Matrix Calculations

Assignment 4, Tuesday, February 21, 2017

Exercise teachers. Recall the following split-up of students:

teacher	lecture room	email
John van de Wetering	HG00.065	wetering@cs.ru.nl
Aucke Bos	HG00.308	A.Bos@student.ru.nl
Milan van Stiphout	HG00.310	m.vanstiphout@student.ru.nl
Bart Gruppen	HG00.633	b.gruppen@student.ru.nl

The delivery boxes are located in the Mercator 1 building on the ground floor (where the Computer Science department ICIS is located).

Handing in your answers: There are two options, depending on your exercise class teacher:

1. Delivery box (default): Put your solutions in the appropriate delivery box (see above). Before putting your solutions in the box make sure:

- your name and student number are written clearly on the document.

2. E-mail (if your teacher agrees): Send your solutions by e-mail to your exercise class teacher (see above) with subject 'assignment 4'. This e-mail should only contain a single PDF document as attachment (unless explicitly stated otherwise). Before sending an e-mail make sure:

- the file is a PDF document that is well readable
- your name is part of the filename (for example MyName_assignment-4.pdf)
- your name and student number are included in the document (since they will be printed)

Deadline: Monday, February 27, 12:00 sharp!
Goals: After completing this assignment, you should be able to determine if a set of vectors forms a basis, express a vector in terms of a given basis, translate linear maps to/from matrices, and do matrix multiplication.
The total number of points is 20 .

1. (6 points) Determine if the following sets of vectors form a basis for the given vector space. If they do, prove that they are linearly independent and spanning. If they do not form a basis, explain why not.
(i) $\left\{\left(\begin{array}{c}1 \\ -1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right)\right\}$ for \mathbb{R}^{3}
(ii) $\left\{\left(\begin{array}{c}1 \\ -1 \\ 0\end{array}\right),\left(\begin{array}{c}0 \\ 1 \\ -1\end{array}\right),\left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right)\right\}$ for \mathbb{R}^{3}
(iii) $\left\{\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 2 \\ 0\end{array}\right)\right\}$ for $\left.V:=\{(x, y, 2 y, 0) \mid x, y \in \mathbb{R}\} \subseteq \mathbb{R}^{4}\right\}$
2. (4 points) For the following matrices:

$$
\boldsymbol{A}:=\left(\begin{array}{cc}
1 & 1 \\
0 & 1 \\
1 & 0
\end{array}\right) \quad \boldsymbol{B}:=\left(\begin{array}{cc}
4 & -3 \\
2 & 0
\end{array}\right) \quad \boldsymbol{C}:=\left(\begin{array}{ccc}
1 & 3 & 3 \\
2 & 0 & 1
\end{array}\right)
$$

compute $\boldsymbol{A} \cdot \boldsymbol{B} \cdot \boldsymbol{C}$ and $\boldsymbol{C} \cdot \boldsymbol{A} \cdot \boldsymbol{B}$. Show intermediate calculations.

3. (4 points)

Consider the following 2 bases for \mathbb{R}^{3} :

$$
\mathcal{B}=\left\{\left(\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right),\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right),\left(\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right)\right\} \quad \mathcal{C}=\left\{\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)\right\}
$$

Write the following vectors with respect to \mathcal{B} and \mathcal{C} :

$$
\boldsymbol{v}:=\left(\begin{array}{l}
3 \\
2 \\
1
\end{array}\right) \quad \boldsymbol{w}:=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

That is, write each vector in each of these two forms:

$$
\left(\begin{array}{l}
* \\
* \\
*
\end{array}\right)_{\mathcal{B}} \quad\left(\begin{array}{l}
* \\
* \\
*
\end{array}\right)_{\mathcal{C}}
$$

4. (6 points)

This exercise is about transforming linear maps to/from matrices.
(a) Give the matrix corresponding the linear map:

$$
f\left(\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right)=\left(x_{1}+x_{2}+2 x_{4}, 2 x_{1}+3 x_{2}+x_{3}+6 x_{4}, x_{1}+x_{4}\right) .
$$

in terms of the standard bases for \mathbb{R}^{4} and \mathbb{R}^{3}.
(b) Consider the following matrix, written in terms of the standard bases:

$$
\boldsymbol{A}=\left(\begin{array}{cccc}
4 & 1 & 3 & -5 \\
1 & 3 & 3 & 7
\end{array}\right)
$$

give the linear map associated to \boldsymbol{A}.
(c) Consider the vector space

$$
V=\left\{\left.\left(\begin{array}{c}
x \\
-x \\
y
\end{array}\right) \right\rvert\, x, y \in \mathbb{R}\right\} \subseteq \mathbb{R}^{3}
$$

and the linear map $f: V \rightarrow \mathbb{R}^{2}$ given by:

$$
f\left(\left(\begin{array}{c}
x \\
-x \\
y
\end{array}\right)\right)=\binom{x+y}{y}
$$

Give the matrix associated to f, using the bases:

$$
\mathcal{B}=\left\{\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right\} \subset V \quad \mathcal{S}=\left\{\binom{1}{0},\binom{0}{1}\right\} \subset \mathbb{R}^{2}
$$

