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From last time

• Vector spaces V ,W , . . . are special kinds of sets whose
elements are called vectors.

• Vectors can be added together, or multiplied by a real
number, For v ,w ∈ V , a ∈ R:

v + w ∈ V a · v ∈ V

• The simplest examples are:

Rn := {(a1, . . . , an) | ai ∈ R}
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Maps between vector spaces

We can send vectors v ∈ V in one vector space to other vectors
w ∈W in another (or possibly the same) vector space?

V ,W are vector spaces, so they are sets with extra stuff
(namely: +, ·, 0).

A common theme in mathematics: study functions f : V →W
which preserve the extra stuff.
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Functions

• A function f is an operation that sends elements of one set X
to another set Y .
• in that case we write f : X → Y or sometimes X

f→ Y
• this f sends x ∈ X to f (x) ∈ Y
• X is called the domain and Y the codomain of the function f

• Example. f (n) = 1
n+1 can be seen as function N→ Q, that is

from the natural numbers N to the rational numbers Q
• On each set X there is the identity function id : X → X that

does nothing: id(x) = x .

• Also one can compose 2 functions X
f→ Y

g→ Z to a function:

g ◦ f : X −→ Z given by (g ◦ f )(x) = g(f (x))
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Linear maps

A linear map is a function that preserves the extra stuff in a vector
space:

Definition

Let V ,W be two vector spaces, and f : V →W a map between
them; f is called linear if it preserves both:

• addition: for all v , v ′ ∈ V ,

f ( v + v
′︸ ︷︷ ︸

in V

) = f (v) + f (v ′)︸ ︷︷ ︸
in W

• scalar multiplication: for each v ∈ V and a ∈ R,

f ( a · v︸︷︷︸
in V

) = a · f (v)︸ ︷︷ ︸
in W
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Linear maps preserve zero and minus

Theorem

Each linear map f : V →W preserves:

• zero: f (0) = 0.

• minus: f (−v) = −f (v)

Proof:

f (0) = f (0 · 0)
= 0 · f (0)
= 0

f (−v) = f ((−1) · v)
= (−1) · f (v)
= −f (v) -

A. Kissinger Version: autumn 2018 Matrix Calculations 8 / 37



Linear maps
Basis of a vector space

From linear maps to matrices
Radboud University Nijmegen

Linear map examples I

R is a vector space. Let’s consider maps f : R→ R.
Most of them are not linear, like, for instance:

• f (x) = 1 + x , since f (0) = 1 6= 0

• f (x) = x2, since f (−1) = 1 = f (1) 6= −f (1).

So: linear maps R→ R can only be very simple.

Theorem

Each linear map f : R→ R is of the form f (x) = c · x, for some
c ∈ R.

Proof:

f (x) = f (x · 1) = x · f (1) = f (1) · x = c · x , for c = f (1). -
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Linear map examples II

Linear maps R2 → R2 start to get more interesting:

s(

(
v1
v2

)
) =

(
av1
v2

)
t(

(
v1
v2

)
) =

(
v1
bv2

)
...these scale a vector on the X - and Y -axis.

We can show these are linear by checking the two linearity
equations:

f (v + w) = f (v) + f (w) f (a · v) = a · f (v)
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Linear map examples III

Consider the map f : R2 → R2 given by

f (

(
v1
v2

)
) =

(
v1 cos(ϕ)− v2 sin(ϕ)
v1 sin(ϕ) + v2 cos(ϕ)

)
This map describes rotation in the plane, with angle ϕ:

We can also check linearity equations.
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Linear map examples IV

These extend naturally to 3D, i.e. linear maps R3 → R3:

sx(

(
v1
v2
v3

)
) =

(
av1
v2
v3

)
sy(

(
v1
v2
v3

)
) =

(
v1
bv2
v3

)
sz(

(
v1
v2
v3

)
) =

(
v1
v2
cv3

)

Q: How do we do rotation?
A: Keep one coordinate fixed (axis of rotation), and 2D rotate the
other two, e.g.

rz(

(
v1
v2
v3

)
) =

(
v1 cos(ϕ)− v2 sin(ϕ)
v1 sin(ϕ) + v2 cos(ϕ)

v3

)
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And it works!

These kinds of linear maps are the basis of all 3D graphics,
animation, physics, etc.
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Getting back to matrices

Q: So what is the relationship between this (cool) linear map stuff,
and the (lets face it, kindof boring) stuff about matrices and linear
equations from before?

A: Matrices are a convenient way to represent linear maps!

To get there, we need a new concept: basis of a vector space
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Basis in space

• In R3 we can distinguish three special vectors:

(1, 0, 0) ∈ R3 (0, 1, 0) ∈ R3 (0, 0, 1) ∈ R3

• These vectors form a basis for R3, which means:

1 These vectors span R3, which means each vector (x , y , z) ∈ R3

can be expressed as a linear combination of these three
vectors:

(x , y , z) = (x , 0, 0) + (0, y , 0) + (0, 0, z)
= x · (1, 0, 0) + y · (0, 1, 0) + z · (0, 0, 1)

2 Moreover, this set is as small as possible: no vectors are can
be removed and still span R3.

• Note: condition (2) is equivalent to saying these vectors are
linearly independent
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Basis

Definition

Vectors v1, . . . , vn ∈ V form a basis for a vector space V if these
v1, . . . , vn

• are linearly independent, and

• span V in the sense that each w ∈ V can be written as linear
combination of v1, . . . , vn, namely as:

w = a1v1 + · · ·+ anvn for some a1, . . . , an ∈ R

• These scalars ai are uniquely determined by w ∈ V (see below)

• A space V may have several bases, but the number of
elements of a basis for V is always the same; it is called the
dimension of V , usually written as dim(V ) ∈ N.
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The standard basis for Rn

• For the space Rn = {(x1, . . . , xn) | xi ∈ R} there is a standard
choice of basis vectors:

e1 := (1, 0, 0 . . . , 0), e2 := (0, 1, 0, . . . , 0), · · · , en := (0, . . . , 0, 1)

• ei has a 1 in the i-th position, and 0 everywhere else.

• We can easily check that these vectors are independent and
span Rn.

• This enables us to state precisely that Rn is n-dimensional.
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An alternative basis for R2

• The standard basis for R2 is (1, 0), (0, 1).

• But many other choices are possible, eg. (1, 1), (1,−1)

• independence: if a · (1, 1) + b · (1,−1) = (0, 0), then:{
a + b = 0
a− b = 0

and thus

{
a = 0
b = 0

• spanning: each point (x , y) can written in terms of
(1, 1), (1,−1), namely:

(x , y) = x+y
2 (1, 1) + x−y

2 (1,−1)
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Uniqueness of representations

Theorem
• Suppose V is a vector space, with basis v1, . . . , vn
• assume x ∈ V can be represented in two ways:

x = a1v1 + · · ·+ anvn and also x = b1v1 + · · ·+ bnvn

Then: a1 = b1 and . . . and an = bn.

Proof: This follows from independence of v1, . . . , vn since:

0 = x − x =
(
a1v1 + · · ·+ anvn

)
−
(
b1v1 + · · ·+ bnvn

)
= (a1 − b1)v1 + · · ·+ (an − bn)vn.

Hence ai − bi = 0, by independence, and thus ai = bi . -
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Representing vectors

• Fixing a basis B = {v1, . . . , vn} therefore gives us a unique
way to represent a vector v ∈ V as a list of numbers called
coordinates:

v = a1v1 + · · ·+ anvn

New notation: v =

a1
...
an


B

• If V = Rn, and B is the standard basis, this is just the vector
itself: a1

...
an


B

=

a1
...
an


• ...but if B is not the standard basis, this can be different
• ...and if V 6= Rn, a list of numbers is meaningless without

fixing a basis.
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What does it mean?

“The introduction of numbers as coordinates is an act of violence.”
– Hermann Weyl
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What does it mean?

• Space is (probably) real

• ...but coordinates (and hence bases) only exist in our head

• Choosing a basis amounts to fixing some directions in space
we decide to call “up”, “right”, “forward”, etc.

• Then a linear combination like:

v = 5 · up + 3 · right− 2 · forward

describes a point in space, mathematically.

• ...and it makes working with linear maps a lot easier
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Linear maps and bases, example I

• Take the linear map f ((x1, x2, x3)) = (x1 − x2, x2 + x3)

• Claim: this map is entirely determined by what it does on the
basis vectors (1, 0, 0), (0, 1, 0), (0, 0, 1) ∈ R3, namely:

f ((1, 0, 0)) = (1, 0) f ((0, 1, 0)) = (−1, 1) f ((0, 0, 1)) = (0, 1).

• Indeed, using linearity:

f ((x1, x2, x3))

= f
(

(x1, 0, 0) + (0, x2, 0) + (0, 0, x3)
)

= f
(
x1 · (1, 0, 0) + x2 · (0, 1, 0) + x3 · (0, 0, 1)

)
= f

(
x1 · (1, 0, 0)

)
+ f
(
x2 · (0, 1, 0)

)
+ f
(
x3 · (0, 0, 1)

)
= x1 · f ((1, 0, 0)) + x2 · f ((0, 1, 0)) + x3 · f ((0, 0, 1))
= x1 · (1, 0) + x2 · (−1, 1) + x3 · (0, 1)
= (x1 − x2, x2 + x3)
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Linear maps and bases, geometrically

“If we know how to transform any set of axes for a space, we know
how to transform everything.”

7→
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Linear maps and bases, example I (cntd)

• f ((x1, x2, x3)) = (x1 − x2, x2 + x3) is totally determined by:

f ((1, 0, 0)) = (1, 0) f ((0, 1, 0)) = (−1, 1) f ((0, 0, 1)) = (0, 1)

• We can organise this data into a 2× 3 matrix:(
1 −1 0
0 1 1

)
The vector f (vi ), for basis vector vi , appears as the i-the
column.

• Applying f can be done by a new kind of multiplication:(
1 −1 0
0 1 1

)
·

x1
x2
x3

 =

(
1 · x1 +−1 · x2 + 0 · x3
0 · x1 + 1 · x2 + 1 · x3

)
=

(
x1 − x2
x2 + x3

)
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Matrix-vector multiplication: Definition

Definition

For vectors v = (x1, . . . , xn),w = (y1, . . . , yn) ∈ Rn define their
inner product (or dot product) as the real number:

〈v ,w〉 = x1y1 + · · ·+ xnyn =
n∑

i=1

xiyi

Definition

If A =

a11 · · · a1n
...

...
am1 · · · amn

 and v =

v1
...
vn

, then w := A · v

is the vector whose i-th element is the dot product of the i-th row
of matrix A with the (input) vector v .
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Matrix-vector multiplication, explicitly

For A an m × n matrix, B a column vector of length n:

A · b = c

is a column vector of length m.


...

...
...

ai1 · · · ain
...

...
...

 ·
b1

...
bn

 =


...

ai1b1 + · · ·+ ainbn
...

 =


...
ci
...



ci =
n∑

k=1

aikbk
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Another example, to learn the mechanics


9 3 2 9 7
8 5 6 6 3
4 5 8 9 3
3 4 3 3 4

 ·


9
5
2
5
7


=


9 · 9 + 3 · 5 + 2 · 2 + 9 · 5 + 7 · 7
8 · 9 + 5 · 5 + 6 · 2 + 6 · 5 + 3 · 7
4 · 9 + 5 · 5 + 8 · 2 + 9 · 5 + 3 · 7
3 · 9 + 4 · 5 + 3 · 2 + 3 · 5 + 4 · 7


=


81 + 15 + 4 + 45 + 49

72 + 25 + 12 + 30 + 21
36 + 25 + 16 + 45 + 21
27 + 20 + 6 + 15 + 28

 =


194
160
143
96


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Representing linear maps

Theorem

For every linear map f : Rn → Rm, there exists an m × n matrix A
where:

f (v) = A · v

(where “·” is the matrix multiplication of A and a vector v)

Proof. Let {e1, . . . , en} be the standard basis for Rn. A be the
matrix whose i-th column is f (ei ). Then:

A · ei =

 a110 + . . . + a1i1 + . . . + a1n0
...

am10 + . . . + ami1 + . . . + amn0

 =

a1i
...

ami

 = f (ei )

Since it is enough to check basis vectors and f (ei ) = A · ei , we are
done. -
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Getting a matrix from a linear map

• This proof tells us how to build the matrix
• Here’s how: Take a linear map and evaluate it at each basis

vector of the input vector space. E.g. for:

f ((x1, x2, x3)) = (x1 − x2, x2 + x3)

• ...the input vector space is R3, so we need to evaluate at 3
basis vectors e1, e2, e3:

f (

(
1
0
0

)
) =

(
1
0

)
f (

(
0
1
0

)
) =

(
−1
1

)
f (

(
0
0
1

)
) =

(
0
1

)
• This gives us 3 vectors, which become the columns of our

new matrix:(
1
0

)
,

(
−1
1

)
,

(
0
1

)
→

(
1 −1 0
0 1 1

)
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Getting a matrix from a linear map

• So, from f ((x1, x2, x3)) = (x1 − x2, x2 + x3), we computed:

A =

(
1 −1 0
0 1 1

)

• If we stick this new matrix ‘inside’ f , with matrix
multiplication, then viola:

f (v) = A·v −→ f (

x1
x2
x3

) =

(
1 −1 0
0 1 1

)
·

x1
x2
x3

 =

(
x1 − x2
x2 + x3

)

• What did this accomplish?

f is a whole function. A is 6 numbers.
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Examples of linear maps and matrices I

Projections are linear maps that send higher-dimensional vectors to
lower ones. Consider f : R3 → R2

f (

x
y
z

) =

(
x
y

)
.

f maps 3d space to the the 2d plane.
The matrix of f is the following 2× 3 matrix:(

1 0 0
0 1 0

)
.
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Examples of linear maps and matrices II

We have already seen: Rotation over an angle ϕ is a linear map

This rotation is described by f : R2 → R2 given by

f ((x , y)) =
(
x cos(ϕ)− y sin(ϕ), x sin(ϕ) + y cos(ϕ)

)
The matrix that describes f is(

cos(ϕ) − sin(ϕ)
sin(ϕ) cos(ϕ)

)
.
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Example: systems of equations

a11x1 + · · ·+ a1nxn = b1
...

am1x1 + · · ·+ amnxn = bm

⇒

A · x = ba11 · · · a1n
...

am1 · · · amn

 ·
x1

...
xn

 =

b1
...
bn



a11x1 + · · ·+ a1nxn = 0
...

...
...

am1x1 + · · ·+ amnxn = 0

⇒

A · x = 0a11 · · · a1n
...

...
...

am1 · · · amn

 ·
x1

...
xn

 =

0
...
0


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Matrix summary

• Take the standard bases: {e1, . . . , en} ⊂ Rn and
{e ′1, . . . , e ′m} ⊂ Rm

• Every linear map f : Rn → Rm can be represented by a
matrix, and every matrix represents a linear map:

f (v) = A · v

• The i-th column of A is f (ei ), written in terms of the
standard basis e ′1, . . . , e

′
m of Rm.

• (Next time, we’ll see the matrix of f depends on the choice of
basis: for different bases, a different matrix is obtained)
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