Matrix Calculations Assignment 4, Tuesday, February 21, 2017

Exercise teachers. Recall the following split-up of students:

teacher	lecture room	email
John van de Wetering	HG00.065	wetering@cs.ru.nl
Aucke Bos	HG00.308	A.Bos@student.ru.nl
Milan van Stiphout	HG00.310	m.vanstiphout@student.ru.nl
Bart Gruppen	HG00.633	b.gruppen@student.ru.nl

The delivery boxes are located in the Mercator 1 building on the ground floor (where the Computer Science department ICIS is located).

Handing in your answers: There are two options, depending on your exercise class teacher:

- 1. Delivery box (default): Put your solutions in the appropriate delivery box (see above). Before putting your solutions in the box make sure:
 - your name and student number are written clearly on the document.
- 2. E-mail (if your teacher agrees): Send your solutions by e-mail to your exercise class teacher (see above) with subject 'assignment 4'. This e-mail should only contain a single PDF document as attachment (unless explicitly stated otherwise). Before sending an e-mail make sure:
 - the file is a PDF document that is well readable
 - your name is part of the filename (for example MyName_assignment-4.pdf)
 - your name and student number are included in the document (since they will be printed)

Deadline: Monday, February 27, 12:00 sharp!

Goals: After completing this assignment, you should be able to determine if a set of vectors forms a basis, express a vector in terms of a given basis, translate linear maps to/from matrices, and do matrix multiplication.

The total number of points is 20.

1. (6 points) Determine if the following sets of vectors form a basis for the given vector space. If they do, prove that they are *linearly independent* and *spanning*. If they do not form a basis, explain why not.

(i)
$$\begin{cases} \begin{pmatrix} 1\\-1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\1 \end{pmatrix}, \begin{pmatrix} -1\\0\\1 \end{pmatrix} \end{cases} \text{ for } \mathbb{R}^3$$

(ii)
$$\begin{cases} \begin{pmatrix} 1\\-1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\-1 \end{pmatrix}, \begin{pmatrix} -1\\0\\1 \end{pmatrix} \end{cases} \text{ for } \mathbb{R}^3$$

(iii)
$$\begin{cases} \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\2\\0 \end{pmatrix} \end{cases} \text{ for } V := \{(x, y, 2y, 0) \mid x, y \in \mathbb{R}\} \subseteq \mathbb{R}^4\}$$

2. (4 points) For the following matrices:

$$A := \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 $B := \begin{pmatrix} 4 & -3 \\ 2 & 0 \end{pmatrix}$ $C := \begin{pmatrix} 1 & 3 & 3 \\ 2 & 0 & 1 \end{pmatrix}$

compute $\mathbf{A} \cdot \mathbf{B} \cdot \mathbf{C}$ and $\mathbf{C} \cdot \mathbf{A} \cdot \mathbf{B}$. Show intermediate calculations.

3. (4 points)

Consider the following 2 bases for \mathbb{R}^3 :

$$\mathcal{B} = \left\{ \begin{pmatrix} 1\\1\\-1 \end{pmatrix}, \begin{pmatrix} 1\\-1\\1 \end{pmatrix}, \begin{pmatrix} -1\\1\\1 \end{pmatrix} \right\} \qquad \qquad \mathcal{C} = \left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\1 \end{pmatrix} \right\}$$

Write the following vectors with respect to \mathcal{B} and \mathcal{C} :

$$\boldsymbol{v} := \begin{pmatrix} 3\\2\\1 \end{pmatrix} \qquad \boldsymbol{w} := \begin{pmatrix} 1\\1\\1 \end{pmatrix}$$

That is, write each vector in each of these two forms:

$$\begin{pmatrix} * \\ * \\ * \end{pmatrix}_{\mathcal{B}} \qquad \begin{pmatrix} * \\ * \\ * \end{pmatrix}_{\mathcal{C}}$$

4. (6 points)

This exercise is about transforming linear maps to/from matrices.

(a) Give the matrix corresponding the linear map:

$$f((x_1, x_2, x_3, x_4)) = (x_1 + x_2 + 2x_4, 2x_1 + 3x_2 + x_3 + 6x_4, x_1 + x_4)$$

in terms of the standard bases for \mathbb{R}^4 and \mathbb{R}^3 .

(b) Consider the following matrix, written in terms of the standard bases:

$$\boldsymbol{A} = \begin{pmatrix} 4 & 1 & 3 & -5 \\ 1 & 3 & 3 & 7 \end{pmatrix}$$

give the linear map associated to A.

(c) Consider the vector space

$$V = \left\{ \begin{pmatrix} x \\ -x \\ y \end{pmatrix} \mid x, y \in \mathbb{R} \right\} \subseteq \mathbb{R}^3$$

and the linear map $f: V \to \mathbb{R}^2$ given by:

$$f\begin{pmatrix} x\\ -x\\ y \end{pmatrix}) = \begin{pmatrix} x+y\\ y \end{pmatrix}$$

Give the matrix associated to f, using the bases:

$$\mathcal{B} = \left\{ \begin{pmatrix} 1\\-1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix} \right\} \subset V \qquad \mathcal{S} = \left\{ \begin{pmatrix} 1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1 \end{pmatrix} \right\} \subset \mathbb{R}^2$$