## Matrix Calculations

## Assignment 1, Wednesday, Feb. 4, 2015

Exercise teachers. Recall the following split-up of students:

| teacher | lecture room | email |
| :---: | :---: | :---: |
| John van de Wetering | HG00.065 | wetering@cs.ru.nl |
| Aucke Bos | HG00.308 | A.Bos@student.ru.nl |
| Milan van Stiphout | HG00.310 | m.vanstiphout@student.ru.nl |
| Bart Gruppen | HG00.633 | b.gruppen@student.ru.nl |

The delivery boxes are located in the Mercator 1 building on the ground floor (where the Computer Science department ICIS is located).

Handing in your answers: There are two options, depending on your exercise class teacher:

1. Delivery box (default): Put your solutions in the appropriate delivery box (see above). Before putting your solutions in the box make sure:

- your name and student number are written clearly on the document.

2. E-mail (if your teacher agrees): Send your solutions by e-mail to your exercise class teacher (see above) with subject 'assignment 1'. This e-mail should only contain a single PDF document as attachment (unless explicitly stated otherwise). Before sending an e-mail make sure:

- the file is a PDF document that is well readable
- your name is part of the filename (for example MyName_assignment-1.pdf)
- your name and student number are included in the document (since they will be printed)

Deadline: Monday, February 6, 12:00 sharp!
Goals: After completing these exercises successfully you should be able to solve simple systems of equations and perform Gauss-elimination. The total number of points is 20.

Task: Transform the following system of equations into a coefficient matrix and augmented matrix, and then into echelon form. Indicate if there are solutions, and if so, describe them. Explain briefly how you proceed.

## 1. (5 points)

$$
\begin{aligned}
-4 x+4 y-2 z & =4 \\
2 x-y+2 z & =5 \\
4 x-2 y+7 z & =16 .
\end{aligned}
$$

2. (5 points)

$$
\begin{aligned}
x_{1}-3 x_{2}-6 x_{3} & =2 \\
3 x_{1}-8 x_{2}-17 x_{3} & =-1 \\
x_{1}-4 x_{2}-7 x_{3} & =10
\end{aligned}
$$

3. (5 points)

$$
\begin{aligned}
2 x+y+2 v+w & =1 \\
4 x+4 y+6 v+w & =2 \\
6 x+y+4 v+5 w & =4 \\
2 x+3 y+5 v+w & =4
\end{aligned}
$$

4. (5 points)

$$
\begin{aligned}
x_{1}+2 x_{2}+3 x_{3} & =0 \\
4 x_{1}+5 x_{2}+6 x_{3} & =0 \\
3 x_{1}+3 x_{2}+3 x_{3} & =0 \\
6 x_{1}+9 x_{2}+12 x_{3} & =0
\end{aligned}
$$

