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Last time

• Vectors look different in different bases, e.g. for:

B =

{(
1
1

)
,

(
1
−1

)}
C =

{(
1
1

)
,

(
1
2

)}

• we have: (
1
0

)
S

=

(
1
2

1
2

)
B

=

(
2
−1

)
C
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Last time

B =

{(
1
1

)
,

(
1
−1

)}
C =

{(
1
1

)
,

(
1
2

)}
• We can transform bases using basis transformation matrices.

Going to standard basis is easy (basis elements are columns):

TB⇒S =

(
1 1
1 −1

)
TC⇒S =

(
1 1
1 2

)
• ...coming back means taking the inverse:

TS⇒B = (TB⇒S)−1 =
1

2

(
1 1
1 −1

)

TS⇒C = (TC⇒S)−1 =

(
2 −1
−1 1

)
A. Kissinger Version: autumn 2017 Matrix Calculations 3 / 37



Eigenvalues and Eigenvectors
Applications

Diagonalisation and iteration
Radboud University Nijmegen

Last time

• Converting from B to C is done my first converting to S then
to C:

TB⇒C = TS⇒C · TB⇒S
• The change of basis of a vector is computed by applying the

matrix. For example, changing from B to C is:

v ′ = TB⇒C

• The change of basis for a matrix is computed by surrounding
it with basis-change matrices.

• Changing from a matrix A in B to a matrix A′ in C is:

A′ = TB⇒C · A · TC⇒B

• (Memory aid: look at the first matrix on the right to see what
basis transformation you are doing.)
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Example: political swingers, part I

• We take an extremely crude view on politics and distinguish
only left and right wing political supporters

• We study changes in political views, per year

• Suppose we observe, for each year:
• 80% of lefties remain lefties and 20% become righties
• 90% of righties remain righties, and 10% become lefties

Questions . . .
• start with a population L = 100,R = 150, and compute the

number of lefties and righties after one year;

• similarly, after 2 years, and 3 years, . . .

• We can represent these computations conveniently using
matrix multiplication.
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Political swingers, part II

• So if we start with a population L = 100,R = 150, then after
one year we have:

• lefties: 0.8 · 100 + 0.1 · 150 = 80 + 15 = 95
• righties: 0.2 · 100 + 0.9 · 150 = 20 + 135 = 155

• If

(
L
R

)
=

(
100
150

)
, then after one year we have:

P ·
(

100
150

)
=

(
0.8 0.1
0.2 0.9

)
·
(

100
150

)
=

(
95

155

)
• After two years we have:

P ·
(

95
155

)
=

(
0.8 0.1
0.2 0.9

)
·
(

95
155

)
=

(
91.5

158.5

)
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Political swingers, part IV

The situation after two years is obtained as:

P · P ·

(
L

R

)
=

(
0.8 0.1

0.2 0.9

)
·

(
0.8 0.1

0.2 0.9

)
·

(
L

R

)
︸ ︷︷ ︸
do this multiplication first

=

(
0.66 0.17

0.34 0.83

)
·

(
L

R

)

The situation after n years is described by the n-fold iterated
matrix:

Pn = P · P · · ·P︸ ︷︷ ︸
n times

Etc. It looks like P100 (or worse, limn→∞ Pn) is going to be a real
pain to calculate. ...or is it?
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Diagonal matrices

• Multiplying lots of matrices together is hard ☹
• But multiplying diagonal matrices is easy!

a 0 0 0
0 b 0 0
0 0 c 0
0 0 0 d

 ·

w 0 0 0
0 x 0 0
0 0 y 0
0 0 0 z

 =


aw 0 0 0
0 bx 0 0
0 0 cy 0
0 0 0 dz


• Strategy: find a basis B where our matrix P is diagonal:(

0.8 0.1
0.2 0.9

)
S

;
(

1 0
0 0.7

)
B

• So transform to B, multiply, and (if we need to) transform
back:(

1 0
0 0.7

)100

B
=

(
1100 0

0 (0.7)100

)
B
≈
(

1 0
0 0

)
B

; 1
3

(
1 1
2 2

)
S
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Eigenvectors and eigenvalues

This magical basis B consists of eigenvectors of a matrix.

Definition

Assume an n × n matrix A.

An eigenvector for A is a non-zero vector v 6= 0 for which there is
an eigenvalue λ ∈ R with:

A · v = λ · v

Example(
1
2

)
is an eigenvector for P = 1

10

(
8 1
2 9

)
with eigenvalue λ = 1.
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Two basic results

Lemma

An eigenvector has at most one eigenvalue

Proof: Assume A · v = λ1v and A · v = λ2v . Then:

0 = A · v − A · v = λ1v − λ2v = (λ1 − λ2)v
Since v 6= 0 we must have λ1 − λ2 = 0, and thus λ1 = λ2. -

Lemma

If v is an eigenvector, then so is a · v , for each a 6= 0.

Proof: If A · v = λv , then:

A · (av) = a(A · v) since matrix application is linear
= a(λv) = (aλ)v = (λa)v = λ(av). -
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Finding eigenvectors and eigenvalues

• We seek a eigenvector v and eigenvalue λ ∈ R with
A · v = λv

• That is: λ and v (v 6= 0) such that (A− λ · I ) · v = 0

• Thus, we seek λ for which the system of equations
corresponding to the matrix A− λ · I has a non-zero solution

• Hence we seek λ ∈ R for which the matrix A− λ · I does not
have n pivots in its echelon form

• This means: we seek λ ∈ R such that A− λ · I is
not-invertible

• So we need: det(A− λ · I ) = 0

• This can be seen as an equation, with λ as variable

• This det(A− λ · I ) is called the characteristic polynomial of
the matrix A
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Eigenvalue example I

• Task: find eigenvalues of matrix A =

(
1 5
3 3

)
• A− λ · I =

(
1 5
3 3

)
−
(
λ 0
0 λ

)
=

(
1− λ 5

3 3− λ

)
• Thus:

det(A− λ · I ) = 0 ⇐⇒

∣∣∣∣∣ 1− λ 5

3 3− λ

∣∣∣∣∣ = 0

⇐⇒ (1− λ)(3− λ)− 5 · 3 = 0

⇐⇒ λ2 − 4λ− 12 = 0

⇐⇒ (λ− 6)(λ+ 2) = 0

⇐⇒ λ = 6 or λ = −2.
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Recall: quadratic formula

• Consider a second-degree (quadratic) equation

ax2 + bx + c = 0 (for a 6= 0)

• Its solutions are:

s1,2 =
−b ±

√
b2 − 4ac

2a

• These solutions coincide (ie. s1 = s2) if b2 − 4ac = 0

• Real solutions do not exist if b2 − 4ac < 0

(But “complex number” solutions do exist in this case.)

• [ Recall, if s1 and s2 are solutions of ax2 + bx + c = 0, then
we can write ax2 + bx + c = a(x − s1)(x − s2) ]
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Higher degree polynomial equations

• For third and fourth degree polynomial equations there are
(complicated) formulas for the solutions.

• For degree ≥ 5 no such formulas exist (proved by Abel)

• In those cases one can at most use approximations.

• In the examples in this course the solutions will typically be
“obvious”.
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Eigenvalue example II

• Task: find eigenvalues of A =

 3 −1 −1
−12 0 5

4 −2 −1


• Characteristic polynomial is

∣∣∣∣∣∣
3− λ −1 −1
−12 −λ 5

4 −2 −1− λ

∣∣∣∣∣∣
= (3− λ)

∣∣∣∣∣ −λ 5

−2 −1− λ

∣∣∣∣∣+ 12

∣∣∣∣∣ −1 −1

−2 −1− λ

∣∣∣∣∣+ 4

∣∣∣∣∣ −1 −1

−λ 5

∣∣∣∣∣
= (3− λ)

(
λ(1 + λ) + 10

)
+ 12

(
1 + λ− 2

)
+ 4
(
− 5− λ

)
= (3− λ)(λ2 + λ+ 10) + 12(λ− 1)− 20− 4λ

= 3λ2 + 3λ+ 30− λ3 − λ2 − 10λ+ 12λ− 12− 20− 4λ

= −λ3 + 2λ2 + λ− 2.
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Eigenvalue example II (cntd)

• We need to solve −λ3 + 2λ2 + λ− 2 = 0

• We try a few “obvious” values: λ = 1 YES!

• Reduce from degree 3 to 2, by separating (λ− 1) in:

−λ3 + 2λ2 + λ− 2 = (λ− 1)(aλ2 + bλ+ c)

= aλ3 + (b − a)λ2 + (c − b)λ− c

• This works for a = −1, b = 1, c = 2

• Now we use quadratic equation for −λ2 + λ+ 2 = 0

• Solutions: λ =
−1±

√
1 + 4 · 2
−2

=
−1± 3

−2
giving λ = 2, −1

• All three eigenvalues: λ = 1, λ = −1, λ = 2
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Getting eigenvectors

• Once we have eigenvalues λi for a matrix A we can find
corresponding eigenvectors vi , with A · vi = λivi

• These vi appear as the solutions of (A− λi · I ) · v = 0
• We can make a convenient choice, using that scalar

multiplications a · vi are also a solution

• Once λ is known, getting v is just a matter of solving this
homogenious system:

(A− λ · I ) · v = 0
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Eigenvector example I

Recall the eigenvalues λ = −2, λ = 6 for A =

(
1 5
3 3

)
λ = −2 gives matrix A− λI =

(
1 + 2 5

3 3 + 2

)
=

(
3 5
3 5

)
• Corresponding system of equations

{
3x + 5y = 0
3x + 5y = 0

• Solution choice x = −5, y = 3, so (−5, 3) is eigenvector
(of matrix A with eigenvalue λ = −2)

• Check:(
1 5
3 3

)
·
(
−5
3

)
=

(
−5 + 15
−15 + 9

)
=

(
10
−6

)
= −2

(
−5
3

)
X
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Eigenvector example I (cntd)

λ = 6 gives matrix A− λI =

(
1− 6 5

3 3− 6

)
=

(
−5 5
3 −3

)
• Corresponding system of equations

{
−5x + 5y = 0

3x − 3y = 0

• Solution choice x = 1, y = 1, so (1, 1) is eigenvector

• Check:(
1 5
3 3

)
·
(

1
1

)
=

(
1 + 5
3 + 3

)
=

(
6
6

)
= 6

(
1
1

)
X
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Diagonalisation theorem

Theorem

Let A be an n × n matrix, represented wrt. the standard basis S.
Assume A has n (pairwise) different eigenvalues λ1, . . . , λn, with
corresponding eigenvectors B = {v1, . . . , vn}. Then:

1 These v1, . . . , vn are linearly independent (and thus a basis)

2 There is an invertible basis transformation matrix TB⇒S
giving a diagonalisation:

A = TB⇒S ·


λ1 0 · · · 0
0 λ2 0

0
. . . 0

0 · · · 0 λn

 · TS⇒B
Thus, this diagonal matrix is the representation of A wrt. the
eigenvector basis B.

A. Kissinger Version: autumn 2017 Matrix Calculations 22 / 37



Eigenvalues and Eigenvectors
Applications

Diagonalisation and iteration
Radboud University Nijmegen

Multiple eigenvalues

• It may happen that a particular eigenvalue occurs multiple
times for a matrix

• eg. the charachterstic polynomial of

(
1 0
0 1

)
has λ = 1 twice

as a root.
• for this λ = 1 there are two independent eigenvectors, namely(

1
0

)
and

(
0
1

)
• In general, if an eigenvalue λ occurs n times, then there are at

most n independent eigenvectors for this λ
• linear combinations of eigenvectors with the same eigenvalue λ

are also eigenvectors with eigenvalue λ
• they form a subspace of dimension n: the eigenspace of λ.
• if λ are all distinct, eigenspaces are all 1-dimensional
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Diagonalising a matrix (study this slide!)

Putting it all together, we diagonalise a matrix A as follows:

1 Compute each eigenvalue λ1, λ2, . . . , λn by solving the
characteristic polynomial

2 For each eigenvalue, compute the associated eigenvector vi by
solving the homogenious system A− λi I = 0.

3 Write down A as the product of three matrices:

A = TB⇒S ·D · TS⇒B

where:
• TB⇒S has the eigenvectors v1, . . . , vn (in order!) as its

columns
• D has the eigenvalues (in the same order!) down its diagonal,

and zeroes everywhere else
• TS⇒B is the inverse of TB⇒S .
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Political swingers re-revisited, part I

• Recall the political transition matrix

P =

(
0.8 0.1
0.2 0.9

)
= 1

10

(
8 1
2 9

)
• Eigenvalues λ are obtained via det(P − λ I ) = 0:

( 8
10 − λ)( 9

10 − λ)− 1
10 ·

2
10 = λ2 − 17

10λ+ 7
10 = 0

• Solutions via quadratic equation

1
2

(
17
10 ±

√(
17
10

)2 − 28
10

)
= 1

2

(
17
10 ±

√
289
100 −

280
100

)
= 1

2

(
17
10 ±

√
9

100

)
= 1

2

(
17
10 ±

3
10

)
• Hence λ = 1

2 ·
20
10 = 1 or λ = 1

2 ·
14
10 = 7

10 = 0.7.
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Political swingers re-revisited, part II

• Compute the eigenvectors by plugging eigenvalues λ = 1, 0.7
into: (

0.8− λ 0.1
0.2 0.9− λ

)
·
(
x
y

)
= 0

and find a solution to the resulting homogeneous system.

• That is, we need to solve this system, for λ = 1, 0.7:{
(0.8− λ)x + 0.1y = 0

0.2x + (0.9− λ)y = 0
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Political swingers re-revisited, part II

λ = 1 solve:

{
−0.2x + 0.1y = 0
0.2x +−0.1y = 0

giving (1, 2) as eigenvector

• Indeed

(
0.8 0.1
0.2 0.9

)
·
(

1
2

)
=

(
0.8 + 0.2
0.2 + 1.8

)
=

(
1
2

)
= 1

(
1
2

)
X

λ = 0.7 solve:

{
0.1x + 0.1y = 0
0.2x + 0.2y = 0

giving (1,−1) as eigenvector

• Check:(
0.8 0.1
0.2 0.9

)
·
(

1
−1

)
=

(
0.8− 0.1
0.2− 0.9

)
=

(
0.7
−0.7

)
= 0.7

(
1
−1

)
X
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Political swingers re-revisited, part III

• The eigenvalues 1 and 0.7 are different, and indeed the
eigenvectors (1, 2) and (1,−1) are independent

• The coordinate-translation TB⇒S from the eigenvector basis
B = {(1, 2), (1,−1)} to the standard basis S = {(1, 0), (0, 1)}
consists of the eigenvectors:

TB⇒S =

(
1 1
2 −1

)
• In the reverse direction:

TS⇒B =
(
TB⇒S

)−1
= 1
−1−2

(
−1 −1
−2 1

)
= 1

3

(
1 1
2 −1

)
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Political swingers re-revisited, part IV

We explicitly check the diagonalisation equation:

TB⇒S ·

(
1 0

0 0.7

)
· TS⇒B =

(
1 1

2 −1

)
·

(
1 0

0 0.7

)
· 13

(
1 1

2 −1

)

= 1
3

(
1 0.7

2 −0.7

)
·

(
1 1

2 −1

)

= 1
3

(
2.4 0.3

0.6 2.7

)

=

(
0.8 0.1

0.2 0.9

)
= P, the original political transition matrix!
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Applications: probabilistic transition systems

• In probabilistic transition systems (Markov chains)

P

0.6
��

0.1

))

0.3 ..

Q

0.8

uu
0.1

oo

0.1ppR

0.7

JJ

0.1

ee

0.2

99

• Eigenvalues/vectors are used to make calculations more
efficient, and elaborate long-term behaviour
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Applications: quantum mechanics/computation

• quantum states can be represented by vectors, and
measurements by linear maps, e.g. rotations:

• eigenvalues represent measurement outcomes and eigenvectors
represent collapse of the quantum state

Ö Œ
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Applications: data processing

• Problem: suppose we have a HUGE matrix, and we want to
know approximately what it looks like

• Solution: diagonalise it using its basis B of eigenvectors...then
throw away (= set to zero) all the little eigenvalues:

λ1 0 · · · 0 0
0 λ2 0 0
... 0 λ3 0

...

0 0
. . . 0

0 0 · · · 0 λn


B

≈


λ1 0 · · · 0 0
0 λ2 0 0
... 0 0 0

...

0 0
. . . 0

0 0 · · · 0 0


B

• If there are only a few big λ’s, and lots of little λ’s, we get
almost the same matrix back

• A more sophisticated technique based on eigenvalues is called
principle compent analysis (very common in big data analytics
and AI)
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Applications: data compression

• This technique can also be used for lossy data compression

• Since we can get (pretty much) the same matrix back by
throwing away all but the highest couple of eigenvalues:

λ1 0 · · · 0 0
0 λ2 0 0
... 0 λ3 0

...

0 0
. . . 0

0 0 · · · 0 λn


B

≈


λ1 0 · · · 0 0
0 λ2 0 0
... 0 0 0

...

0 0
. . . 0

0 0 · · · 0 0


B

• ...then the resulting matrix only depends on the first couple of
eigenvectors.

• Hence, we can throw the rest away!

• This can be used to compress images or music.
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Political swingers re-revisited, part V

Diagonalisation A = TB⇒S ·D ·TS⇒B = T ·D ·T−1 used iteration, e.g.

• P = T ·
(

1 0
0 0.7

)
· T−1

P2 = T ·
(

1 0
0 0.7

)
· T−1 · T ·

(
1 0
0 0.7

)
· T−1

= T ·
(

1 0
0 0.7

)
·
(

1 0
0 0.7

)
· T−1

= T ·
(

12 0
0 (0.7)2

)
· T−1

• Pn = T ·
(

(1)n 0
0 (0.7)n

)
· T−1

• lim
n→∞

Pn = T ·
(

1 0
0 0

)
· T−1 since lim

n→∞
(0.7)n = 0

=

(
1 1
2 −1

)
·
(

1 0
0 0

)
· 13

(
1 1
2 −1

)
= 1

3

(
1 1
2 2

)
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Political swingers re-revisited, part VI

• We now have a fairly easy way to compute Pn ·
(

100
150

)
• ...and we can see that in the limit it goes to:

lim
n→∞

Pn ·
(

100
150

)
= 1

3

(
1 1
2 2

)
·
(

100
150

)
= 1

3

(
250
500

)
=

(
831

3
1662

3

)
(This was already suggested earlier, but now we can calculate it!)

A. Kissinger Version: autumn 2017 Matrix Calculations 37 / 37


	Eigenvalues and Eigenvectors
	Applications
	Diagonalisation and iteration

