -1), (1, 2)\}.$
- In terms of the basis *E*, the matrix for *f* is just

$$\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}.$$

• We will learn how to transform this back to a matrix for the standard basis!

Radboud University Nijmegen

Matrix summary

- Assume bases $\{v_1, \ldots, v_n\} \subseteq V$ and $\{w_1, \ldots, w_m\} \subseteq W$
- Each linear map f: V → W corresponds to an m × n matrix, and vice-versa.

We often write the matrix of f as M_f

- The *i*-th column in this matrix M_f is given by the coefficients of $f(v_i)$, wrt. the basis w_1, \ldots, w_m of W
- Matrix-vector multiplication corresponds to application of a map to an input: f(v) is the same as M_f · v.
- This matrix M_f of f depends on the choice of basis: for different bases of V and W a different matrix is obtained
- (Matrix-vector multiplication forms itself a linear map)

Radboud University Nijmegen

The identity matrix

Consider the following $n \times n$ identity matrix with diagonal of 1's:

$$I_n = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$

- To which map does I_n correspond? The identity map $\mathbb{R}^n \to \mathbb{R}^n$.
- To which system of equations does I_n correspond?

$$\begin{cases} x_1 = 0 \\ \vdots \\ x_n = 0 \end{cases}$$

Radboud University Nijmegen

Matrices as vectors I

- Write $Mat_{m,n} = \{M \mid M \text{ is an } m \times n \text{ matrix}\}$
- Thus each $M \in Mat_{m,n}$ can be written as $M = (a_{ij})$, for $1 \le i \le m$ and $1 \le j \le n$
- We can add two such matrices $M, N \in Mat_{m,n}$, giving $M + N \in Mat_{m,n}$.
 - the matrices are added entry-wise, that is:
 - if $M = (a_{ij})$, $N = (b_{ij})$, $M + N = (c_{ij})$, then $c_{ij} = a_{ij} + b_{ij}$
- Similarly, matrices can be multiplied by a scalar $s \in \mathbb{R}$
 - $s \cdot M \in \mathbf{Mat}_{m,n}$ has entries $s \cdot a_{ij}$
- Finally, there is a zero matrix 0_{m,n} ∈ Mat_{m,n}, with only zeros as entries

 $Mat_{m,n}$ is a vector space (of dimension $m \cdot n$).

Radboud University Nijmegen

Matrices as vectors II: example

• Addition:

$$\begin{pmatrix} 2 & 0 & 1 \\ -1 & -3 & 5 \end{pmatrix} + \begin{pmatrix} 1 & 1 & 2 \\ 2 & -2 & 5 \end{pmatrix} = \begin{pmatrix} 3 & 1 & 3 \\ 1 & -5 & 10 \end{pmatrix}$$

• Scalar multiplication:

$$5 \cdot \begin{pmatrix} 2 & 0 & 1 \\ -1 & -3 & 5 \end{pmatrix} = \begin{pmatrix} 10 & 0 & 5 \\ -5 & -15 & 25 \end{pmatrix}$$

Matrices as vectors III: transpose

- For a matrix $M \in Mat_{m,n}$ write $M^T \in Mat_{n,m}$ for the transpose of M
- It is obtained by mirroring:
 - if $M = (a_{ij})$ then M^T has entries a_{ji}
 - For example

$$\begin{pmatrix} 2 & 0 & 1 \\ -1 & -3 & 5 \end{pmatrix}^{\mathsf{T}} = \begin{pmatrix} 2 & -1 \\ 0 & -3 \\ 1 & 5 \end{pmatrix}$$

Theorem

Transposition is a linear map $(-)^T$: $Mat_{m,n} \rightarrow Mat_{n,m}$. That is:

•
$$(M+N)^T = M^T + N^T$$

•
$$(a \cdot M)^T = a \cdot M^T$$