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From last time

• Vector spaces V ,W , . . . are special kinds of sets whose
elements are called vectors.

• Vectors can be added together, or multiplied by a real
number, For v ,w ∈ V , a ∈ R:

v + w ∈ V a · v ∈ V

• The simplest examples are:

Rn := {(a1, . . . , an) | ai ∈ R}

• Linear maps are special kinds of functions which satisfy two
properties:

f (v + w) = f (v) + f (w) f (a · v) = a · f (v)
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From last time

• Whereas there exist LOTS of functions between the sets V
and W ...

• ...there actually aren’t that many linear maps:

Theorem

For every linear map f : Rn → Rm, there exists an m × n matrix A
where:

f (v) = A · v

(where “·” is the matrix multiplication of A and a vector v)

• More generally, every linear map f : V →W is representable
as a matrix, but you have to fix a basis for V and W first:

{v1, . . . , vm} ∈ V {w1, . . . ,wn} ∈W

• ...whereas in Rn there is an obvious choice:

{(1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, . . . , 0, 1)} ∈ Rn
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Matrix-vector multiplication

For a matrix A and a vector v , w := A · v is the vector whose i-th
row is the dot product of the i-th row of A with v :a11 · · · a1n

...
...

am1 · · · amn

 ·
v1

...
vn

 =

 a11v1 + . . . + a1nvn
...

am1v1 + . . . + amnvn



i.e. wi := a11v1 + . . . + a1nvn =
n∑

j=1
aijvj .
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Example: systems of equations

a11x1 + · · ·+ a1nxn = b1
...

am1x1 + · · ·+ amnxn = bm

⇒

A · x = ba11 · · · a1n
...

am1 · · · amn

 ·
x1

...
xn

 =

b1
...
bn



a11x1 + · · ·+ a1nxn = 0
...

...
...

am1x1 + · · ·+ amnxn = 0

⇒

A · x = 0a11 · · · a1n
...

...
...

am1 · · · amn

 ·
x1

...
xn

 =

0
...
0


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Matrix multiplication

• Consider linear maps g , f represented by matrices A, B:

g(v) = A · v f (w) = B ·w

• Can we find a matrix C that represents their composition?

g(f (v)) = C · v

• Let’s try:

g(f (v)) = g(B · v) = A · (B · v)
(∗)
= (A · B) · v

(where step (∗) is currently ‘wishful thinking’)

• Great! Let C := A · B.

• But we don’t know what “·” means for two matrices yet...
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Matrix multiplication

• Solution: generalise from A · v
• A vector is a matrix with one column:

The number in the i-th row and the first column of A · v is the
dot product of the i-th row of A with the first column of v .

• So for matrices A,B:

The number in the i-th row and the j-th column of A ·B is the
dot product of the i-th row of A with the j-th column of B.
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Matrix multiplication

For A an m × n matrix, B an n × p matrix:

A · B = C

is an m × p matrix.
...

...
...

ai1 · · · ain
...

...
...

 ·
· · · bj1 · · ·

· · ·
... · · ·

· · · bjn · · ·

 =


. . .

... . .
.

· · · cij · · ·

. .
. ...

. . .



cij =
n∑

k=1

aikbkj
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Special case: vectors

For A an m × n matrix, B an n × 1 matrix:

A · b = c

is an m × 1 matrix.
...

...
...

ai1 · · · ain
...

...
...

 ·
b11

...
bn1

 =


...
ci1
...



ci1 =
n∑

k=1

aikbk1
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Matrix composition

Theorem

Matrix composition is associative:

(A · B) · C = A · (B · C )

Proof. Let X := (A · B) · C . This is a matrix with entries:

xip =
∑
k

aikbkp

Then, the matrix entries of X · C are:

∑
p

xipcpj =
∑
p

(∑
k

aikbkp

)
cpk =

∑
kp

aikbkpcpk

(because sums can always be pulled outside, and combined)
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Associativity of matrix composition

Proof (cont’d). Now, let Y := B · C . This has matrix entries:

ykj =
∑
p

bkpcpj

Then, the matrix entries of A · Y are:∑
k

aikykj =
∑
k

aik

(∑
p

bkpcpj

)
=
∑
kp

aikbkpcpk

...which is the same as before! So:

(A · B) · C = X · C = A · Y = A · (B · C )

So we can drop those pesky parentheses:

A · B · C := (A · B) · C = A · (B · C )
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Matrix product and composition

Corollary

The composition of linear maps is given by matrix product.

Proof. Let g(w) = A ·w and f (v) = B · v . Then:

g(f (v)) = g(B · v) = A · B · v

-

No wishful thinking necessary!

A. Kissinger Version: spring 2016 Matrix Calculations 14 / 43



Matrix multiplication
Matrix inverse

Kernel and image
Radboud University Nijmegen

Example 1

Consider the following two linear maps, and their associated
matrices:

R3 f−→ R2 R2 g−→ R2

f (x1, x2, x3) = (x1 − x2, x2 + x3) g(y1, y2) = (2y1 − y2, 3y2)

Mf =

(
1 −1 0
0 1 1

)
Mg =

(
2 −1
0 3

)
We can compute the composition directly:

(g ◦ f )(x1, x2, x3) = g
(
f (x1, x2, x3)

)
= g(x1 − x2, x2 + x3)
= ( 2(x1 − x2)− (x2 + x3), 3(x2 + x3) )
= ( 2x1 − 3x2 − x3, 3x2 + 3x3 )

So:
Mg◦f =

(
2 −3 −1
0 3 3

)
...which is just the product of the matrices: Mg◦f = Mg ·Mf
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Note: matrix composition is not commutative

In general, A · B 6= B · A

For instance: Take A =

(
1 0
0 −1

)
and B =

(
0 1
−1 0

)
. Then:

A · B =

(
1 0
0 −1

)
·
(

0 1
−1 0

)
=

(
1 · 0 + 0 · −1 1 · 1 + 0 · 0

0 · 0 +−1 · −1 0 · 1 +−1 · 0

)
=

(
0 1
1 0

)

B · A =

(
0 1
−1 0

)
·
(

1 0
0 −1

)
=

(
0 · 1 + 1 · 0 0 · 0 + 1 · −1
−1 · 1 + 0 · 0 −1 · 0 + 0 · −1

)
=

(
0 −1
−1 0

)
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But it is...

...associative, as we’ve already seen:

A · B · C := (A · B) · C = A · (B · C )

It also has a unit given by the identity matrix I :

A · I = I · A = A

where:

I :=


1 0 · · · 0
0 1 · · · 0
...

. . .
...

0 0 · · · 1



A. Kissinger Version: spring 2016 Matrix Calculations 17 / 43



Matrix multiplication
Matrix inverse

Kernel and image
Radboud University Nijmegen

Example: political swingers, part I

• We take an extremely crude view on politics and distinguish
only left and right wing political supporters

• We study changes in political views, per year

• Suppose we observe, for each year:
• 80% of lefties remain lefties and 20% become righties
• 90% of righties remain righties, and 10% become lefties

Questions . . .
• start with a population L = 100,R = 150, and compute the

number of lefties and righties after one year;

• similarly, after 2 years, and 3 years, . . .

• Find a convenient way to represent these computations.
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Political swingers, part II

• So if we start with a population L = 100,R = 150, then after
one year we have:

• lefties: 0.8 · 100 + 0.1 · 150 = 80 + 15 = 95
• righties: 0.2 · 100 + 0.9 · 150 = 20 + 135 = 155

• Two observations:
• this looks like a matrix-vector multiplication
• long-term developments can be calculated via iterated matrices
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Political swingers, part III

• We can write the political transition matrix as

P =

(
0.8 0.1
0.2 0.9

)
• If

(
L
R

)
=

(
100
150

)
, then after one year we have:

P ·
(

100
150

)
=

(
0.8 0.1
0.2 0.9

)
·
(

100
150

)
=

(
0.8 · 100 + 0.1 · 150
0.2 · 100 + 0.9 · 150

)
=

(
95

155

)
• After two years we have:

P ·
(

95
155

)
=

(
0.8 0.1
0.2 0.9

)
·
(

95
155

)
=

(
0.8 · 95 + 0.1 · 155
0.2 · 95 + 0.9 · 155

)
=

(
91.5

158.5

)
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Political swingers, part IV

The situation after two years is obtained as:

P · P ·

(
L

R

)
=

(
0.8 0.1

0.2 0.9

)
·

(
0.8 0.1

0.2 0.9

)
·

(
L

R

)
︸ ︷︷ ︸
do this multiplication first

=

(
0.8 · 0.8 + 0.1 · 0.2 0.8 · 0.1 + 0.1 · 0.9
0.2 · 0.8 + 0.9 · 0.2 0.2 · 0.1 + 0.9 · 0.9

)
·

(
L

R

)

=

(
0.66 0.17

0.34 0.83

)
·

(
L

R

)

The situation after n years is described by the n-fold iterated
matrix:

Pn = P · P · · ·P︸ ︷︷ ︸
n times

A. Kissinger Version: spring 2016 Matrix Calculations 21 / 43



Matrix multiplication
Matrix inverse

Kernel and image
Radboud University Nijmegen

Political swingers, part V

Interpret the following iterations:

P2 = P · P =

(
0.66 0.17
0.34 0.83

)
P3 = P · P · P =

(
0.8 0.1
0.2 0.9

)
·
(

0.66 0.17
0.34 0.83

)
=

(
0.562 0.219
0.438 0.781

)
P4 = P · P · P · P =

(
0.8 0.1
0.2 0.9

)
·
(

0.562 0.219
0.438 0.781

)
=

(
0.4934 0.2533
0.5066 0.7467

)
Etc. Does this stabilise? We’ll talk about fixed points later on...
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Solving equations the old fashioned way...

• We now know that systems of equations look like this:

A · x = b

• The goal is to solve for x , in terms of A and b.

• Here comes some more wishful thinking:

x =
1

A
· b

• Well, we can’t really divide by a matrix, but if we are lucky,
we can find another matrix called A−1 which acts like 1

A .
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Inverse

Definition

The inverse of a matrix A is another matrix A−1 such that:

A−1 · A = A · A−1 = I

• Not all matrices have inverses, but when they do, we are
happy, because:

A · x = b =⇒ A−1 · A · x = A−1 · b
=⇒ x = A−1 · b

• So, how do we compute the inverse of a matrix?
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Remember me?
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Gaussian elimination as matrix multiplication

• Each step of Gaussian elimination can be represented by a
matrix multiplication:

A⇒ A′ A′ := G · A

• For instance, multiplying the i-th row by c is given by:

G(Ri :=cRi ) · A

where G(Ri :=cRi ) is just like the identity matrix, but gii = c .

• Exercise. What are the other Gaussian elimination matrices?

G(Ri↔Rj ) G(Ri :=Ri+cRj )
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Reduction to Echelon form

• The idea: treat A as a coefficient matrix, and compute its
reduced Echelon form

• If the Echelon form of A has n pivots, then its reduced
Echelon form is the identity matrix:

A⇒ A1 ⇒ A2 ⇒ · · · ⇒ Ap = I

• Now, we can use our Gauss matrices to remember what we
did:

A1 := G1 · A
A2 := G2 · G1 · A
· · ·

Ap := Gp · · ·G1 · A = I
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Computing the inverse

• A ha!

Gp · · ·G1 · A = I =⇒ A−1 = Gp · · ·G1

• So all we have to do is construct p different matrices and
multiply them all together!

• Since I already have plans for this afternoon, lets take a
shortcut:

Theorem

For C a matrix and (A|B) an augmented matrix:

C · (A|B) = (C · A | C · B)
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Computing the inverse

• Since Gaussian elimination is just multiplying by a certain
matrix on the left...

A⇒ G · A

• ...doing Gaussian elimination (for A) on an augmented matrix
applies G to both parts:

(A|B)⇒ (G · A | G · B)

• So, if G = A−1:

(A|B)⇒ (A−1 · A | A−1 · B) = (I | A−1 · B)
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Computing the inverse

• We already (secretly) used this trick to solve:

A · x = b =⇒ x = A−1 · b

• Here, we are only interested in the vector A−1 · b
• Which is exactly what Gaussian elimination on the augmented

matrix gives us:
(A|b)⇒ (I | A−1 · b)

• To get the entire matrix, we just need to choose something
clever to the right of the line

• Like this:
(A|I )⇒ (I | A−1 · I ) = (I | A−1)
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Computing the inverse: example

For example, we compute the inverse of:

A :=

(
1 1
1 2

)
as follows:(

1 1 1 0
1 2 0 1

)
⇒
(

1 1 1 0
0 1 −1 1

)
⇒
(

1 0 2 −1
0 1 −1 1

)
So:

A−1 :=

(
2 −1
−1 1

)
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Computing the inverse: non-example

Unlike transpose, not every matrix has an inverse.
For example, if we try to compute the inverse for:

B :=

(
1 1
1 1

)
we have: (

1 1 1 0
1 1 0 1

)
⇒
(

1 1 1 0
0 0 −1 1

)

We don’t have enough pivots to continue reducing. So B does not
have an inverse.

A. Kissinger Version: spring 2016 Matrix Calculations 33 / 43



Matrix multiplication
Matrix inverse

Kernel and image
Radboud University Nijmegen

Subspace definition

Definition

A subset S ⊆ V of a vector space V is called a (linear) subspace if
S is closed under addition and scalar multiplication:

• 0 ∈ S

• v , v ′ ∈ S implies v + v ′ ∈ S

• v ∈ S and a ∈ R implies a · v ∈ S .

Note
• A subspace S ⊆ V is a vector space itself, and thus also has a

basis.

• Also S has its own dimension, where dim(S) ≤ dim(V ).
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Subspace examples

1 Earlier we saw that the subset of solutions of a system of
equations is closed under addition and (scalar) multiplication,
and thus is a linear subspace.

2 The diagonal D = {(x , x) | x ∈ R} ⊆ R2 is a linear subspace:
• if (x1, x1), (x2, x2) ∈ D, then also

(x1, x1) + (x2, x2) = (x1 + x2, x1 + x2) ∈ D
• if (x , x) ∈ D and a ∈ R, also a · (x , x) = (a · x , a · x) ∈ D

Also:
• D has a single vector as basis, for example (1, 1)
• thus, D has dimension 1
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Basis for subspaces

Let the space V have dimension n, and a subspace S ⊆ V
dimension p, where p ≤ n. Then:

• any set of > p vectors in S is linearly dependent

• any set of < p vectors in S does not span S

• any set of p independent vectors in S is a basis for S

• any set of p vectors that spans S is a basis for S
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Kernel and image: definitions

Definition

Let f : V →W be a linear map

• the kernel of f is the subset of V given by:

ker(f ) = {v ∈ V | f (v) = 0}

• the image of f is the subset of W given by:

im(f ) = {f (v) | v ∈ V }

Example

Consider the function f : R2 → R2 given by f (x , y) = (x , 0)

• the kernel is {(x , y) ∈ R2 | f (x , y) = (0, 0)}, which is
{(0, y) | y ∈ R}, i.e. the y -axis.

• the image is the x-axis {(x , 0) | x ∈ R}
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Kernels and images are subspaces

Theorem

For a linear map f : V →W,

• ker(f ) = {v | f (v) = 0} ⊆ V is a linear subspace

• im(f ) = {f (v) | v ∈ V } ⊆W is a linear subspace.

Proof: We check two cases (do the others yourself!)

• Closure of ker(f ) under addition: if v , v ′ ∈ ker(f ), then
f (v) = 0 and f (v ′) = 0. By linearity of f ,
f (v + v ′) = f (v) + f (v ′) = 0 + 0 = 0, so v + v ′ ∈ ker(f ).

• Closure of im(f ) under scalar multiplication: Assume
w ∈ im(f ), say w = f (v), and a ∈ R. Again by linearity:
a ·w = a · f (v) = f (a · v), so a ·w ∈ im(f ). -

A. Kissinger Version: spring 2016 Matrix Calculations 39 / 43



Matrix multiplication
Matrix inverse

Kernel and image
Radboud University Nijmegen

Injectivity and surjectivity

• A linear map f : V →W is surjective:

∀w∃v .f (v) = w

if and only if im(f ) = W .

• A linear map f : V →W is injective:

f (v) = f (w) =⇒ v = w

if and only if ker(f ) = 0.
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The kernel as solution space

With this kernel (and image) terminology we can connect some
previous concepts.

Theorem

Suppose a linear map f : V →W has matrix A. Then:

v ∈ ker(f ) ⇐⇒ f (v) = 0
⇐⇒ A · v = 0
⇐⇒ v solves a system of homogeneous equations

Moreover, the dimension of the kernel dim(ker(f )) is the same as
the number of basic solutions of A, that is the number of columns
without pivots in the echelon form of A.
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We can learn a lot about a matrix...

• ...by looking at its columns.

• Suppose a linear map f is represented by a matrix A with
columns {v1, . . . , vn}:

f (w) =

 | |
v1 · · · vn
| |

 ·w
• Then, dim(im(f )) is the dimension of the space spanned by
{v1, . . . , vn}

• ...which is the same as the number of pivots in A
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Kernel-image-dimension theorem (aka. rank-nullity)

Theorem

For a linear map f : V →W one has:

dim(ker(f )) + dim(im(f )) = dim(V )

Proof: Let A be a matrix that represents f . It has dim(V )
columns. dim(im(f )) of those are pivots, and the rest correspond
to basic solutions to A · x = 0, which give a basis for ker(f ).
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