Matrix Calculations

Assignment 5, Tuesday, March 7, 2017

Exercise teachers. Recall the following split-up of students:

teacher	lecture room	email
John van de Wetering	HG00.065	wetering@cs.ru.nl
Aucke Bos	HG00.308	A.Bos@student.ru.nl
Milan van Stiphout	HG00.310	m.vanstiphout@student.ru.nl
Bart Gruppen	HG00.633	b.gruppen@student.ru.nl

The delivery boxes are located in the Mercator 1 building on the ground floor (where the Computer Science department ICIS is located).

Handing in your answers: There are two options, depending on your exercise class teacher:

1. Delivery box (default): Put your solutions in the appropriate delivery box (see above). Before putting your solutions in the box make sure:

- your name and student number are written clearly on the document.

2. E-mail (if your teacher agrees): Send your solutions by e-mail to your exercise class teacher (see above) with subject 'assignment 5'. This e-mail should only contain a single PDF document as attachment (unless explicitly stated otherwise). Before sending an e-mail make sure:

- the file is a PDF document that is well readable
- your name is part of the filename (for example MyName_assignment-5.pdf)
- your name and student number are included in the document (since they will be printed)

Deadline: Monday, March 13, 12:00 sharp!
Goals: After completing these exercises successfully you should be able to compute inverses and determinants use bases transformation matrices to change bases. The total number of points is 20.

1. (9 points) Consider the matrix \boldsymbol{A} :

$$
\boldsymbol{A}=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 0 & 1 \\
2 & 1 & 1
\end{array}\right)
$$

(a) Compute the inverse of \boldsymbol{A}.
(b) Compute the determinant of \boldsymbol{A}.
(c) Use the inverse of \boldsymbol{A} to solve the following system of linear equations:

$$
\begin{aligned}
x+2 y+3 z & =-5 \\
2 x+z & =0 \\
2 x+y+z & =10
\end{aligned}
$$

2. (4 points) The sum of two matrices is just the sum of their elements, for example:

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)+\left(\begin{array}{ll}
w & x \\
y & z
\end{array}\right)=\left(\begin{array}{ll}
a+w & b+x \\
c+y & d+z
\end{array}\right)
$$

Give an example of a pair of 2×2 matrices \boldsymbol{C} and \boldsymbol{D} which are both invertible, but where $\boldsymbol{C}+\boldsymbol{D}$ is not invertible.
3. (7 points) Consider the following two bases in $\mathbb{R}^{2}: \mathcal{B}=\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}\right\}=\{(2,1)$, (5,3) $\}$ and $\mathcal{C}=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right\}=\{(1,-1),(1,-2)\}$.
(a) Find the basis transformation matrix $\boldsymbol{P}=\boldsymbol{T}_{\mathcal{B} \Rightarrow \mathcal{C}}$ from \mathcal{B} to \mathcal{C}.
(b) Find the basis transformation matrix $\boldsymbol{Q}=\boldsymbol{T}_{\mathcal{C} \Rightarrow \mathcal{B}}$ from \mathcal{C} to \mathcal{B}.
(c) Compute $\boldsymbol{P} \cdot \boldsymbol{Q}$ and $\boldsymbol{Q} \cdot \boldsymbol{P}$.
(d) Let $g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be given with respect to basis \mathcal{C} by the following matrix \boldsymbol{M} :

$$
\left(\begin{array}{ll}
2 & 3 \\
1 & 1
\end{array}\right)
$$

Give the matrix \boldsymbol{N} that describes g with respect to basis \mathcal{B}.
(e) (BONUS) Show that matrix multiplication commutes with change-of-basis. That is, if we have two matrices \boldsymbol{F} and \boldsymbol{G} written in basis \mathcal{B}, show that transforming each into basis \mathcal{C} THEN multiplying them is the same as multiplying them THEN transforming the result into basis \mathcal{C}.

