# Matrix Calculations: Eigenvalues, Eigenvectors, and Diagonalisation

#### A. Kissinger

#### Institute for Computing and Information Sciences Radboud University Nijmegen

Version: autumn 2017

#### Last time

• Vectors look different in different bases, e.g. for:

$$\mathcal{B} = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\} \qquad \qquad \mathcal{C} = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\}$$

• we have:

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix}_{\mathcal{S}} = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}_{\mathcal{B}} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}_{\mathcal{C}}$$



#### Last time

$$\mathcal{B} = \left\{ \begin{pmatrix} 1\\1 \end{pmatrix}, \begin{pmatrix} 1\\-1 \end{pmatrix} \right\} \qquad \qquad \mathcal{C} = \left\{ \begin{pmatrix} 1\\1 \end{pmatrix}, \begin{pmatrix} 1\\2 \end{pmatrix} \right\}$$

 We can transform bases using basis transformation matrices. Going to standard basis is easy (basis elements are columns):

$$\boldsymbol{\mathcal{T}}_{\mathcal{B}\Rightarrow\mathcal{S}} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \qquad \qquad \boldsymbol{\mathcal{T}}_{\mathcal{C}\Rightarrow\mathcal{S}} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$$

...coming back means taking the inverse:

$$oldsymbol{\mathcal{T}}_{\mathcal{S}\Rightarrow\mathcal{B}} = (oldsymbol{\mathcal{T}}_{\mathcal{B}\Rightarrow\mathcal{S}})^{-1} = rac{1}{2} egin{pmatrix} 1 & 1 \ 1 & -1 \end{pmatrix}$$
 $oldsymbol{\mathcal{T}}_{\mathcal{S}\Rightarrow\mathcal{C}} = (oldsymbol{\mathcal{T}}_{\mathcal{C}\Rightarrow\mathcal{S}})^{-1} = egin{pmatrix} 2 & -1 \ -1 & 1 \end{pmatrix}$ 

### Last time

 Converting from B to C is done my first converting to S then to C:

$$T_{\mathcal{B}\Rightarrow\mathcal{C}}=T_{\mathcal{S}\Rightarrow\mathcal{C}}\cdot T_{\mathcal{B}\Rightarrow\mathcal{S}}$$

• The change of basis of a vector is computed by applying the matrix. For example, changing from  $\mathcal{B}$  to  $\mathcal{C}$  is:

$$oldsymbol{v}'=oldsymbol{T}_{\mathcal{B}\Rightarrow\mathcal{C}}$$

- The change of basis for a matrix is computed by surrounding it with basis-change matrices.
- Changing from a matrix  ${m A}$  in  ${\mathcal B}$  to a matrix  ${m A}'$  in  ${\mathcal C}$  is:

$$\mathbf{A}' = \mathbf{T}_{\mathcal{B} \Rightarrow \mathcal{C}} \cdot \mathbf{A} \cdot \mathbf{T}_{\mathcal{C} \Rightarrow \mathcal{B}}$$

• (Memory aid: look at the first matrix on the right to see what basis transformation you are doing.)



#### Outline

#### Eigenvalues and Eigenvectors

Applications

Diagonalisation and iteration



### \$

#### Example: political swingers, part I

- We take an extremely crude view on politics and distinguish only left and right wing political supporters
- We study changes in political views, per year
- Suppose we observe, for each year:
  - 80% of lefties remain lefties and 20% become righties
  - 90% of righties remain righties, and 10% become lefties

#### Questions ...

- start with a population L = 100, R = 150, and compute the number of lefties and righties after one year;
- similarly, after 2 years, and 3 years, ...
- We can represent these computations conveniently using matrix multiplication.

#### Political swingers, part II

- So if we start with a population L = 100, R = 150, then after one year we have:
  - lefties:  $0.8 \cdot 100 + 0.1 \cdot 150 = 80 + 15 = 95$
  - righties:  $0.2 \cdot 100 + 0.9 \cdot 150 = 20 + 135 = 155$

• If 
$$\begin{pmatrix} L \\ R \end{pmatrix} = \begin{pmatrix} 100 \\ 150 \end{pmatrix}$$
, then after one year we have:  
 $\boldsymbol{P} \cdot \begin{pmatrix} 100 \\ 150 \end{pmatrix} = \begin{pmatrix} 0.8 & 0.1 \\ 0.2 & 0.9 \end{pmatrix} \cdot \begin{pmatrix} 100 \\ 150 \end{pmatrix} = \begin{pmatrix} 9 \\ 19 \end{pmatrix}$ 

• After two years we have:

$$\boldsymbol{P} \cdot \begin{pmatrix} 95\\155 \end{pmatrix} = \begin{pmatrix} 0.8 & 0.1\\0.2 & 0.9 \end{pmatrix} \cdot \begin{pmatrix} 95\\155 \end{pmatrix} = \begin{pmatrix} 91.5\\158.5 \end{pmatrix}$$



#### Political swingers, part IV

The situation after two years is obtained as:

$$\boldsymbol{P} \cdot \boldsymbol{P} \cdot \begin{pmatrix} L \\ R \end{pmatrix} = \begin{pmatrix} 0.8 & 0.1 \\ 0.2 & 0.9 \end{pmatrix} \cdot \begin{pmatrix} 0.8 & 0.1 \\ 0.2 & 0.9 \end{pmatrix} \cdot \begin{pmatrix} L \\ R \end{pmatrix}$$
do this multiplication first
$$= \begin{pmatrix} 0.66 & 0.17 \\ 0.34 & 0.83 \end{pmatrix} \cdot \begin{pmatrix} L \\ R \end{pmatrix}$$

The situation after *n* years is described by the *n*-fold iterated matrix:

$$\boldsymbol{P}^n = \underbrace{\boldsymbol{P} \cdot \boldsymbol{P} \cdots \boldsymbol{P}}_{n \text{ times}}$$

Etc. It looks like  $P^{100}$  (or worse,  $\lim_{n\to\infty} P^n$ ) is going to be a real pain to calculate. ...or is it?



### **Diagonal matrices**

- Multiplying lots of matrices together is hard  $\ensuremath{\mathfrak{S}}$
- But multiplying diagonal matrices is easy!

$$\begin{pmatrix} a & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & c & 0 \\ 0 & 0 & 0 & d \end{pmatrix} \cdot \begin{pmatrix} w & 0 & 0 & 0 \\ 0 & x & 0 & 0 \\ 0 & 0 & y & 0 \\ 0 & 0 & 0 & z \end{pmatrix} = \begin{pmatrix} aw & 0 & 0 & 0 \\ 0 & bx & 0 & 0 \\ 0 & 0 & cy & 0 \\ 0 & 0 & 0 & dz \end{pmatrix}$$

• Strategy: find a basis  $\mathcal B$  where our matrix  $\boldsymbol P$  is diagonal:

$$\begin{pmatrix} 0.8 & 0.1 \\ 0.2 & 0.9 \end{pmatrix}_{\mathcal{S}} \rightsquigarrow \begin{pmatrix} 1 & 0 \\ 0 & 0.7 \end{pmatrix}_{\mathcal{B}}$$

• So transform to  $\mathcal{B}$ , multiply, and (if we need to) transform back:

$$\begin{pmatrix} 1 & 0 \\ 0 & 0.7 \end{pmatrix}_{\mathcal{B}}^{100} = \begin{pmatrix} 1^{100} & 0 \\ 0 & (0.7)^{100} \end{pmatrix}_{\mathcal{B}} \approx \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}_{\mathcal{B}} \rightsquigarrow \frac{1}{3} \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix}_{\mathcal{S}}$$

#### **Eigenvectors and eigenvalues**

This magical basis  $\mathcal B$  consists of *eigenvectors* of a matrix.

#### Definition

Assume an  $n \times n$  matrix **A**.

An eigenvector for **A** is a non-zero vector  $\mathbf{v} \neq 0$  for which there is an eigenvalue  $\lambda \in \mathbb{R}$  with:

$$\mathbf{A}\cdot\mathbf{v}=\lambda\cdot\mathbf{v}$$

#### Example

) is an eigenvector for 
$$oldsymbol{P}=rac{1}{10}inom{8}{2}oldsymbol{9}$$
 with eigenvalue  $\lambda=1.$ 

### Two basic results

#### Lemma

An eigenvector has at most one eigenvalue

**Proof**: Assume  $\mathbf{A} \cdot \mathbf{v} = \lambda_1 \mathbf{v}$  and  $\mathbf{A} \cdot \mathbf{v} = \lambda_2 \mathbf{v}$ . Then:

$$0 = \mathbf{A} \cdot \mathbf{v} - \mathbf{A} \cdot \mathbf{v} = \lambda_1 \mathbf{v} - \lambda_2 \mathbf{v} = (\lambda_1 - \lambda_2) \mathbf{v}$$

Since  $\mathbf{v} \neq 0$  we must have  $\lambda_1 - \lambda_2 = 0$ , and thus  $\lambda_1 = \lambda_2$ .

#### Lemma

If **v** is an eigenvector, then so is  $a \cdot \mathbf{v}$ , for each  $a \neq 0$ .

**Proof**: If  $\mathbf{A} \cdot \mathbf{v} = \lambda \mathbf{v}$ , then:

$$\begin{array}{ll} \boldsymbol{A} \cdot (\boldsymbol{a} \boldsymbol{v}) &= a(\boldsymbol{A} \cdot \boldsymbol{v}) & \text{since matrix application is linear} \\ &= a(\lambda \boldsymbol{v}) &= (a\lambda) \boldsymbol{v} &= (\lambda a) \boldsymbol{v} &= \lambda (a \boldsymbol{v}). \end{array}$$

### Finding eigenvectors and eigenvalues

- We seek a eigenvector v and eigenvalue  $\lambda \in \mathbb{R}$  with  $A \cdot v = \lambda v$
- That is:  $\lambda$  and  $\mathbf{v}$  ( $\mathbf{v} \neq 0$ ) such that  $(\mathbf{A} \lambda \cdot \mathbf{I}) \cdot \mathbf{v} = 0$
- Thus, we seek λ for which the system of equations corresponding to the matrix A − λ · I has a non-zero solution
- Hence we seek λ ∈ ℝ for which the matrix A − λ · I does not have n pivots in its echelon form
- This means: we seek  $\lambda \in \mathbb{R}$  such that  $\mathbf{A} \lambda \cdot \mathbf{I}$  is not-invertible
- So we need:  $det(\boldsymbol{A} \lambda \cdot \boldsymbol{I}) = \boldsymbol{0}$
- This can be seen as an equation, with  $\lambda$  as variable
- This det(A λ · I) is called the characteristic polynomial of the matrix A



#### Eigenvalue example I

• **Task**: find eigenvalues of matrix  $\mathbf{A} = \begin{pmatrix} 1 & 5 \\ 3 & 3 \end{pmatrix}$ 

• 
$$\boldsymbol{A} - \lambda \cdot \boldsymbol{I} = \begin{pmatrix} 1 & 5 \\ 3 & 3 \end{pmatrix} - \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} = \begin{pmatrix} 1 - \lambda & 5 \\ 3 & 3 - \lambda \end{pmatrix}$$
  
• Thus:

$$det(A - \lambda \cdot I) = 0 \iff \begin{vmatrix} 1 - \lambda & 5 \\ 3 & 3 - \lambda \end{vmatrix} = 0$$
$$\iff (1 - \lambda)(3 - \lambda) - 5 \cdot 3 = 0$$
$$\iff \lambda^2 - 4\lambda - 12 = 0$$
$$\iff (\lambda - 6)(\lambda + 2) = 0$$
$$\iff \lambda = 6 \text{ or } \lambda = -2.$$

### Recall: quadratic formula

• Consider a second-degree (quadratic) equation

$$ax^2 + bx + c = 0 \qquad (for a \neq 0)$$

Its solutions are:

$$s_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

- These solutions coincide (ie.  $s_1 = s_2$ ) if  $b^2 4ac = 0$
- Real solutions do not exist if b<sup>2</sup> 4ac < 0</li>
   (But "complex number" solutions do exist in this case.)
- [ Recall, if  $s_1$  and  $s_2$  are solutions of  $ax^2 + bx + c = 0$ , then we can write  $ax^2 + bx + c = a(x - s_1)(x - s_2)$  ]

### Higher degree polynomial equations

- For third and fourth degree polynomial equations there are (complicated) formulas for the solutions.
- For degree  $\geq$  5 no such formulas exist (proved by Abel)
- In those cases one can at most use approximations.
- In the examples in this course the solutions will typically be "obvious".

#### Radboud University Nijmegen 🗒

#### Eigenvalue example II

- **Task**: find eigenvalues of  $\mathbf{A} = \begin{pmatrix} 3 & -1 & -1 \\ -12 & 0 & 5 \\ 4 & -2 & -1 \end{pmatrix}$
- Characteristic polynomial is  $\begin{vmatrix} 3 \lambda & -1 & -1 \\ -12 & -\lambda & 5 \end{vmatrix}$

$$\begin{vmatrix} 4 & -2 & -1 - \lambda \end{vmatrix}$$
  
=  $(3 - \lambda) \begin{vmatrix} -\lambda & 5 \\ -2 & -1 - \lambda \end{vmatrix} + 12 \begin{vmatrix} -1 & -1 \\ -2 & -1 - \lambda \end{vmatrix} + 4 \begin{vmatrix} -1 & -1 \\ -\lambda & 5 \end{vmatrix}$   
=  $(3 - \lambda) (\lambda(1 + \lambda) + 10) + 12(1 + \lambda - 2) + 4(-5 - \lambda))$   
=  $(3 - \lambda)(\lambda^2 + \lambda + 10) + 12(\lambda - 1) - 20 - 4\lambda$   
=  $3\lambda^2 + 3\lambda + 30 - \lambda^3 - \lambda^2 - 10\lambda + 12\lambda - 12 - 20 - 4\lambda$   
=  $-\lambda^3 + 2\lambda^2 + \lambda - 2$ .

#### Eigenvalue example II (cntd)

- We need to solve  $-\lambda^3 + 2\lambda^2 + \lambda 2 = 0$
- We try a few "obvious" values:  $\lambda = 1$  YES!
- Reduce from degree 3 to 2, by separating  $(\lambda 1)$  in:

$$egin{array}{lll} -\lambda^3+2\lambda^2+\lambda-2&=&(\lambda-1)(a\lambda^2+b\lambda+c)\ &=&a\lambda^3+(b-a)\lambda^2+(c-b)\lambda-c \end{array}$$

- This works for a = -1, b = 1, c = 2
- Now we use quadratic equation for  $-\lambda^2 + \lambda + 2 = 0$
- Solutions:  $\lambda = \frac{-1 \pm \sqrt{1+4 \cdot 2}}{-2} = \frac{-1 \pm 3}{-2}$  giving  $\lambda = 2, -1$
- All three eigenvalues:  $\lambda = 1, \lambda = -1, \lambda = 2$

### Getting eigenvectors

- Once we have eigenvalues λ<sub>i</sub> for a matrix **A** we can find corresponding eigenvectors **v**<sub>i</sub>, with **A** · **v**<sub>i</sub> = λ<sub>i</sub>**v**<sub>i</sub>
- These  $\mathbf{v}_i$  appear as the solutions of  $(\mathbf{A} \lambda_i \cdot \mathbf{I}) \cdot \mathbf{v} = 0$ 
  - We can make a convenient choice, using that scalar multiplications a · v<sub>i</sub> are also a solution
- Once λ is known, getting ν is just a matter of solving this homogenious system:

$$(\mathbf{A} - \lambda \cdot \mathbf{I}) \cdot \mathbf{v} = \mathbf{0}$$



#### Eigenvector example I

Recall the eigenvalues  $\lambda = -2, \lambda = 6$  for  $\boldsymbol{A} = \begin{pmatrix} 1 & 5 \\ 3 & 3 \end{pmatrix}$ 

$$\lambda = -2$$
 gives matrix  $\mathbf{A} - \lambda \mathbf{I} = \begin{pmatrix} 1+2 & 5\\ 3 & 3+2 \end{pmatrix} = \begin{pmatrix} 3 & 5\\ 3 & 5 \end{pmatrix}$ 

• Corresponding system of equations 
$$\begin{cases} 3x + 5y = 0\\ 3x + 5y = 0 \end{cases}$$

- Solution choice x = -5, y = 3, so (-5,3) is eigenvector (of matrix **A** with eigenvalue λ = -2)
- Check:

$$\begin{pmatrix} 1 & 5 \\ 3 & 3 \end{pmatrix} \cdot \begin{pmatrix} -5 \\ 3 \end{pmatrix} = \begin{pmatrix} -5+15 \\ -15+9 \end{pmatrix} = \begin{pmatrix} 10 \\ -6 \end{pmatrix} = -2 \begin{pmatrix} -5 \\ 3 \end{pmatrix} \checkmark$$

#### Radboud University Nijmegen

#### Eigenvector example I (cntd)

$$\lambda = 6$$
 gives matrix  $\mathbf{A} - \lambda \mathbf{I} = \begin{pmatrix} 1 - 6 & 5 \\ 3 & 3 - 6 \end{pmatrix} = \begin{pmatrix} -5 & 5 \\ 3 & -3 \end{pmatrix}$ 

- Corresponding system of equations  $\begin{cases} -5x + 5y = 0\\ 3x 3y = 0 \end{cases}$
- Solution choice x = 1, y = 1, so (1, 1) is eigenvector
- Check:

$$\begin{pmatrix} 1 & 5 \\ 3 & 3 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1+5 \\ 3+3 \end{pmatrix} = \begin{pmatrix} 6 \\ 6 \end{pmatrix} = 6 \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

### **Diagonalisation** theorem

#### Theorem

Let **A** be an  $n \times n$  matrix, represented wrt. the standard basis S. Assume **A** has n (pairwise) different eigenvalues  $\lambda_1, \ldots, \lambda_n$ , with corresponding eigenvectors  $\mathcal{B} = \{v_1, \ldots, v_n\}$ . Then:

- **1** These  $v_1, \ldots, v_n$  are linearly independent (and thus a basis)
- 2 There is an invertible basis transformation matrix T<sub>B⇒S</sub> giving a diagonalisation:

$$oldsymbol{A} = oldsymbol{T}_{\mathcal{B}\Rightarrow\mathcal{S}} \cdot egin{pmatrix} \lambda_1 & 0 & \cdots & 0 \ 0 & \lambda_2 & & 0 \ 0 & \ddots & 0 \ 0 & \cdots & 0 & \lambda_n \end{pmatrix} \cdot oldsymbol{T}_{\mathcal{S}\Rightarrow\mathcal{B}}$$

Thus, this diagonal matrix is the representation of **A** wrt. the eigenvector basis  $\mathcal{B}$ .

### Multiple eigenvalues

- It may happen that a particular eigenvalue occurs multiple times for a matrix
  - eg. the charachterstic polynomial of  $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$  has  $\lambda = 1$  twice as a root.
  - for this  $\lambda = 1$  there are two independent eigenvectors, namely  $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$  and  $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$
- In general, if an eigenvalue λ occurs n times, then there are at most n independent eigenvectors for this λ
  - linear combinations of eigenvectors with the same eigenvalue  $\lambda$  are also eigenvectors with eigenvalue  $\lambda$
  - they form a subspace of dimension *n*: the eigenspace of  $\lambda$ .
  - if  $\lambda$  are all distinct, eigenspaces are all 1-dimensional

## \$

### Diagonalising a matrix (study this slide!)

Putting it all together, we diagonalise a matrix  $\boldsymbol{A}$  as follows:

- **1** Compute each eigenvalue  $\lambda_1, \lambda_2, \dots, \lambda_n$  by solving the characteristic polynomial
- **2** For each eigenvalue, compute the associated eigenvector  $v_i$  by solving the homogenious system  $A \lambda_i I = 0$ .
- **3** Write down **A** as the product of three matrices:

$$\mathbf{A} = \mathbf{T}_{\mathcal{B} \Rightarrow \mathcal{S}} \cdot \mathbf{D} \cdot \mathbf{T}_{\mathcal{S} \Rightarrow \mathcal{B}}$$

where:

- *T*<sub>B⇒S</sub> has the eigenvectors *v*<sub>1</sub>,..., *v*<sub>n</sub> (in order!) as its columns
- **D** has the eigenvalues (in the same order!) down its diagonal, and zeroes everywhere else
- $T_{S \Rightarrow B}$  is the inverse of  $T_{B \Rightarrow S}$ .

#### Political swingers re-revisited, part I

Recall the political transition matrix •

$$\boldsymbol{P} = \begin{pmatrix} 0.8 & 0.1 \\ 0.2 & 0.9 \end{pmatrix} = \frac{1}{10} \begin{pmatrix} 8 & 1 \\ 2 & 9 \end{pmatrix}$$

Eigenvalues  $\lambda$  are obtained via det $(\mathbf{P} - \lambda \mathbf{I}) = \mathbf{0}$ :  $\left(\frac{8}{10} - \lambda\right)\left(\frac{9}{10} - \lambda\right) - \frac{1}{10} \cdot \frac{2}{10} = \lambda^2 - \frac{17}{10}\lambda + \frac{7}{10} = 0$ 

Solutions via quadratic equation

$$\frac{1}{2} \left( \frac{17}{10} \pm \sqrt{\left(\frac{17}{10}\right)^2 - \frac{28}{10}} \right) = \frac{1}{2} \left( \frac{17}{10} \pm \sqrt{\frac{289}{100} - \frac{280}{100}} \right)$$
$$= \frac{1}{2} \left( \frac{17}{10} \pm \sqrt{\frac{9}{100}} \right)$$
$$= \frac{1}{2} \left( \frac{17}{10} \pm \frac{3}{10} \right)$$

• Hence  $\lambda = \frac{1}{2} \cdot \frac{20}{10} = 1$  or  $\lambda = \frac{1}{2} \cdot \frac{14}{10} = \frac{7}{10} = 0.7$ .

#### Political swingers re-revisited, part II

• Compute the eigenvectors by plugging eigenvalues  $\lambda = 1, 0.7$  into:

$$\begin{pmatrix} 0.8 - \lambda & 0.1 \\ 0.2 & 0.9 - \lambda \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \mathbf{0}$$

and find a solution to the resulting homogeneous system.

• That is, we need to solve this system, for  $\lambda = 1, 0.7$ :

$$\begin{cases} (0.8 - \lambda)x + 0.1y = 0\\ 0.2x + (0.9 - \lambda)y = 0 \end{cases}$$



#### Political swingers re-revisited, part II

$$\begin{array}{l} \hline \lambda = 1 \\ \hline \lambda = 1 \\ \end{array} \text{ solve: } \begin{cases} -0.2x + 0.1y = 0 \\ 0.2x + -0.1y = 0 \\ \end{array} \text{ giving (1,2) as eigenvector} \\ \bullet \text{ Indeed } \begin{pmatrix} 0.8 & 0.1 \\ 0.2 & 0.9 \\ \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 2 \\ \end{pmatrix} = \begin{pmatrix} 0.8 + 0.2 \\ 0.2 + 1.8 \\ \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ \end{pmatrix} = 1 \begin{pmatrix} 1 \\ 2 \\ \end{pmatrix} \checkmark \\ \hline \end{pmatrix} \\ \hline \\ \hline \\ \lambda = 0.7 \\ \text{ solve: } \begin{cases} 0.1x + 0.1y = 0 \\ 0.2x + 0.2y = 0 \\ 0.2x + 0.2y = 0 \\ \end{bmatrix} \text{ giving (1,-1) as eigenvector} \end{cases}$$

Check:

$$\begin{pmatrix} 0.8 & 0.1 \\ 0.2 & 0.9 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 0.8 - 0.1 \\ 0.2 - 0.9 \end{pmatrix} = \begin{pmatrix} 0.7 \\ -0.7 \end{pmatrix} = 0.7 \begin{pmatrix} 1 \\ -1 \end{pmatrix} \checkmark$$

#### Political swingers re-revisited, part III

- The eigenvalues 1 and 0.7 are different, and indeed the eigenvectors (1,2) and (1,-1) are independent
- The coordinate-translation *T*<sub>B⇒S</sub> from the eigenvector basis
   B = {(1,2), (1,-1)} to the standard basis S = {(1,0), (0,1)} consists of the eigenvectors:

$${oldsymbol{ au}}_{\mathcal{B}\Rightarrow\mathcal{S}} \;=\; egin{pmatrix} 1 & 1 \ 2 & -1 \end{pmatrix}$$

In the reverse direction:

$$\mathbf{T}_{\mathcal{S}\Rightarrow\mathcal{B}} = (\mathbf{T}_{\mathcal{B}\Rightarrow\mathcal{S}})^{-1} = \frac{1}{-1-2} \begin{pmatrix} -1 & -1 \\ -2 & 1 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 1 & 1 \\ 2 & -1 \end{pmatrix}$$



#### Political swingers re-revisited, part IV

We explicitly check the diagonalisation equation:

$$\begin{aligned} \mathbf{T}_{\mathcal{B}\Rightarrow\mathcal{S}} \cdot \begin{pmatrix} 1 & 0 \\ 0 & 0.7 \end{pmatrix} \cdot \mathbf{T}_{\mathcal{S}\Rightarrow\mathcal{B}} &= \begin{pmatrix} 1 & 1 \\ 2 & -1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 0 & 0.7 \end{pmatrix} \cdot \frac{1}{3} \begin{pmatrix} 1 & 1 \\ 2 & -1 \end{pmatrix} \\ &= \frac{1}{3} \begin{pmatrix} 1 & 0.7 \\ 2 & -0.7 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \\ 2 & -1 \end{pmatrix} \\ &= \frac{1}{3} \begin{pmatrix} 2.4 & 0.3 \\ 0.6 & 2.7 \end{pmatrix} \\ &= \begin{pmatrix} 0.8 & 0.1 \\ 0.2 & 0.9 \end{pmatrix} \\ &= \mathbf{P}, \quad \text{the original political transition matrix!} \end{aligned}$$

Ρ, the original political transition matrix!

#### Radboud University Nijmegen (

#### Applications: probabilistic transition systems

• In probabilistic transition systems (Markov chains)



 Eigenvalues/vectors are used to make calculations more efficient, and elaborate long-term behaviour

### Applications: quantum mechanics/computation

• quantum states can be represented by vectors, and measurements by linear maps, e.g. rotations:



• eigenvalues represent measurement outcomes and eigenvectors represent collapse of the quantum state



### Applications: data processing

- **Problem:** suppose we have a HUGE matrix, and we want to know approximately what it looks like
- **Solution:** diagonalise it using its basis  $\mathcal{B}$  of eigenvectors...then throw away (= set to zero) all the little eigenvalues:

| $\lambda_1$ | 0           | •••         | 0 | 0 \         |           | $\lambda_1$ | 0           | ••• | 0 0 | $\gamma$ |
|-------------|-------------|-------------|---|-------------|-----------|-------------|-------------|-----|-----|----------|
| 0           | $\lambda_2$ | 0           |   | 0           |           | 0           | $\lambda_2$ | 0   | C   |          |
| ÷           | 0           | $\lambda_3$ | 0 | ÷           | $\approx$ | :           | 0           | 0   | 0   |          |
| 0           |             | 0           | · | 0           |           | 0           |             | 0   | · 0 |          |
| 0 /         | 0           | • • •       | 0 | $\lambda_n$ | B         | 0 /         | 0           | ••• | 0 0 | $J_{L}$  |

- If there are only a few **big**  $\lambda$ 's, and lots of **little**  $\lambda$ 's, we get almost the same matrix back
- A more sophisticated technique based on eigenvalues is called principle compent analysis (very common in big data analytics and AI)

#### Applications: data compression

- This technique can also be used for lossy data compression
- Since we can get (pretty much) the same matrix back by throwing away all but the highest couple of eigenvalues:

$$\begin{pmatrix} \lambda_1 & 0 & \cdots & 0 & 0 \\ 0 & \lambda_2 & 0 & & 0 \\ \vdots & 0 & \lambda_3 & 0 & \vdots \\ 0 & 0 & \cdots & 0 & \lambda_n \end{pmatrix}_{\mathcal{B}} \approx \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 & 0 \\ 0 & \lambda_2 & 0 & & 0 \\ \vdots & 0 & 0 & 0 & \vdots \\ 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & \cdots & 0 & 0 \end{pmatrix}_{\mathcal{B}}$$

- ...then the resulting matrix only depends on the first couple of eigenvectors.
- Hence, we can throw the rest away!
- This can be used to compress images or music.



#### Political swingers re-revisited, part V

Diagonalisation  $\mathbf{A} = \mathbf{T}_{\mathcal{B} \Rightarrow \mathcal{S}} \cdot \mathbf{D} \cdot \mathbf{T}_{\mathcal{S} \Rightarrow \mathcal{B}} = \mathbf{T} \cdot \mathbf{D} \cdot \mathbf{T}^{-1}$  used iteration, e.g.

• 
$$P = T \cdot \begin{pmatrix} 1 & 0 \\ 0 & 0.7 \end{pmatrix} \cdot T^{-1}$$
  
 $P^2 = T \cdot \begin{pmatrix} 1 & 0 \\ 0 & 0.7 \end{pmatrix} \cdot T^{-1} \cdot T \cdot \begin{pmatrix} 1 & 0 \\ 0 & 0.7 \end{pmatrix} \cdot T^{-1}$   
 $= T \cdot \begin{pmatrix} 1 & 0 \\ 0 & 0.7 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 0 & 0.7 \end{pmatrix} \cdot T^{-1}$   
 $= T \cdot \begin{pmatrix} 1^2 & 0 \\ 0 & (0.7)^2 \end{pmatrix} \cdot T^{-1}$   
•  $P^n = T \cdot \begin{pmatrix} (1)^n & 0 \\ 0 & (0.7)^n \end{pmatrix} \cdot T^{-1}$   
•  $\lim_{n \to \infty} P^n = T \cdot \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \cdot T^{-1}$  since  $\lim_{n \to \infty} (0.7)^n = 0$   
 $= \begin{pmatrix} 1 & 1 \\ 2 & -1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \cdot \frac{1}{3} \begin{pmatrix} 1 & 1 \\ 2 & -1 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix}$ 

#### Political swingers re-revisited, part VI

- We now have a fairly easy way to compute  $P^n \cdot \begin{pmatrix} 100\\ 150 \end{pmatrix}$
- ...and we can see that in the limit it goes to:

$$\lim_{n \to \infty} \mathbf{P}^n \cdot \begin{pmatrix} 100\\150 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 1 & 1\\2 & 2 \end{pmatrix} \cdot \begin{pmatrix} 100\\150 \end{pmatrix}$$
$$= \frac{1}{3} \begin{pmatrix} 250\\500 \end{pmatrix} = \begin{pmatrix} 83\frac{1}{3}\\166\frac{2}{3} \end{pmatrix}$$

(This was already suggested earlier, but now we can calculate it!)