Matrix Calculations Assignment 7, Tuesday, October 17, 2017

Exercise teachers. Recall the following split-up of students:

teacher	lecture room	email	
John van de Wetering	HG00.114	wetering@cs.ru.nl	
Justin Reniers	HG01.058	j.reniers@student.ru.nl	
Justin Hende	HG02.028	justin.hende@gmail.com	
Bart Gruppen	HG03.632	b.gruppen@student.ru.nl	

The delivery boxes are located in the Mercator 1 building on the ground floor (where the Computer Science department ICIS is located).

Handing in your answers: There are two options, depending on your exercise class teacher:

- 1. Delivery box (default): Put your solutions in the appropriate delivery box (see above). Before putting your solutions in the box make sure:
 - your name and student number are written clearly on the document.
- 2. E-mail (if your teacher agrees): Send your solutions by e-mail to your exercise class teacher (see above) with subject 'assignment 7'. This e-mail should only contain a single PDF document as attachment (unless explicitly stated otherwise). Before sending an e-mail make sure:
 - the file is a PDF document that is well readable
 - your name is part of the filename (for example MyName_assignment-7.pdf)
 - your name and student number are included in the document (since they will be printed)

Deadline: Monday, October 23, 16:00 sharp!

Goals: After completing these exercises, you should be able of compute eigenvalues, eigenvectors, and the diagonalisation of a matrix.

1. (3 points)

We consider the weather forecast predictions for the next day: a rainy day R, a cloudy day C or a sunny day S. Assume predictions follow this distribution rule:

Forecast R	70% stay at R	20% go to C	10% go to S
Forecast C	20% go to R	60% stay at C	20% go to S
Forecast S	20% go to R	40% go to C	40% stay at S

- (a) Provide the transition matrix A.
- (b) If there is a 50% probability of rain today and 10% probability of sun, what is the probability that it will be cloudy the day after tomorrow?
- 2. (10 points) Consider the following "student transition matrix", denoting the fraction of RU students that will stay at / leave the RU and the fraction of non-RU students that will come to / not come to the RU:

$$\boldsymbol{S} = \begin{pmatrix} 0.7 & 0.1 \\ 0.3 & 0.9 \end{pmatrix}$$

- (a) Find eigenvalues and eigenvectors of \boldsymbol{S} .
- (b) Let the eigenvectors form a basis \mathcal{B} . Write S as a diagonal matrix D with respect to basis \mathcal{B} .
- (c) Compute the basis transformation matrices $T_{\mathcal{B}\Rightarrow\mathcal{S}}$ and $T_{\mathcal{S}\Rightarrow\mathcal{B}}$ and show that:

$$S = T_{\mathcal{B} \Rightarrow \mathcal{S}} \cdot D \cdot T_{\mathcal{S} \Rightarrow \mathcal{B}}$$

- (d) What is the second iteration of the student transition matrix? (Use the diagonal matrix to compute this.)
- (e) What will happen if the number of iterations goes to infinity (find $\lim_{n\to\infty} S^n$)?
- 3. (7 points) Consider the following matrix:

$$\boldsymbol{F} = \begin{pmatrix} 0 & 1 & 1 \\ -1 & 2 & 1 \\ -1 & -1 & 4 \end{pmatrix}$$

- (a) What is the characteristic polynomial of F?
- (b) Find the eigenvalues of the matrix.
- (c) Compute the eigenvectors corresponding to each of these eigenvalues.