# Matrix Calculations: Linear maps, bases, and matrix multiplication 

A. Kissinger<br>Institute for Computing and Information Sciences<br>Radboud University Nijmegen

Version: autumn 2018

## Outline

Composing linear maps using matrices

Matrix inverse

Existence and uniqueness of inverse

## From last time

- Linear maps describe transformations in space, such as rotation:


$$
\operatorname{rx}\left(\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)\right)=\left(\begin{array}{c}
x \\
y \cos \theta-z \sin \theta \\
y \sin \theta+z \cos \theta
\end{array}\right)
$$

- reflection and scaling:


$$
\operatorname{sy}\left(\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)\right)=\left(\begin{array}{c}
x \\
(1 / 2) y \\
z
\end{array}\right)
$$

## From last time

- Linear maps can be represented as a matrix, using matrix multiplication:

$$
f(\boldsymbol{v})=\boldsymbol{A} \cdot \boldsymbol{v}
$$

- For example, then linear map:

$$
f\left(\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)\right)=\left(\begin{array}{c}
x \\
y \cos \theta-z \sin \theta \\
y \sin \theta+z \cos \theta
\end{array}\right)
$$

can be represented as:

$$
f(\underbrace{\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)}_{\boldsymbol{v}})=\underbrace{\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right)}_{\boldsymbol{A}} \cdot \underbrace{\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)}_{\boldsymbol{v}}
$$

## Matrix multiplication

- Consider linear maps $g, f$ represented by matrices $\boldsymbol{A}, \boldsymbol{B}$ :

$$
g(\boldsymbol{v})=\boldsymbol{A} \cdot \boldsymbol{v} \quad f(\boldsymbol{w})=\boldsymbol{B} \cdot \boldsymbol{w}
$$

- Can we find a matrix $\boldsymbol{C}$ that represents their composition?

$$
g(f(\boldsymbol{v}))=\boldsymbol{C} \cdot \boldsymbol{v}
$$

- Let's try:

$$
g(f(\boldsymbol{v}))=g(\boldsymbol{B} \cdot \boldsymbol{v})=\boldsymbol{A} \cdot(\boldsymbol{B} \cdot \boldsymbol{v}) \stackrel{(*)}{=}(\boldsymbol{A} \cdot \boldsymbol{B}) \cdot \boldsymbol{v}
$$

(where step $(*)$ is currently 'wishful thinking')

- Great! Let $\boldsymbol{C}:=\boldsymbol{A} \cdot \boldsymbol{B}$.
- But we don't know what "." means for two matrices yet...


## Matrix multiplication

- Solution: generalise from $\boldsymbol{A} \cdot \boldsymbol{v}$
- A vector is a matrix with one column:

The number in the $i$-th row and the first column of $\boldsymbol{A} \cdot \boldsymbol{v}$ is the dot product of the $i$-th row of $\boldsymbol{A}$ with the first column of $\boldsymbol{v}$.

- So for matrices $\boldsymbol{A}, \boldsymbol{B}$ :

The number in the $i$-th row and the $j$-th column of $\boldsymbol{A} \cdot \boldsymbol{B}$ is the dot product of the $i$-th row of $\boldsymbol{A}$ with the $j$-th column of $\boldsymbol{B}$.

## Matrix multiplication

For $\boldsymbol{A}$ an $m \times n$ matrix, $\boldsymbol{B}$ an $n \times p$ matrix:

$$
A \cdot B=C
$$

is an $m \times p$ matrix.

$$
\begin{gathered}
\left(\begin{array}{ccc}
\vdots & \vdots & \vdots \\
a_{i 1} & \cdots & a_{i n} \\
\vdots & \vdots & \vdots
\end{array}\right) \cdot\left(\begin{array}{ccc}
\cdots & b_{j 1} & \cdots \\
\cdots & \vdots & \cdots \\
\cdots & b_{j n} & \cdots
\end{array}\right)=\left(\begin{array}{ccc}
\ddots & \vdots & . \\
\cdots & c_{i j} & \cdots \\
\cdot & \vdots & \ddots
\end{array}\right) \\
c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}
\end{gathered}
$$

## Special case: vectors

For $\boldsymbol{A}$ an $m \times n$ matrix, $\boldsymbol{B}$ an $n \times 1$ matrix:

$$
A \cdot b=c
$$

is an $m \times 1$ matrix.

$$
\begin{gathered}
\left(\begin{array}{ccc}
\vdots & \vdots & \vdots \\
a_{i 1} & \cdots & a_{i n} \\
\vdots & \vdots & \vdots
\end{array}\right) \cdot\left(\begin{array}{c}
b_{11} \\
\vdots \\
b_{n 1}
\end{array}\right)=\left(\begin{array}{c}
\vdots \\
c_{i 1} \\
\vdots
\end{array}\right) \\
c_{i 1}=\sum_{k=1}^{n} a_{i k} b_{k 1}
\end{gathered}
$$

## Matrix composition

## Theorem

Matrix composition is associative:

$$
(\boldsymbol{A} \cdot \boldsymbol{B}) \cdot \boldsymbol{C}=\boldsymbol{A} \cdot(\boldsymbol{B} \cdot \boldsymbol{C})
$$

Proof. Let $\boldsymbol{X}:=\boldsymbol{A} \cdot \boldsymbol{B}$. This is a matrix with entries:

$$
x_{i p}=\sum_{k} a_{i k} b_{k p}
$$

Then, the matrix entries of $\boldsymbol{X} \cdot \boldsymbol{C}$ are:

$$
\sum_{p} x_{i p} c_{p j}=\sum_{p}\left(\sum_{k} a_{i k} b_{k p}\right) c_{p j}=\sum_{k p} a_{i k} b_{k p} c_{p j}
$$

(because sums can always be pulled outside, and combined)

## Associativity of matrix composition

Proof (cont'd). Now, let $\boldsymbol{Y}:=\boldsymbol{B} \cdot \boldsymbol{C}$. This has matrix entries:

$$
y_{k j}=\sum_{p} b_{k p} c_{p j}
$$

Then, the matrix entries of $\boldsymbol{A} \cdot \boldsymbol{Y}$ are:

$$
\sum_{k} a_{i k} y_{k j}=\sum_{k} a_{i k}\left(\sum_{p} b_{k p} c_{p j}\right)=\sum_{k p} a_{i k} b_{k p} c_{p j}
$$

...which is the same as before! So:

$$
(A \cdot B) \cdot C=X \cdot C=A \cdot Y=A \cdot(B \cdot C)
$$

So we can drop those pesky parentheses:

$$
\boldsymbol{A} \cdot \boldsymbol{B} \cdot \boldsymbol{C}:=(\boldsymbol{A} \cdot \boldsymbol{B}) \cdot \boldsymbol{C}=\boldsymbol{A} \cdot(\boldsymbol{B} \cdot \boldsymbol{C})
$$

## Matrix product and composition

## Corollary

The composition of linear maps is given by matrix product.
Proof. Let $g(\boldsymbol{w})=\boldsymbol{A} \cdot \boldsymbol{w}$ and $f(\boldsymbol{v})=\boldsymbol{B} \cdot \boldsymbol{v}$. Then:

$$
g(f(\boldsymbol{v}))=g(\boldsymbol{B} \cdot \boldsymbol{v})=\boldsymbol{A} \cdot \boldsymbol{B} \cdot \boldsymbol{v}
$$

No wishful thinking necessary!

## Example 1

Consider the following two linear maps, and their associated matrices:

$$
\begin{array}{cc}
\mathbb{R}^{3} \xrightarrow{f} \mathbb{R}^{2} & \mathbb{R}^{2} \xrightarrow{g} \mathbb{R}^{2} \\
f\left(\left(x_{1}, x_{2}, x_{3}\right)\right)=\left(x_{1}-x_{2}, x_{2}+x_{3}\right) & g\left(\left(y_{1}, y_{2}\right)\right)=\left(2 y_{1}-y_{2}, 3 y_{2}\right) \\
\boldsymbol{M}_{f}=\left(\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & 1
\end{array}\right) & \boldsymbol{M}_{g}=\left(\begin{array}{lc}
2 & -1 \\
0 & 3
\end{array}\right)
\end{array}
$$

We can compute the composition directly:

$$
\begin{aligned}
(g \circ f)\left(\left(x_{1}, x_{2}, x_{3}\right)\right) & =g\left(f\left(\left(x_{1}, x_{2}, x_{3}\right)\right)\right) \\
& =g\left(\left(x_{1}-x_{2}, x_{2}+x_{3}\right)\right) \\
& =\left(2\left(x_{1}-x_{2}\right)-\left(x_{2}+x_{3}\right), 3\left(x_{2}+x_{3}\right)\right) \\
& =\left(2 x_{1}-3 x_{2}-x_{3}, 3 x_{2}+3 x_{3}\right)
\end{aligned}
$$

So:

$$
M_{g \circ f}=\left(\begin{array}{ccc}
2 & -3 & -1 \\
0 & 3 & 3
\end{array}\right)
$$

...which is just the product of the matrices: $\boldsymbol{M}_{\mathrm{gof}}=\boldsymbol{M}_{\boldsymbol{g}} \cdot \boldsymbol{M}_{f}$

## Note: matrix composition is not commutative

In general, $\boldsymbol{A} \cdot \boldsymbol{B} \neq \boldsymbol{B} \cdot \boldsymbol{A}$
For instance: Take $\boldsymbol{A}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$ and $\boldsymbol{B}=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$. Then:

$$
\begin{aligned}
\boldsymbol{A} \cdot \boldsymbol{B} & =\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \cdot\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 \cdot 0+0 \cdot-1 & 1 \cdot 1+0 \cdot 0 \\
0 \cdot 0+-1 \cdot-1 & 0 \cdot 1+-1 \cdot 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
\boldsymbol{B} \cdot \boldsymbol{A} & =\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \cdot\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
& =\left(\begin{array}{cc}
0 \cdot 1+1 \cdot 0 & 0 \cdot 0+1 \cdot-1 \\
-1 \cdot 1+0 \cdot 0 & -1 \cdot 0+0 \cdot-1
\end{array}\right)=\left(\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right)
\end{aligned}
$$

## But it is...

...associative, as we've already seen:

$$
\boldsymbol{A} \cdot \boldsymbol{B} \cdot \boldsymbol{C}:=(\boldsymbol{A} \cdot \boldsymbol{B}) \cdot \boldsymbol{C}=\boldsymbol{A} \cdot(\boldsymbol{B} \cdot \boldsymbol{C})
$$

It also has a unit given by the identity matrix I:

$$
\boldsymbol{A} \cdot \boldsymbol{I}=\boldsymbol{I} \cdot \boldsymbol{A}=\boldsymbol{A}
$$

where:

$$
\boldsymbol{I}:=\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right)
$$

## Solving equations the old fashioned way...

- We now know that systems of equations look like this:

$$
\boldsymbol{A} \cdot \boldsymbol{x}=\boldsymbol{b}
$$

- The goal is to solve for $\boldsymbol{x}$, in terms of $\boldsymbol{A}$ and $\boldsymbol{b}$.
- Here comes some more wishful thinking:

$$
x=\frac{1}{\boldsymbol{A}} \cdot \boldsymbol{b}
$$

- Well, we can't really divide by a matrix, but if we are lucky, we can find another matrix called $\boldsymbol{A}^{-1}$ which acts like $\frac{1}{\boldsymbol{A}}$.


## Inverse

## Definition

The inverse of a matrix $\boldsymbol{A}$ is another matrix $\boldsymbol{A}^{-1}$ such that:

$$
\boldsymbol{A}^{-1} \cdot \boldsymbol{A}=\boldsymbol{A} \cdot \boldsymbol{A}^{-1}=\boldsymbol{I}
$$

- Not all matrices have inverses, but when they do, we are happy, because:

$$
\begin{aligned}
\boldsymbol{A} \cdot \boldsymbol{x}=\boldsymbol{b} & \Longrightarrow \quad \boldsymbol{A}^{-1} \cdot \boldsymbol{A} \cdot \boldsymbol{x}=\boldsymbol{A}^{-1} \cdot \boldsymbol{b} \\
& \Longrightarrow \quad \boldsymbol{x}=\boldsymbol{A}^{-1} \cdot \boldsymbol{b}
\end{aligned}
$$

- So, how do we compute the inverse of a matrix?


## Remember me?



## Gaussian elimination as matrix multiplication

- Each step of Gaussian elimination can be represented by a matrix multiplication:

$$
\boldsymbol{A} \Rightarrow \boldsymbol{A}^{\prime} \quad \boldsymbol{A}^{\prime}:=\boldsymbol{G} \cdot \boldsymbol{A}
$$

- For instance, multiplying the $i$-th row by $c$ is given by:

$$
\boldsymbol{G}_{\left(R_{i}:=c R_{i}\right)} \cdot \boldsymbol{A}
$$

where $\boldsymbol{G}_{\left(R_{i}:=c R_{i}\right)}$ is just like the identity matrix, but $g_{i i}=c$.

- Exercise. What are the other Gaussian elimination matrices?

$$
\boldsymbol{G}_{\left(R_{i} \leftrightarrow R_{j}\right)} \quad \boldsymbol{G}_{\left(R_{i}:=R_{i}+c R_{j}\right)}
$$

## Reduction to Echelon form

- The idea: treat $\boldsymbol{A}$ as a coefficient matrix, and compute its reduced Echelon form
- If the Echelon form of $\boldsymbol{A}$ has $n$ pivots, then its reduced Echelon form is the identity matrix:

$$
\boldsymbol{A} \Rightarrow \boldsymbol{A}_{1} \Rightarrow \boldsymbol{A}_{2} \Rightarrow \cdots \Rightarrow \boldsymbol{A}_{p}=\boldsymbol{I}
$$

- Now, we can use our Gauss matrices to remember what we did:

$$
\begin{aligned}
\boldsymbol{A}_{1} & :=\boldsymbol{G}_{1} \cdot \boldsymbol{A} \\
\boldsymbol{A}_{2} & :=\boldsymbol{G}_{2} \cdot \boldsymbol{G}_{1} \cdot \boldsymbol{A} \\
& \ldots \\
\boldsymbol{A}_{p} & :=\boldsymbol{G}_{p} \cdots \boldsymbol{G}_{1} \cdot \boldsymbol{A}=\boldsymbol{I}
\end{aligned}
$$

## Computing the inverse

- A ha!

$$
\boldsymbol{G}_{p} \cdots \boldsymbol{G}_{1} \cdot \boldsymbol{A}=\boldsymbol{I} \quad \Longrightarrow \quad \boldsymbol{A}^{-1}=\boldsymbol{G}_{p} \cdots \boldsymbol{G}_{1}
$$

- So all we have to do is construct $p$ different matrices and multiply them all together!
- Since I already have plans for this afternoon, lets take a shortcut.


## Computing the inverse

- Since Gaussian elimination is just multiplying by a certain matrix on the left...

$$
\boldsymbol{A} \Rightarrow \boldsymbol{G} \cdot \boldsymbol{A}
$$

- ...doing Gaussian elimination (for $\boldsymbol{A}$ ) on an augmented matrix applies $\boldsymbol{G}$ to both parts:

$$
(\boldsymbol{A} \mid \boldsymbol{B}) \Rightarrow(\boldsymbol{G} \cdot \boldsymbol{A} \mid \boldsymbol{G} \cdot \boldsymbol{B})
$$

- So, if $\boldsymbol{G}=\boldsymbol{A}^{-1}$ :

$$
(A \mid B) \Rightarrow\left(A^{-1} \cdot A \mid A^{-1} \cdot B\right)=\left(\boldsymbol{I} \mid A^{-1} \cdot B\right)
$$

## Computing the inverse

- We already (secretly) used this trick to solve:

$$
\boldsymbol{A} \cdot \boldsymbol{x}=\boldsymbol{b} \quad \Longrightarrow \quad \boldsymbol{x}=\boldsymbol{A}^{-1} \cdot \boldsymbol{b}
$$

- Here, we are only interested in the vector $\boldsymbol{A}^{-1} \cdot \boldsymbol{b}$
- Which is exactly what Gaussian elimination on the augmented matrix gives us:

$$
(\boldsymbol{A} \mid \boldsymbol{b}) \Rightarrow\left(\boldsymbol{I} \mid \boldsymbol{A}^{-1} \cdot \boldsymbol{b}\right)
$$

- To get the entire matrix, we just need to choose something clever to the right of the line
- Like this:

$$
(A \mid \boldsymbol{I}) \Rightarrow\left(\boldsymbol{I} \mid A^{-1} \cdot \boldsymbol{I}\right)=\left(\boldsymbol{I} \mid \boldsymbol{A}^{-1}\right)
$$

## Computing the inverse: example

For example, we compute the inverse of:

$$
\boldsymbol{A}:=\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right)
$$

as follows:

$$
\left(\begin{array}{ll|ll}
1 & 1 & 1 & 0 \\
1 & 2 & 0 & 1
\end{array}\right) \Rightarrow\left(\begin{array}{ll|cc}
1 & 1 & 1 & 0 \\
0 & 1 & -1 & 1
\end{array}\right) \Rightarrow\left(\begin{array}{ll|cc}
1 & 0 & 2 & -1 \\
0 & 1 & -1 & 1
\end{array}\right)
$$

So:

$$
\boldsymbol{A}^{-1}:=\left(\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right)
$$

## Computing the inverse: non-example

Unlike transpose, not every matrix has an inverse.
For example, if we try to compute the inverse for:

$$
B:=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)
$$

we have:

$$
\left(\begin{array}{ll|ll}
1 & 1 & 1 & 0 \\
1 & 1 & 0 & 1
\end{array}\right) \Rightarrow\left(\begin{array}{ll|cc}
1 & 1 & 1 & 0 \\
0 & 0 & -1 & 1
\end{array}\right)
$$

We don't have enough pivots to continue reducing. So $\boldsymbol{B}$ does not have an inverse.

## When does a matrix have an inverse?

## Theorem (Existence of inverses)

An $n \times n$ matrix has an inverse (or: is invertible) if and only if it has $n$ pivots in its echelon form.

Next time, we will introduce another criterion for a matrix to be invertible, using determinants.

## Uniqueness of the inverse

## Note

Matrix multiplication is not commutative, so it could (a priori) be the case that:

- $\boldsymbol{A}$ has a right inverse: a $\boldsymbol{B}$ such that $\boldsymbol{A} \cdot \boldsymbol{B}=\boldsymbol{I}$ and
- $\boldsymbol{A}$ has a (different) left inverse: a $\boldsymbol{C}$ such that $\boldsymbol{C} \cdot \boldsymbol{A}=\boldsymbol{I}$.

However, this doesn't happen.

## Uniqueness of the inverse

## Theorem

If a matrix $\boldsymbol{A}$ has a left inverse and a right inverse, then they are equal. If $\boldsymbol{A} \cdot \boldsymbol{B}=\boldsymbol{I}$ and $\boldsymbol{C} \cdot \boldsymbol{A}=\boldsymbol{I}$, then $\boldsymbol{B}=\boldsymbol{C}$.

Proof. Multiply both sides of the first equation by $\boldsymbol{C}$ :

$$
C \cdot A \cdot B=C \cdot I \quad \Longrightarrow \quad B=C
$$

Corollary
If a matrix $\boldsymbol{A}$ has an inverse, it is unique.

## Explicitly computing the inverse, part I

- Suppose we wish to find $\boldsymbol{A}^{-1}$ for $\boldsymbol{A}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$
- We need to find $x, y, u, v$ with:

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot\left(\begin{array}{ll}
x & y \\
u & v
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

- Multiplying the matrices on the LHS:

$$
\left(\begin{array}{cc}
a x+b u & a y+b v \\
c x+d u & c y+d v
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

- ...gives a system of 4 equations:

$$
\left\{\begin{array}{l}
a x+b u=1 \\
c x+d u=0 \\
a y+b v=0 \\
c y+d v=1
\end{array}\right.
$$

## Computing the inverse: the $2 \times 2$ case, part II

- Splitting this into two systems:

$$
\left\{\begin{array} { l } 
{ a x + b u = 1 } \\
{ c x + d u = 0 }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
a y+b v=0 \\
c y+d v=1
\end{array}\right.\right.
$$

- Solving the first system for $(u, x)$ and the second system for $(v, y)$ gives:

$$
u=\frac{-c}{a d-b c} \quad x=\frac{d}{a d-b c} \quad \text { and } \quad v=\frac{a}{a d-b c} \quad y=\frac{-b}{a d-b c}
$$

(assuming ad $-b c \neq 0$ ). Then:

$$
\boldsymbol{A}^{-1}=\left(\begin{array}{ll}
x & y \\
u & v
\end{array}\right)=\left(\begin{array}{cc}
\frac{d}{a d-b c} & \frac{-b}{a d-b c} \\
\frac{-c}{a d-b c} & \frac{a}{a d-b c}
\end{array}\right)
$$

- Conclusion: $\boldsymbol{A}^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)$
learn this formula by heart


## Computing the inverse: the $2 \times 2$ case, part III

Summarizing:

## Theorem (Existence of an inverse of a $2 \times 2$ matrix)

A $2 \times 2$ matrix

$$
\boldsymbol{A}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

has an inverse (or: is invertible) if and only if ad - $b c \neq 0$, in which case its inverse is

$$
\boldsymbol{A}^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

## Example

- Let $\boldsymbol{P}=\left(\begin{array}{ll}0.8 & 0.1 \\ 0.2 & 0.9\end{array}\right)$, so $a=\frac{8}{10}, b=\frac{1}{10}, c=\frac{2}{10}, d=\frac{9}{10}$
- $a d-b c=\frac{72}{100}-\frac{2}{100}=\frac{70}{100}=\frac{7}{10} \neq 0$ so the inverse exists!
- Thus:

$$
\begin{aligned}
\boldsymbol{P}^{-1} & =\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right) \\
& =\frac{10}{7}\left(\begin{array}{cc}
0.9 & -0.1 \\
-0.2 & 0.8
\end{array}\right)
\end{aligned}
$$

- Then indeed:

$$
\frac{10}{7}\left(\begin{array}{cc}
0.9 & -0.1 \\
-0.2 & 0.8
\end{array}\right) \cdot\left(\begin{array}{cc}
0.8 & 0.1 \\
0.2 & 0.9
\end{array}\right)=\frac{10}{7}\left(\begin{array}{cc}
0.7 & 0 \\
0 & 0.7
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

- You could try to do this for bigger matrices, but it's very complicated. $\Longrightarrow$ Gauss elimination is way easier!

