Matrix Calculations

Assignment 8, Tuesday, October 24, 2017

Exercise teachers. Recall the following split-up of students:

teacher	lecture room	email
John van de Wetering	HG00.114	wetering@cs.ru.nl
Justin Reniers	HG01.058	j.reniers@student.ru.nl
Justin Hende	HG02.028	justin.hende@gmail.com
Bart Gruppen	HG03.632	b.gruppen@student.ru.nl

The delivery boxes are located in the Mercator 1 building on the ground floor (where the Computer Science department ICIS is located).

Handing in your answers: There are two options, depending on your exercise class teacher:

- 1. Delivery box (default): Put your solutions in the appropriate delivery box (see above). Before putting your solutions in the box make sure:
 - your name and student number are written clearly on the document.
- 2. E-mail (if your teacher agrees): Send your solutions by e-mail to your exercise class teacher (see above) with subject 'assignment 8'. This e-mail should only contain a single PDF document as attachment (unless explicitly stated otherwise). Before sending an e-mail make sure:
 - the file is a PDF document that is well readable
 - your name is part of the filename (for example MyName_assignment-8.pdf)
 - your name and student number are included in the document (since they will be printed)

Deadline: Monday, October 30, 16:00 sharp!

Goals: After completing these exercises, you should be able to compute the inner product of vectors, cosine of the angle between vectors, check whether vectors are orthogonal, and turn a basis into an orthonormal basis using Gram-Schmidt orthogonalisation.

1. **(6 points)**

Consider vectors:

$$oldsymbol{u} = egin{pmatrix} 1 \ 1 \ -1 \end{pmatrix} \qquad \qquad oldsymbol{v} = egin{pmatrix} 1 \ 2 \ 3 \end{pmatrix} \qquad \qquad oldsymbol{w} = egin{pmatrix} 0 \ 0 \ 1 \end{pmatrix}$$

compute the following quantities:

- (a) Inner products: $\langle u, u \rangle$, $\langle v, v \rangle$, $\langle w, w \rangle$, $\langle u, v \rangle$, and $\langle v, w \rangle$
- (b) Norms: $\|u\|$, $\|v\|$, $\|w\|$
- (c) Distances: $d(\boldsymbol{u}, \boldsymbol{v}), d(\boldsymbol{v}, \boldsymbol{w})$
- (d) Normalised vectors: $\mathbf{u}' = a\mathbf{u}, \mathbf{v}' = b\mathbf{v}, \mathbf{w}' = c\mathbf{w}$ where $\|\mathbf{u}'\| = \|\mathbf{v}'\| = \|\mathbf{w}'\| = 1$

2. (7 points)

Consider vectors:

$$oldsymbol{u} = egin{pmatrix} 2 \ 2 \ 2 + \lambda \end{pmatrix} \qquad \qquad oldsymbol{v} = egin{pmatrix} 1 \ 1 \ 1 - \lambda \end{pmatrix}$$

- (a) For which values of λ are u and v independent, and for which values are they orthogonal?
- (b) Pick some λ such that these vectors are are independent, but **not** orthogonal. Use Gram-Schmidt orthogonalisation to make them orthogonal.

3. (7 points)

Consider the following basis for a subspace $U \subseteq \mathbb{R}^4$

$$oldsymbol{v}_1 = egin{pmatrix} 1 \ 1 \ 0 \ 0 \end{pmatrix} \qquad \qquad oldsymbol{v}_2 = egin{pmatrix} 0 \ 1 \ 1 \ 0 \end{pmatrix} \qquad \qquad oldsymbol{v}_3 = egin{pmatrix} 0 \ 0 \ 1 \ 1 \ 1 \end{pmatrix}$$

- (a) Use Gram-Schmidt orthogonalisation to turn this basis into an orthogonal basis $\mathcal{B}' = \{v'_1, v'_2, v'_3\}$ for U.
- (b) Normalise each of the vectors in \mathcal{B}' to obtain an orthonormal basis for U.
- (c) **BONUS:** Find a new vector v_4' such that $\mathcal{B}' = \{v_1', v_2', v_3', v_4'\}$ is an orthogonal basis for all of \mathbb{R}^4 . (Hint: v_4' is orthogonal to $\{v_1', v_2', v_3'\}$ if and only if it is orthogonal to $\{v_1, v_2, v_3\}$... Why?)