Matrix Calculations: Diagonalisation, Orthogonality, and Applications

A. Kissinger
Institute for Computing and Information Sciences
Radboud University Nijmegen

Version: autumn 2018

Last time

- Vectors look different in different bases, e.g. for:

$$
\mathcal{B}=\left\{\binom{1}{1},\binom{1}{-1}\right\} \quad \mathcal{C}=\left\{\binom{1}{1},\binom{1}{2}\right\}
$$

- we have:

$$
\binom{1}{0}_{\mathcal{S}}=\binom{\frac{1}{2}}{\frac{1}{2}}_{\mathcal{B}}=\binom{2}{-1}_{\mathcal{C}}
$$

Last time

$$
\mathcal{B}=\left\{\binom{1}{1},\binom{1}{-1}\right\} \quad \mathcal{C}=\left\{\binom{1}{1},\binom{1}{2}\right\}
$$

- We can transform bases using basis transformation matrices. Going to standard basis is easy (basis elements are columns):

$$
\boldsymbol{T}_{\mathcal{B} \Rightarrow \mathcal{S}}=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \quad \boldsymbol{T}_{\mathcal{C} \Rightarrow \mathcal{S}}=\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right)
$$

- ...coming back means taking the inverse:

$$
\begin{gathered}
\boldsymbol{T}_{\mathcal{S} \Rightarrow \mathcal{B}}=\left(\boldsymbol{T}_{\mathcal{B} \Rightarrow \mathcal{S}}\right)^{-1}=\frac{1}{2}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \\
\boldsymbol{T}_{\mathcal{S} \Rightarrow \mathcal{C}}=\left(\boldsymbol{T}_{\mathcal{C} \Rightarrow \mathcal{S}}\right)^{-1}=\left(\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right)
\end{gathered}
$$

Last time

- The change of basis of a vector is computed by applying the matrix. For example, changing from \mathcal{S} to \mathcal{B} is:

$$
\boldsymbol{v}^{\prime}=\boldsymbol{T}_{\mathcal{S} \Rightarrow \mathcal{B}} \cdot \boldsymbol{v}
$$

- The change of basis for a matrix is computed by surrounding it with basis-change matrices.
- Changing from a matrix \boldsymbol{A} in \mathcal{S} to a matrix \boldsymbol{A}^{\prime} in \mathcal{B} is:

$$
\boldsymbol{A}^{\prime}=\boldsymbol{T}_{\mathcal{S} \Rightarrow \mathcal{B}} \cdot \boldsymbol{A} \cdot \boldsymbol{T}_{\mathcal{B} \Rightarrow \mathcal{S}}
$$

- (Memory aid: look at the first matrix after the equals sign to see what basis transformation you are doing.)
- Many linear maps have their 'own' basis, their eigenbasis, which has the property that all basis elements $\boldsymbol{v} \in \mathcal{B}$ do this:

$$
\boldsymbol{A} \cdot \boldsymbol{v}=\lambda \boldsymbol{v}
$$

- λ is called an eigenvalue, \boldsymbol{v} is called an eigenvector.
- Eigenvalues are computed by solving:

$$
\operatorname{det}(\boldsymbol{A}-\lambda \boldsymbol{I})=0
$$

Outline

Eigenvectors and diagonalisation

Inner products and orthogonality

Wrapping up

Computing eigenvectors

- For an $n \times n$ matrix, the equation $\operatorname{det}(\boldsymbol{A}-\lambda \boldsymbol{I})=0$ has n solutions, which we'll write as: $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$
- (e.g. a 2×2 matrix involves solving a quadratic equation, which has 2 solutions λ_{1} and λ_{2})
- For each of these solutions, we get a homogeneous system:

$$
\underbrace{\left(\boldsymbol{A}-\lambda_{i} \boldsymbol{I}\right)}_{\text {matrix }} \cdot \boldsymbol{v}_{i}=\mathbf{0}
$$

- Solving this homogeneous system gives us the associated eigenvector \boldsymbol{v}_{i} for the eigenvalue λ_{i}

Example

- This matrix:

$$
\boldsymbol{A}=\left(\begin{array}{ll}
1 & -2 \\
0 & -1
\end{array}\right)
$$

- Has characteristic polynomial:

$$
\operatorname{det}\left(\begin{array}{cc}
-\lambda+1 & -2 \\
0 & -\lambda-1
\end{array}\right)=\lambda^{2}-1
$$

- The equation $\lambda^{2}-1=0$ has 2 solutions: $\lambda_{1}=1$ and $\lambda_{2}=-1$.

Example

- For $\lambda_{1}=1$, we get a homogeneous system:

$$
\left(\boldsymbol{A}-\lambda_{1} \cdot \boldsymbol{I}\right) \cdot \boldsymbol{v}_{1}=\mathbf{0}
$$

- Computing ($\boldsymbol{A}-(1) \cdot \boldsymbol{I})$:

$$
\left(\begin{array}{ll}
1 & -2 \\
0 & -1
\end{array}\right)-(1) \cdot\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
0 & -2 \\
0 & -2
\end{array}\right)
$$

- So, we need to find a non-zero solution for:

$$
\left(\begin{array}{ll}
0 & -2 \\
0 & -2
\end{array}\right) \cdot \boldsymbol{v}_{1}=\mathbf{0}
$$

(just like in lecture 2)

- This works: $\boldsymbol{v}_{1}=\binom{0}{1}$

Example

- For $\lambda_{2}=-1$, we get another homogeneous system:

$$
\left(\boldsymbol{A}-\lambda_{2} \cdot \boldsymbol{I}\right) \cdot \boldsymbol{v}_{2}=\mathbf{0}
$$

- Computing ($\boldsymbol{A}-(-1) \cdot \boldsymbol{I})$:

$$
\left(\begin{array}{ll}
1 & -2 \\
0 & -1
\end{array}\right)-(-1) \cdot\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
2 & -2 \\
0 & 0
\end{array}\right)
$$

- So, we need to find a non-zero solution for:

$$
\left(\begin{array}{cc}
2 & -2 \\
0 & 0
\end{array}\right) \cdot \boldsymbol{v}_{2}=\mathbf{0}
$$

- This works: $\boldsymbol{v}_{2}=\binom{1}{1}$

Example

So, for the matrix \boldsymbol{A}, we computed 2 eigenvalue/eigenvector pairs:

$$
\begin{gathered}
\lambda_{1}=1, \quad \boldsymbol{v}_{1}=\binom{0}{1} \\
\text { and } \\
\lambda_{2}=-1, \quad \boldsymbol{v}_{2}=\binom{1}{1}
\end{gathered}
$$

Theorem

If the eigenvalues of a matrix \boldsymbol{A} are all different, then their associated eigenvectors form a basis.

Proof. We need to prove the \boldsymbol{v}_{i} are all linearly independent. Then suppose (for contradiction) that $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}$ are linearly dependent, i.e.:

$$
c_{1} \boldsymbol{v}_{1}+c_{2} \boldsymbol{v}_{2}+\ldots+c_{n} \boldsymbol{v}_{n}=\mathbf{0}
$$

for k non-zero coefficients. Then, using that they are eigvectors:

$$
\boldsymbol{A} \cdot\left(c_{1} \mathbf{v}_{1}+\ldots+c_{n} \mathbf{v}_{n}\right)=\mathbf{0} \Longrightarrow \lambda_{1} c_{1} \mathbf{v}_{1}+\ldots+\lambda_{n} c_{n} \boldsymbol{v}_{n}=\mathbf{0}
$$

Suppose $c_{j} \neq 0$, then subtract $\frac{1}{\lambda_{j}}$ times 2 nd equation from the 1 st equation:

$$
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\ldots+c_{n} \boldsymbol{v}_{n}-\frac{1}{\lambda_{j}}\left(\lambda_{1} c_{1} \mathbf{v}_{1}+\ldots+\lambda_{n} c_{n} \boldsymbol{v}_{n}\right)=\mathbf{0}
$$

This has $k-1$ non-zero coefficients (because all the λ_{i} 's are distinct). Repeat until we have just 1 non-zero coefficient, and we have:

$$
c_{j} \boldsymbol{v}_{k}=\mathbf{0} \Longrightarrow \boldsymbol{v}_{k}=\mathbf{0}
$$

but eigenvectors are always non-zero, so this is a contradiction.

Changing basis

- Once we have a basis of eigenvectors $\mathcal{B}=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\}$, translating to \mathcal{B} gives us a diagonal matrix, whose diagonal entries are the eigenvalues:

$$
\boldsymbol{T}_{\mathcal{S} \Rightarrow \mathcal{B}} \cdot \boldsymbol{A} \cdot \boldsymbol{T}_{\mathcal{B} \Rightarrow \mathcal{S}}=\boldsymbol{D} \quad \text { where } \quad \boldsymbol{D}=\left(\begin{array}{cccc}
\lambda_{1} & 0 & 0 & 0 \\
0 & \lambda_{2} & 0 & 0 \\
0 & 0 & \cdots & 0 \\
0 & 0 & 0 & \lambda_{n}
\end{array}\right)
$$

- Going the other direction, we can always write \boldsymbol{A} in terms of a diagonal matrix:

$$
\boldsymbol{A}=\boldsymbol{T}_{\mathcal{B} \Rightarrow \mathcal{S}} \cdot \boldsymbol{D} \cdot \boldsymbol{T}_{\mathcal{S} \Rightarrow \mathcal{B}}
$$

Definition

For a matrix \boldsymbol{A} with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ and eigenvectors $\mathcal{B}=\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right\}$, decomposing \boldsymbol{A} as:

$$
\boldsymbol{A}=\boldsymbol{T}_{\mathcal{B} \Rightarrow \mathcal{S}} \cdot\left(\begin{array}{cccc}
\lambda_{1} & 0 & 0 & 0 \\
0 & \lambda_{2} & 0 & 0 \\
0 & 0 & \cdots & 0 \\
0 & 0 & 0 & \lambda_{n}
\end{array}\right) \cdot \boldsymbol{T}_{\mathcal{S} \Rightarrow \mathcal{B}}
$$

is called diagonalising the matrix \boldsymbol{A}.

Summary: diagonalising a matrix (study this slide!)

We diagonalise a matrix \boldsymbol{A} as follows:
(1) Compute each eigenvalue $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ by solving the characteristic polynomial
(2) For each eigenvalue, compute the associated eigenvector \boldsymbol{v}_{i} by solving the homogenious system $\left(\boldsymbol{A}-\lambda_{i} \boldsymbol{I}\right) \cdot \boldsymbol{v}_{i}=\mathbf{0}$.
(3) Write down \boldsymbol{A} as the product of three matrices:

$$
\boldsymbol{A}=\boldsymbol{T}_{\mathcal{B} \Rightarrow \mathcal{S}} \cdot \boldsymbol{D} \cdot \boldsymbol{T}_{\mathcal{S} \Rightarrow \mathcal{B}}
$$

where:

- $\boldsymbol{T}_{\mathcal{B} \Rightarrow \mathcal{S}}$ has the eigenvectors $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}$ (in order!) as its columns
- \boldsymbol{D} has the eigenvalues (in the same order!) down its diagonal, and zeroes everywhere else
- $\boldsymbol{T}_{\mathcal{S} \Rightarrow \mathcal{B}}$ is the inverse of $\boldsymbol{T}_{\mathcal{B} \Rightarrow \mathcal{S}}$.

Example: political swingers, part I

- We take an extremely crude view on politics and distinguish only left and right wing political supporters
- We study changes in political views, per year
- Suppose we observe, for each year:
- 80% of lefties remain lefties and 20% become righties
- 90% of righties remain righties, and 10% become lefties

Questions

- start with a population $L=100, R=150$, and compute the number of lefties and righties after one year;
- similarly, after 2 years, and 3 years, ...
- We can represent these computations conveniently using matrix multiplication.

Political swingers, part II

- So if we start with a population $L=100, R=150$, then after one year we have:
- lefties: $0.8 \cdot 100+0.1 \cdot 150=80+15=95$
- righties: $0.2 \cdot 100+0.9 \cdot 150=20+135=155$
- If $\binom{L}{R}=\binom{100}{150}$, then after one year we have:

$$
\boldsymbol{P} \cdot\binom{100}{150}=\left(\begin{array}{ll}
0.8 & 0.1 \\
0.2 & 0.9
\end{array}\right) \cdot\binom{100}{150}=\binom{95}{155}
$$

- After two years we have:

$$
\boldsymbol{P} \cdot\binom{95}{155}=\left(\begin{array}{ll}
0.8 & 0.1 \\
0.2 & 0.9
\end{array}\right) \cdot\binom{95}{155}=\binom{91.5}{158.5}
$$

Political swingers, part IV

The situation after two years is obtained as:

$$
\begin{aligned}
\boldsymbol{P} \cdot \boldsymbol{P} \cdot\binom{L}{R} & =\underbrace{\left(\begin{array}{ll}
0.8 & 0.1 \\
0.2 & 0.9
\end{array}\right) \cdot\left(\begin{array}{ll}
0.8 & 0.1 \\
0.2 & 0.9
\end{array}\right)}_{\text {do this multiplication first }} \cdot\binom{L}{R} \\
& =\left(\begin{array}{ll}
0.66 & 0.17 \\
0.34 & 0.83
\end{array}\right) \cdot\binom{L}{R}
\end{aligned}
$$

The situation after n years is described by the n-fold iterated matrix:

$$
\boldsymbol{P}^{n}=\underbrace{\boldsymbol{P} \cdot \boldsymbol{P} \cdots \boldsymbol{P}}_{n \text { times }}
$$

Etc. It looks like \boldsymbol{P}^{100} (or worse, $\lim _{n \rightarrow \infty} \boldsymbol{P}^{n}$) is going to be a real pain to calculate. ...or is it?

Diagonal matrices

- Multiplying lots of matrices together is hard :(
- But multiplying diagonal matrices is easy!

$$
\left(\begin{array}{cccc}
a & 0 & 0 & 0 \\
0 & b & 0 & 0 \\
0 & 0 & c & 0 \\
0 & 0 & 0 & d
\end{array}\right) \cdot\left(\begin{array}{cccc}
w & 0 & 0 & 0 \\
0 & x & 0 & 0 \\
0 & 0 & y & 0 \\
0 & 0 & 0 & z
\end{array}\right)=\left(\begin{array}{cccc}
a w & 0 & 0 & 0 \\
0 & b x & 0 & 0 \\
0 & 0 & c y & 0 \\
0 & 0 & 0 & d z
\end{array}\right)
$$

- Strategy: first diagonalise P:

$$
\boldsymbol{P}=\boldsymbol{T}_{\mathcal{B} \Rightarrow \mathcal{S}} \cdot \boldsymbol{D} \cdot \boldsymbol{T}_{\mathcal{S} \Rightarrow \mathcal{B}} \quad \text { where } \boldsymbol{D} \text { is diagonal }
$$

- Then multiply (and see what happens....)

Multiplying diagonalised matrices

- Suppose $\boldsymbol{P}=\boldsymbol{T}_{\mathcal{B} \Rightarrow \mathcal{S}} \cdot \boldsymbol{D} \cdot \boldsymbol{T}_{\mathcal{S} \Rightarrow \mathcal{B}}$, then:

$$
\boldsymbol{P} \cdot \boldsymbol{P}=\boldsymbol{T}_{\mathcal{B} \Rightarrow \mathcal{S}} \cdot \boldsymbol{D} \cdot \boldsymbol{T}_{\mathcal{S} \Rightarrow \mathcal{B}} \cdot \boldsymbol{T}_{\mathcal{B} \Rightarrow \mathcal{S}} \cdot \boldsymbol{D} \cdot \boldsymbol{T}_{\mathcal{S} \Rightarrow \mathcal{B}}
$$

- So:

$$
\boldsymbol{P} \cdot \boldsymbol{P}=\boldsymbol{T}_{\mathcal{B} \Rightarrow \mathcal{S}} \cdot \boldsymbol{D} \cdot \boldsymbol{D} \cdot \boldsymbol{T}_{\mathcal{S} \Rightarrow \mathcal{B}}
$$

- and:

$$
\boldsymbol{P} \cdot \boldsymbol{P} \cdot \boldsymbol{P}=\boldsymbol{T}_{\mathcal{B} \Rightarrow \mathcal{S}} \cdot \boldsymbol{D} \cdot \boldsymbol{D} \cdot \boldsymbol{D} \cdot \boldsymbol{T}_{\mathcal{S} \Rightarrow \mathcal{B}}
$$

- and so on:

$$
\boldsymbol{P}^{n}=\boldsymbol{T}_{\mathcal{B} \Rightarrow \mathcal{S}} \cdot \boldsymbol{D}^{n} \cdot \boldsymbol{T}_{\mathcal{S} \Rightarrow \mathcal{B}}
$$

Political swingers re-revisited, part I

- Suppose we diagonalise the political transition matrix:

$$
\boldsymbol{P}=\left(\begin{array}{ll}
0.8 & 0.1 \\
0.2 & 0.9
\end{array}\right)=\underbrace{\left(\begin{array}{cc}
1 & 1 \\
2 & -1
\end{array}\right)}_{\boldsymbol{T}_{\mathcal{B}} \Rightarrow \mathcal{S}} \cdot \underbrace{\left(\begin{array}{cc}
1 & 0 \\
0 & 0.7
\end{array}\right)}_{\boldsymbol{D}} \cdot \underbrace{\frac{1}{3}\left(\begin{array}{cc}
1 & 1 \\
2 & -1
\end{array}\right)}_{\boldsymbol{T}_{\mathcal{S}} \Rightarrow \mathcal{B}}
$$

- Then, raising it to the 10 th power is not so hard:

$$
\begin{aligned}
\boldsymbol{P}^{10} & =\left(\begin{array}{cc}
1 & 1 \\
2 & -1
\end{array}\right) \cdot\left(\begin{array}{cc}
1 & 0 \\
0 & 0.7
\end{array}\right)^{10} \cdot \frac{1}{3}\left(\begin{array}{cc}
1 & 1 \\
2 & -1
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 & 1 \\
2 & -1
\end{array}\right) \cdot\left(\begin{array}{cc}
1^{10} & 0 \\
0 & 0.7^{10}
\end{array}\right) \cdot \frac{1}{3}\left(\begin{array}{cc}
1 & 1 \\
2 & -1
\end{array}\right) \\
& \approx\left(\begin{array}{cc}
1 & 1 \\
2 & -1
\end{array}\right) \cdot\left(\begin{array}{cc}
1 & 0 \\
0 & 0.028
\end{array}\right) \cdot \frac{1}{3}\left(\begin{array}{cc}
1 & 1 \\
2 & -1
\end{array}\right) \\
& \approx\left(\begin{array}{cc}
0.35 & 0.32 \\
0.65 & 0.68
\end{array}\right)
\end{aligned}
$$

- We can also compute:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \boldsymbol{P}^{n} & =\lim _{n \rightarrow \infty}\left(\begin{array}{cc}
1 & 1 \\
2 & -1
\end{array}\right) \cdot\left(\begin{array}{cc}
1^{n} & 0 \\
0 & 0.7^{n}
\end{array}\right) \cdot \frac{1}{3}\left(\begin{array}{cc}
1 & 1 \\
2 & -1
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 & 1 \\
2 & -1
\end{array}\right) \cdot\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \cdot \frac{1}{3}\left(\begin{array}{cc}
1 & 1 \\
2 & -1
\end{array}\right) \\
& =\frac{1}{3}\left(\begin{array}{ll}
1 & 1 \\
2 & 2
\end{array}\right)
\end{aligned}
$$

And more...

- Diagonalisation lets us do lots of things we can normally only do with numbers with matrices instead
- We already saw raising to a power:

$$
\boldsymbol{A}^{n}=\boldsymbol{T}_{\mathcal{B} \Rightarrow \mathcal{S}} \cdot\left(\begin{array}{cccc}
\lambda_{1}^{n} & 0 & 0 & 0 \\
0 & \lambda_{2}^{n} & 0 & 0 \\
0 & 0 & \cdots & 0 \\
0 & 0 & 0 & \lambda_{n}^{N}
\end{array}\right) \cdot \boldsymbol{T}_{\mathcal{S} \Rightarrow \mathcal{B}}
$$

- We can also do other funky stuff, like take the square root of a matrix:

$$
\sqrt{\boldsymbol{A}}=\boldsymbol{T}_{\mathcal{B} \Rightarrow \mathcal{S}} \cdot\left(\begin{array}{cccc}
\sqrt{\lambda_{1}} & 0 & 0 & 0 \\
0 & \sqrt{\lambda_{2}} & 0 & 0 \\
0 & 0 & \cdots & 0 \\
0 & 0 & 0 & \sqrt{\lambda_{n}}
\end{array}\right) \cdot \boldsymbol{T}_{\mathcal{S} \Rightarrow \mathcal{B}}
$$

And more...

- Take the square root of a matrix:

$$
\sqrt{\boldsymbol{A}}=\boldsymbol{T}_{\mathcal{B} \Rightarrow \mathcal{S}} \cdot\left(\begin{array}{cccc}
\sqrt{\lambda_{1}} & 0 & 0 & 0 \\
0 & \sqrt{\lambda_{2}} & 0 & 0 \\
0 & 0 & \cdots & 0 \\
0 & 0 & 0 & \sqrt{\lambda_{n}}
\end{array}\right) \cdot \boldsymbol{T}_{\mathcal{S} \Rightarrow \mathcal{B}}
$$

- (always gives us a matrix where $\sqrt{\boldsymbol{A}} \cdot \sqrt{\boldsymbol{A}}=\boldsymbol{A}$)

And just because they are cool...

- Exponentiate a matrix:

$$
e^{\boldsymbol{A}}=\boldsymbol{T}_{\mathcal{B} \Rightarrow \mathcal{S}} \cdot\left(\begin{array}{cccc}
e^{\lambda_{1}} & 0 & 0 & 0 \\
0 & e^{\lambda_{2}} & 0 & 0 \\
0 & 0 & \cdots & 0 \\
0 & 0 & 0 & e^{\lambda_{n}}
\end{array}\right) \cdot \boldsymbol{T}_{\mathcal{S} \Rightarrow \mathcal{B}}
$$

(e.g. to solve the Schrödinger equation in quantum mechanics)

- Take the logarithm a matrix:

$$
\log (\boldsymbol{A})=\boldsymbol{T}_{\mathcal{B} \Rightarrow \mathcal{S}} \cdot\left(\begin{array}{cccc}
\log \left(\lambda_{1}\right) & 0 & 0 & 0 \\
0 & \log \left(\lambda_{2}\right) & 0 & 0 \\
0 & 0 & \cdots & 0 \\
0 & 0 & 0 & \log \left(\lambda_{n}\right)
\end{array}\right) \cdot \boldsymbol{T}_{\mathcal{S} \Rightarrow \mathcal{B}}
$$

(e.g. to compute entropies of quantum states)

Applications: data processing

- Problem: suppose we have a HUGE matrix, and we want to know approximately what it looks like
- Solution: diagonalise it using its basis \mathcal{B} of eigenvectors...then throw away ($=$ set to zero) all the little eigenvalues:

$$
\left(\begin{array}{ccccc}
\lambda_{1} & 0 & \cdots & 0 & 0 \\
0 & \lambda_{2} & 0 & & 0 \\
\vdots & 0 & \lambda_{3} & 0 & \vdots \\
0 & & 0 & \ddots & 0 \\
0 & 0 & \cdots & 0 & \lambda_{n}
\end{array}\right)_{\mathcal{B}} \approx\left(\begin{array}{ccccc}
\lambda_{1} & 0 & \cdots & 0 & 0 \\
0 & \lambda_{2} & 0 & & 0 \\
\vdots & 0 & 0 & 0 & \vdots \\
0 & & 0 & \ddots & 0 \\
0 & 0 & \cdots & 0 & 0
\end{array}\right)_{\mathcal{B}}
$$

- If there are only a few big λ 's, and lots of little λ 's, we get almost the same matrix back
- This is the basic trick used in principle compent analysis (big data) and lossy data compression

Length of a vector

- Each vector $\boldsymbol{v}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ has a length (aka. norm), written as $\|\boldsymbol{v}\|$
- This $\|\boldsymbol{v}\|$ is a non-negative real number: $\|\boldsymbol{v}\| \in \mathbb{R},\|\boldsymbol{v}\| \geq 0$
- Some special cases:
- $n=1$: so $\boldsymbol{v} \in \mathbb{R}$, with $\|\boldsymbol{v}\|=|\boldsymbol{v}|$
- $n=2$: so $\boldsymbol{v}=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$ and with Pythagoras:

$$
\|\boldsymbol{v}\|^{2}=x_{1}^{2}+x_{2}^{2} \quad \text { and thus } \quad\|\boldsymbol{v}\|=\sqrt{x_{1}^{2}+x_{2}^{2}}
$$

- $n=3$: so $\boldsymbol{v}=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}$ and also with Pythagoras:

$$
\|\boldsymbol{v}\|^{2}=x_{1}^{2}+x_{2}^{2}+x_{3}^{2} \quad \text { and thus } \quad\|\boldsymbol{v}\|=\sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}
$$

- In general, for $\boldsymbol{v}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$,

$$
\|\boldsymbol{v}\|=\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}}
$$

Distance between points

- Assume now we have two vectors $\boldsymbol{v}, \boldsymbol{w} \in \mathbb{R}^{n}$, written as:

$$
\boldsymbol{v}=\left(x_{1}, \ldots, x_{n}\right) \quad \boldsymbol{w}=\left(y_{1}, \ldots, y_{n}\right)
$$

- What is the distance between the endpoints?
- commonly written as $d(\boldsymbol{v}, \boldsymbol{w})$
- again, $d(\boldsymbol{v}, \boldsymbol{w})$ is a non-negative real
- For $n=2$,

$$
d(\boldsymbol{v}, \boldsymbol{w})=\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}}=\|\boldsymbol{v}-\boldsymbol{w}\|=\|\boldsymbol{w}-\boldsymbol{v}\|
$$

- This will be used also for other n, so:

$$
d(\boldsymbol{v}, \boldsymbol{w})=\|\boldsymbol{v}-\boldsymbol{w}\|
$$

Length is fundamental

- Distance can be obtained from length of vectors
- Angles can also be obtained from length
- Both length of vectors and angles between vectors can be derived from the notion of inner product

Inner product definition

Definition

For vectors $\boldsymbol{v}=\left(x_{1}, \ldots, x_{n}\right), \boldsymbol{w}=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$ define their inner product as the real number:

$$
\begin{aligned}
\langle\boldsymbol{v}, \boldsymbol{w}\rangle & =x_{1} y_{1}+\cdots+x_{n} y_{n} \\
& =\sum_{1 \leq i \leq n} x_{i} y_{i}
\end{aligned}
$$

Note: Length $\|\boldsymbol{v}\|$ can be expressed via inner product:

$$
\|\boldsymbol{v}\|^{2}=x_{1}^{2}+\cdots+x_{n}^{2}=\langle\boldsymbol{v}, \boldsymbol{v}\rangle, \quad \text { so } \quad\|\boldsymbol{v}\|=\sqrt{\langle\boldsymbol{v}, \boldsymbol{v}\rangle} .
$$

Properties of the inner product

(1) The inner product is symmetric in \boldsymbol{v} and \boldsymbol{w} :

$$
\langle\boldsymbol{v}, \boldsymbol{w}\rangle=\langle\boldsymbol{w}, \boldsymbol{v}\rangle
$$

(2) It is linear in \boldsymbol{v} :

$$
\left\langle\boldsymbol{v}+\boldsymbol{v}^{\prime}, \boldsymbol{w}\right\rangle=\langle\boldsymbol{v}, \boldsymbol{w}\rangle+\left\langle\boldsymbol{v}^{\prime}, \boldsymbol{w}\right\rangle \quad\langle a \boldsymbol{v}, \boldsymbol{w}\rangle=a\langle\boldsymbol{v}, \boldsymbol{w}\rangle
$$

...and hence also in \boldsymbol{w} (by symmetry):

$$
\left\langle\boldsymbol{v}, \boldsymbol{w}+\boldsymbol{w}^{\prime}\right\rangle=\langle\boldsymbol{v}, \boldsymbol{w}\rangle+\left\langle\boldsymbol{v}, \boldsymbol{w}^{\prime}\right\rangle \quad\langle\boldsymbol{v}, a \boldsymbol{w}\rangle=a\langle\boldsymbol{v}, \boldsymbol{w}\rangle
$$

(3) And it is positive definite:

$$
\boldsymbol{v} \neq \mathbf{0} \Longrightarrow\langle\boldsymbol{v}, \boldsymbol{v}\rangle>0
$$

Inner products and angles, part I

For $\boldsymbol{v}=\boldsymbol{w}=(1,0),\langle\boldsymbol{v}, \boldsymbol{w}\rangle=1$.
As we start to rotate $\boldsymbol{w},\langle\boldsymbol{v}, \boldsymbol{w}\rangle$ goes down until 0 :

... and then goes to -1 :

...then down to 0 again, then to 1 , then repeats...

Cosine

Plotting these numbers vs. the angle between the vectors, we get:

It looks like $\langle\boldsymbol{v}, \boldsymbol{w}\rangle$ depends on the cosine of the angle between \boldsymbol{v} and \boldsymbol{w}.

- In fact, if $\|v\|=\|w\|=1$, it is true that $\langle\boldsymbol{v}, \boldsymbol{w}\rangle=\cos \gamma$.
- For the general equation, we need to divide by their lengths:

$$
\cos (\gamma)=\frac{\langle\boldsymbol{v}, \boldsymbol{w}\rangle}{\|\boldsymbol{v}\|\|\boldsymbol{w}\|}
$$

- Remember this equation!

Inner products and angles, part II

Proof (sketch). For 2 any two vectors, we can make a triangle like this:

Then, we apply the cosine rule from trig to get:

$$
\cos (\gamma)=\frac{a^{2}+b^{2}-c^{2}}{2 a b}=\frac{\|\boldsymbol{v}\|^{2}+\|\boldsymbol{w}\|^{2}-\|\boldsymbol{v}-\boldsymbol{w}\|^{2}}{2\|\boldsymbol{v}\|\|\boldsymbol{w}\|}
$$

...then after expanding the definition of $\|$.$\| and some work we get:$

$$
\cos (\gamma)=\frac{\langle\boldsymbol{v}, \boldsymbol{w}\rangle}{\|\boldsymbol{v}\|\|\boldsymbol{w}\|}
$$

Examples

- What is the angle between $(1,1)$ and $(-1,-1)$?

$$
\cos \gamma=\frac{\langle\boldsymbol{v}, \boldsymbol{w}\rangle}{\|\boldsymbol{v}\|\|\boldsymbol{w}\|}=\frac{-2}{\sqrt{2} \cdot \sqrt{2}}=\frac{-2}{2}=-1 \quad \Longrightarrow \quad \gamma=\pi
$$

-What is the angle between $(1,0)$ and $(1,1)$?

$$
\cos \gamma=\frac{\langle\boldsymbol{v}, \boldsymbol{w}\rangle}{\|\boldsymbol{v}\|\|\boldsymbol{w}\|}=\frac{1}{1 \cdot \sqrt{2}}=\frac{1}{\sqrt{2}} \quad \Longrightarrow \quad \gamma=\frac{\pi}{4}
$$

-What is the angle between $(1,0)$ and $(0,1)$?

$$
\cos \gamma=\frac{\langle\boldsymbol{v}, \boldsymbol{w}\rangle}{\|\boldsymbol{v}\|\|\boldsymbol{w}\|}=\frac{0}{\|\boldsymbol{v}\|\|\boldsymbol{w}\|}=0 \quad \Longrightarrow \quad \gamma=\frac{\pi}{2}
$$

Orthogonality

Definition

Two vectors $\boldsymbol{v}, \boldsymbol{w}$ are called orthogonal if $\langle\boldsymbol{v}, \boldsymbol{w}\rangle=0$. This is written as $\boldsymbol{v} \perp \boldsymbol{w}$.

Explanation: orthogonality means that the cosine of the angle between the two vectors is 0 ; hence they are perpendicular.

Example

Which vectors $(x, y) \in \mathbb{R}^{2}$ are orthogonal to $(1,1)$?
Examples, are $(1,-1)$ or $(-1,1)$, or more generally $(x,-x)$.
This follows from an easy computation:

$$
\langle(x, y),(1,1)\rangle=0 \Longleftrightarrow x+y=0 \Longleftrightarrow y=-x
$$

Orthogonality and independence

Lemma

Call a set $\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right\}$ of non-zero vectors orthogonal if every pair of different vectors is orthogonal.
(1) orthogonal vectors are always independent,
(2) independent vectors are not always orthogonal.

Proof: The second point is easy: $(1,1)$ and $(1,0)$ are independent, but not orthogonal

Orthogonality and independence (cntd)

(Orthogonality \Longrightarrow Independence): assume $\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right\}$ is orthogonal and $a_{1} \boldsymbol{v}_{1}+\cdots+a_{n} \boldsymbol{v}_{n}=\mathbf{0}$. Then for each $i \leq n$:

$$
\begin{aligned}
0 & =\left\langle\mathbf{0}, \boldsymbol{v}_{i}\right\rangle \\
& =\left\langle a_{1} \boldsymbol{v}_{1}+\cdots+a_{n} \boldsymbol{v}_{n}, \boldsymbol{v}_{i}\right\rangle \\
& =\left\langle a_{1} \boldsymbol{v}_{1}, \boldsymbol{v}_{i}\right\rangle+\cdots+\left\langle a_{n} \boldsymbol{v}_{n}, \boldsymbol{v}_{i}\right\rangle \\
& =a_{1}\left\langle\boldsymbol{v}_{1}, \boldsymbol{v}_{i}\right\rangle+\cdots+a_{n}\left\langle\boldsymbol{v}_{n}, \boldsymbol{v}_{i}\right\rangle \\
& =a_{i}\left\langle\boldsymbol{v}_{i}, \boldsymbol{v}_{i}\right\rangle \quad \text { since }\left\langle\boldsymbol{v}_{j}, \boldsymbol{v}_{i}\right\rangle=0 \text { for } j \neq i
\end{aligned}
$$

But since $\boldsymbol{v}_{i} \neq 0$ we have $\left\langle\boldsymbol{v}_{i}, \boldsymbol{v}_{i}\right\rangle \neq 0$, and thus $a_{i}=0$.
This holds for each i, so $a_{1}=\cdots=a_{n}=0$, and we have proven independence.

Orthogonal and orthonormal bases

Definition

A basis $\mathcal{B}=\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right\}$ of a vector space with an inner product is called:
(1) orthogonal if \mathcal{B} is an orthogonal set: $\left\langle\boldsymbol{v}_{i}, \boldsymbol{v}_{j}\right\rangle=0$ if $i \neq j$
(2) orthonormal if it is orthogonal and $\left\langle\boldsymbol{v}_{i}, \boldsymbol{v}_{i}\right\rangle=\left\|\boldsymbol{v}_{i}\right\|=1$, for each i

Example

The standard basis $(1,0, \ldots, 0),(0,1,0, \ldots, 0), \cdots,(0, \cdots, 0,1)$ is an orthonormal basis of \mathbb{R}^{n}.

From independence to orthogonality

- Not every basis is an orthonormal basis:

- But, by taking linear linear combinations of basis vectors, we can transform a basis into a (better) orthonormal basis:

$$
\mathcal{B}=\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right\} \quad \mapsto \quad \mathcal{B}^{\prime}=\left\{\boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{n}\right\}
$$

- Making basis vectors normalised is easy:

$$
\boldsymbol{v}_{i} \mapsto \quad \boldsymbol{w}_{i}:=\frac{1}{\left\|\boldsymbol{v}_{i}\right\|} \boldsymbol{v}_{i}
$$

- Making vectors orthogonal is also always possible, using a procedure called Gram-Schmidt orthogonalisation.

In summary

- The inner product gives us a means to compute the lengths of vectors:

$$
\|\boldsymbol{v}\|=\sqrt{\langle\boldsymbol{v}, \boldsymbol{v}\rangle}
$$

- It also lets us compute the angles between vectors:

$$
\cos (\gamma)=\frac{\langle\boldsymbol{v}, \boldsymbol{w}\rangle}{\|\boldsymbol{v}\|\|\boldsymbol{w}\|}
$$

- \Rightarrow vectors with very large inner product are very close to pointing the same direction (because $\cos (0)=1$)
- \Rightarrow vectors with very small inner product are very close to orthogonal (because $\cos (\pi / 2)=0$)
- \Rightarrow inner products measure how similar two vectors are.

Application: Computational linguistics

Computational linguistics $=$ teaching computers to read

- Example: I have two words, and I want a program that tells me how "similar" the two words are, e.g.

$$
\begin{aligned}
\text { nice }+ \text { kind } & \Rightarrow 95 \% \text { similar } \\
\text { dog }+ \text { cat } & \Rightarrow 61 \% \text { similar } \\
\text { dog }+ \text { xylophone } & \Rightarrow 0.1 \% \text { similar }
\end{aligned}
$$

- Applications: thesaurus, smart web search, translation, ...
- Dumb solution: ask a whole bunch of people to rate similarity and make a big database
- Smart solution: use distributional semantics

Meaning vectors

"You shall know a word by the company it keeps."

- J. R. Firth
- Pick about 500-1000 words ($\boldsymbol{v}_{\text {cat }}, \boldsymbol{v}_{\text {boy }}, \boldsymbol{v}_{\text {sandwich }} \ldots$) to act as "basis vectors"
- Build up a meaning vector for each word, e.g. "dog", by scanng a whole lot of text
- Every time "dog" occurs within, say 200 words of a basis vector, add that basis vector. Soon we'll have:

$$
\boldsymbol{v}_{\mathrm{dog}}=2308198 \cdot \boldsymbol{v}_{\mathrm{cat}}+4291 \cdot \boldsymbol{v}_{\mathrm{boy}}+4 \cdot \boldsymbol{v}_{\text {sandwich }}+\cdots
$$

- Similar words cluster together:

- ...while dissimilar words drift apart.We can measure this by:

$$
\frac{\left\langle\boldsymbol{v}_{\text {dog }}, \boldsymbol{v}_{\text {cat }}\right\rangle}{\left\|\boldsymbol{v}_{\text {dog }}\right\|\left\|\boldsymbol{v}_{\text {cat }}\right\|}=0.953 \quad \frac{\left\langle\boldsymbol{v}_{\text {dog }}, \boldsymbol{v}_{\text {xylophone }}\right\rangle}{\left\|\boldsymbol{v}_{\text {dog }}\right\|\left\|\boldsymbol{v}_{\text {xylophone }}\right\|}=0.001
$$

- Search engines do something very similar. Learn more in the course on Information Retrieval.

Distributional Semantics

- This works very well, but also has weaknesses (e.g. meanings of whole sentences, ambiguous words)
- This can be improved by incorporating other kinds of semantics:
distributional + compositional + categorical

$=$ DisCoCat

About linear algebra

- Linear algebra forms a coherent body of mathematics ...
- involving elementary algebraic and geometric notions
- systems of equations and their solutions
- vector spaces with bases and linear maps
- matrices and their operations (product, inverse, determinant)
- inner products and distance
- ...together with various calculational techniques
- the most important/basic ones you learned in this course
- they are used all over the place: mathematics, physics, engineering, linguistics...

About the exam, part I

- Closed book
- Simple '4-function' calculators are allowed (but not necessary)
- phones, graphing calculators, etc. are NOT allowed
- Questions are in line with exercises from assignments
- In principle, slides contain all necessary material
- LNBS lecture notes have extra material for practice
- wikipedia also explains a lot
- Theorems, definitions, etc:
- are needed to understand the theory
- are needed to answer the questions
- their proofs are not required for the exam (but do help understanding)
- need not be reproducable literally
- but help you to understand questions

About the exam, part II

Calculation rules (or formulas) must be known by heart for:
(1) solving (non)homogeneous equations, echelon form
(2) linearity, independence, matrix-vector multiplication
(3) matrix multiplication \& inverse, change-of-basis matrices
(4) eigenvalues, eigenvectors and determinants
(5) inner products, distance, length, angle, orthogonality

About the exam, part III

- Questions are formulated in English
- you may choose to answer in Dutch or English
- Give intermediate calculation results
- just giving the outcome (say: 68) yields no points when the answer should be 67
- Write legibly, and explain what you are doing
- giving explanations forces yourself to think systematically
- mitigates calculation mistakes
- Perform checks yourself, whenever possible, e.g.
- solutions of equations
- inverses of matrices,
- orthogonality of vectors, etc.

Finally ...

Practice, practice, practice!

(so that you can rely on skills, not on luck)

Some practical issues (Autumn 2018)

- Exam: Tuesday, October 30, 8:30-10:30 in HAL 2. (Extra time: 8:30-11:00, HG00.108)
- Vragenuur: there will be a Q\&A session next week. Friday, 26 October. 13:30-15:15 in MERC1 00.28
- How we compute the final grade g for the course
- Your exam grade e, which should be ≥ 5,
- Your average assignment grade a
- Final grade is: $e+\frac{a}{10}$, rounded to the nearest half (except 5.5).

Final request

- Fill out the enquete form for Matrixrekenen, IPC017, when invited to do so.
- Any constructive feedback is highly appreciated.

And good luck with the preparation \& exam itself! Start now!

