Matrix Calculations: Basis Transformation, Determinants, and Eigenvalues

A. Kissinger
Institute for Computing and Information Sciences
Radboud University Nijmegen

Version: autumn 2018

Outline

Change of basis

Determinants

Eigenvectors and Eigenvalues

Last time

- Any linear map can be represented as a matrix:

$$
f(\boldsymbol{v})=\boldsymbol{A} \cdot \boldsymbol{v} \quad g(\boldsymbol{v})=\boldsymbol{B} \cdot \boldsymbol{v}
$$

- Last time, we saw that composing linear maps could be done by multiplying their matrices:

$$
f(g(\boldsymbol{v}))=\boldsymbol{A} \cdot \boldsymbol{B} \cdot \boldsymbol{v}
$$

- Matrix multiplication is pretty easy:

$$
\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right) \cdot\left(\begin{array}{cc}
1 & -1 \\
0 & 4
\end{array}\right)=\left(\begin{array}{cc}
1 \cdot 1+2 \cdot 0 & 1 \cdot(-1)+2 \cdot 4 \\
3 \cdot 1+4 \cdot 0 & 3 \cdot(-1)+4 \cdot 4
\end{array}\right)=\left(\begin{array}{cc}
1 & 7 \\
3 & 13
\end{array}\right)
$$

...so if we can solve other stuff by matrix multiplication, we are pretty happy.

Last time

- For example, we can solve systems of linear equations:

$$
\boldsymbol{A} \cdot \boldsymbol{x}=\boldsymbol{b}
$$

...by finding the inverse of a matrix:

$$
\boldsymbol{x}=\boldsymbol{A}^{-1} \cdot \boldsymbol{b}
$$

- There is an easy shortcut formula for 2×2 matrices:

$$
\boldsymbol{A}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \quad \Longrightarrow \quad \boldsymbol{A}^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

...as long as $a d-b c \neq 0$.

- We'll see today that "ad-bc" is an example of a special number we can compute for any square matrix (not just 2×2) called the determinant.

Vectors in a basis

Recall: a basis for a vector space V is a set of vectors $\mathcal{B}=\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right\}$ in V such that:
(1) They uniquely span V, i.e. for all $\boldsymbol{v} \in V$, there exist unique a_{i} such that:

$$
\boldsymbol{v}=a_{1} \boldsymbol{v}_{1}+\ldots+a_{n} \boldsymbol{v}_{n}
$$

Because of this, we use a special notation for this linear combination:

$$
\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right)_{\mathcal{B}}:=a_{1} \boldsymbol{v}_{1}+\ldots+a_{n} \boldsymbol{v}_{n}
$$

Same vector, different outfits

The same vector can look different, depending on the choice of basis. Consider the standard basis: $\mathcal{S}=\{(1,0),(0,1)\}$ vs. another basis:

$$
\mathcal{B}=\left\{\binom{100}{0},\binom{100}{1}\right\}
$$

Is this a basis? Yes...

- It's independent because: $\left(\begin{array}{cc}100 & 100 \\ 0 & 1\end{array}\right)$ has 2 pivots.
- It's spanning because... we can make every vector in \mathcal{S} using linear combinations of vectors in \mathcal{B} :

$$
\binom{1}{0}=\frac{1}{100}\binom{100}{0} \quad\binom{0}{1}=\binom{100}{1}-\binom{100}{0}
$$

...so we can also make any vector in \mathbb{R}^{2}.

Same vector, different outfits

$$
\mathcal{S}=\left\{\binom{1}{0},\binom{0}{1}\right\} \quad \mathcal{B}=\left\{\binom{100}{0},\binom{100}{1}\right\}
$$

Examples:

$$
\begin{array}{ll}
\binom{100}{0}_{\mathcal{S}}=\binom{1}{0}_{\mathcal{B}} & \binom{300}{1}_{\mathcal{S}}=\binom{2}{1}_{\mathcal{B}} \\
\binom{1}{0}_{\mathcal{S}}=\binom{\frac{1}{100}}{0}_{\mathcal{B}} & \binom{0}{1}_{\mathcal{S}}=\binom{-1}{1}_{\mathcal{B}}
\end{array}
$$

Why???

- Many find the idea of multiple bases confusing at first...
- $\mathcal{S}=\{(1,0),(0,1)\}$ is a perfectly good basis for \mathbb{R}^{2}. Why bother with others?
(1) Some vector spaces don't have one "obvious" choice of basis. Example: subspaces $S \subseteq \mathbb{R}^{n}$.
(2) Sometimes it is way more efficient to write a vector with respect to a different basis, e.g.:

$$
\left(\begin{array}{c}
93718234 \\
-438203 \\
110224 \\
-5423204980 \\
\vdots
\end{array}\right)_{\mathcal{S}}=\left(\begin{array}{l}
1 \\
1 \\
0 \\
0 \\
\vdots
\end{array}\right)_{\mathcal{B}}
$$

(3) The choice of basis for vectors affects how we write matrices as well. Often this can be done cleverly. Example: JPEGs, MP3s, search engine rankings, ...

Transforming bases, part I

- Problem: given a vector written in $\mathcal{B}=\{(100,0),(100,1)\}$, how can we write it in the standard basis? Just use the definition:

$$
\binom{x}{y}_{\mathcal{B}}=x \cdot\binom{100}{0}+y \cdot\binom{100}{1}=\binom{100 x+100 y}{y}_{\mathcal{S}}
$$

- Or, as matrix multiplication:

$$
\underbrace{\left(\begin{array}{cc}
100 & 100 \\
0 & 1
\end{array}\right)}_{\boldsymbol{T}_{\mathcal{B} \Rightarrow \mathcal{S}}} \cdot \underbrace{\binom{x}{y}}_{\text {in basis } \mathcal{B}}=\underbrace{\binom{100 x+100 y}{y}}_{\text {in basis } \mathcal{S}}
$$

- Let $\boldsymbol{T}_{\mathcal{B} \Rightarrow \mathcal{S}}$ be the matrix whose columns are the basis vectors \mathcal{B}. Then $\boldsymbol{T}_{\mathcal{B} \Rightarrow \mathcal{S}}$ transforms a vector written in \mathcal{B} into a vector written in \mathcal{S}.

Transforming bases, part II

- How do we transform back? Need $\boldsymbol{T}_{\mathcal{S} \Rightarrow \mathcal{B}}$ which undoes the matrix $\boldsymbol{T}_{\mathcal{B} \Rightarrow \mathcal{S}}$.
- Solution: use the inverse! $\boldsymbol{T}_{\mathcal{S} \Rightarrow \mathcal{B}}:=\left(\boldsymbol{T}_{\mathcal{B} \Rightarrow \mathcal{S}}\right)^{-1}$
- Example:

$$
\left(\boldsymbol{T}_{\mathcal{B} \Rightarrow \mathcal{S}}\right)^{-1}=\left(\begin{array}{cc}
100 & 100 \\
0 & 1
\end{array}\right)^{-1}=\left(\begin{array}{cc}
\frac{1}{100} & -1 \\
0 & 1
\end{array}\right)
$$

- ...which indeed gives:

$$
\left(\begin{array}{cc}
\frac{1}{100} & -1 \\
0 & 1
\end{array}\right) \cdot\binom{a}{b}=\binom{\frac{a-100 b}{100}}{b}
$$

Matrices in other bases

- Since vectors can be written with respect to different bases, so too can matrices.
- For example, let g be the linear map defined by:

$$
g\left(\binom{1}{0}_{\mathcal{S}}\right)=\binom{0}{1}_{\mathcal{S}} \quad g\left(\binom{0}{1}_{\mathcal{S}}\right)=\binom{1}{0}_{\mathcal{S}}
$$

- Then, naturally, we would represent g using the matrix:

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)_{\mathcal{S}}
$$

- Because indeed:

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \cdot\binom{1}{0}=\binom{0}{1} \quad \text { and } \quad\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \cdot\binom{0}{1}=\binom{1}{0}
$$

(the columns say where each of the vectors in \mathcal{S} go, written in the basis \mathcal{S})

On the other hand...

- Lets look at what g does to another basis:

$$
\mathcal{B}=\left\{\binom{1}{1},\binom{1}{-1}\right\}
$$

- First $(1,1) \in \mathcal{B}$:

$$
g\left(\binom{1}{0}_{\mathcal{B}}\right)=g\left(\binom{1}{1}\right)=g\left(\binom{1}{0}+\binom{0}{1}\right)=\ldots
$$

- Then, by linearity:

$$
\ldots=g\left(\binom{1}{0}\right)+g\left(\binom{0}{1}\right)=\binom{0}{1}+\binom{1}{0}=\binom{1}{1}=\binom{1}{0}_{\mathcal{B}}
$$

On the other hand...

$$
\mathcal{B}=\left\{\binom{1}{1},\binom{1}{-1}\right\}
$$

- Similarly $(1,-1) \in \mathcal{B}$:

$$
g\left(\binom{0}{1}_{\mathcal{B}}\right)=g\left(\binom{1}{-1}\right)=g\left(\binom{1}{0}-\binom{0}{1}\right)=\ldots
$$

- Then, by linearity:
$\ldots=g\left(\binom{1}{0}\right)-g\left(\binom{0}{1}\right)=\binom{0}{1}-\binom{1}{0}=\binom{-1}{1}=\binom{0}{-1}_{\mathcal{B}}$

A new matrix

- From this:

$$
g\left(\binom{1}{0}_{\mathcal{B}}\right)=\binom{1}{0}_{\mathcal{B}} \quad g\left(\binom{0}{1}_{\mathcal{B}}\right)=\binom{0}{-1}_{\mathcal{B}}
$$

- It follows that we should instead use this matrix to represent g :

$$
\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)_{\mathcal{B}}
$$

- Because indeed:

$$
\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \cdot\binom{1}{0}=\binom{1}{0} \quad \text { and } \quad\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \cdot\binom{0}{1}=\binom{0}{-1}
$$

(the columns say where each of the vectors in \mathcal{B} go, written in the basis \mathcal{B})

A new matrix

- So on different bases, g acts in a totally different way!

$$
\begin{array}{ll}
g\left(\binom{1}{0}_{\mathcal{S}}\right)=\binom{0}{1}_{\mathcal{S}} & g\left(\binom{0}{1}_{\mathcal{S}}\right)=\binom{1}{0}_{\mathcal{S}} \\
g\left(\binom{1}{0}_{\mathcal{B}}\right)=\binom{1}{0}_{\mathcal{B}} & g\left(\binom{0}{1}_{\mathcal{B}}\right)=\binom{0}{-1}_{\mathcal{B}}
\end{array}
$$

- ...and hence gets a totally different matrix:

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)_{\mathcal{S}} \quad \text { vs. } \quad\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)_{\mathcal{B}}
$$

Transforming bases, part II

Theorem

Let \mathcal{B} be a basis. If a linear map $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ has a matrix \boldsymbol{A} computed using the standard basis \mathcal{S}, and a matrix \boldsymbol{A}^{\prime} computed using \mathcal{B}, then:

$$
\boldsymbol{A}=\boldsymbol{T}_{\mathcal{B} \Rightarrow \mathcal{S}} \cdot \boldsymbol{A}^{\prime} \cdot \boldsymbol{T}_{\mathcal{S} \Rightarrow \mathcal{B}}
$$

n.b. the matrices \boldsymbol{A} and \boldsymbol{A}^{\prime} are called similar, because they represent the same linear map in different ways.

For example

$$
\mathcal{S}=\left\{\binom{1}{0},\binom{0}{1}\right\} \quad \mathcal{B}=\left\{\binom{1}{1},\binom{1}{-1}\right\}
$$

- Two bases give two different matrices for g :

$$
\boldsymbol{A}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)_{\mathcal{S}} \quad \quad \boldsymbol{A}^{\prime}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)_{\mathcal{B}}
$$

- Then, the theorem says we have: $\boldsymbol{A}=\boldsymbol{T}_{\mathcal{B} \Rightarrow \mathcal{S}} \cdot \boldsymbol{A}^{\prime} \cdot \boldsymbol{T}_{\mathcal{S} \Rightarrow \mathcal{B}}$
- Indeed, we can check:

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \cdot\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \cdot \frac{1}{-2}\left(\begin{array}{cc}
-1 & -1 \\
-1 & 1
\end{array}\right)
$$

There and back again

- To translate from a matrix written in \mathcal{B} to a matrix written in \mathcal{S}, we do this:

$$
\underbrace{\boldsymbol{A}}_{\text {in } \mathcal{S}}=\boldsymbol{T}_{\mathcal{B} \Rightarrow \mathcal{S}} \cdot \underbrace{\boldsymbol{A}^{\prime}}_{\text {in } \mathcal{B}} \cdot \boldsymbol{T}_{\mathcal{S} \Rightarrow \mathcal{B}}
$$

- Since $\boldsymbol{T}_{\mathcal{S} \Rightarrow \mathcal{B}}=\left(\boldsymbol{T}_{\mathcal{B} \Rightarrow \mathcal{S}}\right)^{-1}$, we can go the other way like this:

$$
\underbrace{\boldsymbol{A}^{\prime}}_{\text {in } \mathcal{B}}=\boldsymbol{T}_{\mathcal{S} \Rightarrow \mathcal{B}} \cdot \underbrace{\boldsymbol{A}}_{\text {in } \mathcal{S}} \cdot \boldsymbol{T}_{\mathcal{B} \Rightarrow \mathcal{S}}
$$

- How to remember? Look at the blue matrix.

Example (from \mathcal{S} to \mathcal{B})

- Consider the standard basis $\mathcal{S}=\{(1,0),(0,1)\}$ for \mathbb{R}^{2}, and as alternative basis $\mathcal{B}=\{(-1,1),(0,2)\}$
- Let the linear map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be represented in the standard basis \mathcal{S} by the following matrix:

$$
\boldsymbol{A}=\left(\begin{array}{cc}
1 & -1 \\
2 & 3
\end{array}\right)
$$

- What is the representation \boldsymbol{A}^{\prime} of f in the basis \mathcal{B} ?
- Since \mathcal{S} is the standard basis, $\boldsymbol{T}_{\mathcal{B} \Rightarrow \mathcal{S}}=\left(\begin{array}{cc}-1 & 0 \\ 1 & 2\end{array}\right)$ contains the \mathcal{B}-vectors as its columns

Example (from \mathcal{S} to \mathcal{B}, cont'd)

- The basis transformation matrix $\boldsymbol{T}_{\mathcal{S} \Rightarrow \mathcal{B}}$ in the other direction is obtained as matrix inverse:

$$
\boldsymbol{T}_{\mathcal{S} \Rightarrow \mathcal{B}}=\left(\boldsymbol{T}_{\mathcal{B} \Rightarrow \mathcal{S}}\right)^{-1}=\left(\begin{array}{cc}
-1 & 0 \\
1 & 2
\end{array}\right)^{-1}=\frac{1}{-2-0}\left(\begin{array}{cc}
2 & 0 \\
-1 & -1
\end{array}\right)=\frac{1}{2}\left(\begin{array}{cc}
-2 & 0 \\
1 & 1
\end{array}\right)
$$

- Hence:

$$
\begin{aligned}
\boldsymbol{A}^{\prime} & =\boldsymbol{T}_{\mathcal{S} \Rightarrow \mathcal{B}} \cdot \boldsymbol{A} \cdot \boldsymbol{T}_{\mathcal{B} \Rightarrow \mathcal{S}} \\
& =\frac{1}{2}\left(\begin{array}{cc}
-2 & 0 \\
1 & 1
\end{array}\right) \cdot\left(\begin{array}{cc}
1 & -1 \\
2 & 3
\end{array}\right) \cdot\left(\begin{array}{cc}
-1 & 0 \\
1 & 2
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{cc}
-2 & 2 \\
3 & 2
\end{array}\right) \cdot\left(\begin{array}{cc}
-1 & 0 \\
1 & 2
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{cc}
4 & 4 \\
-1 & 4
\end{array}\right) \\
& =\left(\begin{array}{cc}
2 & 2 \\
-\frac{1}{2} & 2
\end{array}\right)
\end{aligned}
$$

The magic basis

- Recall: diagonal matrices correspond to rescaling each of the axes:

$$
\boldsymbol{D}=\left(\begin{array}{lll}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c
\end{array}\right)
$$

- These matrices are really easy to work with
- Most matrices (secretly) have their own basis, i.e. a basis where they are diagonal
- This is called the eigenbasis of the matrix

The magic basis

- Scaling each of the basis vectors means:

$$
\boldsymbol{A} \cdot \boldsymbol{v}=\lambda \boldsymbol{v}
$$

for each $\boldsymbol{v} \in \mathcal{B}$.

- Rewritten, thats:
$\boldsymbol{A} \cdot \boldsymbol{v}-\lambda \boldsymbol{v}=\mathbf{0} \quad \Rightarrow \quad \boldsymbol{A} \cdot \boldsymbol{v}-\lambda \boldsymbol{I} \cdot \boldsymbol{v}=\mathbf{0} \quad \Rightarrow \quad(\boldsymbol{A}-\lambda \boldsymbol{I}) \cdot \boldsymbol{v}=\mathbf{0}$
- Need to find non-zero solutions to $(\boldsymbol{A}-\lambda \boldsymbol{I}) \cdot \boldsymbol{v}=\mathbf{0}$.
- That happens whenever $(\boldsymbol{A}-\lambda \boldsymbol{I})$ has $<n$ pivots.
- If only there was a way to find a λ where that happens....

Determinants

What a determinant does

For an $n \times n$ matrix \boldsymbol{A}, the determinant $\operatorname{det}(\boldsymbol{A})$ is a number (in \mathbb{R}) It satisfies:

$$
\begin{aligned}
\operatorname{det}(\boldsymbol{A})=0 & \Longleftrightarrow \boldsymbol{A} \text { is not invertible } \\
& \Longleftrightarrow \boldsymbol{A}^{-1} \text { does not exist } \\
& \Longleftrightarrow \boldsymbol{A} \text { has }<n \text { pivots in its echolon form }
\end{aligned}
$$

Determinants have useful properties, but calculating determinants involves some work.

Determinant of a 2×2 matrix

- Assume $\boldsymbol{A}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$
- Recall that the inverse \boldsymbol{A}^{-1} exists if and only if $a d-b c \neq 0$, and in that case is:

$$
A^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

- In this 2×2-case we define:

$$
\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c
$$

- Thus, indeed: $\operatorname{det}(\boldsymbol{A})=0 \Longleftrightarrow \boldsymbol{A}^{-1}$ does not exist.

Determinant of a 2×2 matrix: example

- Example:

$$
\boldsymbol{A}=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)
$$

- Then:

$$
\operatorname{det}(\boldsymbol{A})=1 \cdot 4-2 \cdot 3=4-6=-2
$$

- $\operatorname{det}(\boldsymbol{A})=-2 \neq 0 \Longrightarrow \boldsymbol{A}$ is invertible!
- Indeed, we can compute:

$$
\boldsymbol{A}^{-1}=\frac{1}{\operatorname{det}(A)}\left(\begin{array}{cc}
4 & -2 \\
-3 & 1
\end{array}\right)=\frac{1}{-2}\left(\begin{array}{cc}
4 & -2 \\
-3 & 1
\end{array}\right)=\frac{1}{2}\left(\begin{array}{cc}
-4 & 2 \\
3 & -1
\end{array}\right)
$$

Determinant of a 3×3 matrix

- Assume $\boldsymbol{A}=\left(\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right)$
- Then one defines:
$\begin{aligned} \operatorname{det} \boldsymbol{A} & =\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right| \\ & =+a_{11} \cdot\left|\begin{array}{ll}a_{22} & a_{23} \\ a_{32} & a_{33}\end{array}\right|-a_{21} \cdot\left|\begin{array}{ll}a_{12} & a_{13} \\ a_{32} & a_{33}\end{array}\right|+a_{31} \cdot\left|\begin{array}{ll}a_{12} & a_{13} \\ a_{22} & a_{23}\end{array}\right|\end{aligned}$
- Methodology:
- take entries $a_{i 1}$ from first column, with alternating signs (+, -)
- take determinant from square submatrix obtained by deleting the first column and the i-th row

Determinant of a 3×3 matrix, example

$$
\begin{aligned}
\left|\begin{array}{ccc}
1 & 2 & -1 \\
5 & 3 & 4 \\
-2 & 0 & 1
\end{array}\right| & =1\left|\begin{array}{cc}
3 & 4 \\
0 & 1
\end{array}\right|-5\left|\begin{array}{cc}
2 & -1 \\
0 & 1
\end{array}\right|+-2\left|\begin{array}{cc}
2 & -1 \\
3 & 4
\end{array}\right| \\
& =(3-0)-5(2-0)-2(8+3) \\
& =3-10-22 \\
& =-29
\end{aligned}
$$

The general, $n \times n$ case

$$
\begin{aligned}
& \left|\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & & \vdots \\
a_{n 1} & \cdots & a_{n n}
\end{array}\right|=+a_{11} \cdot\left|\begin{array}{ccc}
a_{22} & \cdots & a_{2 n} \\
\vdots & & \vdots \\
a_{n 2} & \cdots & a_{n n}
\end{array}\right|-a_{21} \cdot\left|\begin{array}{ccc}
a_{12} & \cdots & a_{1 n} \\
a_{32} & \cdots & a_{3 n} \\
\vdots & & \vdots \\
a_{n 2} & \cdots & a_{n n}
\end{array}\right| \\
& +a_{31}\left|\begin{array}{c}
\cdots \\
\cdots \\
\cdots
\end{array}\right| \quad \cdots \quad \pm a_{n 1}\left|\begin{array}{ccc}
a_{12} & \cdots & a_{1 n} \\
\vdots & & \vdots \\
a_{(n-1) 2} & \cdots & a_{(n-1) n}
\end{array}\right|
\end{aligned}
$$

(where the last sign \pm is + if n is odd and - if n is even)
Then, each of the smaller determinants is computed recursively.

Summary

- Determinants detect when a matrix is invertible
- Though we showed an inefficient way to compute determinants, there is a more efficient algorithm using, you guessed it...Gaussian elimination!
- Solutions to non-homogeneous systems in inverses of matrices can be expressed directly in terms of determinants using Cramer's rule (wiki it!)
- Most importantly: determinants will now be used to calculate eigenvalues.

Eigenvectors and eigenvalues

Some matrices have a 'magic basis', which turns them into diagonal matrices. This basis consists of eigenvectors:

Definition

Assume an $n \times n$ matrix \boldsymbol{A}.
An eigenvector for \boldsymbol{A} is a non-zero vector $\boldsymbol{v} \neq 0$ for which there is an eigenvalue $\lambda \in \mathbb{R}$ with:

$$
\boldsymbol{A} \cdot \boldsymbol{v}=\lambda \cdot \boldsymbol{v}
$$

Example

$$
\binom{1}{2} \text { is an eigenvector for } \boldsymbol{P}=\frac{1}{10}\left(\begin{array}{ll}
8 & 1 \\
2 & 9
\end{array}\right) \text { with eigenvalue } \lambda=1
$$

Finding eigenvalues

- We want an eigenvector \boldsymbol{v} and eigenvalue λ :

$$
\boldsymbol{A} \cdot \boldsymbol{v}=\lambda \boldsymbol{v}
$$

- So, (from before) we need the matrix $\boldsymbol{A}-\lambda \cdot \boldsymbol{I}$ to have $<n$ pivots in its echelon form
- That means $\boldsymbol{A}-\lambda \cdot \boldsymbol{I}$ is not-invertible, i.e.:

$$
\operatorname{det}(\boldsymbol{A}-\lambda \cdot \boldsymbol{I})=0
$$

Finding eigenvalues

$$
\operatorname{det}(\boldsymbol{A}-\lambda \cdot \boldsymbol{I})=0
$$

- $\operatorname{det}(\boldsymbol{A}-\lambda \cdot \boldsymbol{I})$ is a polynomial, with λ as a variable. It is called the characteristic polynomial
- Solving the equation gives us eigenvalues.
- Once we have eigen values, eigenvectors are easy (coming soon...)

Eigenvalue example I

- Task: find eigenvalues of matrix $\boldsymbol{A}=\left(\begin{array}{ll}1 & 5 \\ 3 & 3\end{array}\right)$
- $\boldsymbol{A}-\lambda \cdot \boldsymbol{I}=\left(\begin{array}{ll}1 & 5 \\ 3 & 3\end{array}\right)-\left(\begin{array}{ll}\lambda & 0 \\ 0 & \lambda\end{array}\right)=\left(\begin{array}{cc}1-\lambda & 5 \\ 3 & 3-\lambda\end{array}\right)$
- Thus:

$$
\begin{aligned}
\operatorname{det}(A-\lambda \cdot I)=0 & \Longleftrightarrow\left|\begin{array}{cc}
1-\lambda & 5 \\
3 & 3-\lambda
\end{array}\right|=0 \\
& \Longleftrightarrow(1-\lambda)(3-\lambda)-5 \cdot 3=0 \\
& \Longleftrightarrow \lambda^{2}-4 \lambda-12=0 \\
& \Longleftrightarrow(\lambda-6)(\lambda+2)=0 \\
& \Longleftrightarrow \lambda=6 \text { or } \lambda=-2 .
\end{aligned}
$$

Recall: quadratic formula

- Consider a second-degree (quadratic) equation

$$
a x^{2}+b x+c=0 \quad(\text { for } a \neq 0)
$$

- Its solutions are:

$$
s_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

- These solutions coincide (ie. $s_{1}=s_{2}$) if $b^{2}-4 a c=0$
- Real solutions do not exist if $b^{2}-4 a c<0$
(But complex number solutions do exist in this case.)

Eigenvalue example II

- Task: find eigenvalues of matrix $\boldsymbol{A}=\frac{1}{2}\left(\begin{array}{cc}5 & -1 \\ -1 & 5\end{array}\right)$
- $\boldsymbol{A}-\lambda \cdot \boldsymbol{I}=\left(\begin{array}{cc}\frac{5}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{5}{2}\end{array}\right)-\left(\begin{array}{ll}\lambda & 0 \\ 0 & \lambda\end{array}\right)=\left(\begin{array}{cc}\frac{5}{2}-\lambda & -\frac{1}{2} \\ -\frac{1}{2} & \frac{5}{2}-\lambda\end{array}\right)$
- Thus:

$$
\begin{aligned}
& \Longleftrightarrow\left|\begin{array}{cc}
\frac{5}{2}-\lambda & -\frac{1}{2} \\
-\frac{1}{2} & \frac{5}{2}-\lambda
\end{array}\right|=0 \\
& \Longleftrightarrow\left(\frac{5}{2}-\lambda\right)\left(\frac{5}{2}-\lambda\right)-\left(-\frac{1}{2}\right)\left(-\frac{1}{2}\right)=0 \\
& \Longleftrightarrow \lambda^{2}-5 \lambda+\frac{25}{4}-\frac{1}{4}=0 \\
& \Longleftrightarrow \lambda^{2}-5 \lambda+6=0 \\
& \Longleftrightarrow \lambda_{1,2}=\frac{+5 \pm \sqrt{25-4 \cdot 1 \cdot 6}}{2}=\frac{5 \pm 1}{2} \\
& \Longleftrightarrow \lambda_{1}=2 \text { and } \lambda_{2}=3
\end{aligned}
$$

Next time: putting it all together

- Once we know eigenvalues, getting eigenvectors is easy. Find any non-zero solutions for:

$$
\boldsymbol{A} \cdot \boldsymbol{v}=\lambda \boldsymbol{v} \quad \Leftrightarrow \quad(\boldsymbol{A}-\lambda \boldsymbol{I}) \cdot \boldsymbol{v}=\mathbf{0}
$$

- This is a homogeneous system, which we can solve
- Solve using λ_{1} to get $\boldsymbol{v}_{1}, \lambda_{2}$ to get \boldsymbol{v}_{2}, and so on. Gives us an eigenbasis:

$$
\mathcal{B}=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots\right\}
$$

- Transforming \boldsymbol{A} to the basis \mathcal{B} gives us a diagonal matrix:

$$
\boldsymbol{T}_{\mathcal{S} \Rightarrow \mathcal{B}} \cdot \boldsymbol{A} \cdot \boldsymbol{T}_{\mathcal{B} \Rightarrow \mathcal{S}}=\left(\begin{array}{cccc}
\lambda_{1} & 0 & 0 & \cdots \\
0 & \lambda_{2} & 0 & \cdots \\
\vdots & \vdots & \ddots & \vdots
\end{array}\right)
$$

- ...and this is useful!

