Matrix Calculations

Assignment 1, Tuesday, September 5, 2017

Exercise teachers. Recall the following split-up of students:

teacher	lecture room	email
John van de Wetering	HG00.114	wetering@cs.ru.nl
Justin Reniers	HG01.058	j.reniers@student.ru.nl
Justin Hende	HG02.028	justin.hende@gmail.com
Bart Gruppen	HG03.632	b.gruppen@student.ru.nl

The delivery boxes are located in the Mercator 1 building on the ground floor (where the Computer Science department ICIS is located).

Handing in your answers: There are two options, depending on your exercise class teacher:

- 1. Delivery box (default): Put your solutions in the appropriate delivery box (see above). Before putting your solutions in the box make sure:
 - your name and student number are written clearly on the document.
- 2. E-mail (if your teacher agrees): Send your solutions by e-mail to your exercise class teacher (see above) with subject 'assignment 1'. This e-mail should only contain a single PDF document as attachment (unless explicitly stated otherwise). Before sending an e-mail make sure:
 - the file is a PDF document that is well readable
 - your name is part of the filename (for example MyName_assignment-1.pdf)
 - your name and student number are included in the document (since they will be printed)

Deadline: Monday, September 11, 16:00 sharp!

Goals: After completing these exercises successfully you should be able to solve simple systems of equations and perform Gauss-elimination. The total number of points is 20.

Task: For each system of equations: (a) write down the coefficient matrix, (b) write the augmented matrix, (c) transform the matrix into Echelon form, and (d) give at least one solution. Explain briefly how you proceed.

1. **(5 points)**

$$\begin{array}{rcl}
4x + 4y & = & 8 \\
5x - 5y & = & 10
\end{array}$$

2. **(5 points)**

$$\begin{array}{rcl}
-4x + 4y - 2z & = & 4 \\
2x - y + 2z & = & 5 \\
4x - 2y + 7z & = & 16.
\end{array}$$

3. **(5 points)**

$$2x + y + 2v + w = 1$$

$$4x + 4y + 6v + w = 2$$

$$6x + y + 4v + 5w = 4$$

$$2x + 3y + 5v + w = 4$$

4. (5 points)

$$\begin{array}{rcl} x_1 + 2x_2 + 3x_3 & = & 0 \\ 4x_1 + 5x_2 + 6x_3 & = & 0 \\ 3x_1 + 3x_2 + 3x_3 & = & 0 \\ 6x_1 + 9x_2 + 12x_3 & = & 0 \end{array}$$