Matrix Calculations

Assignment 7, Tuesday, March 21, 2017

Exercise teachers. Recall the following split-up of students:

teacher	lecture room	email
John van de Wetering	HG00.065	wetering@cs.ru.nl
Aucke Bos	HG00.308	A.Bos@student.ru.nl
Milan van Stiphout	HG00.310	m.vanstiphout@student.ru.nl
Bart Gruppen	HG00.633	b.gruppen@student.ru.nl

The delivery boxes are located in the Mercator 1 building on the ground floor (where the Computer Science department ICIS is located).

Handing in your answers: There are two options, depending on your exercise class teacher:

1. Delivery box (default): Put your solutions in the appropriate delivery box (see above). Before putting your solutions in the box make sure:

- your name and student number are written clearly on the document.

2. E-mail (if your teacher agrees): Send your solutions by e-mail to your exercise class teacher (see above) with subject 'assignment 7'. This e-mail should only contain a single PDF document as attachment (unless explicitly stated otherwise). Before sending an e-mail make sure:

- the file is a PDF document that is well readable
- your name is part of the filename (for example MyName_assignment-7.pdf)
- your name and student number are included in the document (since they will be printed)

Deadline: Monday, March 27, 12:00 sharp!
Goals: After completing these exercises, you should be able to compute the inner product of vectors, cosine of the angle between vectors, check whether vectors are orthogonal, and turn a basis into an orthonormal basis using Gram-Schmidt orthogonalisation.

1. (4 points)

Consider vectors:

$$
\boldsymbol{u}=\left(\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right) \quad \boldsymbol{v}=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) \quad \boldsymbol{w}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

compute the following quantities:
(a) Inner products: $\langle\boldsymbol{u}, \boldsymbol{u}\rangle,\langle\boldsymbol{v}, \boldsymbol{v}\rangle,\langle\boldsymbol{w}, \boldsymbol{w}\rangle,\langle\boldsymbol{u}, \boldsymbol{v}\rangle$, and $\langle\boldsymbol{v}, \boldsymbol{w}\rangle$
(b) Norms: $\|\boldsymbol{u}\|,\|\boldsymbol{v}\|,\|\boldsymbol{w}\|$
(c) Distances: $d(\boldsymbol{u}, \boldsymbol{v}), d(\boldsymbol{v}, \boldsymbol{w})$
(d) Normalised vectors: $\boldsymbol{u}^{\prime}=a \boldsymbol{u}, \boldsymbol{v}^{\prime}=b \boldsymbol{v}, \boldsymbol{w}^{\prime}=c \boldsymbol{w}$ where $\left\|\boldsymbol{u}^{\prime}\right\|=\left\|\boldsymbol{v}^{\prime}\right\|=\left\|\boldsymbol{w}^{\prime}\right\|=1$

2. (7 points)

Consider vectors:

$$
\boldsymbol{u}=\left(\begin{array}{c}
2 \\
2 \\
2+\lambda
\end{array}\right) \quad \boldsymbol{v}=\left(\begin{array}{c}
1 \\
1 \\
1-\lambda
\end{array}\right)
$$

(a) For which values of λ are \boldsymbol{u} and \boldsymbol{v} independent, and for which values are they orthogonal?
(b) Pick some λ such that these vectors are are independent, but not orthogonal. Use Gram-Schmidt orthgonalisation to make them orthogonal.

3. (9 points)

Consider the following basis for a subspace $U \subseteq \mathbb{R}^{4}$

$$
\boldsymbol{v}_{1}=\left(\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right) \quad \boldsymbol{v}_{2}=\left(\begin{array}{c}
0 \\
1 \\
1 \\
0
\end{array}\right) \quad \boldsymbol{v}_{3}=\left(\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right)
$$

(a) Use Gram-Schmidt orthogonalisation to turn this basis into an orthogonal basis $\mathcal{B}^{\prime}=$ $\left\{\boldsymbol{v}_{1}^{\prime}, \boldsymbol{v}_{2}^{\prime}, \boldsymbol{v}_{3}^{\prime}\right\}$ for U.
(b) Normalise each of the vectors in \mathcal{B}^{\prime} to obtain an orthonormal basis for U.
(c) BONUS: Find a new vector $\boldsymbol{v}_{4}^{\prime}$ such that $\mathcal{B}^{\prime}=\left\{\boldsymbol{v}_{1}^{\prime}, \boldsymbol{v}_{2}^{\prime}, \boldsymbol{v}_{3}^{\prime}, \boldsymbol{v}_{4}^{\prime}\right\}$ is an orthogonal basis for all of \mathbb{R}^{4}. (Hint: $\boldsymbol{v}_{4}^{\prime}$ is orthogonal to $\left\{\boldsymbol{v}_{1}^{\prime}, \boldsymbol{v}_{2}^{\prime}, \boldsymbol{v}_{3}^{\prime}\right\}$ if and only if it is orthogonal to $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right\} \ldots$ Why?)

