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From last time

• Linear maps describe transformations in space, such as
rotation:

7→ rx(

(
x
y
z

)
) =

(
x

y cos θ − z sin θ
y sin θ + z cos θ

)

• reflection and scaling:

7→ sy(

(
x
y
z

)
) =

(
x

(1/2)y
z

)
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From last time

• Linear maps can be represented as a matrix, using matrix
multiplication:

f (v) = A · v

• For example, then linear map:

f (

(
x
y
z

)
) =

(
x

y cos θ − z sin θ
y sin θ + z cos θ

)
can be represented as:

f (

(
x
y
z

)
︸︷︷︸
v

) =

(
1 0 0
0 cos θ − sin θ
0 sin θ cos θ

)
︸ ︷︷ ︸

A

·

(
x
y
z

)
︸︷︷︸
v
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Matrix multiplication

• Consider linear maps g , f represented by matrices A, B:

g(v) = A · v f (w) = B ·w

• Can we find a matrix C that represents their composition?

g(f (v)) = C · v

• Let’s try:

g(f (v)) = g(B · v) = A · (B · v)
(∗)
= (A · B) · v

(where step (∗) is currently ‘wishful thinking’)

• Great! Let C := A · B.

• But we don’t know what “·” means for two matrices yet...
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Matrix multiplication

• Solution: generalise from A · v
• A vector is a matrix with one column:

The number in the i-th row and the first column of A · v is the
dot product of the i-th row of A with the first column of v .

• So for matrices A,B:

The number in the i-th row and the j-th column of A ·B is the
dot product of the i-th row of A with the j-th column of B.
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Matrix multiplication

For A an m × n matrix, B an n × p matrix:

A · B = C

is an m × p matrix.
...

...
...

ai1 · · · ain
...

...
...

 ·
· · · bj1 · · ·

· · ·
... · · ·

· · · bjn · · ·

 =


. . .

... . .
.

· · · cij · · ·

. .
. ...

. . .



cij =
n∑

k=1

aikbkj
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Special case: vectors

For A an m × n matrix, B an n × 1 matrix:

A · b = c

is an m × 1 matrix.
...

...
...

ai1 · · · ain
...

...
...

 ·
b11

...
bn1

 =


...
ci1
...



ci1 =
n∑

k=1

aikbk1
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Matrix composition

Theorem

Matrix composition is associative:

(A · B) · C = A · (B · C )

Proof. Let X := A · B. This is a matrix with entries:

xip =
∑
k

aikbkp

Then, the matrix entries of X · C are:

∑
p

xipcpj =
∑
p

(∑
k

aikbkp

)
cpj =

∑
kp

aikbkpcpj

(because sums can always be pulled outside, and combined)
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Associativity of matrix composition

Proof (cont’d). Now, let Y := B · C . This has matrix entries:

ykj =
∑
p

bkpcpj

Then, the matrix entries of A · Y are:∑
k

aikykj =
∑
k

aik

(∑
p

bkpcpj

)
=
∑
kp

aikbkpcpj

...which is the same as before! So:

(A · B) · C = X · C = A · Y = A · (B · C )

-

So we can drop those pesky parentheses:

A · B · C := (A · B) · C = A · (B · C )
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Matrix product and composition

Corollary

The composition of linear maps is given by matrix product.

Proof. Let g(w) = A ·w and f (v) = B · v . Then:

g(f (v)) = g(B · v) = A · B · v

-

No wishful thinking necessary!
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Example 1

Consider the following two linear maps, and their associated
matrices:

R3 f−→ R2 R2 g−→ R2

f ((x1, x2, x3)) = (x1 − x2, x2 + x3) g((y1, y2)) = (2y1 − y2, 3y2)

Mf =

(
1 −1 0
0 1 1

)
Mg =

(
2 −1
0 3

)
We can compute the composition directly:

(g ◦ f )((x1, x2, x3)) = g
(
f ((x1, x2, x3))

)
= g((x1 − x2, x2 + x3))
= ( 2(x1 − x2)− (x2 + x3), 3(x2 + x3) )
= ( 2x1 − 3x2 − x3, 3x2 + 3x3 )

So:
Mg◦f =

(
2 −3 −1
0 3 3

)
...which is just the product of the matrices: Mg◦f = Mg ·Mf
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Note: matrix composition is not commutative

In general, A · B 6= B · A

For instance: Take A =

(
1 0
0 −1

)
and B =

(
0 1
−1 0

)
. Then:

A · B =

(
1 0
0 −1

)
·
(

0 1
−1 0

)
=

(
1 · 0 + 0 · −1 1 · 1 + 0 · 0

0 · 0 +−1 · −1 0 · 1 +−1 · 0

)
=

(
0 1
1 0

)

B · A =

(
0 1
−1 0

)
·
(

1 0
0 −1

)
=

(
0 · 1 + 1 · 0 0 · 0 + 1 · −1
−1 · 1 + 0 · 0 −1 · 0 + 0 · −1

)
=

(
0 −1
−1 0

)
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But it is...

...associative, as we’ve already seen:

A · B · C := (A · B) · C = A · (B · C )

It also has a unit given by the identity matrix I :

A · I = I · A = A

where:

I :=


1 0 · · · 0
0 1 · · · 0
...

. . .
...

0 0 · · · 1


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Solving equations the old fashioned way...

• We now know that systems of equations look like this:

A · x = b

• The goal is to solve for x , in terms of A and b.

• Here comes some more wishful thinking:

x =
1

A
· b

• Well, we can’t really divide by a matrix, but if we are lucky,
we can find another matrix called A−1 which acts like 1

A
.
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Inverse

Definition

The inverse of a matrix A is another matrix A−1 such that:

A
−1 · A = A · A−1 = I

• Not all matrices have inverses, but when they do, we are
happy, because:

A · x = b =⇒ A
−1 · A · x = A

−1 · b
=⇒ x = A

−1 · b

• So, how do we compute the inverse of a matrix?
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Remember me?
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Gaussian elimination as matrix multiplication

• Each step of Gaussian elimination can be represented by a
matrix multiplication:

A⇒ A
′

A
′ := G · A

• For instance, multiplying the i-th row by c is given by:

G(Ri :=cRi ) · A

where G(Ri :=cRi ) is just like the identity matrix, but gii = c .

• Exercise. What are the other Gaussian elimination matrices?

G(Ri↔Rj ) G(Ri :=Ri+cRj )
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Reduction to Echelon form

• The idea: treat A as a coefficient matrix, and compute its
reduced Echelon form
• If the Echelon form of A has n pivots, then its reduced

Echelon form is the identity matrix:

A⇒ A1 ⇒ A2 ⇒ · · · ⇒ Ap = I

• Now, we can use our Gauss matrices to remember what we
did:

A1 := G1 · A
A2 := G2 · G1 · A
· · ·

Ap := Gp · · ·G1 · A = I
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Computing the inverse

• A ha!

Gp · · ·G1 · A = I =⇒ A
−1 = Gp · · ·G1

• So all we have to do is construct p different matrices and
multiply them all together!

• Since I already have plans for this afternoon, lets take a
shortcut.
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Computing the inverse

• Since Gaussian elimination is just multiplying by a certain
matrix on the left...

A⇒ G · A

• ...doing Gaussian elimination (for A) on an augmented matrix
applies G to both parts:

(A|B)⇒ (G · A | G · B)

• So, if G = A−1:

(A|B)⇒ (A−1 · A | A−1 · B) = (I | A−1 · B)
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Computing the inverse

• We already (secretly) used this trick to solve:

A · x = b =⇒ x = A
−1 · b

• Here, we are only interested in the vector A−1 · b
• Which is exactly what Gaussian elimination on the augmented

matrix gives us:
(A|b)⇒ (I | A−1 · b)

• To get the entire matrix, we just need to choose something
clever to the right of the line

• Like this:
(A|I )⇒ (I | A−1 · I ) = (I | A−1)
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Computing the inverse: example

For example, we compute the inverse of:

A :=

(
1 1
1 2

)
as follows:(

1 1 1 0
1 2 0 1

)
⇒
(

1 1 1 0
0 1 −1 1

)
⇒
(

1 0 2 −1
0 1 −1 1

)
So:

A
−1 :=

(
2 −1
−1 1

)
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Computing the inverse: non-example

Unlike transpose, not every matrix has an inverse.
For example, if we try to compute the inverse for:

B :=

(
1 1
1 1

)
we have: (

1 1 1 0
1 1 0 1

)
⇒
(

1 1 1 0
0 0 −1 1

)

We don’t have enough pivots to continue reducing. So B does not
have an inverse.
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When does a matrix have an inverse?

Theorem (Existence of inverses)

An n × n matrix has an inverse (or: is invertible) if and only if it
has n pivots in its echelon form.

Next time, we will introduce another criterion for a matrix to be
invertible, using determinants.
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Uniqueness of the inverse

Note

Matrix multiplication is not commutative, so it could (a priori) be
the case that:

• A has a right inverse: a B such that A · B = I and

• A has a (different) left inverse: a C such that C · A = I .

However, this doesn’t happen.
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Uniqueness of the inverse

Theorem

If a matrix A has a left inverse and a right inverse, then they are
equal. If A · B = I and C · A = I , then B = C .

Proof. Multiply both sides of the first equation by C :

C · A · B = C · I =⇒ B = C

-

Corollary

If a matrix A has an inverse, it is unique.
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Explicitly computing the inverse, part I

• Suppose we wish to find A−1 for A =

(
a b
c d

)
• We need to find x , y , u, v with:(

a b
c d

)
·
(
x y
u v

)
=

(
1 0
0 1

)
• Multiplying the matrices on the LHS:(

ax + bu ay + bv
cx + du cy + dv

)
=

(
1 0
0 1

)
• ...gives a system of 4 equations:

ax + bu = 1
cx + du = 0
ay + bv = 0
cy + dv = 1
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Computing the inverse: the 2× 2 case, part II

• Splitting this into two systems:{
ax + bu = 1
cx + du = 0

and

{
ay + bv = 0
cy + dv = 1

• Solving the first system for (u, x) and the second system for
(v , y) gives:

u = −c
ad−bc x = d

ad−bc and v = a
ad−bc y = −b

ad−bc

(assuming ad − bc 6= 0). Then:

A
−1 =

(
x y
u v

)
=

( d
ad−bc

−b
ad−bc

−c
ad−bc

a
ad−bc

)

• Conclusion: A−1 = 1
ad−bc

(
d −b
−c a

)
X

�



�
	learn this for-

mula by heart
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Computing the inverse: the 2× 2 case, part III

Summarizing:

Theorem (Existence of an inverse of a 2× 2 matrix)

A 2× 2 matrix

A =

(
a b
c d

)
has an inverse (or: is invertible) if and only if ad − bc 6= 0, in
which case its inverse is

A
−1 =

1

ad − bc

(
d −b
−c a

)
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Example

• Let P =

(
0.8 0.1
0.2 0.9

)
, so a = 8

10 , b = 1
10 , c = 2

10 , d = 9
10

• ad − bc = 72
100 −

2
100 = 70

100 = 7
10 6= 0 so the inverse exists!

• Thus:
P−1 = 1

ad−bc

(
d −b
−c a

)
= 10

7

(
0.9 −0.1

−0.2 0.8

)
• Then indeed:

10
7

(
0.9 −0.1
−0.2 0.8

)
·
(

0.8 0.1
0.2 0.9

)
= 10

7

(
0.7 0
0 0.7

)
=

(
1 0
0 1

)
• You could try to do this for bigger matrices, but it’s very

complicated. =⇒ Gauss elimination is way easier!
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