Matrix Calculations: Linear maps, bases, and matrix multiplication

A. Kissinger

Institute for Computing and Information Sciences Radboud University Nijmegen

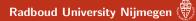
Version: autumn 2018

Outline

Composing linear maps using matrices

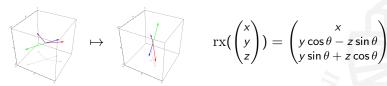
Matrix inverse

Existence and uniqueness of inverse

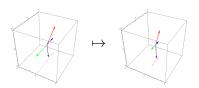


From last time

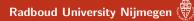
• Linear maps describe *transformations in space*, such as rotation:



• reflection and scaling:



$$\operatorname{sy}\begin{pmatrix} x\\ y\\ z \end{pmatrix} = \begin{pmatrix} x\\ (1/2)y\\ z \end{pmatrix}$$



From last time

• Linear maps can be represented as a matrix, using matrix multiplication:

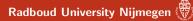
$$f(\mathbf{v}) = \mathbf{A} \cdot \mathbf{v}$$

• For example, then linear map:

$$f\begin{pmatrix} x\\ y\\ z \end{pmatrix} = \begin{pmatrix} x\\ y\cos\theta - z\sin\theta\\ y\sin\theta + z\cos\theta \end{pmatrix}$$

can be represented as:

$$f(\underbrace{\begin{pmatrix} x \\ y \\ z \end{pmatrix}}_{\mathbf{v}}) = \underbrace{\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{pmatrix}}_{\mathbf{A}} \cdot \underbrace{\begin{pmatrix} x \\ y \\ z \end{pmatrix}}_{\mathbf{v}}$$



Matrix multiplication

• Consider linear maps g, f represented by matrices A, B:

$$g(\mathbf{v}) = \mathbf{A} \cdot \mathbf{v}$$
 $f(\mathbf{w}) = \mathbf{B} \cdot \mathbf{w}$

• Can we find a matrix **C** that represents their composition?

$$g(f(\mathbf{v})) = \mathbf{C} \cdot \mathbf{v}$$

• Let's try:

$$g(f(\mathbf{v})) = g(\mathbf{B} \cdot \mathbf{v}) = \mathbf{A} \cdot (\mathbf{B} \cdot \mathbf{v}) \stackrel{(*)}{=} (\mathbf{A} \cdot \mathbf{B}) \cdot \mathbf{v}$$

(where step (*) is currently 'wishful thinking')

- Great! Let $\boldsymbol{C} := \boldsymbol{A} \cdot \boldsymbol{B}$.
- But we don't know what "·" means for two matrices yet...

Matrix multiplication

- Solution: generalise from $\mathbf{A} \cdot \mathbf{v}$
- A vector is a matrix with one column:

The number in the *i*-th row and the first column of $\mathbf{A} \cdot \mathbf{v}$ is the dot product of the *i*-th row of \mathbf{A} with the first column of \mathbf{v} .

• So for matrices **A**, **B**:

The number in the *i*-th row and the *j*-th column of $\mathbf{A} \cdot \mathbf{B}$ is the dot product of the *i*-th row of \mathbf{A} with the *j*-th column of \mathbf{B} .

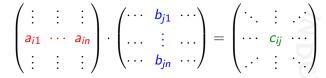
Radboud University Nijmegen

Matrix multiplication

For **A** an $m \times n$ matrix, **B** an $n \times p$ matrix:

 $\mathbf{A} \cdot \mathbf{B} = \mathbf{C}$

is an $m \times p$ matrix.



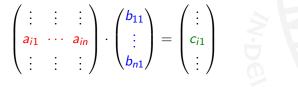
$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

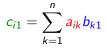
Special case: vectors

For **A** an $m \times n$ matrix, **B** an $n \times 1$ matrix:

 $\mathbf{A} \cdot \mathbf{b} = \mathbf{c}$

is an $m \times 1$ matrix.





Matrix composition

Theorem

Matrix composition is associative:

$$(\boldsymbol{A} \cdot \boldsymbol{B}) \cdot \boldsymbol{C} = \boldsymbol{A} \cdot (\boldsymbol{B} \cdot \boldsymbol{C})$$

Proof. Let $X := A \cdot B$. This is a matrix with entries:

$$x_{ip} = \sum_k a_{ik} b_{kp}$$

Then, the matrix entries of $\boldsymbol{X} \cdot \boldsymbol{C}$ are:

$$\sum_{p} x_{ip} c_{pj} = \sum_{p} \left(\sum_{k} a_{ik} b_{kp} \right) c_{pj} = \sum_{kp} a_{ik} b_{kp} c_{pj}$$

(because sums can always be pulled outside, and combined)

A. Kissinger

\$

Associativity of matrix composition

Proof (cont'd). Now, let $Y := B \cdot C$. This has matrix entries:

$$y_{kj} = \sum_{p} b_{kp} c_{pj}$$

Then, the matrix entries of $\mathbf{A} \cdot \mathbf{Y}$ are:

$$\sum_{k} a_{ik} y_{kj} = \sum_{k} a_{ik} \left(\sum_{p} b_{kp} c_{pj} \right) = \sum_{kp} a_{ik} b_{kp} c_{pj}$$

...which is the same as before! So:

$$(\mathbf{A} \cdot \mathbf{B}) \cdot \mathbf{C} = \mathbf{X} \cdot \mathbf{C} = \mathbf{A} \cdot \mathbf{Y} = \mathbf{A} \cdot (\mathbf{B} \cdot \mathbf{C})$$

So we can drop those pesky parentheses:

$$\mathbf{A} \cdot \mathbf{B} \cdot \mathbf{C} := (\mathbf{A} \cdot \mathbf{B}) \cdot \mathbf{C} = \mathbf{A} \cdot (\mathbf{B} \cdot \mathbf{C})$$

Radboud University Nijmegen (

Matrix product and composition

Corollary

The composition of linear maps is given by matrix product.

Proof. Let $g(w) = \mathbf{A} \cdot w$ and $f(v) = \mathbf{B} \cdot v$. Then:

$$g(f(\mathbf{v})) = g(\mathbf{B} \cdot \mathbf{v}) = \mathbf{A} \cdot \mathbf{B} \cdot \mathbf{v}$$

No wishful thinking necessary!

Radboud University Nijmegen

Example 1

Consider the following two linear maps, and their associated matrices:

$$\mathbb{R}^{3} \xrightarrow{f} \mathbb{R}^{2} \qquad \mathbb{R}^{2} \xrightarrow{g} \mathbb{R}^{2}$$

$$f((x_{1}, x_{2}, x_{3})) = (x_{1} - x_{2}, x_{2} + x_{3}) \qquad g((y_{1}, y_{2})) = (2y_{1} - y_{2}, 3y_{2})$$

$$M_{f} = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \qquad M_{g} = \begin{pmatrix} 2 & -1 \\ 0 & 3 \end{pmatrix}$$
We can compute the composition directly:
$$(g \circ f)((x_{1}, x_{2}, x_{3})) = g(f((x_{1}, x_{2}, x_{3})))$$

$$= g((x_{1} - x_{2}, x_{2} + x_{3}))$$

$$= (2(x_{1} - x_{2}) - (x_{2} + x_{3}), 3(x_{2} + x_{3}))$$

$$= (2x_{1} - 3x_{2} - x_{3}, 3x_{2} + 3x_{3})$$

So:

$$\boldsymbol{M}_{g\circ f} = \begin{pmatrix} 2 & -3 & -1 \\ 0 & 3 & 3 \end{pmatrix}$$

...which is just the product of the matrices: $M_{g \circ f} = M_g \cdot M_f$

Note: matrix composition is not commutative

In general, $\mathbf{A} \cdot \mathbf{B} \neq \mathbf{B} \cdot \mathbf{A}$

For instance: Take
$$\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
 and $\mathbf{B} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. Then:

$$\mathbf{A} \cdot \mathbf{B} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 1 \cdot 0 + 0 \cdot -1 & 1 \cdot 1 + 0 \cdot 0 \\ 0 \cdot 0 + -1 \cdot -1 & 0 \cdot 1 + -1 \cdot 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$\mathbf{B} \cdot \mathbf{A} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$= \begin{pmatrix} 0 \cdot 1 + 1 \cdot 0 & 0 \cdot 0 + 1 \cdot -1 \\ -1 \cdot 1 + 0 \cdot 0 & -1 \cdot 0 + 0 \cdot -1 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$$

But it is ...

...associative, as we've already seen:

$$A \cdot B \cdot C := (A \cdot B) \cdot C = A \cdot (B \cdot C)$$

It also has a *unit* given by the *identity matrix* **I**:

 $\mathbf{A} \cdot \mathbf{I} = \mathbf{I} \cdot \mathbf{A} = \mathbf{A}$

where:

$$\boldsymbol{\textit{I}} := \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$

Solving equations the old fashioned way...

• We now know that systems of equations look like this:

$$\boldsymbol{A}\cdot\boldsymbol{x}=\boldsymbol{b}$$

- The goal is to solve for x, in terms of A and b.
- Here comes some more wishful thinking:

$$oldsymbol{x} = rac{1}{oldsymbol{A}} \cdot oldsymbol{b}$$

 Well, we can't really *divide* by a matrix, but if we are lucky, we can find another matrix called A⁻¹ which acts like ¹/_A.

Inverse

Definition

The *inverse* of a matrix **A** is another matrix A^{-1} such that:

$$\mathbf{A}^{-1} \cdot \mathbf{A} = \mathbf{A} \cdot \mathbf{A}^{-1} = \mathbf{I}$$

 Not all matrices have inverses, but when they do, we are happy, because:

So, how do we compute the inverse of a matrix?

Remember me?

Radboud University Nijmegen 🕅

۲

Gaussian elimination as matrix multiplication

 Each step of Gaussian elimination can be represented by a matrix multiplication:

$$\mathbf{A} \Rightarrow \mathbf{A}' \qquad \qquad \mathbf{A}' := \mathbf{G} \cdot \mathbf{A}$$

• For instance, multiplying the *i*-th row by *c* is given by:

$$\boldsymbol{G}_{(R_i:=cR_i)}\cdot \boldsymbol{A}$$

where $G_{(R_i:=cR_i)}$ is just like the identity matrix, but $g_{ii} = c$.

• Exercise. What are the other Gaussian elimination matrices?

$$\boldsymbol{G}_{(R_i \leftrightarrow R_j)} \qquad \qquad \boldsymbol{G}_{(R_i := R_i + cR_j)}$$

Reduction to Echelon form

- The idea: treat **A** as a coefficient matrix, and compute its reduced Echelon form
- If the Echelon form of **A** has *n* pivots, then its reduced Echelon form is the identity matrix:

$$\mathbf{A} \Rightarrow \mathbf{A}_1 \Rightarrow \mathbf{A}_2 \Rightarrow \cdots \Rightarrow \mathbf{A}_p = \mathbf{I}$$

Now, we can use our Gauss matrices to remember what we did:

$$egin{aligned} oldsymbol{A}_1 &:= oldsymbol{G}_1 \cdot oldsymbol{A} \ oldsymbol{A}_2 &:= oldsymbol{G}_2 \cdot oldsymbol{G}_1 \cdot oldsymbol{A} \ &\cdots \ oldsymbol{A}_p &:= oldsymbol{G}_p \cdots oldsymbol{G}_1 \cdot oldsymbol{A} = \end{aligned}$$

Computing the inverse

• A ha!

$\boldsymbol{G}_p \cdots \boldsymbol{G}_1 \cdot \boldsymbol{A} = \boldsymbol{I} \qquad \Longrightarrow \qquad \boldsymbol{A}^{-1} = \boldsymbol{G}_p \cdots \boldsymbol{G}_1$

- So all we have to do is construct *p* different matrices and multiply them all together!
- Since I already have plans for this afternoon, lets take a shortcut.

Computing the inverse

• Since Gaussian elimination is just multiplying by a certain matrix on the left...

$$\mathbf{A} \Rightarrow \mathbf{G} \cdot \mathbf{A}$$

 ...doing Gaussian elimination (for A) on an augmented matrix applies G to both parts:

$$(\boldsymbol{A}|\boldsymbol{B}) \Rightarrow (\boldsymbol{G}\cdot\boldsymbol{A} \mid \boldsymbol{G}\cdot\boldsymbol{B})$$

• So, if $G = A^{-1}$:

$$(\boldsymbol{A}|\boldsymbol{B}) \Rightarrow (\boldsymbol{A}^{-1} \cdot \boldsymbol{A} \mid \boldsymbol{A}^{-1} \cdot \boldsymbol{B}) = (\boldsymbol{I} \mid \boldsymbol{A}^{-1} \cdot \boldsymbol{B})$$

Computing the inverse

• We already (secretly) used this trick to solve:

$$\boldsymbol{A}\cdot\boldsymbol{x}=\boldsymbol{b}$$
 \implies $\boldsymbol{x}=\boldsymbol{A}^{-1}\cdot\boldsymbol{b}$

- Here, we are only interested in the vector $\pmb{A}^{-1}\cdot \pmb{b}$
- Which is exactly what Gaussian elimination on the augmented matrix gives us:

$$(\boldsymbol{A}|\boldsymbol{b}) \Rightarrow (\boldsymbol{I}| \boldsymbol{A}^{-1} \cdot \boldsymbol{b})$$

- To get the entire matrix, we just need to choose something clever to the right of the line
- Like this:

$$(\boldsymbol{A}|\boldsymbol{I}) \Rightarrow (\boldsymbol{I}| \boldsymbol{A}^{-1} \cdot \boldsymbol{I}) = (\boldsymbol{I}| \boldsymbol{A}^{-1})$$

Computing the inverse: example

For example, we compute the inverse of:

$$\boldsymbol{A} := \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$$

as follows:

$$\begin{pmatrix} 1 & 1 & | & 1 & 0 \\ 1 & 2 & | & 0 & 1 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 1 & | & 1 & 0 \\ 0 & 1 & | & -1 & 1 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 0 & | & 2 & -1 \\ 0 & 1 & | & -1 & 1 \end{pmatrix}$$

So:
$$\boldsymbol{A}^{-1} := \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix}$$

Computing the inverse: non-example

Unlike transpose, not every matrix has an inverse. For example, if we try to compute the inverse for:

$$\boldsymbol{B} := \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

we have:

$$\left(\begin{array}{cc|c}1 & 1 & 1 & 0\\1 & 1 & 0 & 1\end{array}\right) \Rightarrow \left(\begin{array}{cc|c}1 & 1 & 1 & 0\\0 & 0 & -1 & 1\end{array}\right)$$

We don't have enough pivots to continue reducing. So B does not have an inverse.

When does a matrix have an inverse?

Theorem (Existence of inverses)

An $n \times n$ matrix has an inverse (or: is invertible) if and only if it has n pivots in its echelon form.

Next time, we will introduce another criterion for a matrix to be invertible, using determinants.

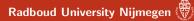
Uniqueness of the inverse

Note

Matrix multiplication is not commutative, so it could (*a priori*) be the case that:

- **A** has a right inverse: a **B** such that $\mathbf{A} \cdot \mathbf{B} = \mathbf{I}$ and
- **A** has a (different) left inverse: a **C** such that $\mathbf{C} \cdot \mathbf{A} = \mathbf{I}$.

However, this doesn't happen.



Uniqueness of the inverse

Theorem

If a matrix **A** has a left inverse and a right inverse, then they are equal. If $\mathbf{A} \cdot \mathbf{B} = \mathbf{I}$ and $\mathbf{C} \cdot \mathbf{A} = \mathbf{I}$, then $\mathbf{B} = \mathbf{C}$.

Proof. Multiply both sides of the first equation by *C*:

$$\mathbf{C} \cdot \mathbf{A} \cdot \mathbf{B} = \mathbf{C} \cdot \mathbf{I} \implies \mathbf{B} = \mathbf{C}$$

Corollary

If a matrix **A** has an inverse, it is unique.

\$

Explicitly computing the inverse, part I

- Suppose we wish to find \mathbf{A}^{-1} for $\mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$
- We need to find x, y, u, v with: $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} x & y \\ u & v \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
- Multiplying the matrices on the LHS:

$$\begin{pmatrix} ax + bu & ay + bv \\ cx + du & cy + dv \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

...gives a system of 4 equations:

$$\begin{cases} ax + bu = 1\\ cx + du = 0\\ ay + bv = 0\\ cy + dv = 1 \end{cases}$$

Computing the inverse: the 2×2 case, part II

- Splitting this into two systems:
 - $\begin{cases} ax + bu = 1 \\ cx + du = 0 \end{cases} \text{ and } \begin{cases} ay + bv = 0 \\ cv + dv = 1 \end{cases}$
- Solving the first system for (*u*, *x*) and the second system for (v, y) gives:

$$u = \frac{-c}{ad-bc}$$
 $x = \frac{d}{ad-bc}$ and $v = \frac{a}{ad-bc}$ $y = \frac{-b}{ad-bc}$

(assuming $ad - bc \neq 0$). Then:

$$\mathbf{A}^{-1} = \begin{pmatrix} x & y \\ u & v \end{pmatrix} = \begin{pmatrix} \frac{d}{ad-bc} & \frac{-b}{ad-bc} \\ \frac{-c}{ad-bc} & \frac{a}{ad-bc} \end{pmatrix}$$

learn this for-mula by heart • Conclusion: $\mathbf{A}^{-1} = \frac{1}{ad-bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$

Computing the inverse: the 2×2 case, part III

Summarizing:

Theorem (Existence of an inverse of a 2×2 matrix)

A 2×2 matrix

$$\mathbf{A} = \begin{pmatrix} \mathsf{a} & \mathsf{b} \\ \mathsf{c} & \mathsf{d} \end{pmatrix}$$

has an inverse (or: is invertible) if and only if $ad - bc \neq 0$, in which case its inverse is

$$\boldsymbol{A}^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

Radboud University Nijmegen

Example

Thus:

• Let
$$P = \begin{pmatrix} 0.8 & 0.1 \\ 0.2 & 0.9 \end{pmatrix}$$
, so $a = \frac{8}{10}, b = \frac{1}{10}, c = \frac{2}{10}, d = \frac{9}{10}$

•
$$ad - bc = \frac{72}{100} - \frac{2}{100} = \frac{70}{100} = \frac{7}{10} \neq 0$$
 so the inverse exists!

$$P^{-1} = \frac{1}{ad-bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$
$$= \frac{10}{7} \begin{pmatrix} 0.9 & -0.1 \\ -0.2 & 0.8 \end{pmatrix}$$

Then indeed:

$$\frac{10}{7} \begin{pmatrix} 0.9 & -0.1 \\ -0.2 & 0.8 \end{pmatrix} \cdot \begin{pmatrix} 0.8 & 0.1 \\ 0.2 & 0.9 \end{pmatrix} = \frac{10}{7} \begin{pmatrix} 0.7 & 0 \\ 0 & 0.7 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

 You could try to do this for bigger matrices, but it's very complicated. ⇒ Gauss elimination is way easier!