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Solutions and solvability

Radboud University Nijmegen

Solutions

When we look for solutions to a system, there are 3 possibilities:

@ A system of equations has a single, unique solution, e.g.

X1+ X = 3
x1—x =1

(unique solution: x; = 2,x = 1)
® A system has many solutions, e.g.

X1—2X2 =1
—2X1 —|—4X2 = —2

(we have a solution whenever: x; = 1+ 2xp)
©® A system has no solutions.

3X1—2X2 =1
6X1—4X2 =6

(the transformation Ep := E; — 2E; yields 0 = 4.)
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Solutions and solvability
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Solutions, geometrically

Consider systems of only two variables x, y. A linear equation
ax + by = c then describes a line in the plane.
For 2 such equations/lines, there are three possibilities:

@ the lines intersect in a unique point, which is the solution to
both equations

® the lines are parallel, in which case there are no joint solutions

© the lines coincide, giving many joint solutions.
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Solutions and solvability
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Echelon form

We can tell the difference in these 3 cases by writing the
augmented matrix and tranforming to Echelon form.

Recall: A matrix is in Echelon form if:
@ All of the rows with pivots occur before zero rows, and

® Pivots always occur to the right of previous pivots

3]2 5 —5|1
0 0[2] 1]-2
00 0 [2]
000

2
0
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Solutions and solvability
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(In)consistent systems

A system of equations is consistent (oplosbaar) if it has one or
more solutions. Otherwise, when there are no solutions, the system
is called inconsistent

Thus, for a system of equations:

nr. of solutions | terminology
0 inconsistent

>1
(one or many)

consistent
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Solutions and solvability
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Inconsistency and echelon forms

Theorem

A system of equations is inconsistent (non-solvable) if and only if
in the echelon form of its augmented matrix there is a row with:

e only zeros before the bar |
® a non-zero after the bar |,
asin: 00 --- 0] c, where c #0.

Example
3x1 —2x =1 es 3 —2|1 and 3 =21
6x;—4x = 6 © 6 —4/6 0 04

(using the transformation R, := R, — 2Ry)
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Solutions and solvability
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Unique solutions

Theorem
A system of equations in n variables has a unique solution if and
only if in its Echelon form there are n pivots.

Proof. (n pivots = unique soln., on board)

In summary: A system with n variables has an augmented matrix with n
columns before the line. Its Echelon form has n pivots, so there must be
exactly one pivot in each column. The last pivot uniquely fixes x,. Then,
since x, is fixed, the second to last pivot uniquely fixes x,_; and so on.
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Solutions and solvability
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Unique solutions: earlier example

equations matrix
2X2 +Xx3 = -2 02 1/|-2
3X1 + 5X2 — 5X3 =1 35 -5|1
2x1 +4xp —2x3 = 2 24 -2| 2

After various transformations leads to

X1 +2x —1xz3 = 1 12 -1|1 Echel
o+ 2% = 2 0122
x3 = 2 00 1 [2)\om

There are 3 variables and 3 pivots, so there is one unique solution.
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Solutions and solvability
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Unique solutions

So, when there are n pivots, there is 1 solution, and life is good.

Question: What if there are more solutions? Can we describe them
in a generic way?
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Vectors and linear combinations . . . s
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A new tool: vectors

e A vector is a list of numbers.
e We can write it like this: (x1, X2, ..., Xp)

e ...or as a matrix with just one column:

X1
X2

Xn

(which is sometimes called a ‘column vector').
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Vectors and linear combinations
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A new tool: vectors

e Vectors are useful for lots of stuff. In this lecture, we'll use
them to hold solutions.

e Since variable names don’t matter, we can write this:

x1:=2 xo:=-1 x3:=0

e ...more compactly as this:

e ...or even more compactly as this: (2,—1,0).
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Vectors and linear combinations
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Linear combinations

e We can multiply a vector by a number to get a new vector:

X1 CX1

X2 CX2
C- =

Xn CXp

This is called scalar multiplication.
e ...and we can add vectors together:

X1 n X1+

X2 )2, X2 + Vo
A e = )

Xn Yn Xn + Yn

as long as the are the same length.
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Vectors and linear combinations
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Linear combinations

Mixing these two things together gives us a linear combination of

vectors:
X1 n cx1+dyr + ...
X2 )%, o+ dys+...
c-| .| +d-| . |+... = ,
Xn Yn Xn+dyn+ ...
A set of vectors v, v, ..., v is called linearly independent if no

vector can be written as a linear combination of the others.
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Vectors and linear combinations
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Linear independence

e These vectors:

) ) ool

are NOT linearly independent, because v3 = vy + v».

e These vectors:

1 1 0
vy = 2 Vo = 0 V3 = 1
3 1 1

are NOT linearly independent, because vi = vo + 2 - v3.

A. Kissinger Version: autumn 2017 Matrix Calculations 17 / 50



Vectors and linear combinations
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Linear independence

e These vectors:

1 0 0
Vi = 0 V) = 1 V3 = 0
0 0 1

are linearly independent. There is no way to write any of them
in terms of each other.

e These vectors:

1 0 0
Vi = 0 Vo = 1 V3 = 2
0 0 2

are linearly independent. There is no way to write any of them
in terms of each other.
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Vectors and linear combinations
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Linear independence

e These vectors:

1 2 0
vy = 2 Vo = -1 V3 = 5
3 4 2
are... 777

e ‘Eyeballing’ vectors works sometimes, but we need a better
way of checking linear independence!

A. Kissinger Version: autumn 2017 Matrix Calculations 19 / 50



Vectors and linear combinations
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Checking linear independence

Vectors vi, ..., v, are linearly independent if and only if, for all
numbers a1, ...,a, € R one has:
aa-wvit---+ap,-v,=0 implies ay=a=---=a,=0

Example
The 3 vectors (1,0,0),(0,1,0),(0,0,1) are linearly independent,
since if

a;-(1,0,0)+ a2 - (0,1,0) + a3 - (0,0,1) = (0,0,0)
then, using the computation from the previous slide,

(a1,a2,a3) =(0,0,0), sothat a3 =a,=a3=0
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Vectors and linear combinations
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Checking linear independence

Vectors vy, . .., v, are linearly independent if and only if, for all
numbers a1, ...,a, € R one has:

aa-wvit+--+ap,-v,=0 implies ay=a=---=a,=0
Proof. Another way to say the theorem is vy, ..., v, are linearly

dependent if and only if:
ag-vita-vat--ta, v, =0
where some a; are non-zero. If this is true and a; # 0, then:
vi = (—ax/a1) - va+...+(—an/a1) - vn

The vectors are dependent (also works for any other non-zero aj).
Exercise: prove the other direction.
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Vectors and linear combinations
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Proving (in)dependence via equation solving |

1 2 0
e Investigate (in)dependence of 2], [ =1 ], and |5
3 4 2
e Thus we ask: are there any non-zero asg, a», a3 € R with:
1 2 0 0
ail2]l+a|-1]+a3|5] =10
3 4 2 0

e If there is a non-zero solution, the vectors are dependent, and
if a1 = a» = a3 = 0 is the only solution, they are independent
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Vectors and linear combinations
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Proving (in)dependence via equation solving Il

e Our question involves the systems of equations / matrix:

ai+2a =0 1 20
2a; —ap+5a3 = 0 corresponding to 0 -11
3a1 +4ay+2a3 = 0 0 0O

(in Echelon form)

e This has only 2 pivots, so multiple solutions. In particular, it
has non-zero solutions, for example: a3 = 2,ap = —1,a3 = —1

(compute and check for yourself!)

e Thus the original vectors are dependent. Explicitly:

1 2 0 0
2(2|+(-1)|-1|+(-1)|5] =10
3 4 2 0
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Vectors and linear combinations
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Proving (in)dependence via equation solving Il

1 -2 1
e Same (in)dependence question for: 2 1, 11, (-1
-3 1 —2
e With corresponding matrix:
1 -2 1 50 -1
2 1 -1 reducing to 05 -3
-3 1 =2 00 —4

e Thus the only solution is a; = ap = a3 = 0. The vectors are
independent!
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Vectors and linear combinations
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Linear independence: summary

To check linear independence of vy, va, ..., v,
@ Write the vectors as the columns of a matrix

® Convert to Echelon form
©® Count the pivots

o (# pivots) = (# columns) means independent
o (# pivots) < (# columns) means dependent

O Non-zero solutions show linear dependence explicitly, e.g.

vi—-2vu+wvs=0 — vi=2v; — v3
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General solutions

The Goal:

e Describe the space of solutions of a system of equations.

e In general, there can be infinitely many solutions, but only a
few are actually ‘different enough’ to matter. These are called
basic solutions.

e Using the basic solutions, we can write down a formula which
gives us any solution: the general solution.

Example (General solution for one equation)
2x1 —xp = 3 gives xp =2x3 — 3
So a general solution (for any c) is:
X1 :=¢C Xp = 2c —3
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Linear combinations of solutions

e |t is not the case in general that linear combinations of
solutions give solutions. For example, consider:

X1 +2x +x3=0 - <1 210 0>
X0+ X4 =2 01012

e This has as solutions:

-2 -1 -3
vi = _22 , Vo = _11 but not vi+wv, = _33 ,3 v, ...
0 1 1

e The problem is this system of equations is not homogeneous,
because the the 2 on the right-hand-side (RHS) of the second
equation.
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Homogeneous systems Radboud University Nijmegen ¢

Homogeneous systems of equations

A system of equations is called homogeneous if it has zeros on the
RHS of every equation. Otherwise it is called non-homogeneous.

e We can always squash a non-homogeneous system to a
homogeneous one:

1]-2
5

02
35 5|1
00 —-2|2

e The solutions will change!
e ...but they are still related. We'll see how that works soon.
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Zero solution, in homogeneous case

Lemma

Each homogeneous equation has (0, ...,0) as solution.

Proof: A homogeneous system looks like this

aixy+ -+ axn =0

amx1t+ -+ ampxp = 0
Consider the equation at row i:
aj1x1+ -+ + ainxn = 0

Clearly it has as solution x1 =xp =--- = x, = 0.

This holds for each row /. (]
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Linear combinations of solutions

The set of solutions of a homogeneous system is closed under linear
combinations (i.e. addition and scalar multiplication of vectors).

...which means:

e if (s1,%,...,55) and (t1, t, ..., t,) are solutions, then so is:
(s1+t1,s2+ t2,...,Sp+ tp), and
e if (s1,%,...,5n) is a solution, then so is (c-s1,¢c-S2,...,C"5p)
A. Kissinger Version: autumn 2017 Matrix Calculations
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A3

Example

3x14+2x0 —x3 = 0
X1 — Xo = 0

Consider the homogeneous system {

A solution is x; = 1,x» = 1, x3 = 5, written as vector
(x1,x2,x3) = (1,1,5)

Another solution is (2,2, 10)

Addition yields another solution:

(1,1,5) +(2,2,10) = (1+2,1+2,1045) = (3,3,15).

Scalar multiplication also gives solutions:
-1-(1,1,5) = (-1-1,-1-1,-1-5) = (-
100-(2,2,10) = (100-2,100-2,100-10) =
c-(1,1,5) = (c-1,¢-1,¢-5) = (c,c,5¢
(is a solution for every c)

1,-1,-5)
(200, 200, 1000)
)
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Proof of closure under addition

e Consider an equation a;x; + -+ + apx, =0
e Assume two solutions (s1,...,s,) and (ti,...,ts)

e Then (s; + t1,...,5, + t,) is also a solution since:

ai(s1 +t1) + -+ an(sn + tn)
= (a151 + alt1) + 4+ (ansn + antn>
= 3151+"'+3n5n>+(altl+"’+antn)

0+0 since the s; and t; are solutions
= 0.

e Exercise: do a similar proof of closure under scalar
multiplication
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General solution of a homogeneous system

Every solution to a homogeneous system arises from a general
solution of the form:

(51,. . .,Sn) = C1(V117 ce Vln) + -+ Ck(Vk17 ceey Vk,,)
for some numbers c1,...,cx € R.
We call this a parametrization of our solution space. It means:
@ There is a fixed set of vectors (called basic solutions):
V1:(V11,...,V1n), ey vk:(vkl,...,vkn)

@® such that every solution s is a linear combination of
Vi,..., Vk.
©® That is, there exist c1,...,cx € R such that

S=C Vi +...+CkVg
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Basic solutions of a homogeneous system

Suppose a homogeneous system of equations in n variables has
p < n pivots. Then there are n — p basic solutions vy, ..., Vp_p.
This means that the general solution s can be written as a

parametrization:
Ss=cVvi+ - Ch—pVn—p-

Moreover, for any solution s, the scalars c1, ..., ch—p are unique.

(p=n) < (no basic solns.) < (0 is the unique soln.)
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Homogeneous systems
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Finding basic solutions

e We have two kinds of variables, pivot variables and non-pivot,

or free variables, depending on whether their column has a
pivot:

X1 X2 X3 Xa X5

(0141)
o o0 [1] 2 o

e The Echelon form lets us (easily) write pivot variables in
terms of non-pivot variables, e.g.:

X1 = —x3 —4x4 — X5 N X] = —2X3 — X5

X3 = —2X4

X3 = —2X4

e We can find a (non-zero) basic solution by setting exactly one
free variable to 1 and the rest to 0.
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Homogeneous systems Radboud University Nijmegen

Finding basic solutions

X1 X2 X3 X4 X5

< 0 1 4 1>:>{X1——2X4—X5

0 0 2 0 X3 = —2x

5 variables and 2 pivots gives us 5 — 2 = 3 basic solutions:

xx:=1 xx:=0 x:=0

x4 =0 x3:=1 x4:=0

x5:=0 x5:=0 x5:=1
X1 —2Xx4 — X5 0 -2 -1
X2 X2 1 0 0
x3 | = —2x4 ~ |0 21|10
X4 X4 0 1 0
X5 X5 0 0 1
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General Solution

Now, any solution to the system is obtainable as a linear
combination of basic solutions:

0 -2 -1 —2X4 — X5
1 0 0 X2
X |0 +x2 | -2 +x5] O = —2x4
0 1 0 Xa
0 0 1 X5

Picking solutions this way guarantees linear independence.
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Finding basic solutions: technique 2

Keep all columns with a pivot,

One-by-one, keep only the i-th non-pivot columns (while
removing the others), and find a (non-zero) solution

(this is like setting all the other free variables to zero)

Add 0's to each solution to account for the columns (i.e. free
variables) we removed
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General solution and basic solutions, example

e For the matrix: ( 10 4)
0 0([2]2

There are 4 columns (variables) and 2 pivots, so 4 —2 =2
basic solutions

First keep only the first non-pivot column:

<(1) (1) g) with chosen solution  (xi, x2, x3) = (1,—1,0)

Next keep only the second non-pivot column:

<(1) (2) g) with chosen solution (x1,x3,x1) = (4,1, —1)

The general 4-variable solution is now obtained as:
C1- (13 -1,0, O) + - (470a 1, _1)
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General solutions example, check

We double-check that any vector:

c - (4, 0,1, —1) +c - (1, —1,0,0)
= @4-c,0,l-cq,-1-c1)+(1-c—-1:¢,0,0)
= (4 + o, —,c,—c1)

gives a solution of:

1104 o of x1+x+4xs = 0
0022) "® Ox3 +2x5 = 0

Just fill in x; = 4¢1 + Cy, Xp = —Cp, X3 =C1, X4 = —C1

(4C1+C2)—C2+4-—C1 =0
2C1*2C1:0 J
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Summary of homogeneous systems

Given a homogeneous system in n variables:
e A basic solution is a non-zero solution of the system.

e If there are n pivots in its echelon form, there is no basic
solution, so only 0 = (0, ...,0) is a solution.

e Basic solutions are not unique. For instance, if v; and v, give
basic solutions, so do vi 4+ v», vi — v», and any other linear
combination.

e If there are p < n pivots in its Echelon form, it has n — p
linearly independent basic solutions.
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Non-homogeneous systems

Non-homogeneous case: subtracting solutions

Theorem

The difference of two solutions of a non-homogeneous system is
a solution for the associated homogeneous system.

More explicitly: given two solutions (si,...,sp) and (t1,...,t,) of
a non-homogeneous system, the difference (s; — t1,...,5, — tn)
is a solution of the associated homogeneous system.

Proof: Let ajx; + -+ + anx, = b be the equation. Then:
ai(s1 —t1) + -+ an(sn — ta)
= (a1s1 — 81t1> 4+ 4+ (ansn — antn)
= 3151+"‘+3n5n)_<alt1+"'+antn>

b—b since the s; and t; are solutions
= 0. ®
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Non-homogeneous systems

General solution for non-homogeneous systems

Theorem

Assume a non-homogeneous system has a solution given by the
vector p, which we call a particular solution.
Then any other solution s of the non-homogeneous system can be

written as
s=p+h

where h is a solution of the associated homogeneous system.

Proof: Let s be a solution of the non-homogeneous system.
Then h = s — p is a solution of the associated homogeneous
system. Hence we can write s as p + h, for h some solution of the
associated homogeneous system. (]
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Non-homogeneous systems

Example: solutions of a non-homogeneous system

e Consider the non-homogeneous system xty+oz =9
y—3z =4
e with solutions: (0,7,1) and (5,4,0)
e We can write (0,7,1) as: (5,4,0) + (-5,3,1)
e where:
e p=(5,4,0) is a particular solution (of the original system)
e (—5,3,1) is a solution of the associated homogeneous system:
x+y+2z =0

y—3z =0
e Similarly, (10,1, —1) is a solution of the non-homogeneous
system and

(10,1,—1) = (5,4,0) + (5, -3, 1)

e where:
e (5,—3,—1) is a solution of the associated homogeneous
system.
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Non-homogeneous systems

General solution for non-homogeneous systems, concretely

The general solution of a non-homogeneous system of equations in
n variables is given by a parametrization as follows:

(s1,---,50) = (p1s---, pn) + cr(Vits -, vin) + - ck( Vi1, - - -5 Vin)

for ci,...,ck € R,
where
e (p1,...,pn) is a particular solution
e (vi1,.--yVin), -+, (Vk1,- .., Vkn) are basic solutions of the

associated homogeneous system.

e Soci(vit,.-.yvin) + -+ ck(Vki, ..., Vkn) is a general
solution for the associated homogeneous system.
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Non-homogeneous systems

Elaborated example, part |

e Consider the non-homogeneous system of equations given by
the augmented matrix in echelon form:

1111 1|3
0 0[1]2 3|1
000 0[1]l4

e It has 5 variables, 3 pivots, and thus 5 — 3 = 2 basic solutions
e To find a particular solution, remove the non-pivot columns,
and (uniquely!) solve the resulting system:

(1] 1 13
0o [1] 3|1
0 0 [1]/4

e This has (10, —11,4) as solution; the orginal 5-variable system
then has particular solution (10,0, —-11,0,4).
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Non-homogeneous systems

Elaborated example, part |l

e Consider the associated homogeneous system of equations:

X1 X2 X3 X4 X5
1 1 1 1
0 0 2 3
0 0 0 0

e The two basic solutions are found by removing each of the
two non-pivot columns separately, and finding solutions:

X1 X3 X4 X5 X1
1 1 1 1 1
0 2 3| ad [0 o 3
0 0 0 0 0 0

e We find: (1,—2,1,0) and (—1,1,0,0). Adding zeros for
missing columns gives: (1,0,—2,1,0) and (—1,1,0,0,0).

A. Kissinger
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Non-homogeneous systems

Elaborated example, part Il

Wrapping up: all solutions of the system

1111 13
0 0[1]2 31
0 00 0[1]4

are of the form:

(10,0,—-11,0,4) + ¢1(1,0,-2,1,0) + (-1,1,0,0,0).

particular sol. two basic solutions

This is the general solution of the non-homogeneous system.
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