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Solving equations the old fashioned way...

We now know that systems of equations look like this:

A-x=b

The goal is to solve for x, in terms of A and b.

Here comes some more wishful thinking:

X:Zb

Well, we can't really divide by a matrix, but if we are lucky,
we can find another matrix called A~! which acts like %.
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Inverse

The inverse of a matrix A is another matrix A~ such that:

AL A=A A=

e Not all matrices have inverses, but when they do, we are

happy, because:

A x=b — Al.Ax=A1.p

— x=A1lb
e So, how do we compute the inverse of a matrix?
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Remember me?
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Gaussian elimination as matrix multiplication

e Each step of Gaussian elimination can be represented by a
matrix multiplication:

A=A A:=G- A
e For instance, multiplying the i-th row by c is given by:
G(R,‘Z:CR,') ' A

where G (gr;.—cr;) is just like the identity matrix, but g; = c.

e Exercise. What are the other Gaussian elimination matrices?

G(roR) G (R:=Ri+<R))
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Reduction to Echelon form

e The idea: treat A as a coefficient matrix, and compute its
reduced Echelon form

o If the Echelon form of A has n pivots, then its reduced
Echelon form is the identity matrix:

A=A =A== A, =1

e Now, we can use our Gauss matrices to remember what we

did:
A1 = G1-A
A2 = G2-G1 -A

A,=G, -G -A=1
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Computing the inverse

e A hal
G, --G1-A=1 — A—lzc;p...G1

e So all we have to do is construct p different matrices and
multiply them all together!

e Since | already have plans for this afternoon, lets take a
shortcut:

For C a matrix and (A|B) an augmented matrix:

C-(AB)=(C-A|CB)
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Computing the inverse

e Since Gaussian elimination is just multiplying by a certain
matrix on the left...
A=G- A

e ...doing Gaussian elimination (for A) on an augmented matrix
applies G to both parts:

(AIB)= (G-A|G-B)
e So ifG=A1:

(AB)= (A1-A|A1.B)=(I|Al.B)
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Computing the inverse

e We already (secretly) used this trick to solve:
A-x=b = x=A1'.p

e Here, we are only interested in the vector A% - b

e Which is exactly what Gaussian elimination on the augmented
matrix gives us:
(Alb) = (I| A™1 - b)

e To get the entire matrix, we just need to choose something
clever to the right of the line

e Like this:
(A= (Il A= (1] A™Y)
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Computing the inverse: example

For example, we compute the inverse of:

11
A._<12>
as follows:
11/10 :>1110 :>102—1
1201 01|-11 01/-1 1
2 -1
-1 ._
A .(_11>
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Computing the inverse: non-example

Unlike transpose, not every matrix has an inverse.
For example, if we try to compute the inverse for:

11
(1)
1110 N 11,10
1101 00|-11

We don't have enough pivots to continue reducing. So B does not
have an inverse.

we have:
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When does a matrix have an inverse?

Theorem (Existence of inverses)

An n x n matrix has an inverse (or: is invertible) if and only if it
has n pivots in its echelon form.

Soon, we will introduce another criterion for a matrix to be
invertible, using determinants.
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Uniqueness of the inverse

Matrix multiplication is not commutative, so it could (a priori) be
the case that:

e A has a right inverse: a B such that A- B = I and
e A has a (different) left inverse: a C such that C- A = I.

However, this doesn't happen.
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Uniqueness of the inverse

If a matrix A has a left inverse and a right inverse, then they are
equal. IfA-B=1and C-A=1, then B=C.

Proof. Multiply both sides of the first equation by C:
C-A-B=C-1 = B=C

Corollary

If a matrix A has an inverse, it is unique.

J. van de Wetering spring 2017 Matrix Calculations 17 / 46



Existence and uniqueness of inverse

Radboud University Nijmege

Explicitly computing the inverse, part |

e Suppose we wish to find A~ for A = (i Z)

e We need to find x, y, u, v with:
aby (xy\ (10
cd vv) \01

e Multiplying the matrices on the LHS:
ax+bu cx+du) (10
ay+bv cy+dv/  \01

e ..gives a system of 4 equations:

ax+ bu =
ex+du =
ay + bv
cy +dv =
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Computing the inverse: the 2 x 2 case, part Il

e Splitting this into two systems:

ax+bu =1 and ay+bv =0
cx+du =0 cy+dv =1
e Solving the first system for (u, x) and the second system for

(v,y) gives:
d —b

_ _—c _ _ a A
U= 3d"hc X~ ad—bc and v = ad—bc Y = ad—bc

(assuming bc — ad # 0). Then:
d —b
Al — (X y) — <adcbc adabc)
uv ad—bc ad—bc

d —b learn this for-
SR R |
e Conclusion: A™" = = (c ; > \/ mula by heart
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Computing the inverse: the 2 x 2 case, part Il

Summarizing:
Theorem (Existence of an inverse of a 2 X 2 matrix)

A= (20)

has an inverse (or: is invertible) if and only if ad — bc # 0, in
which case its inverse is

1 d —b
Al=__—
ad — bc (—c a )

A 2 X 2 matrix
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Example

(0801 s 124 s
'Letp_<020.9)'5°a—10 =i ¢=19= 10

- 12 _ 2 _ — T I
e ad — bc = {55 — 150 = 100 g 7 0 so the inverse exists!

e Thus: .
P~ = ad— bc( >

-0.1
7 —0.2 0.8
e Then indeed:
1009 01 . 08 0.1\ _ 4 (07 0\ _(10
7 \-0.2 0.8 0209/ 7\0 07/ \o1
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Determinants

What a determinant does

For a square matrix A, the determinant det(A) is a number (in R)
It satisfies:

det(A) =0 <= A s not invertible
<= A7l does not exist
<= A has < n pivots in its echolon form

Determinants have useful properties, but calculating determinants
involves some work.
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Determinant of a 2 x 2 matrix

Assume A = (a b>

Recall that the inverse A~! exists if and only if ad — bc # 0,
and in that case is:

d —b
-1
A = adibc <—C a )

In this 2 x 2-case we define:

ab
det (c d> =

Thus, indeed: det(A) =0 <= A~! does not exist.

ab
cd

':ad—bc
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Determinant of a 2 x 2 matrix: example

e Recall the political transisition matrix

p_ (0801 _; (81
0209 10\29

e Then: s o Lo
- 12 2
— 100 100
_ 10 _ 1
— 100 T 10

o We have already seen that P! exists, so the determinant
must be non-zero.
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Determinant of a 3 x 3 matrix

da11 4a12 413
e Assume A = ajz1 dp2 a3

431 d32 433
e Then one defines:

a1l ai2 a3
detA = | a1 ax» a3
d31 4a32 433
az2 as a12 a3 a12 4di3
= tau- —a- :
a3z ass a3z ass az az;s

e Methodology:
e take entries a;; from first column, with alternating signs (+, -)
e take determinant from square submatrix obtained by deleting
the first column and the i-th row
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Determinant of a 3 x 3 matrix, example

PRI R R R P
- (3—0)—5(2—0)—2(8+3)
—3-10-22
— 29
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The general, n x n case

a2 - din
ai1 -+ din azxp -+ d2p
] ] dz2 -+ dsp
= +an-| : co| —ax
dpl --- dnn ap2 ... dnn
dnp2 ... dpn
a2 ain
+ as1 e . + ant
a(n—1)2 --- A(n—1)n

(where the last sign £ is + if nis odd and - if n is even)
Then, each of the smaller determinants is computed recursively.

(A lot of work! But there are smarter ways...)
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Some properties of determinants

For A and B two n X n matrices,
det(A - B) = det(A) - det(B).

The following are corollaries of the Theorem:
e det(A- B) = det(B - A).

o If A has an inverse, then det(A™!) = detl(A).

o det(A¥) = (det(A))*, for any k € N.
Proofs of the first two:
e det(A- B) = det(A) - det(B) = det(B) - det(A) = det(B - A).
(Note that det(A) and det(B) are simply numbers).
o If A has an inverse A1 then
det(A) - det(A™!) = det(A- A1) =det(/) =1, so

det(A_l) = ﬁ(A)

J. van de Wetering spring 2017 Matrix Calculations 29 / 46




Determinants Radboud Univel’Sity Nijmegen

Applications

e Determinants detect when a matrix is invertible

e Though we showed an inefficient way to compute
determinants, there is an efficient algorithm using, you
guessed it...Gaussian elimination!

e Solutions to non-homogeneous systems can be expressed
directly in terms of determinants using Cramer’s rule (wiki it!)

e Most importantly: determinants will be used to calculate
eigenvalues in the next lecture
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Basis transformations

Vectors in a basis

Recall: a basis for a vector space V is a set of vectors
B ={vi,...,v,} in V such that:

@ They uniquely span V, i.e. for all v € V, there exist unique
aj such that:
V=aVvy+...+ayv,

Because of this, we use a special notation for this linear
combination:

a
= ai1vi+...4+ apv,
an/
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Basis transformations

Same vector, different outfits

The same vector can look different, depending on the choice of

et <1oo G b)>8 B <Z>B

Examples:

(o).~ (%),

spring 2017
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Basis transformations

Transforming bases, part |

e Problem: given a vector written in B = {(100,0), (100, 1)},
how can we write it in the standard basis? Just use the
definition:

(x) (100> <100> <100x + 100y>
Y)s 0 1 y s
e Or, as matrix multiplication:

100 100 ‘ X _{100x + 100y
0 1 y) y
—— N N——_————
TB:\S in basis B in basis S

e Let Tp—s be the matrix whose columns are the basis vectors
B. Then Tp_g transforms a vector written in B into a vector
written in S.
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Basis transformations

Transforming bases, part |l

How do we transform back? Need T s—.p which undoes the
matrix Tp—s.
1

Solution: use the inverse! Ts—p:=(Tp=s)"

—1 1
_1__ (100 100 (10 1
(Ti=s)™ = ( 0 1 “\o 1
...which indeed gives:

1 a—
w L) (2 (T
0 1 b b
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Basis transformations

Transforming bases, part IV

e How about two non-standard bases?

s=((9)(F) e=i(5) 6D

/

a a
e Problem: translate a vector from ( > to < )
B C

e Solution: do this in two steps:

Tpes Vv
—

first translate from B to S...

Tsoc Tpss v = (Tews) ' Tpas-v

~
...then translate from S to C
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Basis transformations

Transforming bases, example

e For bases:

s=((0)(Y) e(Z) )

e ...we need to find &’ and b’ such that

()= C),

e Translating both sides to the standard basis gives:

(22) () -(5%)-C)

e This we can solve using the matrix-inverse:

-Gy 6
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Basis transformations

Transforming bases, example

For:

6-GeEn 0

in basis C

we compute

TB:>S in basis B

~1 1\ (100 100\ _ (~3 &\ (100 100\ _, (~200 —199
2 2 0 1 a % % 0 1 T4\ 200 201
which gives:
d\ 1 [-200 —199\ (a
b') 4\ 200 201 b
—— ~ ——
in basis C T—c in basis B
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Basis transformations

Basis transformation theorem

Let S be the standard basis for R" and let B = {v1,...,v,} and
C ={wi,...,w,} be other bases.

@ Then there is an invertible n x n basis transformation matrix
T 5—c such that:

/ /

=Tp=c-| : with Sl =1
E an £ c an/ s
® Tp—s is the matrix which has the vectors in B as columns,

and
Tp=c = (TC:>S)_1 - Tp=s

(3) TC:>B = (TB:>C)_1
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Basis transformations

Matrices in other bases

e Since vectors can be written with respect to different bases,
so too can matrices.

e For example, let g be the linear map defined by:

f((o)=0), (=),

e Then, naturally, we would represent g using the matrix:

(0 1>
10 S
e Because indeed:

(30 ()=C) = () (=)
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Basis transformations

On the other hand...

e Lets look at what g does to another basis:

s-i()(2)

e First (1,1) € B:

e Then, by linearity:

=a(o))+et (1= (1) +(6) = (1) = (o),
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Basis transformations

On the other hand...

5=1()-(5)

e Similarly (1,—1) € B:

s () )=s(( 1) )=s0(g) - (1)1=-

(-0 -()- )
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Basis transformations

A new matrix

e From this:

f(o))= ), #t)=- (),

e It follows that we should instead use this matrix to represent

(1 0>
0 -1 s
e Because indeed:

(62 6)=6) = (65)6)=-0)
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Basis transformations

A new matrix

e So on different bases, g acts in a totally different way!

f((o)=(), (=),
f(o))=(0),  at()=-0)

e ...and hence gets a totally different matrix:
<o 1) v (1 0)
10/ 0 -1/,
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Basis transformations

Transforming bases, part |l

Theorem

Assume again we have two bases B,C for R".

If a linear map f: R" — R" has matrix A w.r.t. to basis B, then,
w.r.t. to basis C, f has matrix A’ :

A=Tp.c A Teop

Thus, via Tp—c and T c—p one tranforms B-matrices into
C-matrices. In particular, a matrix can be translated from the
standard basis to basis B via:

A=Ts.p-A Tpos
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Basis transformations

Example basis transformation, part |

Consider the standard basis S = {(1,0),(0,1)} for R2, and as
alternative basis B = {(—1,1),(0,2)}

Let the linear map f : R?> — R?, w.r.t. the standard basis S,
be given by the matrix:

A= (5 5)

What is the representation A’ of f w.r.t. basis B?

Since S is the standard basis, Tp—s = <_11 g) contains the

B-vectors as its columns
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