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From last time

• Vector spaces V ,W , . . . are special kinds of sets whose
elements are called vectors.

• Vectors can be added together, or multiplied by a real
number, For v ,w ∈ V , a ∈ R:

v + w ∈ V a · v ∈ V

• The simplest examples are:

Rn := {(a1, . . . , an) | ai ∈ R}

• Linear maps are special kinds of functions which satisfy two
properties:

f (v + w) = f (v) + f (w) f (a · v) = a · f (v)
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From last time

• Linear maps describe transformations in space, such as
rotation:

7→ rx(

(
x
y
z

)
) =

(
x

y cos θ − z sin θ
y sin θ + z cos θ

)

• reflection and scaling:

7→ sy(

(
x
y
z

)
) =

(
x

(1/2)y
z

)
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Getting back to matrices

Q: So what is the relationship between this (cool) linear map stuff,
and the (lets face it, kindof boring) stuff about matrices and linear
equations from before?

A: Matrices are a convenient way to represent linear maps!

To get there, we need a new concept: basis of a vector space
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Basis in space

• In R3 we can distinguish three special vectors:

(1, 0, 0) ∈ R3 (0, 1, 0) ∈ R3 (0, 0, 1) ∈ R3

• These vectors form a basis for R3, which means:

1 These vectors span R3, which means each vector (x , y , z) ∈ R3

can be expressed as a linear combination of these three
vectors:

(x , y , z) = (x , 0, 0) + (0, y , 0) + (0, 0, z)
= x · (1, 0, 0) + y · (0, 1, 0) + z · (0, 0, 1)

2 Moreover, this set is as small as possible: no vectors are can
be removed and still span R3.

• Note: condition (2) is equivalent to saying these vectors are
linearly independent
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Basis

Definition

Vectors v1, . . . , vn ∈ V form a basis for a vector space V if these
v1, . . . , vn
• are linearly independent, and

• span V in the sense that each w ∈ V can be written as linear
combination of v1, . . . , vn, namely as:

w = a1v1 + · · ·+ anvn for some a1, . . . , an ∈ R

• These scalars ai are uniquely determined by w ∈ V (see below)

• A space V may have several bases, but the number of
elements of a basis for V is always the same; it is called the
dimension of V , usually written as dim(V ) ∈ N.
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The standard basis for Rn

• For the space Rn = {(x1, . . . , xn) | xi ∈ R} there is a standard
choice of basis vectors:

e1 := (1, 0, 0 . . . , 0), e2 := (0, 1, 0, . . . , 0), · · · , en := (0, . . . , 0, 1)

• ei has a 1 in the i-th position, and 0 everywhere else.

• We can easily check that these vectors are independent and
span Rn.

• This enables us to state precisely that Rn is n-dimensional.
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An alternative basis for R2

• The standard basis for R2 is (1, 0), (0, 1).

• But many other choices are possible, eg. (1, 1), (1,−1)

• independence: if a · (1, 1) + b · (1,−1) = (0, 0), then:{
a + b = 0
a− b = 0

and thus

{
a = 0
b = 0

• spanning: each point (x , y) can written in terms of
(1, 1), (1,−1), namely:

(x , y) = x+y
2 (1, 1) + x−y

2 (1,−1)
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Uniqueness of representations

Theorem
• Suppose V is a vector space, with basis v1, . . . , vn

• assume x ∈ V can be represented in two ways:

x = a1v1 + · · ·+ anvn and also x = b1v1 + · · ·+ bnvn

Then: a1 = b1 and . . . and an = bn.

Proof: This follows from independence of v1, . . . , vn since:

0 = x − x =
(
a1v1 + · · ·+ anvn

)
−
(
b1v1 + · · ·+ bnvn

)
= (a1 − b1)v1 + · · ·+ (an − bn)vn.

Hence ai − bi = 0, by independence, and thus ai = bi . -
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Representing vectors

• Fixing a basis B = {v1, . . . , vn} therefore gives us a unique
way to represent a vector v ∈ V as a list of numbers called
coordinates:

v = a1v1 + · · ·+ anvn

New notation: v =

a1
...
an


B

• If V = Rn, and B is the standard basis, this is just the vector
itself: a1

...
an


B

=

a1
...
an


• ...but if B is not the standard basis, this can be different
• ...and if V 6= Rn, a list of numbers is meaningless without

fixing a basis.

A. Kissinger Version: spring 2017 Matrix Calculations 12 / 45



Basis of a vector space
From linear maps to matrices

Composing linear maps using matrices
Radboud University Nijmegen

What does it mean?

“The introduction of numbers as coordinates is an act of violence.”
– Hermann Weyl
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What does it mean?

• Space is (probably) real

• ...but coordinates (and hence bases) only exist in our head

• Choosing a basis amounts to fixing some directions in space
we decide to call “up”, “right”, “forward”, etc.

• Then a linear combination like:

v = 5 · up + 3 · right− 2 · forward

describes a point in space, mathematically.

• ...and it makes working with linear maps a lot easier
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Linear maps and bases, example I

• Take the linear map f ((x1, x2, x3)) = (x1 − x2, x2 + x3)

• Claim: this map is entirely determined by what it does on the
basis vectors (1, 0, 0), (0, 1, 0), (0, 0, 1) ∈ R3, namely:

f ((1, 0, 0)) = (1, 0) f ((0, 1, 0)) = (−1, 1) f ((0, 0, 1)) = (0, 1).

• Indeed, using linearity:

f ((x1, x2, x3))

= f
(

(x1, 0, 0) + (0, x2, 0) + (0, 0, x3)
)

= f
(
x1 · (1, 0, 0) + x2 · (0, 1, 0) + x3 · (0, 0, 1)

)
= f

(
x1 · (1, 0, 0)

)
+ f
(
x2 · (0, 1, 0)

)
+ f
(
x3 · (0, 0, 1)

)
= x1 · f ((1, 0, 0)) + x2 · f ((0, 1, 0)) + x3 · f ((0, 0, 1))
= x1 · (1, 0) + x2 · (−1, 1) + x3 · (0, 1)
= (x1 − x2, x2 + x3)
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Linear maps and bases, geometrically

“If we know how to transform any set of axes for a space, we know
how to transform everything.”

7→
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Linear maps and bases, example I (cntd)

• f ((x1, x2, x3)) = (x1 − x2, x2 + x3) is totally determined by:

f ((1, 0, 0)) = (1, 0) f ((0, 1, 0)) = (−1, 1) f ((0, 0, 1)) = (0, 1)

• We can organise this data into a 2× 3 matrix:(
1 −1 0
0 1 1

)
The vector f (vi ), for basis vector vi , appears as the i-the
column.

• Applying f can be done by a new kind of multiplication:(
1 −1 0
0 1 1

)
·

x1
x2
x3

 =

(
1 · x1 +−1 · x2 + 0 · x3
0 · x1 + 1 · x2 + 1 · x3

)
=

(
x1 − x2
x2 + x3

)
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Matrix-vector multiplication: Definition

Definition

For vectors v = (x1, . . . , xn),w = (y1, . . . , yn) ∈ Rn define their
inner product (or dot product) as the real number:

〈v ,w〉 = x1y1 + · · ·+ xnyn =
n∑

i=1

xiyi

Definition

If A =

a11 · · · a1n
...

...
am1 · · · amn

 and v =

v1
...
vn

, then w := A · v

is the vector whose i-th element is the dot product of the i-th row
of matrix A with the (input) vector v .
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Matrix-vector multiplication, explicitly

For A an m × n matrix, B a column vector of length n:

A · b = c

is a column vector of length m.


...

...
...

ai1 · · · ain
...

...
...

 ·
b1

...
bn

 =


...

ai1b1 + · · ·+ ainbn
...

 =


...
ci
...



ci =
n∑

k=1

aikbk
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Representing linear maps

Theorem

For every linear map f : Rn → Rm, there exists an m × n matrix A
where:

f (v) = A · v

(where “·” is the matrix multiplication of A and a vector v)

Proof. Let {e1, . . . , en} be the standard basis for Rn. A be the
matrix whose i-th column is f (ei ). Then:

A · ei =

 a110 + . . . + a1i1 + . . . + a1n0
...

am10 + . . . + ami1 + . . . + amn0

 =

a1i
...

ami

 = f (ei )

Since it is enough to check basis vectors and f (ei ) = A · ei , we are
done. -
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Matrix-vector multiplication, concretely

• Recall f ((x1, x2, x3)) = (x1 − x2, x2 + x3) with matrix:(
1 −1 0
0 1 1

)
• We can directly calculate
f ((1, 2,−1)) = (1− 2, 2− 1) = (−1, 1)

• We can also get the same result by matrix-vector
multiplication:(

1 −1 0
0 1 1

)
·

 1
2
−1

 =

(
1 · 1 +−1 · 2 + 0 · −1
0 · 1 + 1 · 2 + 1 · −1

)
=

(
−1
1

)

• This multiplication can be understood as: putting the
argument values x1 = 1, x2 = 2, x3 = −1 in variables of the
underlying equations, and computing the outcome.
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Another example, to learn the mechanics


9 3 2 9 7
8 5 6 6 3
4 5 8 9 3
3 4 3 3 4

 ·


9
5
2
5
7


=


9 · 9 + 3 · 5 + 2 · 2 + 9 · 5 + 7 · 7
8 · 9 + 5 · 5 + 6 · 2 + 6 · 5 + 3 · 7
4 · 9 + 5 · 5 + 8 · 2 + 9 · 5 + 3 · 7
3 · 9 + 4 · 5 + 3 · 2 + 3 · 5 + 4 · 7


=


81 + 15 + 4 + 45 + 49

72 + 25 + 12 + 30 + 21
36 + 25 + 16 + 45 + 21
27 + 20 + 6 + 15 + 28

 =


194
160
143
96


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Linear map from matrix

• We have seen how a linear map can be described via a matrix

• One can also read each matrix as a linear map

Example

• Consider the matrix

(
2 0 −1
5 1 −3

)
• It has 3 columns/inputs and two rows/outputs. Hence it

describes a map f : R3 → R2

• Namely: f ((x1, x2, x3)) = (2x1 − x3, 5x1 + x2 − 3x3).
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Examples of linear maps and matrices I

Projections are linear maps that send higher-dimensional vectors to
lower ones. Consider f : R3 → R2

f (

x
y
z

) =

(
x
y

)
.

f maps 3d space to the the 2d plane.
The matrix of f is the following 2× 3 matrix:(

1 0 0
0 1 0

)
.
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Examples of linear maps and matrices II

We have already seen: Rotation over an angle ϕ is a linear map

This rotation is described by f : R2 → R2 given by

f ((x , y)) =
(
x cos(ϕ)− y sin(ϕ), x sin(ϕ) + y cos(ϕ)

)
The matrix that describes f is(

cos(ϕ) − sin(ϕ)
sin(ϕ) cos(ϕ)

)
.
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Example: systems of equations

a11x1 + · · ·+ a1nxn = b1
...

am1x1 + · · ·+ amnxn = bm

⇒

A · x = ba11 · · · a1n
...

am1 · · · amn

 ·
x1

...
xn

 =

b1
...
bn



a11x1 + · · ·+ a1nxn = 0
...

...
...

am1x1 + · · ·+ amnxn = 0

⇒

A · x = 0a11 · · · a1n
...

...
...

am1 · · · amn

 ·
x1

...
xn

 =

0
...
0


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General vector spaces

• We can also represent linear maps f : V →W between
general vector spaces (not just Rn)

• But we must fix bases for both spaces:

B := {v1, . . . , vn} ⊂ V

C := {w1, . . . ,wm} ⊂W

• Then:
f (x) = A · x

where A is the matrix whose i-th column is f (vi ), written in
terms of basis C:

f (vi ) = a1iw1 + . . . + amiwm =

a1i
...

ami


C
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Matrix summary

• Fix bases {v1, . . . , vn} ⊂ V and {w1, . . . ,wm} ⊂W

• Every linear map f : V →W can be represented by a matrix,
and every matrix represents a linear map:

f (v) = A · v

• The i-th column of A is f (vi ), wrt. the basis w1, . . . ,wm of W

• This matrix of f depends on the choice of basis: for different
bases of V and W a different matrix is obtained

• For V = Rn and W = Rm, we often use the standard basis, in
which case the i-th column of A is just f (ei ).
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Matrix multiplication

• Consider linear maps g , f represented by matrices A, B:

g(v) = A · v f (w) = B ·w

• Can we find a matrix C that represents their composition?

g(f (v)) = C · v

• Let’s try:

g(f (v)) = g(B · v) = A · (B · v)
(∗)
= (A · B) · v

(where step (∗) is currently ‘wishful thinking’)

• Great! Let C := A · B.

• But we don’t know what “·” means for two matrices yet...

A. Kissinger Version: spring 2017 Matrix Calculations 31 / 45



Basis of a vector space
From linear maps to matrices

Composing linear maps using matrices
Radboud University Nijmegen

Matrix multiplication

• Solution: generalise from A · v
• A vector is a matrix with one column:

The number in the i-th row and the first column of A · v is the
dot product of the i-th row of A with the first column of v .

• So for matrices A,B:

The number in the i-th row and the j-th column of A ·B is the
dot product of the i-th row of A with the j-th column of B.
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Matrix multiplication

For A an m × n matrix, B an n × p matrix:

A · B = C

is an m × p matrix.
...

...
...

ai1 · · · ain
...

...
...

 ·
· · · bj1 · · ·

· · ·
... · · ·

· · · bjn · · ·

 =


. . .

... . .
.

· · · cij · · ·

. .
. ...

. . .



cij =
n∑

k=1

aikbkj
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Special case: vectors

For A an m × n matrix, B an n × 1 matrix:

A · b = c

is an m × 1 matrix.
...

...
...

ai1 · · · ain
...

...
...

 ·
b11

...
bn1

 =


...
ci1
...



ci1 =
n∑

k=1

aikbk1
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Matrix composition

Theorem

Matrix composition is associative:

(A · B) · C = A · (B · C )

Proof. Let X := (A · B) · C . This is a matrix with entries:

xip =
∑
k

aikbkp

Then, the matrix entries of X · C are:

∑
p

xipcpj =
∑
p

(∑
k

aikbkp

)
cpk =

∑
kp

aikbkpcpk

(because sums can always be pulled outside, and combined)
A. Kissinger Version: spring 2017 Matrix Calculations 35 / 45



Basis of a vector space
From linear maps to matrices

Composing linear maps using matrices
Radboud University Nijmegen

Associativity of matrix composition

Proof (cont’d). Now, let Y := B · C . This has matrix entries:

ykj =
∑
p

bkpcpj

Then, the matrix entries of A · Y are:∑
k

aikykj =
∑
k

aik

(∑
p

bkpcpj

)
=
∑
kp

aikbkpcpk

...which is the same as before! So:

(A · B) · C = X · C = A · Y = A · (B · C )

-

So we can drop those pesky parentheses:

A · B · C := (A · B) · C = A · (B · C )
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Matrix product and composition

Corollary

The composition of linear maps is given by matrix product.

Proof. Let g(w) = A ·w and f (v) = B · v . Then:

g(f (v)) = g(B · v) = A · B · v

-

No wishful thinking necessary!
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Example 1

Consider the following two linear maps, and their associated
matrices:

R3 f−→ R2 R2 g−→ R2

f ((x1, x2, x3)) = (x1 − x2, x2 + x3) g((y1, y2)) = (2y1 − y2, 3y2)

Mf =

(
1 −1 0
0 1 1

)
Mg =

(
2 −1
0 3

)
We can compute the composition directly:

(g ◦ f )((x1, x2, x3)) = g
(
f ((x1, x2, x3))

)
= g((x1 − x2, x2 + x3))
= ( 2(x1 − x2)− (x2 + x3), 3(x2 + x3) )
= ( 2x1 − 3x2 − x3, 3x2 + 3x3 )

So:
Mg◦f =

(
2 −3 −1
0 3 3

)
...which is just the product of the matrices: Mg◦f = Mg ·Mf
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Note: matrix composition is not commutative

In general, A · B 6= B · A

For instance: Take A =

(
1 0
0 −1

)
and B =

(
0 1
−1 0

)
. Then:

A · B =

(
1 0
0 −1

)
·
(

0 1
−1 0

)
=

(
1 · 0 + 0 · −1 1 · 1 + 0 · 0

0 · 0 +−1 · −1 0 · 1 +−1 · 0

)
=

(
0 1
1 0

)

B · A =

(
0 1
−1 0

)
·
(

1 0
0 −1

)
=

(
0 · 1 + 1 · 0 0 · 0 + 1 · −1
−1 · 1 + 0 · 0 −1 · 0 + 0 · −1

)
=

(
0 −1
−1 0

)
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But it is...

...associative, as we’ve already seen:

A · B · C := (A · B) · C = A · (B · C )

It also has a unit given by the identity matrix I :

A · I = I · A = A

where:

I :=


1 0 · · · 0
0 1 · · · 0
...

. . .
...

0 0 · · · 1


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Example: political swingers, part I

• We take an extremely crude view on politics and distinguish
only left and right wing political supporters

• We study changes in political views, per year

• Suppose we observe, for each year:
• 80% of lefties remain lefties and 20% become righties
• 90% of righties remain righties, and 10% become lefties

Questions . . .
• start with a population L = 100,R = 150, and compute the

number of lefties and righties after one year;

• similarly, after 2 years, and 3 years, . . .

• Find a convenient way to represent these computations.
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Political swingers, part II

• So if we start with a population L = 100,R = 150, then after
one year we have:

• lefties: 0.8 · 100 + 0.1 · 150 = 80 + 15 = 95
• righties: 0.2 · 100 + 0.9 · 150 = 20 + 135 = 155

• Two observations:
• this looks like a matrix-vector multiplication
• long-term developments can be calculated via iterated matrices

A. Kissinger Version: spring 2017 Matrix Calculations 42 / 45



Basis of a vector space
From linear maps to matrices

Composing linear maps using matrices
Radboud University Nijmegen

Political swingers, part III

• We can write the political transition matrix as

P =

(
0.8 0.1
0.2 0.9

)
• If

(
L
R

)
=

(
100
150

)
, then after one year we have:

P ·
(

100
150

)
=

(
0.8 0.1
0.2 0.9

)
·
(

100
150

)
=

(
0.8 · 100 + 0.1 · 150
0.2 · 100 + 0.9 · 150

)
=

(
95

155

)
• After two years we have:

P ·
(

95
155

)
=

(
0.8 0.1
0.2 0.9

)
·
(

95
155

)
=

(
0.8 · 95 + 0.1 · 155
0.2 · 95 + 0.9 · 155

)
=

(
91.5

158.5

)
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Political swingers, part IV

The situation after two years is obtained as:

P · P ·

(
L

R

)
=

(
0.8 0.1

0.2 0.9

)
·

(
0.8 0.1

0.2 0.9

)
·

(
L

R

)
︸ ︷︷ ︸
do this multiplication first

=

(
0.8 · 0.8 + 0.1 · 0.2 0.8 · 0.1 + 0.1 · 0.9
0.2 · 0.8 + 0.9 · 0.2 0.2 · 0.1 + 0.9 · 0.9

)
·

(
L

R

)

=

(
0.66 0.17

0.34 0.83

)
·

(
L

R

)

The situation after n years is described by the n-fold iterated
matrix:

Pn = P · P · · ·P︸ ︷︷ ︸
n times
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Political swingers, part V

Interpret the following iterations:

P2 = P · P =

(
0.66 0.17
0.34 0.83

)
P3 = P · P · P =

(
0.8 0.1
0.2 0.9

)
·
(

0.66 0.17
0.34 0.83

)
=

(
0.562 0.219
0.438 0.781

)
P4 = P · P · P · P =

(
0.8 0.1
0.2 0.9

)
·
(

0.562 0.219
0.438 0.781

)
=

(
0.4934 0.2533
0.5066 0.7467

)
Etc. It looks like P100 is going to be hard to calculate. Is there an
easier way to do this? (Spoiler alert: Yes! But you’ll have to wait
2 weeks...)
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