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Last time

• Any linear map can be represented as a matrix:

f (v) = A · v g(v) = B · v

• Last time, we saw that composing linear maps could be done
by multiplying their matrices:

f (g(v)) = A · B · v

• Matrix multiplication is pretty easy:(
1 2
3 4

)
·
(
1 −1
0 4

)
=

(
1 · 1 + 2 · 0 1 · (−1) + 2 · 4
3 · 1 + 4 · 0 3 · (−1) + 4 · 4

)
=

(
1 7
3 13

)
...so if we can solve other stuff by matrix multiplication, we
are pretty happy.
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Last time

• For example, we can solve systems of linear equations:

A · x = b

...by finding the inverse of a matrix:

x = A−1 · b

• There is an easy shortcut formula for 2× 2 matrices:

A =

(
a b
c d

)
=⇒ A−1 =

1

ad − bc

(
d −b
−c a

)
...as long as ad − bc 6= 0.

• We’ll see today that “ad − bc” is an example of a special
number we can compute for any square matrix (not just
2× 2) called the determinant.
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Determinants

What a determinant does

For an n × n matrix A, the determinant det(A) is a number (in R)

It satisfies:

det(A) = 0 ⇐⇒ A is not invertible
⇐⇒ A−1 does not exist
⇐⇒ A has < n pivots in its echolon form

Determinants have useful properties, but calculating determinants
involves some work.
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Determinant of a 2× 2 matrix

• Assume A =

(
a b
c d

)
• Recall that the inverse A−1 exists if and only if ad − bc 6= 0,

and in that case is:

A−1 = 1
ad−bc

(
d −b
−c a

)
• In this 2× 2-case we define:

det

(
a b
c d

)
=

∣∣∣∣ a b
c d

∣∣∣∣ = ad − bc

• Thus, indeed: det(A) = 0⇐⇒ A−1 does not exist.
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Determinant of a 2× 2 matrix: example

• Example:

P =

(
0.8 0.1
0.2 0.9

)
= 1

10

(
8 1
2 9

)
• Then:

det(P) = 8
10 ·

9
10 −

1
10 ·

2
10

= 72
100 −

2
100

= 70
100 = 7

10

• We have already seen that P−1 exists, so the determinant
must be non-zero.

A. Kissinger Version: autumn 2017 Matrix Calculations 8 / 32



Determinants
Change of basis

Matrices and basis transformations
Radboud University Nijmegen

Determinant of a 3× 3 matrix

• Assume A =

a11 a12 a13

a21 a22 a23

a31 a32 a33


• Then one defines:

det A =

∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣
= +a11 ·

∣∣∣∣ a22 a23

a32 a33

∣∣∣∣− a21 ·
∣∣∣∣ a12 a13

a32 a33

∣∣∣∣+ a31 ·
∣∣∣∣ a12 a13

a22 a23

∣∣∣∣
• Methodology:

• take entries ai1 from first column, with alternating signs (+, -)
• take determinant from square submatrix obtained by deleting

the first column and the i-th row
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Determinant of a 3× 3 matrix, example

∣∣∣∣∣∣
1 2 −1
5 3 4
−2 0 1

∣∣∣∣∣∣ = 1

∣∣∣∣ 3 4
0 1

∣∣∣∣ − 5

∣∣∣∣ 2 −1
0 1

∣∣∣∣ +−2

∣∣∣∣ 2 −1
3 4

∣∣∣∣
=
(

3− 0
)
− 5
(

2− 0
)
− 2
(

8 + 3
)

= 3− 10− 22

= −29
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The general, n × n case

∣∣∣∣∣∣∣
a11 · · · a1n

...
...

an1 . . . ann

∣∣∣∣∣∣∣ = +a11 ·

∣∣∣∣∣∣∣
a22 · · · a2n

...
...

an2 . . . ann

∣∣∣∣∣∣∣ − a21 ·

∣∣∣∣∣∣∣∣∣
a12 · · · a1n

a32 · · · a3n

...
...

an2 . . . ann

∣∣∣∣∣∣∣∣∣
+ a31

∣∣∣∣∣∣
· · ·
· · ·
· · ·

∣∣∣∣∣∣ · · · ± an1

∣∣∣∣∣∣∣
a12 · · · a1n

...
...

a(n−1)2 . . . a(n−1)n

∣∣∣∣∣∣∣
(where the last sign ± is + if n is odd and - if n is even)

Then, each of the smaller determinants is computed recursively.
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Applications

• Determinants detect when a matrix is invertible

• Though we showed an inefficient way to compute
determinants, there is an efficient algorithm using, you
guessed it...Gaussian elimination!

• Solutions to non-homogeneous systems can be expressed
directly in terms of determinants using Cramer’s rule (wiki it!)

• Most importantly: determinants will be used to calculate
eigenvalues in the next lecture
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Vectors in a basis

Recall: a basis for a vector space V is a set of vectors
B = {v1, . . . , vn} in V such that:

1 They uniquely span V , i.e. for all v ∈ V , there exist unique
ai such that:

v = a1v1 + . . . + anvn

Because of this, we use a special notation for this linear
combination: a1

...
an


B

:= a1v1 + . . . + anvn
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Same vector, different outfits

The same vector can look different, depending on the choice of
basis. Consider the standard basis: S = {(1, 0), (0, 1)} vs. another
basis:

B =

{(
100

0

)
,

(
100

1

)}
Is this a basis? Yes...

• It’s independent because:

(
100 100

0 1

)
has 2 pivots.

• It’s spanning because... we can make every vector in S using
linear combinations of vectors in B:(

1
0

)
=

1

100

(
100

0

) (
0
1

)
=

(
100

1

)
−
(

100
0

)
...so we can also make any vector in R2.
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Same vector, different outfits

S =

{(
1
0

)
,

(
0
1

)}
B =

{(
100

0

)
,

(
100

1

)}

Examples: (
100

0

)
S

=

(
1
0

)
B

(
300

1

)
S

=

(
2
1

)
B(

1
0

)
S

=

(
1

100
0

)
B

(
0
1

)
S

=

(
−1
1

)
B
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Why???

• Many find the idea of multiple bases confusing the first time
around.

• S = {(1, 0), (0, 1)} is a perfectly good basis for R2. Why
bother with others?

1 Some vector spaces don’t have one “obvious” choice of basis.
Example: subspaces S ⊆ Rn.

2 Sometimes it is way more efficient to write a vector with
respect to a different basis, e.g.:

93718234
−438203
110224

−5423204980
...


S

=


1
1
0
0
...


B

3 The choice of basis for vectors affects how we write matrices
as well. Often this can be done cleverly. Example: JPEGs,
MP3s, search engine rankings, ...
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Transforming bases, part I

• Problem: given a vector written in B = {(100, 0), (100, 1)},
how can we write it in the standard basis? Just use the
definition:(

x
y

)
B

= x ·
(

100
0

)
+ y ·

(
100

1

)
=

(
100x + 100y

y

)
S

• Or, as matrix multiplication:(
100 100

0 1

)
︸ ︷︷ ︸

TB⇒S

·
(
x
y

)
︸︷︷︸

in basis B

=

(
100x + 100y

y

)
︸ ︷︷ ︸

in basis S

• Let TB⇒S be the matrix whose columns are the basis vectors
B. Then TB⇒S transforms a vector written in B into a vector
written in S.
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Transforming bases, part II

• How do we transform back? Need TS⇒B which undoes the
matrix TB⇒S .

• Solution: use the inverse! TS⇒B := (TB⇒S)−1

• Example:

(TB⇒S)−1 =

(
100 100

0 1

)−1

=

(
1

100 −1
0 1

)

• ...which indeed gives:(
1

100 −1
0 1

)
·
(
a
b

)
=

(
a−100b

100
b

)
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Transforming bases, part IV

• How about two non-standard bases?

B = {
(

100
0

)
,

(
100

1

)
} C = {

(
−1
2

)
,

(
1
2

)
}

• Problem: translate a vector from

(
a
b

)
B

to

(
a′

b′

)
C

• Solution: do this in two steps:

TB⇒S · v︸ ︷︷ ︸
first translate from B to S...

TS⇒C · TB⇒S · v︸ ︷︷ ︸
...then translate from S to C

= (T C⇒S)−1 · TB⇒S · v
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Transforming bases, example

• For bases:

B = {
(

100
0

)
,

(
100

1

)
} C = {

(
−1
2

)
,

(
1
2

)
}

• ...we need to find a′ and b′ such that(
a′

b′

)
C

=

(
a
b

)
B

• Translating both sides to the standard basis gives:(
−1 1
2 2

)
·
(
a′

b′

)
=

(
100 100

0 1

)
·
(
a
b

)
• This we can solve using the matrix-inverse:(

a′

b′

)
=

(
−1 1
2 2

)−1

·
(

100 100
0 1

)
·
(
a
b

)
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Transforming bases, example

For: (
a′

b′

)
︸ ︷︷ ︸

in basis C

=

(
−1 1
2 2

)−1

︸ ︷︷ ︸
TS⇒C

·
(

100 100
0 1

)
︸ ︷︷ ︸

TB⇒S

·
(
a
b

)
︸︷︷︸

in basis B

we compute(
−1 1
2 2

)−1

·
(

100 100
0 1

)
=

(
− 1

2
1
4

1
2

1
4

)
·
(

100 100
0 1

)
= 1

4

(
−200 −199
200 201

)

which gives: (
a′

b′

)
︸ ︷︷ ︸

in basis C

= 1
4

(
−200 −199
200 201

)
︸ ︷︷ ︸

TB⇒C

·
(
a
b

)
︸︷︷︸

in basis B
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Basis transformation theorem

Theorem

Let S be the standard basis for Rn and let B = {v1, . . . , vn} and
C = {w1, . . . ,wn} be other bases.

1 Then there is an invertible n × n basis transformation matrix
TB⇒C such that:a′1...

a′n

 = TB⇒C ·

a1
...
an

 with

a′1...
a′n


C

=

a1
...
an


B

2 TB⇒S is the matrix which has the vectors in B as columns,
and

TB⇒C := (T C⇒S)−1 · TB⇒S

3 T C⇒B = (TB⇒C)−1
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Matrices in other bases

• Since vectors can be written with respect to different bases,
so too can matrices.

• For example, let g be the linear map defined by:

g(

(
1
0

)
S

) =

(
0
1

)
S

g(

(
0
1

)
S

) =

(
1
0

)
S

• Then, naturally, we would represent g using the matrix:(
0 1
1 0

)
S

• Because indeed:(
0 1
1 0

)
·
(

1
0

)
=

(
0
1

)
and

(
0 1
1 0

)
·
(

0
1

)
=

(
1
0

)
(the columns say where each of the vectors in S go, written in
the basis S)
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On the other hand...

• Lets look at what g does to another basis:

B = {
(

1
1

)
,

(
1
−1

)
}

• First (1, 1) ∈ B:

g(

(
1
0

)
B

) = g(

(
1
1

)
) = g(

(
1
0

)
+

(
0
1

)
) = . . .

• Then, by linearity:

. . . = g(

(
1
0

)
) + g(

(
0
1

)
) =

(
0
1

)
+

(
1
0

)
=

(
1
1

)
=

(
1
0

)
B
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On the other hand...

B = {
(

1
1

)
,

(
1
−1

)
}

• Similarly (1,−1) ∈ B:

g(

(
0
1

)
B

) = g(

(
1
−1

)
) = g(

(
1
0

)
−
(

0
1

)
) = . . .

• Then, by linearity:

. . . = g(

(
1
0

)
)−g(

(
0
1

)
) =

(
0
1

)
−
(

1
0

)
=

(
−1
1

)
=

(
0
−1

)
B
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A new matrix

• From this:

g(

(
1
0

)
B

) =

(
1
0

)
B

g(

(
0
1

)
B

) =

(
0
−1

)
B

• It follows that we should instead use this matrix to represent
g : (

1 0
0 −1

)
B

• Because indeed:(
1 0
0 −1

)
·
(

1
0

)
=

(
1
0

)
and

(
1 0
0 −1

)
·
(

0
1

)
=

(
0
−1

)
(the columns say where each of the vectors in B go, written in
the basis B)
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A new matrix

• So on different bases, g acts in a totally different way!

g(

(
1
0

)
S

) =

(
0
1

)
S

g(

(
0
1

)
S

) =

(
1
0

)
S

g(

(
1
0

)
B

) =

(
1
0

)
B

g(

(
0
1

)
B

) =

(
0
−1

)
B

• ...and hence gets a totally different matrix:(
0 1
1 0

)
S

vs.

(
1 0
0 −1

)
B
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Transforming bases, part II

Theorem

Assume again we have two bases B, C for Rn.

If a linear map f : Rn → Rn has matrix A w.r.t. to basis B, then,
w.r.t. to basis C, f has matrix A′ :

A′ = TB⇒C · A · T C⇒B

Thus, via TB⇒C and TC⇒B one tranforms B-matrices into
C-matrices. In particular, a matrix can be translated from the
standard basis to basis B via:

A′ = TS⇒B · A · TB⇒S
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Example basis transformation, part I

• Consider the standard basis S = {(1, 0), (0, 1)} for R2, and as
alternative basis B = {(−1, 1), (0, 2)}

• Let the linear map f : R2 → R2, w.r.t. the standard basis S,
be given by the matrix:

A =

(
1 −1
2 3

)
• What is the representation A′ of f w.r.t. basis B?

• Since S is the standard basis, TB⇒S =

(
−1 0
1 2

)
contains the

B-vectors as its columns
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Example basis transformation, part II

• The basis transformation matrix TS⇒B in the other direction
is obtained as matrix inverse:

TS⇒B =
(
TB⇒S

)−1
=

(
−1 0
1 2

)−1

= 1
−2−0

(
2 0
−1 −1

)
= 1

2

(
−2 0
1 1

)
• Hence:

A′ = TS⇒B · A · TB⇒S

= 1
2

(
−2 0
1 1

)
·
(

1 −1
2 3

)
·
(
−1 0
1 2

)
= 1

2

(
−2 2
3 2

)
·
(
−1 0
1 2

)
= 1

2

(
4 4
−1 4

)
=

(
2 2
−1

2 2

)
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