Matrix Calculations

Assignment 2, Tuesday, Feb. 7, 2017
Exercise teachers. Recall the following split-up of students:

teacher	lecture room	email
John van de Wetering	HG00.065	wetering@cs.ru.nl
Aucke Bos	HG00.308	A.Bos@student.ru.nl
Milan van Stiphout	HG00.310	m.vanstiphout@student.ru.nl
Bart Gruppen	HG00.633	b.gruppen@student.ru.nl

The delivery boxes are located in the Mercator 1 building on the ground floor (where the Computer Science department ICIS is located).

Handing in your answers: There are two options, depending on your exercise class teacher:

1. Delivery box (default): Put your solutions in the appropriate delivery box (see above). Before putting your solutions in the box make sure:

- your name and student number are written clearly on the document.

2. E-mail (if your teacher agrees): Send your solutions by e-mail to your exercise class teacher (see above) with subject 'assignment 2'. This e-mail should only contain a single PDF document as attachment (unless explicitly stated otherwise). Before sending an e-mail make sure:

- the file is a PDF document that is well readable
- your name is part of the filename (for example MyName_assignment-2.pdf)
- your name and student number are included in the document (since they will be printed)

Deadline: Monday, February 13, 12:00 sharp!
Goals: After completing these exercises successfully you should be able to determine of a homogeneous or non-homogeneous systems of linear equations: whether it is (in)consistent, whether it has a unique solution, and what its general solutions are. The total number of points is 20 .

1. (5 points) A homogeneous system of linear equations is given:

$$
\begin{array}{r}
x_{1}+2 x_{2}+3 x_{3}+4 x_{4}=0 \\
2 x_{1}+4 x_{2}+8 x_{3}+10 x_{4}=0 \\
3 x_{1}+6 x_{2}+11 x_{3}+17 x_{4}=0
\end{array}
$$

(i) Perform Gauss elimination on the associated coefficient matrix to obtain an echelon form.
(ii) Compute basic solution(s).
(iii) Give the general solution in the format $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=c_{1} \cdot \boldsymbol{v}_{1}+\ldots+c_{p} \cdot \boldsymbol{v}_{p}$, where $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{p}$ are the basic solution(s) that you've found under (ii).
2. (5 points) A system of linear equations is given by the following augmented matrix in echelon form:

$$
\left(\begin{array}{lllll|l}
2 & 3 & 1 & 2 & 1 & 1 \\
0 & 0 & 4 & 1 & 1 & 2 \\
0 & 0 & 0 & 0 & 2 & 6
\end{array}\right)
$$

(i) How many basic solutions does the corresponding homogeneous system have? Why? Provide basic solutions.
(ii) Find a particular solution of the non-homogeneous system.
(iii) Give the general solution of the non-homogeneous system. (That is: give the set of all solutions as a parametrisation.)

3. (5 points)

Find the values of the parameter a and b such that the following system of linear equations:
(i) has a unique solution,
(ii) is inconsistent,
(iii) has more than one solution. In this case: describe the general solution.

$$
\begin{aligned}
x_{1}+x_{2}+a x_{3} & =2 \\
2 x_{1}+x_{2}+(2 a+1) x_{3} & =5 \\
3 x_{1}+(a-1) x_{2}+2 x_{3} & =b+2
\end{aligned}
$$

Hint: Perform Gaussian elimination where you keep parameter a and b in the matrix.
4. (5 points) Find a polynomial function $f(x)=a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}$, which hits the following points: $(1,5),(2,2),(0,1)$ and $(-1,-1)$.
5. (0 points) Extra exercise, for those interested

Prove that the set of solutions of a homogeneous system of linear equations is closed under scalar multiplication.

That is, show that if $\left(s_{1}, \ldots, s_{n}\right)$ is a solution of a homogeneous system of linear equations, then $c \cdot\left(s_{1}, \ldots, s_{n}\right)$ is also a solution (for any c).

