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Points in plane

• The set of points in a plane is usually written as

R2 = {(x , y) | x , y ∈ R} or as R2 = {( x
y ) | x , y ∈ R}

• Two points can be added, as in:

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2)

What is this geometrically?

• Also, points can be multiplied by a number (‘scalar’):

a · (x , y) = (a · x , a · y)

• Several nice properties hold, like:

a ·
(

(x1, y1) + (x2, y2)
)

= a · (x1, y1) + a · (x2, y2)
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Points in space

• Points in 3-dimensional space are described as:

R3 = {(x , y , z) | x , y , z ∈ R} or as R3 = {
(

x
y
z

)
| x , y , z ∈ R}

• Again such 3-dimensional points can be added and multiplied:

(x1, y1, z1) + (x2, y2, z2) = (x1 + x2, y1 + y2, z1 + z2)
a · (x , y , z) = (a · x , a · y , a · z)

And similar nice properties hold.

• We like to capture such similarities in a general abstract
definition

• sometimes the definition is so abstract one gets lost
• but then it is good to keep the main examples in mind.
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Vector space

Definition

A vector space consists of a set V , whose elements

• are called vectors

• can be added

• can be multiplied with a real number

satisfying precise requirements (to be detailed in later slides).

Example

For each n ∈ N, n-dimensional space Rn is a vector space, where

Rn = {(x1, x2, . . . , xn) | x1, . . . , xn ∈ R}.

This includes the 2-dimensional plane (n = 2) and 3-dimensional
space (n = 3).
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Vector space example

Example

The set of solutions of a homogeneous system of equations is a
vector space.
Solutions of a homogeneous system of equations

• can be added

• can be multiplied with a real number

to form new solutions.
(This is what we have seen last week.)

• Vector spaces occur at many places in many disguises.

• In general a vector space is a set V with two operations
“addition” and “scalar multiplication” that satisfy certain
requirements.
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Addition for vectors: precise requirements

1 Vector addition is commutative: summands can be swapped:

v + w = w + v

2 addition is associative: grouping of summands is irrelevant:

u + (v + w) = (u + v) + w

3 there is a zero vector 0 such that:

v + 0 = v , and hence by (1) also: 0 + v = v .

4 each vector v has an additive inverse (minus) −v such that:

v + (−v) = 0

One writes v − w for v + (−w).
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Scalar multiplication for vectors: precise requirements

1 1 ∈ R is unit for scalar multiplication:

1 · v = v

2 two scalar multiplications can be done as one:

a · (b · v)︸ ︷︷ ︸
twice scalar mult.

= (ab)︸︷︷︸
mult. in R

· v

3 distributivity

a · (v + w) = (a · v) + (a · w)
(a + b) · v = (a · v) + (b · v).

Exercise

Check for yourself that all these properties hold for Rn and for a
set of sulutions of a homogeneous set of equations.
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Base in space

• In R3 we can distinguish three special vectors:

(1, 0, 0) ∈ R3 (0, 1, 0) ∈ R3 (0, 0, 1) ∈ R3

• These vectors form a basis:

1 each vector (x , y , z) can be expressed in terms of these three
special vectors:

(x , y , z) = (x , 0, 0) + (0, y , 0) + (0, 0, z)
= x · (1, 0, 0) + y · (0, 1, 0) + z · (0, 0, 1)

2 Moreover, these three special vectors are linearly independent
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Remember: Independence

From last week:

Definition

Vectors v1, . . . , vn in a vector space V are called independent if for
all scalars a1, . . . , an ∈ R one has:

a1 · v1 + · · ·+ an · vn = 0 in V implies a1 = a2 = · · · = an = 0

Remember: (in)dependence can be proved via equation solving1
2
3

,

 2
−1
4

, and

0
5
2

 are dependent

if there are non-zero a1, a2, a3 ∈ R with:

a1

1
2
3

+ a2

 2
−1
4

+ a3

0
5
2

 =

0
0
0


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Dependence (or non-independence)

• In the plane two vectors v ,w ∈ R2 are dependent if and only if:
• they are on the same line
• that is: v = a · w , for some scalar a

• Example: for v = (1, 2) and w = (−2,−4) we have:
• v = − 1

2w , so they are on the same line
• a1 · v + a2 · w = 0, e.g. for a1 = 2 6= 0 and a2 = 1 6= 0.

• In space, three vectors u, v ,w ∈ R3 are dependent if they are
in the same plane (or even line)

• One can prove: v1, . . . , vn ∈ V are dependent, if and only if
some vi can be expressed as a linear combination of the others
(the vj with j 6= i).
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Basis

Definition

Vectors v1, . . . , vn ∈ V form a basis for a vector space V if these
v1, . . . , vn

• are independent, and

• span V in the sense that each w ∈ V can be written as linear
combination of these v1, . . . , vn, namely as:

w = a1v1 + · · ·+ anvn for certain a1, . . . , an ∈ R

• These scalars ai are uniquely determined by w ∈ V (see below)

• A space V may have several bases, but the number of
elements of a basis for V is always the same; it is called the
dimension of V , usually written as dim(V ) ∈ N.
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The standard basis for Rn

For the space Rn = {(x1, . . . , xn) | xi ∈ R} there is a standard
choice of base vectors:

(1, 0, 0 . . . , 0), (0, 1, 0, . . . , 0), · · · (0, . . . , 0, 1)

We have already seen that they are independent; it is easy to see
that they span Rn

This enables us to state precisely that Rn has n dimensions.
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An alternative basis for R2

• The standard basis for R2 is (1, 0), (0, 1).

• But many other choices are possible, eg. (1, 1), (1,−1)

• independence: if a · (1, 1) + b · (1,−1) = (0, 0), then:{
a + b = 0
a− b = 0

and thus

{
a = 0
b = 0

• spanning: each point (x , y) can written in terms of
(1, 1), (1,−1), namely:

(x , y) = x+y
2 (1, 1) + x−y

2 (1,−1)
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The space of solutions to a set of equations I

• The set of solutions to a set of homogeneous equations forms
a vector space.

• How do we compute its basis?

Example:
x1 + 2x2 − 3x3 = 0
2x1 + 3x2 + x3 = 0

3x1 + 4x2 + 5x3 = 0
−2x1 − 4x2 + 6x3 = 0

with associated coefficient matrix
1 2 −3
2 3 1
3 4 5
−2 −4 6


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The space of solutions to a set of equations II

We transform the coefficient matrix to Echelon form:
1 2 −3
2 3 1
3 4 5
−2 −4 6

 7→


1 2 −3
0 −1 7
0 0 0
0 0 0


There are 3 variables and 2 pivots, so there is one basic solution
(and the (0, 0, 0) solution).
Example of a basic solution: x1 = −11, x2 = 7, x3 = 1.

• A basis for the solution space is (−11, 7, 1),
but also (−22, 14, 2) forms a basis

• The dimension of the solution space (of this set of eqns) is 1.
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Uniqueness of representations

Theorem
• Suppose V is a vector space, with basis v1, . . . , vn

• assume x ∈ V can be represented in two ways:

x = a1v1 + · · ·+ anvn and also x = b1v1 + · · ·+ bnvn

Then: a1 = b1 and . . . and an = bn.

Proof: This follows from independence of v1, . . . , vn since:

0 = x − x =
(
a1v1 + · · ·+ anvn

)
−
(
b1v1 + · · ·+ bnvn

)
= (a1 − b1)v1 + · · ·+ (an − bn)vn.

Hence ai − bi = 0, by independence, and thus ai = bi . �
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Maps

• A map (or ‘function’) f is an operation that sends elements of
one set X to another set Y .

• in that case we write f : X → Y or sometimes X
f→ Y

• this f sends x ∈ X to f (x) ∈ Y
• X is called the domain and Y the codomain of the map f

• Example. f (n) = 1
n+1 can be seen as map N→ Q, that is

from the natural numbers N to the rational numbers Q
• A map is sometimes also called a mapping or a function

• On each set X there is the identity map id : X → X that does
nothing: id(x) = x .

• Also one can compose 2 maps X
f→ Y

g→ Z to a map:

g ◦ f : X −→ Z given by (g ◦ f )(x) = g(f (x))
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Linear maps

We have seen that the two relevant operations of a vector space
are addition and scalar multiplication. A linear map is required to
preserve these two.

Definition

Let V ,W be two vector spaces, and f : V →W a map between
them; f is called linear if it preserves both:

• addition: for all v , v ′ ∈ V ,

f (v + v ′︸ ︷︷ ︸
in V

) = f (v) + f (v ′)︸ ︷︷ ︸
in W

• scalar multiplication: for each v ∈ V and a ∈ R,

f (a · v︸︷︷︸
in V

) = a · f (v)︸ ︷︷ ︸
in W
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Linear maps preserve zero and minus

Lemma

Each linear map f : V →W preserves:

• zero: f (0) = 0.

• minus: f (−v) = −f (v)

Proof: Nice illustration of axiomatic reasoning:

f (0) = f (0) + 0
= f (0) +

(
f (0)− f (0)

)
=
(
f (0) + f (0)

)
− f (0)

= f (0 + 0)− f (0)
= f (0)− f (0)
= 0

f (−v) = f (−v) + 0
= f (−v) +

(
f (v)− f (v)

)
=
(
f (−v) + f (v)

)
− f (v)

= f (−v + v)− f (v)
= f (0)− f (v)
= 0− f (v)
= −f (v) �
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Linear map examples I

First we consider maps f : R→ R. Most of them are not linear,
like, for instance:

• f (x) = 1 + x ,since f (0) = 1 6= 0

• f (x) = x2, since f (−1) = 1 = f (1) 6= −f (1).

So: linear maps R→ R can only be very simple.

Lemma

Each linear map f : R→ R is of the form f (x) = c · x, for some
c ∈ R (this constant c depends on f )

Proof: Scalar multiplication on R is ordinary multiplication.
Hence:

f (x) = f (x · 1) = x · f (1) = f (1) · x = c · x , for c = f (1). �
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Linear map examples II

Consider the map f : R3 → R2 given by

f (x1, x2, x3) = (x1 − x2, x2 + x3)

We show in detail that this f is linear, following the definition.

Preservation of scalar multiplication (from R3 to R2):

f
(
a · (x1, x2, x3)

)
= f

(
a · x1, a · x2, a · x3

)
=
(
a · x1 − a · x2, a · x2 + a · x3

)
=
(
a · (x1 − x2), a · (x2 + x3)

)
= a · (x1 − x2, x2 + x3)
= a · f (x1, x2, x3).
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Linear map examples II (cntd)

Preservation of addition of f from R3 to R2 given by:

f (x1, x2, x3) = (x1 − x2, x2 + x3)

f
(

(x1, x2, x3) + (y1, y2, y3)
)

= f
(
x1 + y1, x2 + y2, x3 + y3

)
=
(

(x1 + y1)− (x2 + y2), (x2 + y2) + (x3 + y3)
)

=
(

(x1 − x2) + (y1 − y2), (x2 + x3) + (y2 + y3)
)

=
(
x1 − x2, x2 + x3

)
+
(
y1 − y2, y2 + y3

)
= f (x1, x2, x3) + f (y1, y2, y3). �
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Linear map examples III

Consider the map f : R2 → R2 given by

f (x , y) =
(
x cos(ϕ)− y sin(ϕ), x sin(ϕ) + y cos(ϕ)

)
This map describes rotation in the plane, with angle ϕ:

In the same way one can show that f is linear [Do it yourself!]
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Linear maps and bases, example I

• Recall the linear map f (x1, x2, x3) = (x1 − x2, x2 + x3)

• Claim: this map is entirely determined by what it does on the
base vectors (1, 0, 0), (0, 1, 0), (0, 0, 1) ∈ R3, namely:

f (1, 0, 0) = (1, 0) f (0, 1, 0) = (−1, 1) f (0, 0, 1) = (0, 1).

• Indeed, using linearity:

f (x1, x2, x3)

= f
(

(x1, 0, 0) + (0, x2, 0) + (0, 0, x3)
)

= f
(
x1 · (1, 0, 0) + x2 · (0, 1, 0) + x3 · (0, 0, 1)

)
= f

(
x1 · (1, 0, 0)

)
+ f
(
x2 · (0, 1, 0)

)
+ f
(
x3 · (0, 0, 1)

)
= x1 · f (1, 0, 0) + x2 · f (0, 1, 0) + x3 · f (0, 0, 1)
= x1 · (1, 0) + x2 · (−1, 1) + x3 · (0, 1)
= (x1 − x2, x2 + x3)
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Linear maps and bases, example I (cntd)

• Our f (x1, x2, x3) = (x1 − x2, x2 + x3) is thus determined by:

f (1, 0, 0) = (1, 0) f (0, 1, 0) = (−1, 1) f (0, 0, 1) = (0, 1)

• We can organise these data in a 2× 3 matrix:(
1 −1 0
0 1 1

)
The f (vi ), for base vector vi , appears as the i-the column.

• Applying f can be done by a new kind of multiplication:(
1 −1 0
0 1 1

)
·

x1
x2
x3

 def
=

(
1 · x1 +−1 · x2 + 0 · x3
0 · x1 + 1 · x2 + 1 · x3

)
=

(
x1 − x2
x2 + x3

)

H. Geuvers Version: spring 2016 Matrix Calculations 30 / 44



Vector spaces
Bases & dimension

Linear maps
Linear maps and matrices

Radboud University Nijmegen

The general case

The aim is to obtain a matrix for an arbitrary linear map.

• Assume a linear map f : V →W , where:
• the vector space V has basis {v1, . . . , vn} ⊆ V ;
• W has basis {w1, . . . ,wm}

• Each x ∈ V can be written as x = a1v1 + · · ·+ anvn. Hence:

f (x) = f
(
a1v1 + · · ·+ anvn

)
= a1f (v1) + · · ·+ anf (vn) by linearity of f

Thus, f is determined by its values f (v1), . . . , f (vn) on base
vectors vj ∈ V .

• By writing f (vj) = b1jw1 + · · ·+ bmjwm we obtain an m × n
matrix with entries

(
bij
)
i≤m,j≤n
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Towards matrix-vector multiplication

In this setting, we have:

f (x)
= f (a1v1 + · · ·+ anvn)
= a1f (v1) + · · ·+ anf (vn)
= a1

(
b11w1 + · · ·+ bm1wm

)
+ · · ·+ an

(
b1nw1 + · · ·+ bmnwm

)
=
(
a1b11 + · · ·+ anb1n

)
w1 + · · ·+

(
a1bm1 + · · ·+ anbmn

)
wm

=
(
b11a1 + · · ·+ b1nan

)
w1 + · · ·+

(
bm1a1 + · · ·+ bmnan

)
wm

This motivates the definition of matrix-vector multiplication:b11 · · · b1n
...

...
bm1 · · · bmn

 ·
a1

...
an

 =

 b11a1 + · · ·+ b1nan
...

bm1a1 + · · ·+ bmnan


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Matrix-vector multiplication: Definition

Definition

For vectors v = (x1, . . . , xn),w = (y1, . . . , yn) ∈ Rn define their
inner product (or dot product) as the real number:

〈v ,w〉 = x1y1 + · · ·+ xnyn

Definition

If B =

b11 · · · b1n
...

...
bm1 · · · bmn

 and w =

a1
...
an

, then B · w

is the vector whose i-th element is the dot product of the i-th row
of matrix B with the (input) vector w .
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Matrix-vector multiplication, concretely

• Recall f (x1, x2, x3) = (x1 − x2, x2 + x3) with matrix:(
1 −1 0
0 1 1

)
• We can directly calculate
f (1, 2,−1) = (1− 2, 2− 1) = (−1, 1)

• We can also get the same result by matrix-vector
multiplication:(

1 −1 0
0 1 1

)
·

 1
2
−1

 =

(
1 · 1 +−1 · 2 + 0 · −1
0 · 1 + 1 · 2 + 1 · −1

)
=

(
−1
1

)
• This multiplication can be understood as: putting the

argument values x1 = 1, x2 = 2, x3 = −1 in variables of the
underlying equations, and computing the outcome.
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Another example, to learn the mechanics


9 3 2 9 7
8 5 6 6 3
4 5 8 9 3
3 4 3 3 4

 ·


9
5
2
5
7


=


9 · 9 + 3 · 5 + 2 · 2 + 9 · 5 + 7 · 7
8 · 9 + 5 · 5 + 6 · 2 + 6 · 5 + 3 · 7
4 · 9 + 5 · 5 + 8 · 2 + 9 · 5 + 3 · 7
3 · 9 + 4 · 5 + 3 · 2 + 3 · 5 + 4 · 7


=


81 + 15 + 4 + 45 + 49

72 + 25 + 12 + 30 + 21
36 + 25 + 16 + 45 + 21
27 + 20 + 6 + 15 + 28

 =


194
160
143
96


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Linear map from matrix

• We have seen how a linear map can be described via a matrix

• One can also read each matrix as a linear map

Example

• Consider the matrix

(
2 0 −1
5 1 −3

)
• It has 3 columns/inputs and two rows/outputs. Hence it

describes a map f : R3 → R2

• Namely: f (x1, x2, x3) = (2x1 − x3, 5x1 + x2 − 3x3).
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Examples of linear maps and matrices I

Projections are linear maps. Consider f : R3 → R2

f

x
y
z

 =

(
x
y

)
.

f maps 3d space to the the 2d plane.
The matrix of f is the following 2× 3 matrix:(

1 0 0
0 1 0

)
.
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Examples of linear maps and matrices II

We have already seen: Rotation over an angle ϕ is a linear map

This rotation is described by f : R2 → R2 given by

f (x , y) =
(
x cos(ϕ)− y sin(ϕ), x sin(ϕ) + y cos(ϕ)

)
The matrix that describes f is(

cos(ϕ) − sin(ϕ)
sin(ϕ) cos(ϕ)

)
.
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Examples of linear maps and matrices III

Reflection through an axis is a linear map

• Reflection through the y -axis: (x , y) 7→ (−x , y) is given by(
−1 0
0 1

)
.

• Reflection in a different straight line that goes through (0, 0),
for example the line y = 2x :

• We first choose a different basis E for R2, with one vector
orthogonal to the axis and one on the axis.

• We choose E = {(2,−1), (1, 2)}.
• In terms of the basis E , the matrix for f is just(

−1 0
0 1

)
.

• We will learn how to transform this back to a matrix for the
standard basis!
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Matrix summary

• Assume bases {v1, . . . , vn} ⊆ V and {w1, . . . ,wm} ⊆W

• Each linear map f : V →W corresponds to an m × n matrix,
and vice-versa.
We often write the matrix of f as Mf

• The i-th column in this matrix Mf is given by the coefficients
of f (vi ), wrt. the basis w1, . . . ,wm of W

• Matrix-vector multiplication corresponds to application of a
map to an input: f (v) is the same as Mf · v .

• This matrix Mf of f depends on the choice of basis: for
different bases of V and W a different matrix is obtained

• (Matrix-vector multiplication forms itself a linear map)
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The identity matrix

Consider the following n × n identity matrix with diagonal of 1’s:

In =


1 0 · · · 0
0 1 · · · 0

0 0
. . . 0

0 0 · · · 1



• To which map does In correspond?

The identity map Rn → Rn.

• To which system of equations does In correspond? x1 = 0...
xn = 0
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Matrices as vectors I

• Write Matm,n = {M | M is an m × n matrix}
• Thus each M ∈Matm,n can be written as M = (aij), for

1 ≤ i ≤ m and 1 ≤ j ≤ n

• We can add two such matrices M,N ∈Matm,n, giving
M + N ∈Matm,n.

• the matrices are added entry-wise, that is:
• if M = (aij), N = (bij), M + N = (cij), then cij = aij + bij

• Similarly, matrices can be multiplied by a scalar s ∈ R
• s ·M ∈Matm,n has entries s · aij

• Finally, there is a zero matrix 0m,n ∈Matm,n, with only zeros
as entries�



�
	

�



�
	Matm,n is a vector space (of dimension m · n).
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Matrices as vectors II: example

• Addition:(
2 0 1
−1 −3 5

)
+

(
1 1 2
2 −2 5

)
=

(
3 1 3
1 −5 10

)
• Scalar multiplication:

5 ·
(

2 0 1
−1 −3 5

)
=

(
10 0 5
−5 −15 25

)
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Matrices as vectors III: transpose

• For a matrix M ∈Matm,n write MT ∈Matn,m for the
transpose of M

• It is obtained by mirroring:
• if M = (aij) then MT has entries aji
• For example (

2 0 1
−1 −3 5

)T

=

2 −1
0 −3
1 5



Theorem

Transposition is a linear map (−)T : Matm,n →Matn,m. That is:

• (M + N)T = MT + NT

• (a ·M)T = a ·MT
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