Matrix Calculations Assignment 1, Wednesday, Feb. 4, 2015

teacher	lecture room	email
John van de Wetering	HG00.065	wetering@cs.ru.nl
Aucke Bos	HG00.308	A.Bos@student.ru.nl
Milan van Stiphout	HG00.310	m.vanstiphout@student.ru.nl
Bart Gruppen	HG00.633	b.gruppen@student.ru.nl

Exercise teachers. Recall the following split-up of students:

The delivery boxes are located in the Mercator 1 building on the ground floor (where the Computer Science department ICIS is located).

Handing in your answers: There are two options, depending on your exercise class teacher:

- 1. Delivery box (default): Put your solutions in the appropriate delivery box (see above). Before putting your solutions in the box make sure:
 - your name and student number are written clearly on the document.
- 2. E-mail (if your teacher agrees): Send your solutions by e-mail to your exercise class teacher (see above) with subject 'assignment 1'. This e-mail should only contain a single PDF document as attachment (unless explicitly stated otherwise). Before sending an e-mail make sure:
 - the file is a PDF document that is well readable
 - your name is part of the filename (for example MyName_assignment-1.pdf)
 - your name and student number are included in the document (since they will be printed)

Deadline: Monday, February 6, 12:00 sharp!

Goals: After completing these exercises successfully you should be able to solve simple systems of equations and perform Gauss-elimination. The total number of points is 20.

Task: Transform the following system of equations into a coefficient matrix and augmented matrix, and then into echelon form. Indicate if there are solutions, and if so, describe them. Explain briefly how you proceed.

1. (5 points)

= 4	
= 5	
= 16	5.
	= 5

2. (5 points)

	$\begin{array}{rcrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
3. (5 points)	2x + y + 2v + w = 14x + 4y + 6v + w = 26x + y + 4v + 5w = 4
	2x + 3y + 5v + w = 4

4. (5 points)

$x_1 + 2x_2 + 3x_3$	=	0
$4x_1 + 5x_2 + 6x_3$	=	0
$3x_1 + 3x_2 + 3x_3$	=	0
$6x_1 + 9x_2 + 12x_3$	=	0