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Existence and uniqueness of inverse
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Recall: Inverse matrix

Let A be a n x n (“square”) matrix.

This A has an inverse if there is an n x n matrix A~ with:

A-Al=] and Al . A=1

Note

Matrix multiplication is not commutative, so it could (a priori) be
the case that:

e A has a right inverse: a B such that A- B = I and
e A has a (different) left inverse: a C such that C-A = 1.

However, this doesn't happen.
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Existence and uniqueness of inverse
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Uniqueness of the inverse

Theorem

If a matrix A has a left inverse and a right inverse, then they are
equal. IfA-B=1and C-A=1, then B=C.

Proof. Multiply both sides of the first equation by C:

C-AB=Cl = B=C

Corollary

If a matrix A has an inverse, it is unique.

A. Kissinger (and H. Geuvers) Version: spring 2015 Matrix Calculations



Existence and uniqueness of inverse
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When does a matrix have an inverse?

Theorem (Existence of inverses)

An n X n matrix has an inverse (or: is invertible) if and only if it
has n pivots in its echelon form.

Soon, we will introduce another criterion for a matrix to be
invertible, using determinants.
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Existence and uniqueness of inverse
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Explicitly computing the inverse, part |

e Suppose we wish to find A~ for A = (i Z)

e We need to find x, y, u, v with:
a by (xy\_ (10
cd uv) \01

e Multiplying the matrices on the LHS:
ax+bu cx+du) (10
ay+bv cy+dv)  \01

e ..gives a system of 4 equations:
ax+ bu =
cx + du
ay + bv
cy +dv =

= O O =
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Existence and uniqueness of inverse
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Computing the inverse: the 2 x 2 case, part Il

e Splitting this into two systems:

ax+bu =1 and ay+bv =0
cx+du =0 cy+dv =1
e Solving the first system for (u, x) and the second system for

(v,y) gives:

_ _—c _ d _ a _ _—b
u= ad—bc X = ad—bc and v = ad—bc Y= ad—bc

(assuming bc — ad # 0). Then:
d —b
Al — (X Y) _ <adbc adbc)
—C a
uv ad—bc ad—bc
d —b learn this for-
S e R |

e Conclusion: A" = = <_C ; ) \/ mula by heart
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Existence and uniqueness of inverse
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Computing the inverse: the 2 x 2 case, part Il

Summarizing:

Theorem (Existence of an inverse of a 2 x 2 matrix)

A 2 X 2 matrix
ab
a=(24)

has an inverse (or: is invertible) if and only if ad — bc # 0, in
which case its inverse is

1 d —b
Al=_———
ad — bc <—c a )
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Existence and uniqueness of inverse
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Applying the general formula to the swingers
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bhe=J12 _ 2 _ 70 _ 7 ' ists!
ad — bc = {55 — 100 = 100 = 10 7 0 SO the inverse exists!

d —b
-1
P = adibc (—C a )

_ 10 09 -0.1
7\-0.2 08
Then indeed:

10 (09 —01\ (0801) 4, (07 0\ _(10
7\-02 08 ) \0209) "7\ 0 07 " \01

°
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n

A. Kissinger (and H. Geuvers) Version: spring 2015 Matrix Calculations
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Determinants

What a determinant does

For a square matrix A, the deteminant det(A) is a number (in R)
It satisfies:
det(A) =0 <= A s not invertible

< A"l does not exist
<= A has < n pivots in its echolon form

Determinants have useful properties, but calculating determinants
involves some work.
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Determinants
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Determinant of a 2 x 2 matrix

cd

Recall that the inverse A~! exists if and only if ad — bc # 0,
and in that case is:

d —b
-1 1
A ~ ad—bc <C a )

In this 2 x 2-case we define:

ab
det (c d) =

e Thus, indeed: det(A) = 0 <= A~ does not exist.

Assume A = <a b>

ab
cd

‘:ad—bc
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Determinant of a 2 x 2 matrix: example

e Recall the political transisition matrix

p_ (0801)_; (81
0.2 0.9) ~ 10 {2

9
e Then: s o Lo
- 12 _ 2
— 100 100
- 10 _ 7
— 100 T 10

o We have already seen that P~ exists, so the determinant
must be non-zero.
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Determinants
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Determinant of a 3 x 3 matrix

d11 412 a13
e Assume A= | ax1 ax axs

a31 as32 ass
e Then one defines:

a1l ai12 a3
detA = | ax1 ax» a3
a3l a3z ass
az2 as d12 di3 d12 di3
= +au- — a1 :
a3z ass a3z ass az a3z

e Methodology:

o take entries a;; from first column, with alternating signs (+, -)
o take determinant from square submatrix obtained by deleting
the first column and the i-th row
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Determinants Radboud University Nijmegen :

Determinant of a 3 x 3 matrix, example

PR R RO
- (3—0)—5(2—0)—2(8+3)
—3-10-22
~ 29
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The general, n x n case

d12 - din
a1l ** din dyp -+ a2
] ] a3 -+ asn
= +au-| - ©o| —aa-
anl ann an2 dnn
dn2 ... dpn
ap Ain
+ asy e e + an1
a(n-1)2 --- A(n—1)n

(where the last sign £ is + if nis odd and - if n is even)
Then, each of the smaller determinants is computed recursively.

(A lot of work! But there are smarter ways...)
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Some properties of determinants

For A and B two n X n matrices,
det(A - B) = det(A) - det(B).

The following are corollaries of the Theorem:
e det(A- B) =det(B - A).

o If A has an inverse, then det(A™!) = detl(A).

o det(AX) = (det(A))¥, for any k € N.
Proofs of the first two:
e det(A- B) = det(A) - det(B) = det(B) - det(A) = det(B - A).
(Note that det(A) and det(B) are simply numbers).
o If A has an inverse A~! then
det(A) - det(A™!) = det(A- A1) =det(/) =1, so
det(A™1) L

~ det(A)"
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Determinants
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Applications

e Determinants detect when a matrix is invertible

e Though we showed an inefficient way to compute
determinants, there is an efficient algorithm using, you
guessed it...Gaussian elimination!

e Solutions to non-homogeneous systems can be expressed
directly in terms of determinants using Cramer’s rule (wiki it!)

e Most importantly: determinants will be used to calculate
eigenvalues in the next lecture
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Basis transformations

Bases and coefficients

A basis for a vector space V is a set of vectors B = {vi,...,vp}
in V such that:

@ They are linearly independent:

avi+...+awv, =0 — all 3;=0

® They span V, i.e. for all v € V, there exist a; such that:

Vv=avi+...+apv,
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Basis transformations

Bases, equivalently

Equivalently: a basis for a vector space V is a set of vectors
B={vi,...,v,} in V such that:

@ They uniquely span V, i.e. for all v € V, there exist unique
a; such that:
Vv=avi+...+apv,

It's useful to think of column vectors just as notation for this sum:

ai
= a1Vvi1+ ...+ apv,

a,,B

Previously, we haven't bothered to write 53, but it is important!
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Basis transformations

Example: two bases for R?

Let V =R?, and let S = {(1,0),(0,1)} be the standard basis.

Vectors expressed in the standard basis give exactly what you

00 0-0

But expressing a vector in another basis can give something totally
different! For example, let B = {(100, 0), (100,1)}:

(0 () ()07
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Basis transformations

Same vector, different outfits

Hence the same vector can look different, depending on the choice

(),

of basis:

Examples:

Matrix Calculations
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Basis transformations

e Many find the idea of multiple bases confusing the first time

around.
e S={(1,0),(0,1)} is a perfectly good basis for R?. Why
bother with others?
@ Some vector spaces don't have one “obvious” choice of basis.
Example: subspaces S C R".
@® Sometimes it is way more efficient to write a vector with
respect to a different basis, e.g.:

93718234
—438203
110224 _
— 5423204980

OO -

s /B
© The choice of basis for vectors affects how we write matrices as
well. Often this can be done cleverly. Example: JPEGs, Google

Matrix Calculations
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Basis transformations

Transforming bases, part |

e How can we transform a vector form the standard basis to a
new basis, e.g. B = {(100,0),(100,1)}?
e In order to express (a, b) € R? in B we need to find x,y € R

such that:
(a> . <1oo> Ly (100) . <X>
b 0 1 v )y
e Solving the equations gives: y = b and x = 3—13})%%

The vector v = (100, 10) € R? is represented w.r.t. the basis B as:

(10),=2-(0) w20 (7)= (),

(use a =100, b = 10 in the formulas for x, y given above.)
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Basis transformations

Transforming bases, part Il

o Easier: given a vector written in B = {(100,0), (100, 1)}, how
can we write it in the standard basis? Just use the definition:

<X) <100> <100> <100X + 100y>
Y)s 0 1 y s
e Or, as matrix multiplication:

100 100\ (x _(100x + 100y

0 1 y) y

—_— |
TB:>S in basis B in basis S

e Let Tp—s be the matrix whose columns are the basis vectors

B. Then Tpg_gs transforms a vector written in B into a vector
written in S.
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Basis transformations

Transforming bases, part Il

e How do we go back? Need T s—; which does this:

3 a—100b
(2, ~ (%)
bS b B

e Solution: use the inverse!

Tsopi=(Tpss) ™
e Example:
_1 1
J1 (100 100\ " (g -1
(Ti=s) _<o 1 —\o0 1

e ...which indeed gives:

w0 1) () _ (*te0-
0 1) \b b
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Basis transformations

Transforming bases, part IV

e How about two non-standard bases?

s=((T) (PP e=i(5) 6D

/

a a

e Problem: translate a vector from to | ,,
b B b C

e Solution: do this in two steps:

Tp=s-Vv
—

first translate from B to S...

Tsec Tpos v = (Tess) ' Tpas-v

...then translate from S to C
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Basis transformations

Transforming bases, example

For bases:

s=((0)(Y) e=i(Z) )

e ...we need to find &’ and b’ such that

()= C)

Translating both sides to the standard basis gives:

2)()- (20

This we can solve using the matrix-inverse:

O-GY 6
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Basis transformations

Transforming bases, example

6-GeEn 0

For:

in basis C Ts—c T—s in basis B

(100 100\ _ ; (—200 —199
0 1) 4\200 201

we compute

-1 1\7' (100 100\ _ (—3
2 2 o 1) {1

which gives:
a\ _ 1(—200 —199 e
b)) 4\ 200 201 b

—— S~
in basis C TBéC in basis B

ENTER N
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Basis transformations

Basis transformation theorem

Let S be the standard basis for R" and let B = {v1,...,v,} and
C ={wi,...,w,} be other bases.

@ Then there is an invertible n x n basis transformation matrix
T 5—c such that:

/ /

d; al d; al

| =TB=c | : with =1

a, an a, c an/ s
® Tp_s is the matrix which has the vectors in B as columns,

and
Tpoc = (Tess) ' Toas

©® Tcop = (Tp=e)!t
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Basis transformations

Matrices in other bases

e Since vectors can be written with respect to different bases,
so too can matrices.

e For example, let g be the linear map defined by:

f((o)=0), (=),

e Then, naturally, we would represent g using the matrix:

<0 1)
10 s
e Because indeed:

(10) (@)=6) = (o) ()=()

A. Kissinger (and H. Geuvers) Version: spring 2015 Matrix Calculations



Radboud University Nijmegen

Basis transformations

On the other hand...

e Lets look at what g does to another basis:

5= () ()

e First (1,1) € B:

e Then, by linearity:

s (st (=) () = () = (),
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Basis transformations

On the other hand...
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Basis transformations

A new matrix

e From this:

f(o))=6),  #)=-(),

e |t follows that we should instead us this matrix to represent g:

(1 0>
0 -1 B
e Because indeed:

%) ()=o) = (%) C) =)
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Basis transformations

A new matrix

e So on different bases, g acts in totally different way!

((o)=0), (L=,
(o)==t ()=-(),

e ...and hence gets a totally different matrix:

<01> v (1 0)
10/ 0 -1/,

A. Kissinger (and H. Geuvers) Version: spring 2015 Matrix Calculations



Radboud University Nijmegen

Basis transformations

Transforming bases, part Il

Theorem

Assume again we have two bases B,C for R".

If a linear map f: R" — R" has matrix A w.r.t. to basis B, then,
w.r.t. to basis C, f has matrix A’ :

A=Tp.c A Teop

Thus, via Tg—c and T c—p one tranforms B-matrices into
C-matrices. In particular, a matrix can be translated from the
standard basis to basis B via:

A=Tsop A Tpos
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Basis transformations

Example basis transformation, part |

e Consider the standard basis S = {(1,0),(0,1)} for R?, and as
alternative basis B = {(—1,1),(0,2)}

e Let the linear map f : R> — R?, w.r.t. the standard basis S,
be given by the matrix:

1 -1
A= (2 3)
e What is the representation A’ of f w.r.t. basis B?

e Since S is the standard basis, Tp—s = < 0> contains the

-1
1 2
B-vectors as its columns
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Basis transformations

Example basis transformation, part Il

e The basis transformation matrix T s— 5 in the other direction
is obtained as matrix inverse:

-1
1 ~10 2 0 20
Tsws = (Toss) = < 1 2> = =% (—1 —1) = ( 1 1)

e Hence:
A T A Tp=s
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Basis transformations

Example basis transformation, part Il

e Consider a vector v € R? which can be represented in bases S
and B respectively as:

e That is, we have:

5 -5
o= Tous(3) = (40)
. 1

e Then, if we apply A= <

2 3

v (25) (1) - (=)

1 . . .
) to v, written in the basis S,

we get:
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Example basis transformation, part IV

e On the other hand, if we apply A’ = ( 21 g) to v/
-2

2 2 -5 -1
A= (53) () = ()
12 43 113

...which we interpret as a vector written in B.
e Comparing the two results:

)= (V) () = ()= (ao)
=-1- + 115 - = =

1 2

<112 s 1 2 22 22 )¢
...we get the same outcome!

In fact: this is always the case. It can be shown using the

definitions of A’ v/ and properties of inverses (i.e. no
matrixrekenen necessary!).
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