Matrix Calculations Assignment 7, Tuesday, March 21, 2017

Exercise teachers. Recall the following split-up of students:

teacher	lecture room	email
John van de Wetering	HG00.065	wetering@cs.ru.nl
Aucke Bos	HG00.308	A.Bos@student.ru.nl
Milan van Stiphout	HG00.310	m.vanstiphout@student.ru.nl
Bart Gruppen	HG00.633	b.gruppen@student.ru.nl

The delivery boxes are located in the Mercator 1 building on the ground floor (where the Computer Science department ICIS is located).

Handing in your answers: There are two options, depending on your exercise class teacher:

- 1. Delivery box (default): Put your solutions in the appropriate delivery box (see above). Before putting your solutions in the box make sure:
 - your name and student number are written clearly on the document.
- 2. E-mail (if your teacher agrees): Send your solutions by e-mail to your exercise class teacher (see above) with subject 'assignment 7'. This e-mail should only contain a single PDF document as attachment (unless explicitly stated otherwise). Before sending an e-mail make sure:
 - the file is a PDF document that is well readable
 - your name is part of the filename (for example MyName_assignment-7.pdf)
 - your name and student number are included in the document (since they will be printed)

Deadline: Monday, March 27, 12:00 sharp!

Goals: After completing these exercises, you should be able to compute the inner product of vectors, cosine of the angle between vectors, check whether vectors are orthogonal, and turn a basis into an orthonormal basis using Gram-Schmidt orthogonalisation.

1. (4 points)

Consider vectors:

$$\boldsymbol{u} = \begin{pmatrix} 1\\ 1\\ -1 \end{pmatrix}$$
 $\boldsymbol{v} = \begin{pmatrix} 1\\ 2\\ 3 \end{pmatrix}$ $\boldsymbol{w} = \begin{pmatrix} 0\\ 0\\ 1 \end{pmatrix}$

compute the following quantities:

- (a) Inner products: $\langle \boldsymbol{u}, \boldsymbol{u} \rangle$, $\langle \boldsymbol{v}, \boldsymbol{v} \rangle$, $\langle \boldsymbol{w}, \boldsymbol{w} \rangle$, $\langle \boldsymbol{u}, \boldsymbol{v} \rangle$, and $\langle \boldsymbol{v}, \boldsymbol{w} \rangle$
- (b) Norms: $\|u\|$, $\|v\|$, $\|w\|$
- (c) Distances: $d(\boldsymbol{u}, \boldsymbol{v}), d(\boldsymbol{v}, \boldsymbol{w})$

(d) Normalised vectors:
$$\boldsymbol{u}' = a\boldsymbol{u}, \boldsymbol{v}' = b\boldsymbol{v}, \boldsymbol{w}' = c\boldsymbol{w}$$
 where $\|\boldsymbol{u}'\| = \|\boldsymbol{v}'\| = \|\boldsymbol{w}'\| = 1$

2. (7 points)

Consider vectors:

$$oldsymbol{u} = egin{pmatrix} 2 \\ 2 \\ 2+\lambda \end{pmatrix} \qquad oldsymbol{v} = egin{pmatrix} 1 \\ 1 \\ 1-\lambda \end{pmatrix}$$

- (a) For which values of λ are \boldsymbol{u} and \boldsymbol{v} independent, and for which values are they orthogonal?
- (b) Pick some λ such that these vectors are are independent, but **not** orthogonal. Use Gram-Schmidt orthogonalisation to make them orthogonal.

3. (9 points)

Consider the following basis for a subspace $U \subseteq \mathbb{R}^4$

$$\boldsymbol{v}_1 = \begin{pmatrix} 1\\1\\0\\0 \end{pmatrix}$$
 $\boldsymbol{v}_2 = \begin{pmatrix} 0\\1\\1\\0 \end{pmatrix}$ $\boldsymbol{v}_3 = \begin{pmatrix} 0\\0\\1\\1 \end{pmatrix}$

- (a) Use Gram-Schmidt orthogonalisation to turn this basis into an orthogonal basis $\mathcal{B}' = \{v'_1, v'_2, v'_3\}$ for U.
- (b) Normalise each of the vectors in \mathcal{B}' to obtain an orthonormal basis for U.
- (c) **BONUS:** Find a new vector v'_4 such that $\mathcal{B}' = \{v'_1, v'_2, v'_3, v'_4\}$ is an orthogonal basis for all of \mathbb{R}^4 . (Hint: v'_4 is orthogonal to $\{v'_1, v'_2, v'_3\}$ if and only if it is orthogonal to $\{v_1, v_2, v_3\}$... Why?)