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Solutions

When we look for solutions to a system, there are 3 possibilities:

1 A system of equations has a single, unique solution, e.g.

x1 + x2 = 3
x1 − x2 = 1

(unique solution: x1 = 2, x2 = 1)

2 A system has many solutions, e.g.

x1 − 2x2 = 1
−2x1 + 4x2 = −2

(we have a solution whenever: x1 = 1 + 2x2)

3 A system has no solutions.

3x1 − 2x2 = 1
6x1 − 4x2 = 6

(the transformation E2 := E2 − 2E1 yields 0 = 4.)
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Solutions, geometrically

Consider systems of only two variables x , y . A linear equation
ax + by = c then describes a line in the plane.

For 2 such equations/lines, there are three possibilities:

1 the lines intersect in a unique point, which is the solution to
both equations

2 the lines are parallel, in which case there are no joint solutions

3 the lines coincide, giving many joint solutions.
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Echelon form

We can tell the difference in these 3 cases by writing the
augmented matrix and tranforming to Echelon form.

Recall: A matrix is in Echelon form if:

1 All of the rows with pivots occur before zero rows, and

2 Pivots always occur to the right of previous pivots
3 2 5 −5 1

0 0 2 1 −2

0 0 0 -2 2
0 0 0 0 0

X
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(In)consistent systems

Definition

A system of equations is consistent (oplosbaar) if it has one or
more solutions. Otherwise, when there are no solutions, the system
is called inconsistent

Thus, for a system of equations:

nr. of solutions terminology
0 inconsistent

≥ 1
(one or many)

consistent
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Inconsistency and echelon forms

Theorem

A system of equations is inconsistent (non-solvable) if and only if
in the echelon form of its augmented matrix there is a row with:

• only zeros before the bar |
• a non-zero after the bar |,

as in: 0 0 · · · 0 | c, where c 6= 0.

Example

3x1 − 2x2 = 1
6x1 − 4x2 = 6

gives

(
3 −2 1
6 −4 6

)
and

(
3 −2 1
0 0 4

)
(using the transformation R2 := R2 − 2R1)
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Unique solutions

Theorem

A system of equations in n variables has a unique solution if and
only if in its Echelon form there are n pivots.

Proof. (n pivots =⇒ unique soln., on board)

In summary: A system with n variables has an augmented matrix with n

columns before the line. Its Echelon form has n pivots, so there must be

exactly one pivot in each column. The last pivot uniquely fixes xn. Then,

since xn is fixed, the second to last pivot uniquely fixes xn−1 and so on.
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Unique solutions: earlier example

equations matrix

2x2 + x3 = −2
3x1 + 5x2 − 5x3 = 1
2x1 + 4x2 − 2x3 = 2

 0 2 1 −2
3 5 −5 1
2 4 −2 2


After various transformations leads to

x1 + 2x2 − 1x3 = 1
x2 + 2x3 = 2

x3 = 2

 1 2 −1 1
0 1 2 2
0 0 1 2

�



�
	Echelon

form

There are 3 variables and 3 pivots, so there is one unique solution.

A. Kissinger Version: autumn 2017 Matrix Calculations 10 / 50



Solutions and solvability
Vectors and linear combinations

Homogeneous systems
Non-homogeneous systems

Radboud University Nijmegen

Unique solutions

So, when there are n pivots, there is 1 solution, and life is good.

Question: What if there are more solutions? Can we describe them
in a generic way?
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A new tool: vectors

• A vector is a list of numbers.

• We can write it like this: (x1, x2, . . . , xn)

• ...or as a matrix with just one column:
x1
x2
...
xn


(which is sometimes called a ‘column vector’).
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A new tool: vectors

• Vectors are useful for lots of stuff. In this lecture, we’ll use
them to hold solutions.

• Since variable names don’t matter, we can write this:

x1 := 2 x2 := −1 x3 := 0

• ...more compactly as this:  2
−1
0



• ...or even more compactly as this: (2,−1, 0).
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Linear combinations

• We can multiply a vector by a number to get a new vector:

c ·


x1
x2
...
xn

 :=


cx1
cx2

...
cxn


This is called scalar multiplication.

• ...and we can add vectors together:
x1
x2
...
xn

+


y1
y2
...
yn

 :=


x1 + y1
x2 + y2

...
xn + yn


as long as the are the same length.
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Linear combinations

Mixing these two things together gives us a linear combination of
vectors:

c ·


x1
x2
...
xn

+ d ·


y1
y2
...
yn

+ . . . =


cx1 + dy1 + . . .
cx2 + dy2 + . . .

...
cxn + dyn + . . .


A set of vectors v1, v2, . . . , vk is called linearly independent if no
vector can be written as a linear combination of the others.
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Linear independence

• These vectors:

v1 =

(
1
0

)
v2 =

(
0
1

)
v3 =

(
1
1

)
are NOT linearly independent, because v3 = v1 + v2.

• These vectors:

v1 =

1
2
3

 v2 =

1
0
1

 v3 =

0
1
1


are NOT linearly independent, because v1 = v2 + 2 · v3.
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Linear independence

• These vectors:

v1 =

1
0
0

 v2 =

0
1
0

 v3 =

0
0
1


are linearly independent. There is no way to write any of them
in terms of each other.

• These vectors:

v1 =

1
0
0

 v2 =

0
1
0

 v3 =

0
2
2


are linearly independent. There is no way to write any of them
in terms of each other.
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Linear independence

• These vectors:

v1 =

1
2
3

 v2 =

 2
−1
4

 v3 =

0
5
2


are... ???

• ‘Eyeballing’ vectors works sometimes, but we need a better
way of checking linear independence!
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Checking linear independence

Theorem

Vectors v1, . . . , vn are linearly independent if and only if, for all
numbers a1, . . . , an ∈ R one has:

a1 · v1 + · · ·+ an · vn = 0 implies a1 = a2 = · · · = an = 0

Example

The 3 vectors (1, 0, 0), (0, 1, 0), (0, 0, 1) are linearly independent,
since if

a1 · (1, 0, 0) + a2 · (0, 1, 0) + a3 · (0, 0, 1) = (0, 0, 0)

then, using the computation from the previous slide,

(a1, a2, a3) = (0, 0, 0), so that a1 = a2 = a3 = 0
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Checking linear independence

Theorem

Vectors v1, . . . , vn are linearly independent if and only if, for all
numbers a1, . . . , an ∈ R one has:

a1 · v1 + · · ·+ an · vn = 0 implies a1 = a2 = · · · = an = 0

Proof. Another way to say the theorem is v1, . . . , vn are linearly
dependent if and only if:

a1 · v1 + a2 · v2 + · · ·+ an · vn = 0

where some aj are non-zero. If this is true and a1 6= 0, then:

v1 = (−a2/a1) · v2 + . . . + (−an/a1) · vn

The vectors are dependent (also works for any other non-zero aj).
Exercise: prove the other direction.
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Proving (in)dependence via equation solving I

• Investigate (in)dependence of

1
2
3

,

 2
−1
4

, and

0
5
2


• Thus we ask: are there any non-zero a1, a2, a3 ∈ R with:

a1

1
2
3

+ a2

 2
−1
4

+ a3

0
5
2

 =

0
0
0


• If there is a non-zero solution, the vectors are dependent, and

if a1 = a2 = a3 = 0 is the only solution, they are independent
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Proving (in)dependence via equation solving II

• Our question involves the systems of equations / matrix:
a1 + 2a2 = 0

2a1 − a2 + 5a3 = 0
3a1 + 4a2 + 2a3 = 0

corresponding to

1 2 0
0 −1 1
0 0 0


(in Echelon form)

• This has only 2 pivots, so multiple solutions. In particular, it
has non-zero solutions, for example: a1 = 2, a2 = −1, a3 = −1

(compute and check for yourself!)

• Thus the original vectors are dependent. Explicitly:

2

1
2
3

+ (−1)

 2
−1
4

+ (−1)

0
5
2

 =

0
0
0


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Proving (in)dependence via equation solving III

• Same (in)dependence question for:

 1
2
−3

,

−2
1
1

,

 1
−1
−2


• With corresponding matrix: 1 −2 1

2 1 −1
−3 1 −2

 reducing to

5 0 −1
0 5 −3
0 0 −4


• Thus the only solution is a1 = a2 = a3 = 0. The vectors are

independent!
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Linear independence: summary

To check linear independence of v1, v2, . . . , vn:

1 Write the vectors as the columns of a matrix

2 Convert to Echelon form

3 Count the pivots
• (# pivots) = (# columns) means independent
• (# pivots) < (# columns) means dependent

4 Non-zero solutions show linear dependence explicitly, e.g.

v1 − 2v2 + v3 = 0 =⇒ v1 = 2v2 − v3
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General solutions

The Goal:
• Describe the space of solutions of a system of equations.

• In general, there can be infinitely many solutions, but only a
few are actually ‘different enough’ to matter. These are called
basic solutions.

• Using the basic solutions, we can write down a formula which
gives us any solution: the general solution.

Example (General solution for one equation)

2x1 − x2 = 3 gives x2 = 2x1 − 3

So a general solution (for any c) is:

x1 := c x2 := 2c − 3
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Linear combinations of solutions

• It is not the case in general that linear combinations of
solutions give solutions. For example, consider:{

x1 + 2x2 + x3 = 0

x2 + x4 = 2
↔

(
1 2 1 0 0
0 1 0 1 2

)
• This has as solutions:

v1 =


−2
2
−2
0

 , v2 =


−1
1
−1
1

 but not v1+v2 =


−3
3
−3
1

 , 3·v1, . . .

• The problem is this system of equations is not homogeneous,
because the the 2 on the right-hand-side (RHS) of the second
equation.

A. Kissinger Version: autumn 2017 Matrix Calculations 28 / 50



Solutions and solvability
Vectors and linear combinations

Homogeneous systems
Non-homogeneous systems

Radboud University Nijmegen

Homogeneous systems of equations

Definition

A system of equations is called homogeneous if it has zeros on the
RHS of every equation. Otherwise it is called non-homogeneous.

• We can always squash a non-homogeneous system to a
homogeneous one: 0 2 1 −2

3 5 −5 1
0 0 −2 2

 ;

 0 2 1
3 5 −5
0 0 −2


• The solutions will change!

• ...but they are still related. We’ll see how that works soon.
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Zero solution, in homogeneous case

Lemma

Each homogeneous equation has (0, . . . , 0) as solution.

Proof: A homogeneous system looks like this

a11x1 + · · ·+ a1nxn = 0
...

am1x1 + · · ·+ amnxn = 0

Consider the equation at row i :

ai1x1 + · · ·+ ainxn = 0

Clearly it has as solution x1 = x2 = · · · = xn = 0.
This holds for each row i . -
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Linear combinations of solutions

Theorem

The set of solutions of a homogeneous system is closed under linear
combinations (i.e. addition and scalar multiplication of vectors).

...which means:

• if (s1, s2, . . . , sn) and (t1, t2, . . . , tn) are solutions, then so is:
(s1 + t1, s2 + t2, . . . , sn + tn), and

• if (s1, s2, . . . , sn) is a solution, then so is (c · s1, c · s2, . . . , c · sn)
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Example

• Consider the homogeneous system

{
3x1 + 2x2 − x3 = 0

x1 − x2 = 0

• A solution is x1 = 1, x2 = 1, x3 = 5, written as vector
(x1, x2, x3) = (1, 1, 5)

• Another solution is (2, 2, 10)

• Addition yields another solution:

(1, 1, 5) + (2, 2, 10) = (1 + 2, 1 + 2, 10 + 5) = (3, 3, 15).

• Scalar multiplication also gives solutions:

−1 · (1, 1, 5) = (−1 · 1,−1 · 1,−1 · 5) = (−1,−1,−5)
100 · (2, 2, 10) = (100 · 2, 100 · 2, 100 · 10) = (200, 200, 1000)

c · (1, 1, 5) = (c · 1, c · 1, c · 5) = (c , c, 5c)
(is a solution for every c)
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Proof of closure under addition

• Consider an equation a1x1 + · · ·+ anxn = 0

• Assume two solutions (s1, . . . , sn) and (t1, . . . , tn)

• Then (s1 + t1, . . . , sn + tn) is also a solution since:

a1(s1 + t1) + · · ·+ an(sn + tn)

=
(
a1s1 + a1t1

)
+ · · ·+

(
ansn + antn

)
=
(
a1s1 + · · ·+ ansn

)
+
(
a1t1 + · · ·+ antn

)
= 0 + 0 since the si and ti are solutions
= 0.

• Exercise: do a similar proof of closure under scalar
multiplication
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General solution of a homogeneous system

Theorem

Every solution to a homogeneous system arises from a general
solution of the form:

(s1, . . . , sn) = c1(v11, . . . , v1n) + · · ·+ ck(vk1, . . . , vkn)

for some numbers c1, . . . , ck ∈ R.

We call this a parametrization of our solution space. It means:

1 There is a fixed set of vectors (called basic solutions):

v1 = (v11, . . . , v1n), . . . , vk = (vk1, . . . , vkn)

2 such that every solution s is a linear combination of
v1, . . . , vk .

3 That is, there exist c1, . . . , ck ∈ R such that

s = c1 v1 + . . . + ckvk
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Basic solutions of a homogeneous system

Theorem

Suppose a homogeneous system of equations in n variables has
p ≤ n pivots. Then there are n − p basic solutions v1, . . . , vn−p.

This means that the general solution s can be written as a
parametrization:

s = c1v1 + · · · cn−pvn−p.

Moreover, for any solution s, the scalars c1, . . . , cn−p are unique.

(p = n) ⇔ (no basic solns.) ⇔ (0 is the unique soln.)
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Finding basic solutions

• We have two kinds of variables, pivot variables and non-pivot,
or free variables, depending on whether their column has a
pivot:

x1 x2 x3 x4 x5( )
1 0 1 4 1

0 0 1 2 0

• The Echelon form lets us (easily) write pivot variables in
terms of non-pivot variables, e.g.:{

x1 = −x3 − 4x4 − x5

x3 = −2x4
⇒

{
x1 = −2x4 − x5

x3 = −2x4

• We can find a (non-zero) basic solution by setting exactly one
free variable to 1 and the rest to 0.
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Finding basic solutions

x1 x2 x3 x4 x5( )
1 0 1 4 1

0 0 1 2 0
⇒

{
x1 = −2x4 − x5

x3 = −2x4

5 variables and 2 pivots gives us 5− 2 = 3 basic solutions:


x1
x2
x3
x4
x5

 =


−2x4 − x5

x2
−2x4
x4
x5

 ;

x2 := 1

x4 := 0

x5 := 0


0
1
0
0
0

,

x2 := 0

x4 := 1

x5 := 0


−2
0
−2
1
0

,

x2 := 0

x4 := 0

x5 := 1


−1
0
0
0
1
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General Solution

Now, any solution to the system is obtainable as a linear
combination of basic solutions:

x2


0
1
0
0
0

+ x4


−2
0
−2
1
0

+ x5


−1
0
0
0
1

 =


−2x4 − x5

x2
−2x4
x4
x5



Picking solutions this way guarantees linear independence.
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Finding basic solutions: technique 2

• Keep all columns with a pivot,

• One-by-one, keep only the i-th non-pivot columns (while
removing the others), and find a (non-zero) solution

• (this is like setting all the other free variables to zero)

• Add 0’s to each solution to account for the columns (i.e. free
variables) we removed
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General solution and basic solutions, example

• For the matrix:

(
1 1 0 4

0 0 2 2

)
• There are 4 columns (variables) and 2 pivots, so 4− 2 = 2

basic solutions

• First keep only the first non-pivot column:(
1 1 0
0 0 2

)
with chosen solution (x1, x2, x3) = (1,−1, 0)

• Next keep only the second non-pivot column:(
1 0 4
0 2 2

)
with chosen solution (x1, x3, x4) = (4, 1,−1)

• The general 4-variable solution is now obtained as:

c1 · (1,−1, 0, 0) + c2 · (4, 0, 1,−1)
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General solutions example, check

We double-check that any vector:

c1 · (4, 0, 1,−1) + c2 · (1,−1, 0, 0)
= (4 · c1, 0, 1 · c1,−1 · c1) + (1 · c2,−1 · c2, 0, 0)
= (4c1 + c2,−c2, c1,−c1)

gives a solution of:(
1 1 0 4
0 0 2 2

)
i.e. of

{
x1 + x2 + 4x4 = 0

2x3 + 2x4 = 0

Just fill in x1 = 4c1 + c2, x2 = −c2, x3 = c1, x4 = −c1(
4c1 + c2

)
− c2 + 4 · −c1 = 0

2c1 − 2c1 = 0 X
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Summary of homogeneous systems

Given a homogeneous system in n variables:

• A basic solution is a non-zero solution of the system.

• If there are n pivots in its echelon form, there is no basic
solution, so only 0 = (0, . . . , 0) is a solution.

• Basic solutions are not unique. For instance, if v1 and v2 give
basic solutions, so do v1 + v2, v1 − v2, and any other linear
combination.

• If there are p < n pivots in its Echelon form, it has n − p
linearly independent basic solutions.
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Non-homogeneous case: subtracting solutions

Theorem

The difference of two solutions of a non-homogeneous system is
a solution for the associated homogeneous system.

More explicitly: given two solutions (s1, . . . , sn) and (t1, . . . , tn) of
a non-homogeneous system, the difference (s1 − t1, . . . , sn − tn)
is a solution of the associated homogeneous system.

Proof: Let a1x1 + · · ·+ anxn = b be the equation. Then:

a1(s1 − t1) + · · ·+ an(sn − tn)

=
(
a1s1 − a1t1

)
+ · · ·+

(
ansn − antn

)
=
(
a1s1 + · · ·+ ansn

)
−
(
a1t1 + · · ·+ antn

)
= b − b since the si and ti are solutions
= 0. -
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General solution for non-homogeneous systems

Theorem

Assume a non-homogeneous system has a solution given by the
vector p, which we call a particular solution.
Then any other solution s of the non-homogeneous system can be
written as

s = p + h
where h is a solution of the associated homogeneous system.

Proof: Let s be a solution of the non-homogeneous system.
Then h = s − p is a solution of the associated homogeneous
system. Hence we can write s as p + h, for h some solution of the
associated homogeneous system. -
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Example: solutions of a non-homogeneous system

• Consider the non-homogeneous system

{
x + y + 2z = 9

y − 3z = 4
• with solutions: (0, 7, 1) and (5, 4, 0)
• We can write (0, 7, 1) as: (5, 4, 0) + (−5, 3, 1)
• where:

• p = (5, 4, 0) is a particular solution (of the original system)
• (−5, 3, 1) is a solution of the associated homogeneous system:{

x + y + 2z = 0
y − 3z = 0

• Similarly, (10, 1,−1) is a solution of the non-homogeneous
system and

(10, 1,−1) = (5, 4, 0) + (5,−3,−1)

• where:
• (5,−3,−1) is a solution of the associated homogeneous

system.
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General solution for non-homogeneous systems, concretely

Theorem

The general solution of a non-homogeneous system of equations in
n variables is given by a parametrization as follows:

(s1, . . . , sn) = (p1, . . . , pn) + c1(v11, . . . , v1n) + · · · ck(vk1, . . . , vkn)

for c1, . . . , ck ∈ R,
where

• (p1, . . . , pn) is a particular solution

• (v11, . . . , v1n), . . . , (vk1, . . . , vkn) are basic solutions of the
associated homogeneous system.

• So c1(v11, . . . , v1n) + · · ·+ ck(vk1, . . . , vkn) is a general
solution for the associated homogeneous system.
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Elaborated example, part I

• Consider the non-homogeneous system of equations given by
the augmented matrix in echelon form: 1 1 1 1 1 3

0 0 1 2 3 1

0 0 0 0 1 4


• It has 5 variables, 3 pivots, and thus 5− 3 = 2 basic solutions
• To find a particular solution, remove the non-pivot columns,

and (uniquely!) solve the resulting system: 1 1 1 3

0 1 3 1

0 0 1 4


• This has (10,−11, 4) as solution; the orginal 5-variable system

then has particular solution (10, 0,−11, 0, 4).
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Elaborated example, part II

• Consider the associated homogeneous system of equations:

x1 x2 x3 x4 x5 1 1 1 1 1

0 0 1 2 3

0 0 0 0 1

• The two basic solutions are found by removing each of the
two non-pivot columns separately, and finding solutions:

x1 x3 x4 x5 1 1 1 1

0 1 2 3

0 0 0 1

and

x1 x2 x3 x5 1 1 1 1

0 0 1 3

0 0 0 1

• We find: (1,−2, 1, 0) and (−1, 1, 0, 0). Adding zeros for
missing columns gives: (1, 0,−2, 1, 0) and (−1, 1, 0, 0, 0).
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Elaborated example, part III

Wrapping up: all solutions of the system 1 1 1 1 1 3

0 0 1 2 3 1

0 0 0 0 1 4


are of the form:

(10, 0,−11, 0, 4)︸ ︷︷ ︸
particular sol.

+ c1(1, 0,−2, 1, 0) + c2(−1, 1, 0, 0, 0)︸ ︷︷ ︸
two basic solutions

.

This is the general solution of the non-homogeneous system.
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