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Abstract

This paper explains the setting of an extensive formalisation of the theory of sequences
(finite and infinite lists of elements of some data type) in the Prototype Verification System
pPvs. This formalisation is based on the characterisation of sequences as a final coalgebra,
which is used as an axiom. The resulting theories comprise standard operations on sequences
like composition (or concatenation), filtering, flattening, and their properties. They also
involve the prefix ordering and proofs that sequences form an algebraic complete partial order.
The finality axiom gives rise to various reasoning principles, like bisimulation, simulation,
invariance, and induction for admissible predicates. Most of the proofs of equality statements
are based on bisimulations, and most of the proofs of prefix order statements use simulations.
Some significant aspects of these theories are described in detail.

This coalgebraic formalisation of sequences is presented as a concrete example that shows
the importance and usefulness of coalgebraic modeling and reasoning. Hopefully, it will help to
convey the view that coalgebraic data types should form an intrinsic part of (future) languages
for programming and reasoning. Therefore, some suggestions for an appropriate syntax for
coalgebraic datatypes are included.

The use of sequences as a final coalgebra is demonstrated in two (standard) applications:
a refinement result for automata involving sequences of actions, and a coalgebraic definition
plus correctness proof for an insert operation on ordered sequences.

1 Introduction

Formal verification always involves a certain amount of theory development. Theories are needed
to adequately describe one’s application domain (with appropriate operations). If there is no
useful library of theories at hand, theory development may form a significant part of a verification
project. It is therefore important that standard theories are available for frequently occurring
structures. Finite lists, for example, have a well-developed theory, which is so often used that it
forms a standard part of (the “prelude” or “basic library” of) almost all proof tools.

This paper contributes to the theory of sequences, i.e. to the theory of finite and infinite
lists (of elements of a fixed data set). Good theory development should satisfy some quality
criteria. We think it should be (1) tool-independent, (2) general purpose, and (3) describing a
“standard” theory. The theory of sequences that we present here is developed in the verification
system pvs [ORSvH95, ORR196, RSC96], but its basic notions are firmly founded on standard
mathematical theory, which can be expressed in the language of any sufficiently expressive proof
tool. Further, regarding criterion (2), a theory of sequences is certainly of general use, since
sequences play an important role in many verification projects. For example, the behavior of
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systems (or of automata or processes) is often expressed in terms of sequences, forming executions,
runs, or traces; and lazy lists are important in describing and reasoning about the behavior of
(lazy) functional programs. Finally, as to (3), describing sequences as a final coalgebra is certainly
standard in category theory, just like finite lists are standardly described as an initial algebra.
For those readers who are not familiar with these coalgebraic techniques, the approach that we
present is hopefully providing a similar standard.

The formalisation of the theory of sequences and infinite objects in general is an active re-
search area. Streams or infinite lists received attention in the context of dataflow programming
languages. Leclerc and Paulin-Mohring [LP94, Pau96] suggest an impredicative encoding using
existential types in coqQ and derive explicit corecursion combinators. Johnson and Miner [MJ96]
develop stream theories axiomatically but do not state finality explicitly. Theories of sequences are
directly encoded in a variety of frameworks, see e.g. [Age94, CP96, NS95, Reg95, MN97, DGMIT7,
DGI7]. Closest to our approach is perhaps Paulsons formalisation of coinductive lazy lists in
ISABELLE/HOL [Pau97a]. He establishes an encoding of codatatypes as greatest fixed point of
monotone operators on a suitable domain. His corecursion combinator identifies lazy lists as final
coalgebras.

The approach presented here isolates final coalgebras as a characterisation of sequences. The
abstraction from the particular encoding of sequences (possibly as a final coalgebra) avoids clutter
and provides conceptual clarity. Our results are in this respect implementation independent.
Finality immediately gives us so-called coinductive definition principles and coinductive proof
principles for sequences. We explain how these principles are used to obtain a wide variety of
operations on sequences and how to prove certain properties about them. We think that our
formalisation of sequences is one of the most extensive applications of coalgebraic (or coinductive)
techniques to date.

It is not our intention to explain coalgebras and coinduction in general—therefore we refer to a
tutorial [JRI7] on these matters. Here we concentrate on the special case of sequences, which we
will explain in detail (without using category theory). But we do hope that this particular example
will illustrate the importance and usefulness of coalgebraic data types more generally, and that it
will have an influence on future languages for programming and reasoning. When these languages
are equipped with definition mechanisms both for algebraic and for coalgebraic data types (as
suggested in [Hag87] and realised in the experimental programming language cHARITY [CF92,
(CS95]), then one can use (and reason about) coalgebraic data structures like trees with infinitely
many branches, and possibly infinite depth with the same ease as algebraic structures like finitely
branching trees. What is useful to have is a language which does not only provide users with
coalgebraic modeling techniques, but also with coalgebraic (also called coinductive) reasoning
techniques. As a possible step towards such languages with coalgebraic data types we present in
Section 6 some suggestions for a syntax and for associated reasoning principles (notably involving
bisimulations).

This paper is organised as follows. In Section 2 we describe some aspects of the mathematical
theory of sequences by introducing several standard operations and their properties. The axiomatic
description of sequences as a final coalgebra and the corresponding coinductive definition and proof
principles appear in Section 3. In Section 4 we give a tour through our sequence formalisation
in Pvs. And in Section 5 we submit our theories to two sample challenges. Section 6 contains a
sketch of a general description of coalgebraic datatypes, with associated reasoning principles. We
conclude with a brief comparison to other sequence formalisation in Section 7.

2 Some standard operations on sequences (and their prop-

erties)
We fix an arbitrary set A and write A for the set of finite and infinite sequences of elements
of A. Thus, every element ¢ € A is either of the form ¢ = (a1,...,a,), for finitely many
elements a1, ...,an € A, or of the form ¢ = (a1, as, .. .) for a (countably) infinite series of elements



a; € A. For such sequences o we will write o; for the ith element a;. As a first step towards our
formalisation, we investigate some characteristic operations and results for this set of sequences
A,

For example, for a finite or infinite sequence o there are the “at” and “tail” operations:

On, the nth element, if it exists

atlorn) = { L, for undefined, otherwise. and tail(7,n) = (0n, Ont1, On2; - )

yielding the nth element in o, if it exists, and yielding the elements of ¢ starting from position n.
The outcome of tail(o, n) is the empty sequence if o has less than n elements. These operations
at and tail can be defined by induction on n. Some standard properties for at and tail are:

at(tail(o, n), m) = at(o,n + m) and tail(tail(o, n), m) = tail(o,n + m)

which can be proved easily by induction. Also, one can characterise equality of sequences in terms
of at as,
oc=r if and only if Vn € N at(o, n) = at(r, n).

There is a similar operation which sends a sequence ¢ and a natural number n to the finite
list of elements in ¢ up-to position n. Or an operation which takes a sequence ¢ and two natural
numbers n, m and produces the sublist of elements in ¢ from n to n + m.

It is standard that functions can be extended to sequences: for a function f: A — B, one can
define a function seq_map(f) (or f*) from A to B* by sending a sequence (a;) to the sequence
(f(a;)), obtained by applying f elementwise. This function seq_map(f) commutes appropriately
with the at and tail operations. And seq_map is functorial in the sense that it preserves identities
and compositions.

We write A* for the set of finite sequences (or lists) of elements of A, and AN for the set of
infinite sequences (i.e. of functions N — A). There are obvious (injective) inclusion functions
A* < A® and AN <5 A, And one can prove that each sequence o € A® is either in the image
of A* < A® or in the image of AY < A®. In general, it turns out to be a bad strategy to define
operations on sequences by distinguishing whether the input sequence is finite or infinite: it leads
to much complication and unnecessary duplication.

An important operation on sequences is composition (also called concatenation) comp: A x
A% — A®. The sequence comp(c,T) consists of all elements of o prefixed to 7. It may be
described as:

comp(ar, 7) = {

o if o 1s infinite
ai-das---ap -7 if o is a finite sequence (a1, as, ..., an).

(but we shall see a better definition in the next section which does not distinguish whether o is
infinite or not). Some useful properties are: the empty sequence is a neutral element (both on the
left and on the right), composition is associative, composition of two finite lists (as sequences) is
the same as the result of appending the lists, etc. Also, the composition operation allows us to
define the prefix order on sequences as:

c<r if and only if dp € A% comp(o,p) = T.

It is not hard to see that < forms a partial order on A*° | with the empty sequence as bottom
element. This order is complete in the sense that each ascending chain o7 < o9 < - - of sequences
has a least upper bound. Also, it can be shown that each sequence is the least upper bound
of its finite prefixes. This entails that (A, <) forms an algebraic complete partial order (see
e.g. [DP96]).

An important operation on sequences is filtering. The filter function takes a predicate p on A
and a sequence o € A% and produces the sequence filter(p, o) containing only those elements of &
(in original order) which satisfy p. This filtering is often used in describing the external behavior
of systems by filtering out the internal behavior, see Section 5. Standard properties are:

filter(p, comp(o, 7)) = comp(filter(p, o), filter(p, 7)), if o is finite
filter(p, filter(q,0)) = filter(p A q,0).



A consequence of the last result is that filtering is idempotent. Notice that for an infinite sequence
o, the result filter(p, o) of filtering with predicate p may be either finite or infinite.

Another standard operation is flattening, which we consider (for convenience) on sequences of
finite lists only. For a sequence S € (A*)* of finite lists, flatten(S) is the sequence obtained from
S by removing the inner braces. It is a non-trivial result that flattening commutes with filtering,
in the sense that:

filter(p, flatten(S)) = flatten(seq_map(Ac filter(p, o))(S)).

That is, filtering the flattened S is the same as first filtering the lists (with the appropriate filter
function for lists) in .S individually, and then flattening the resulting sequence of lists.

This concludes our brief overview of sequences. In the next section we shall discuss many of
these aspects in an axiomatic setting. There, we shall also see some important proof principles for
sequences.

3 Sequences as a final coalgebra

What is characteristic of finite lists (of elements of A) is that they can all be represented by a
finite term generated from the empty list “nil” and from a “cons” operation. The “cons” operation
prefixes a single element to an existing list. In contrast, it is not possible to construct all sequences
in such finite manner. But we do have a characteristic “destruction” operation on sequences—to
be called next—which, given an arbitrary sequence o € A, tells us if the sequence i1s empty, and,
if not, produces the head of ¢ (which is in A) and the remainder (the tail) of ¢ (which is in A*®
again). If there is a tail, this next operation may be applied again, yielding possibly a second
element in A together with the tail of the tail. A sequence is thus finite if and only if iterating
this next operation stops at some stage.

We describe this destruction operation for sequences in greater detail’. Therefore we need the
“lift” operation lift(—) which adds a new element L to a set. Thus, lift(X) = X U {L}, where
1 ¢ X stands for “undefined”. Now we can identify partial functions Y — X with total functions
Y — lift(X).

In particular, the destruction operation on sequences is a function

next

Ao lift(A x A)

defined by

H(o) = L if ¢ is the empty sequence ()
nextiay = (a,0") if o is non-empty, with head a and tail ¢/, i.e. if ¢ = a - 0.

This function next is of great importance: virtually everything that we will say about sequences
will be said in terms of next. In fact, this is the essence of the coalgebraic description of sequences:
the next operation tells us what is directly observable about a sequence—whether it is empty or
not, and if not, what its head and tail are; and by iteratively applying next (to tails of sequences)
each element in a sequence appears at some stage. This approach does not distinguish whether a
sequence is finite or infinite.

We illustrate this role of next in some examples, with the natural numbers as data set A = N.
Consider the function up_from:IN — N° which sends a natural number n € N to the (infinite)
sequence n,n+ 1,n+2,.... In terms of next, this sequence up_from(n) is determined by:

next(up_from(n)) = (n, up_from(n + 1)). (0

1To be categorically precise, we investigate A as a final coalgebra of the functor X — 1+ (A x X) on the category
of sets and functions. What we say applies to sequences in the ordinary universe of sets, and not to sequences in
the domain theoretic universe of domains and strict functions, as formalised in HOLCF, see [Reg95, MN97].



Similarly, there is a function down_from: N — N® which maps a number n to the (finite) sequence
n—1,n—2/...0. Tt is determined by:

1 ifn=0 9
(n — 1,down_from(n — 1)) otherwise. (2)

next (down_from(n)) = {

Bisimulations are special relations on sequences (in the present context), that can be used to
prove the equality of two sequences in a step-by-step manner. Formally, a bisimulation is a relation
R C A* x A% which satisfies the following property. For all sequences o, 7 € A%, if R(o, 7) then

o either both next(c) and next(r) are equal to L;

e or both next(c) and next(r) are not L, say next(c) = (a,¢’) and next(r) = (b, 7'); in this
case it is required that @ = b and that ¢’ and 7’ are related by R, i.e. that R(¢’, ') holds.

Two sequences o, 7 € A% are called bisimilar if there is a bisimulation R C A% x A*® with R(o, 7).
In that case one often writes o < 7.
The bisimulation proof principle states that bisimilar sequences are equal, i.e. that

ceT = oc=T. (3)

This means that in order to show that two sequences ¢ and 7 are equal, it suffices to come up
with a bisimulation relation R with R(c, 7). This is an extremely useful principle: it reduces
a “global” task of showing that two potentially infinite structures are equal to a “local” task,
namely of showing that a particular relation R is a bisimulation. The latter only requires us to
prove something about the next step? in a sequence (and not about the whole sequence). But it
can be a non-trivial matter to actually find an appropriate relation R which does the job. Usually,
there is an obvious candidate, but sometimes the obvious relation has to be strengthened® in an
appropriate way.

The operation next: A® — lift(A x A*) plays a crucial role in the definition of a bisimulation
relation. Actually showing that a particular relation R is a bisimulation is easiest if one deals with
sequences which are determined in terms of next—like up_from(n) and down_from(rn) described
above. The finality principle that we will introduce now allows us to define such functions. This
principle holds in the universe of sets and functions. It will be required as an axiom in our
formalisation of sequences in Pvs, and this single axiom will form the basis for all subsequent
theories.

Fact 1 The operation next: A% — lift(A x A®) satisfies the following “finality” property. For
each set X with an operation struct: X — lift(A x X) of the same shape, there is a unique function
f: X — A satisfying

1. if struct(z) = L, then next(f(z)) = L;
2. if struct(z) = (a, 2'), then next(f(z)) = (a, f(2')).

In this situation one says that f is defined by coinduction. In our formalisation we write
coreduce(struct) for this function f (in analogy with the reduce operation in PVs for inductive defi-
nitions). The two conditions 1. and 2. thus allow us to calculate with next o coreduce(struct): X —

lift(A x A).

A few words on terminology: functions of the form struct: X — [ift(A x X) are examples of
coalgebras. To be precise, they are examples of coalgebras of the endofunctor? X s lift(A x X),
see [JRO7] for more details. Such a coalgebra struct: X — [ift(A x X) may be understood as a

2This aspect of “single step” proof obligations is like in the induction step from » to n + 1 in induction proofs.

3 Again, this is as for induction proofs, where one sometimes needs to strengthen the statement that one actually
wishes to prove in order to get the induction method going. This strengthening is called induction loading.

40n the category of sets and (total) functions.

(@3



machine with state space X and with transition function struct, telling us for each state z € X
if we can move to a next state from x: if struct(x) = L, then there is no next state, and if
struct(z) = (a, 2'), then 2 is the successor state of , and in moving from z to ' we can observe
a. The function next is also a coalgebra. It is in fact a very special coalgebra: the above statement
tells us that next is the final coalgebra in the sense that for an arbitrary coalgebra struct there
is precisely one function f which forms a “homomorphism of coalgebras” from struct to next.
Diagrammatically:

A — X gife(A % A%
A
coreduce (struct) : Tlift(id x coreduce (struct))

o
X ————>lift(A x X)

The two conditions 1. and 2. express that f is such a homomorphism. For each state z € X, the
resulting sequence f(z) € A can be understood as the observable behavior which is obtained by
running the machine struct: X — |ift(A % X) with z € X as start state.

With this machine picture in mind, we can easily convince ourselves of the truth of Fact 1.
Suppose we have a set X with such a function struct: X — lift(A x X). Then, for an arbitrary
element € X, we can apply struct and observe the outcome struct(z). Either it is L, or it is of
the form (a, '), where a is in A and ' is a new element of X. This can be continued: struct(z')
is either L, or of the form (a',2") with ¢’ € A and z” € X. And-so-forth. In this way we get
our sequence f(z) € A™ associated with z: it records all the successive elements of A which
appear by iteratively applying struct to x and to its successors ', z’’,.... This yields a finite or
infinite sequence, depending on whether struct will ever hit L. The sequence f(x) thus records the
observable behavior starting from z. The two requirements 1. and 2. determine f in this manner,
guaranteeing uniqueness.

The above unique existence statement is formulated in terms of sets and functions. But the
formulation is such that it can easily be ported to a sufficiently expressive (typed) logic, like
simply typed higher order logic (as used in the HOL [GM93] or ISABELLE/HOL [Pau94, Pau97a]
proof tools) or dependently typed higher order logic (as used in Pvs [ORR*96, RSC96]), or even
in type theoretic languages (as used in tools like LEGO [LP92] and coq [BBC197]). The fact that
our formalisation was carried out in PVS is basically inessential.

The finality fact involves two aspects, namely eristence of such a function f: X — A and
uniqueness. Existence will be used as a definition principle: it allows us to define functions of the
form X — A® with sequences as outputs, by putting an appropriate structure function struct: X —
lift(A x X) on the domain X of the function that we wish to define. This function then appears as
“unfolding” of struct. Uniqueness will be used as a proof principle: it allows us to show that two
functions f, g: X — A are equal, by showing that they both satisfy requirements 1. and 2. (with
respect to the same function struct). Uniqueness is actually equivalent to the bisimulation proof
principle, that we described earlier®.

In the remainder of this section we shall describe some standard operations on sequences (like
in the previous section) by using only this finality fact 1. The actual formalisation of sequences
(which will be described in the next section) follows the same approach.

First we illustrate how the two functions up_from,down_from:N — N* can be defined by
coinduction (in the situation with data set A = N). In both cases we take X = N, because both
functions have N as domain. We then need two functions

up_from_struct down _from struct

lift(NxN)  and N lift (N x )

so that we get up_from = coreduce(up_from_struct) and down_from = coreduce(down_from_struct)

5See the sketch of the PVS proof in Section 4.



by coinduction. These structure functions are defined as

L ifn=0

up_fromstruct(n) = (n,n + 1) and down_from struct(n) = { (n—1,n—1) otherwise.

It may be clear that unfolding these structure maps gives rise to down_from and up_from.

Next we present a more complicated example. The composition (or concatenation) function
comp: A® x A% — A can be defined by coinduction. The idea is that comp(o, 7) is the sequence
obtained by prefixing o to 7. For a coinductive definition we need an appropriate structure
operation of the form

comp_struct

(A% x A®) lift(A x (A® x A*))

which tells us what we can directly observe and how to proceed. Clearly, if both ¢ and 7 are
empty sequences, then comp(o, ) is empty as well; if o is empty, but 7 is not, then comp(o, 7)
is non-empty, with its first element equal to the first element of 7; and if ¢ is non-empty, then
comp(o, T) is non-empty with first element equal to the first element of ¢. This leads to the
following definition.

L if next(¢) = L and next(r) = L
comp_struct(o,7) = < (a,(o,7')) if next(s) = L and next(r) = (a, ')
(a,(c', 7)) if next(o) = (a,0').

Then comp: A% x A%® — A is defined as coreduce (comp_struct). Notice that if ¢ is infinite, then
we remain in the third case and the outcome comp(eo, 7) will behave just like (or, be equal to) o.

Let 1 = {(} be a singleton set. The empty sequence empty_seq, as a function empty_seq: 1 — A
can be defined by coinduction as empty_seq = coreduce(undef) () where undef: 1 — lift(A x 1) is
the everywhere undefined function undef(z) = L. Then, by definition, next(empty_seq) = L.

Two results that we may wish to prove at this stage are that the empty sequence is a neu-
tral element on the left and on the right for composition, i.e. that comp(empty_seq, ) = ¢ and
comp(o, empty_seq) = o. We shall illustrate two proof-techniques: we prove the first equation by
exploiting the uniqueness in the finality fact, and the second one by using a bisimulation relation.

In order to prove comp(empty_seq, ¢) = ¢ by uniqueness, we consider two functions A® — A*,
namely the identity function id, and the function f given by f(¢) = comp(empty_seq, o). Our aim
is to show f = id, by showing that both requirements 1. and 2. hold for X = A and struct = next.
This is obvious for the identity function id, so that id = coreduce(next). Checking the requirements
for f involves some computation.

o if next(s) = L, then next(f(c)) = next(comp(emptyseq,c)) = L, since the composition

function comp is defined as coreduce (comp_struct) and comp_struct(empty_seq,o) = L.

o if next(o) = (a,0’), then
next(f (o)) = next(comp(empty_seq, o)) = (a,comp(empty_seq, o)) = (a, f(co'))
since comp_struct(empty_seq, o) = (a, (empty_seq, 0’)).
The second equation comp(o, empty_seq) = ¢ will be proved by showing that the relation
R = {(comp(o,empty_seq),c) | o € A} C A™ x A%
is a bisimulation. Therefore we need to prove that:

e next(comp(o,emptyseq)) = L if and only if next(s) = L. This follows easily from the
definition of comp_struct;

(a,0") with R(¢",¢'). But we can

o if next(c) = (a,0’), then next(comp(c,empty._seq)) =
,0') clearly holds.

compute ¢’ as comp(o’, empty_seq), so that R(c"



As one can see these two proof methods involve basically the same steps. This 1s not surprising,
since the bisimulation proof principle is equivalent to the uniqueness requirement in Fact 1. In
both cases one says that the statement is proved by coinduction. We leave 1t to the interested
reader to prove (by hand) that composition is associative, e.g. by using the bisimulation relation®

R = {(comp(c, comp(r, p)), comp(comp(, 7, p)) | 7, 7, p € A}.

An interesting consequence of Fact 1 is that the function next: A® — [ift(A x A*) is an
isomorphism?. Its inverse next_inv: lift(A x A>) — A can be defined by coinduction. Therefore
we have to put a structure map on the domain lift(A x A°) of the function next_inv that we wish
to define. This map thus has to be of the form:

lift(A x Aco) —MEXEANVSIUCt g (4 « lift(A x A%))

It 1s defined as:
1 fr=_1

next_inv_struct(z) = { (a,next(c)) if z = (a,0).

Now we obtain next_inv as coreduce (next_inv_struct).

We can prove the first equation next_invonext = id: A — A® by coinduction: the identity on
A% is coreduce(next), as we have just seen, so it suffices to show that the composite next_inv o next
also satisfies the two requirements in Fact 1 for the structure map next. The second equation
next o next_inv = id: lift(A x A%®) — lift(A x A*) is proved by calculating next applied to coreduce.
For z € lift(A x A®) we can distinguish two cases:

e z = 1. Then

(next o next_inv)(z) = next(coreduce(next_inv_struct)(L))
= 1, since next_inv_struct(Ll) = L
= =z

e z = (a,0). Then

(next o next_inv)(z) = next(coreduce(next_inv_struct)(a, o))
(a, next_inv(next(a))),
since next_inv_struct(a, o) = (a, next(a, c))
= (00),
using the first equation

= ZT.

Once we know that the destructor next is an isomorphism, we can define the empty sequences
simply as empty_seq = next_inv(_L), and the prefix operation as cons_seq(a, o) = next_inv(a, ).
There is also a simulation proof principle for sequences. Just like bisimulations are useful for
proving equalities o = 7 between sequences, simulations are very convenient for proving inequal-
ities ¢ < 7, where < is the prefix ordering which is defined via composition. In order to show
o < 1, it suffices to show R(o, ) for some simulation R C A® x A®. This R is a simulation in
case for all sequences p1, pa, if R(p1,p2) then: if next(p1) = (a, p}), then next(p2) = (b, ph) with
a =band R(p}, py). The difference with a bisimulation is thus that if the first sequence p; satisfies
next(p1) = L, then next(p2) = L need not hold. The simulation proof principle can be derived
from Fact 1, and is used for most of the results we prove about the prefix order on sequences.
There 1s a well-known inductive proof principle for sequences, which only applies to so-called
admissible predicates, see e.g. [Reg95, MN97]. These are predicates which are closed under least
upper bounds of chains: P C A% is admissible if for each ascending chain o1 < 03 < o3 < -+ of

8 The sketch of the PVs proof can be found in Section 4.
"This property holds for initial algebras and final coalgebras, see for example [JR97].



sequences with P(o;) for all i € N, P also holds for the least upper bound of the sequence. If one
wishes to prove Vo € A*® P(o) for such admissible predicates P it suffices to prove P(o) for all
finite sequences o—e.g. by induction on the length. This principle follows from Fact 1 because it
can be derived that each sequence is the least upper bound of its finite prefixes. We derive this
proof principle, but we do not use it in our formalisation. In other contexts [MN97, Reg95] it is
frequently used, because there are syntactic criteria which guarantee that certain predicates are
admissible. They are described as “propagations of admissibility” in [Reg95, Subsection 3.5], and
form part of the theory HOLCF developed there.

Another definition and proof principle for sequences involves invariants. These are predicates
P C A® which satisfy for all o € A,

P(c) and next(c) = (a,0’) implies P(o”).

For an arbitrary predicate P C A% it can be shown that there is a greatest invariant gi(P) C P
and a least invariant li(P) O P. In general, the existence of least and greatest invariants is not
a consequence of the finality fact. However, if predicates P on X form a complete lattice then
so do invariants [Rut96]. This is the case in many logics including Pvs. Greatest invariants are
a special instance of coinductive definitions using a greatest fixed point operator as in [Pau97a,
Pau97b]. Finality of sequences and the fact that homomorphisms preserve invariants [Jac97]
provide an appropriate reasoning principle. In order to establish gi(P)(coreduce(struct)(z)) for a
certain structure operation struct: X — lift(4 x X) and state z € X it suffices to determine a
struct—invariant ) C X such that Q(z) implies P(coreduce(struct)(z)). This, perhaps novel, proof
principle 1s demonstrated in Subsection 4.1 and Section 5 in more detail.

This concludes our brief tour of the axiomatic description of sequences as a final coalgebra.
We should emphasise that the (extremely useful) proof principles involving (bi)simulation and
invariants are naturally part of this coalgebraic setting. In the next section we transfer this
axiomatic description from the logic of sets to the logic of types in the verification system pvs,
and use it as a basis for an elaborate, fully verified theory of sequences.

4 Coalgebraic sequences in PVS

PVs is a multi-purpose specification and verification system which comprises an expressive lan-
guage, a theorem prover with powerful built in decision procedures and a user interface facilitating
the management of large theories and proofs. The Pvs—language is based on higher order logic
with predicate subtypes and dependent types. It features, moreover, a mechanism to define in-
ductive datatypes such as finite lists or binary trees of finite depth. Once such a datatype is
declared the system generates automatically the corresponding inductive definition schemes and
proof principles.

Our coalgebraic formalisation of sequences follows a similar (but dual) approach. The co-
datatype sequences is essentially characterised by the output signature (codomain type) of the
destructor next. After this type is fixed we provide associated coinductive definition and proof
8 explained in Section 3.
We actually do by hand what a system with a codatatype mechanism should do automatically.

schemes. These are solely based on the finality axiom for sequences

These basic definitions and theorems are discussed in Subsection 4.1. In particular we explain
how the coinductive proof techniques are derived and illustrate the use of the corecursion operator
coreduce.

In Section 2 we briefly mentioned that sequences form an algebraic complete partial order
w.r.t. the prefix ordering. This yields additional proof techniques: simulation and induction for
admissible predicates which are discussed in Subsection 4.2.

In Subsection 4.3 we introduce the special operations filter and flatten which are useful in many
application areas for sequences.

8 As induction is based on the initiality of an (abstract) datatype in PVs.



Considering the size of the theory package (275 theorems including tcc’s?) we cannot discuss
every aspect of our development. We rather give the reader an impression on the coinductive nature
of the sequence formalisation. Therefore we focus on the coinductive construction of sequences
and explain the various proof methods by short proof sketches. The complete theory and proof
files are publicly available on the www [HJ97www].

The subsequent theory and proof fragments use pPvs—syntax. Although we touch the main
concepts of the pvs—language “on the fly” the reader unfamiliar to Pvs may wish to consult the
standard literature [ORS93, RSC96].

4.1 Basic definitions

We introduce sequences as an uninterpreted type in a theory parameterised by a type A.

Seq_defn[A : TYPE] : THEORY

BEGIN
IMPORTING Lift_prop
Seq : TYPE

next : [Seq -> Lift[[A,Seql]]
END Seq_defn

A sequence is determined (as discussed in Section 3) by the observation via the destructor next
which appears in the above definition as the only basic operation on sequences. This theory
expresses one aspect of Fact 1, namely that the sequences together with the destructor operation
form a coalgebra. Before we add the finality requirement for this coalgebra (in a separate theory)
let us investigate the imported type Lift.

Lift[X : TYPE] : DATATYPE
BEGIN

bot : bot?

up(down : X) : up?
END Lift

This is a simple example for a Pvs—datatype declaration (see also Section 6). The datatype Lift
has a parameter type X, two constructors bot and up, the accessor down, and two recogniser
predicates bot? and up?. An element y of Lift[X] is either of the form y=up(x) for an element
x in X or of the form y=bot. The recogniser predicates distinguish these forms; for instance we
have up?(y)=TRUE if and only if y=up(x) for some x in X. The accessor (or destructor) down
maps elements of the form up(x) back to x in X. Using predicate subtypes in Pvs it has the type
down: [(up?)->X].

The Lift datatype provides the lift operation from Section 3, which is needed to describe the
partiality of next in terms of total functions. Partial functions can be described alternatively using
predicate subtypes (as down). The representation with Lift is simpler and has the advantage that
composition of partial functions is very easy to express. The methodological reason for using
Lift here is, however, more significant: it emphasises the fact that we deal with coalgebras where
the codomain of the defining operation is structured. In general a similar development can be
undertaken with an arbitrary datatype in the position of Lift (see Section 6).

The term next (s) for a sequence s can now take the intended values: next (s)=bot expresses
that s is empty and next(s)=up(a,t) produces the top element a and the remainder t of a
nonempty sequence s: these a and t can be accessed using down as a=proj_1(down(next(s)))
and t=proj_2(down(next(s))).

We are now in the position to formalise Fact 1 as an axiom for sequences in the theory

Seq_ax[A,X : TYPE] : THEORY

9 Typechecking expressions which involve predicate subtypes often lead to nontrivial type correctness conditions
which have the same importance as lemmas in the theories, see e.g. the definition of bisim struct.

10



BEGIN
IMPORTING Seq_defn
struct : VAR [X -> Lift[[4,X]]]

END Seq_ax
In this theory, the conditions 1. and 2. are coded into the predicate

struct_map?(struct) : PRED[[X -> Seq[Al]] =
LAMBDA(f : [X -> Seq[All) : FORALL(x:X)
(bot?[[A,X]] (struct(x)) IMPLIES bot?[[A,Seq[A]]] (next(£(x))))
AND
(up?[[4,X]](struct(x)) IMPLIES next(f(x)) =
up[[4,Seq[4]1]1](proj_1(down(struct(x))), f(proj_2(down(struct(x))))))

where struct is an arbitrary operation (coalgebra) on a state set (carrier) X. Our approach isolates
finality of sequences in one axiom

seq_finality : AXIOM
EXISTS(f:[X->Seq[A]]) : struct_map?(struct)(f) AND
FORALL(g: [X->Seq[A]]) : struct_map?(struct)(g) IMPLIES g = f

and therefore localises the possible introduction of inconsistencies'®. For the actual application of
finality as a construction and proof method we provide explicitly the corecursion combinator and
its basic properties.

coreduce(struct) : {f:[X->Seq[A]] | struct_map?(struct)(f) AND
FORALL(g: [X->Seq[A]]) : struct_map?(struct)(g) IMPLIES g = f}

Of course, this cannot be typechecked automatically—the generated type correctness condition
(tec) requires us to prove that the predicate subtype is nonempty. It can be discharged using the
finality axiom.

The function coreduce is the only way to define functions taking values in the (uninterpreted)
type Seq. In order to do so one has to provide a structure map struct on an arbitrary state set
X. Such a structure map can be considered as a machine or automaton with transition function
struct, whose behavior (given a start state in X) is a sequence. Thus, in order to produce a
sequence we have to come up with a machine on an appropriate state set. The operation coreduce
then unravels or unfolds the single step struct recursively, producing a sequence (as explained in
Section 3). This aspect is revealed in the following (rewrite) lemma which is extracted from the
type of coreduce

next : LEMMA
FORALL(x:X) : next(coreduce(struct)(x)) =
IF bot?(struct(x)) THEN bot
ELSE up(proj_1(down(struct(x))),
coreduce(struct) (proj_2(down(struct(x)))))
ENDIF

The uniqueness part of the finality axiom can easily be transformed into the simple coinduction
proof methods

10This is only of general interest: the validity of the axiom can be shown in Pvs: for example, by taking Seq[A] to
be the type { £ : [nat -> Lift[A]] | FORALL(n : mat) : bot?(f(n)) IMPLIES bot?(f(n+1)) } with suit-
able next coalgebra, we explicitly proved the validity of the seq_finality axiom, see the theories SeqImpl and
SeqImplFinality. Of course, other implementations can be used as well. Our motivation for using an axiom
(instead of theorem) is to emphasise (1) that no part of the theory that we develop depends on an actual imple-
mentation of sequences, and (2) that our approach can be axiomatised easily.
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coreduce_unique : LEMMA
FORALL(g: [X->Seq[Al]) :
struct_map?(struct)(g) IMPLIES g = coreduce(struct)

struct_map_unique : LEMMA
FORALL(g,h: [X->Seq[Al]) :
struct_map?(struct)(g) AND struct_map?(struct)(h) IMPLIES g = h

These proof principles are quite powerful as they can be used to derive the equality of two sequences
by showing that they are generated by the same automaton starting from the same state. However,
in practice in turns out that coming up with this particular automaton may be difficult.

An equivalent but often more straightforward proof principle is proof by bisimulation which
we derive in the theory

Bisim[A4,X1,X2 : TYPE] : THEORY
BEGIN
IMPORTING Seq_ax
structl : VAR [X1 -> Lift[[Aa,Xx1]1]]
struct2 : VAR [X2 -> Lift[[A,x2]1]]

END Bisim

The bisimulation principle in this theory is actually more general than the proof method explained
in Section 3: two sequences are equal if they are generated (using coreduce) from two bisimilar
states of distinct machines structl and struct2. A bisimulation is a relation R:PRED[[X1,X2]]
on the state sets which is appropriately closed under the application of the structure maps: for
states x1 and x2 with R(x1,x2), one should have:

1. structi(x1)=bot IFF struct2(x2) = bot

2. structi(xl)=up(al,x1’) and struct2(x2)=up(a2,x2’) impliesal = a2 and R(x1’,x2’)
These requirements are packaged in the predicate

bisimulation?(structi,struct2) : PRED[PRED[[X1,X2]]] = ...
Two machine states are bisimilar if there exist such a bisimulation relating them:

bisim?(structl,struct2) : PRED[[X1,X2]] =
LAMBDA(x1:X1,x2:X2) : EXISTS(R:PRED[[X1,X2]])
bisimulation?(structi,struct2)(R) AND R(x1,x2)

The bisimulation proof principle is stated in

bisim_finality : LEMMA
FORALL(x1:X1,x2:X2) : bisim?(structl,struct2)(x1,x2) IFF
Kernel(structl,struct2) (x1,x2)

where the Kernel takes the standard definition

Kernel(structl,struct2) : PRED[[X1,X2]] =
LAMBDA(x1:X1,x2:X2) : coreduce(structl)(x1) = coreduce(struct2) (x2)

It is the relation consisting of those states which produce the same sequences. To prove one
direction of the lemma one checks that Kernel is a bisimulation, which is easily done by using
the next rewrite rule. The other direction requires a bit more work. First of all a bisimulation,

viewed (via predicate subtyping) as a state set, carries a machine structure'!

11 The proof of the resulting tcc needs the fact that R is a bisimulation.
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bisim_struct(structi,struct2)(R:(bisimulation?(structi,struct2))) :
[(R) -> Lift[[A,(R)]1] = ...

composed of structl and struct2. The proof proceeds by showing

bisim_struct_map : LEMMA
FORALL(R:PRED[[X1,X2]]) : bisimulation?(structil,struct2)(R) IMPLIES
struct_map?(bisim_struct(structl,struct2)(R))(LAMBDA(z:(R)) :
coreduce(structl) (proj_1(incl(structl,struct2)(R)(z))))
AND
struct_map?(bisim_struct(structl,struct2)(R))(LAMBDA(z:(R)) :
coreduce(struct2) (proj_2(incl(structl,struct2)(R)(z))))

stating that both coreduce(structi1) precomposed with the first projection function [(R)->X1]
and coreduce(struct2) precomposed with the second projection [(R)->X2] satisfy the predicate
struct_map? and must therefore be equal using lemma struct_map_uniquel[4, (R)].

The proof of equalities of sequences will, in what follows, often employ the bisim_finality-
Lemma. In comparison to the usage of the lemma struct_map_unique, bisimulation proofs only
need the construction of a suitable bisimulation relation. The structures structl and struct2
are often straightforward: in many proofs structi=struct2=next is sufficient. This variant of the
bisimulation proof method is supplied in a separate lemma, because it is used most of the time.
The bisimulation relation itself is often constructed from the equality to be proven. In general,
finding a suitable bisimulation is the heart of an equality proof.

In some cases we face simple equations where the left or the right hand side are of the form
coreduce(struct) (x). Then the lemma coreduce_unique can be more appropriate because the
necessary instantiations are done (almost) automatically and fewer subgoals have to be handled.

So far, the combinator coreduce is the only way of constructing sequences. We will proceed
by deriving a variety of operations on sequences from it!2.

The finality of sequences implies the fact that next is an isomorphism. A candidate for the
inverse of next is defined coinductively:

next_inv_struct : [Lift[[A,Seq[A]]] -> Lift[[A,Lift[[A,Seq[4]1]1]11]] =
LAMBDA(z:Lift[[A,Seq[A]11]) :
IF bot?(z)
THEN bot
ELSE up(proj_1(down(z)), next(proj_2(down(z))))
ENDIF

next_inv : [Lift[[4,Seq[A]]] -> Seq[A]l] = coreduce(next_inv_struct)
The actual behavior of next_inv becomes clear via

empty_seq : Seq[A] = next_inv(bot[[4,Seq[A]]])

cons_seq : [[A,Seq[A]] -> Seq[Al] =
LAMBDA(a:A, x: Seq[A]) : next_inv(up(a,x))

These are the (derived !) constructors for sequences; next_inv is just a cotupling of them. The
proof!? of

next_iso : LEMMA
(FORALL(x:Lift[[A,Seq[4]1]]) : next(next_inv(x)) = x)
AND
(FORALL(y:Seq[A]l) : next_inv(next(y)) = y)

21n the theories Seq_prop, Seq.comp, and Seq functoriality, see [HJ97www].
13 Following the outline given in Section 3.
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implies the expected rewrite rules for the constructors :

next_empty : LEMMA
next (empty_seq) = bot

next_cons : LEMMA
FORALL(a:A, x: Seq[A]) : next(cons_seq(a,x)) = up(a,x)

Moreover, the lemma next_iso entails that next is an injective function and, therefore, serves as
an additional (non—-recursive) proof method.

It is often more convenient to have abbreviations for the output value at(x,n) and the re-
maining sequence tail(x,n) after a number n of destructions than just the one step destruction
by next. Obviously at is a partial function because accessing a sequence at a position beyond its
length must fail. We encode the partiality using (again) the Lift datatype:

at(x:Seq[A], n:nat) : RECURSIVE Lift[A] =

IF n=0

THEN IF bot?(next(x)) THEN bot
ELSE up(proj_1(down(next(x))))
ENDIF

ELSE IF bot?(next(x)) THEN bot
ELSE at(proj_2(down(next(x))),n-1)
ENDIF

ENDIF

MEASURE (LAMBDA(x:Seq[A], n:nat) : n)

Finite observations on possibly infinite sequences are typically defined using induction on natural
numbers. PVs provides for this purpose a definition scheme for bounded recursion which ensures
that the recursion will terminate. The operation

tail(x:Seq[A], n:nat) : RECURSIVE Seq[A] = ...

is defined similarly but tail returns the empty sequence instead of bot in the case of failure. These
operations behave as intended—we prove (by induction) a variety of rewrite rules for instance:

at_empty : LEMMA
FORALL(n:nat) : at(empty_seq,n) = bot

tail_cons : LEMMA
FORALL(x:Seq[A], a:A, n:nat) : tail(x,n) = tail(cons_seq(a,x),n+1)

at_tail : LEMMA
FORALL(x:Seq[A], n,m:nat) : at(tail(x,n),m) = at(x,n+m)
In Section 2 we suggested

at_eqn : LEMMA
FORALL(x,y:Seq[A]) : (FORALL(n:nat) : at(x,n) = at(y,n)) IMPLIES x =y

as (yet another) rule for proving the equality of two sequences. This rule formalises the intuition
that two sequences are equal if they cannot be distinguished by finite observations. In fact, this
property is proved via the bisimulation relation

at_eqn_rel : PRED[[Seq[A],Seq[A]l]] = {z: [Seq[Al, SeqlAl] |
FORALL (n: nat): at(PROJ_1(z), n) = at(PR0OJ_2(z), n)}

at_eqn_rel_bisim : LEMMA
bisimulation?(next[A],next[A]) (at_eqn_rel)
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For the proof of at_eqn_rel_bisim we have to handle the following goal which is obtained by
expanding the definitions and simplification.

{-1} FORALL (n: nat): at(x1'1, n) = at(x2!'1, n)

{1} IF bot?(next[A] (x1'1))
THEN IF bot?(next[A](x2!1)) THEN TRUE
ELSE FALSE
ENDIF
ELSE IF bot?(next[A](x2'1)) THEN FALSE
ELSE
(PROJ_1(down(next[A](x1'1))) = PROJ_1(down(next[A](x2!1)))
AND FORALL (n: nat):
at (PROJ_2(down(next[A](x1'1))), n)
= at(PROJ_2(down(next[A] (x2!'1))), n))
ENDIF
ENDIF

Here the constants of the form x1!'1 are skolem constants generated by pPvs while skolemising
universally quantified terms. The proof proceeds by a case analysis. If bot?(next(x1!1)) we can
conclude from the assumption -1 and the lemma at_empty that bot?(next(x2!1)) holds and
vice versa. In the case that both x1!1 and x2!1 are not empty we obtain the following goals

at_eqn_rel_bisim.2.2 :
[-1] FORALL (n: nat): at(x1'1, n) = at(x2!'1, n)

{1} PROJ_1(down(next[A](x1'1))) = PROJ_1(down(next[A](x2!1)))
{2} bot?(next[A] (x2!1))
[3] bot?(next[A] (x1'1))

at_eqn_rel_bisim.2.3
[-1] FORALL (n: nat): at(x1'1l, n) = at(x2'1, n)

{1} at (PROJ_2(down(next[A](x1'1))), n!'1l)

= at(PROJ_2(down(next[A] (x2'1))), n'1l)
{2} bot?(next[A] (x2!1))
[3] bot?(next[A] (x1'1))

The first one disappears by applying the assumption -1 instantiated with 0. The second one uses
the assumption instantiated with n!1+1.

The functions at and tail find many applications in our formalisation because they resemble
notions familiar from (finite) lists. Similar operations for more sophisticated coalgebraic datatypes
such as possibly infinitely branching trees with possible infinite depth [HJ97] might be more
difficult. In these cases the general notions of shape and position [Jay96] will occur. Here the
shape'? (length) of a sequence is either a natural number if it is finite or bot for infinity and a
position is a natural number.

Another useful basic operation is composition or concatenation of two sequences explained in
Section 3.

comp_struct : [[Seq[A]l,Seq[A]] -> Lift[[A, [Seq[A]l,Seq[A]]]]] =
LAMBDA(x,y:Seq[A]) :
IF bot?(next(x))

14The theories Seq_shape and Seq_zip contain the definition of shape for sequences and some basic properties.
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THEN IF bot?(next(y)) THEN bot
ELSE up(proj_1(down(next(y))), (empty_seq,proj_2(down(next(y)))))
ENDIF

ELSE up(proj_1(down(next(x))), (proj_2(down(next(x))),y))

ENDIF

comp : [[Seq[A]l,Seq[A]] -> Seq[A]] = coreduce(comp_struct)

A state of the machine comp_struct consists of pairs of sequences x,y:Seq[A].If the first sequence
x 1s empty then the output of the machine depends on the output of the second sequence y and
the successor state consists of x and the successor state of y. If x is not empty, we observe its first
element; the successor state of the machine consists of the successor of x and y. Such a machine
can be considered as the sequential composition of the machines generating x and y. The observed
behavior is therefore the concatenation of the given behaviors.

The composition operation (as append for finite lists) has the empty sequence as its left and
right unit and is associative:

comp_assoc : LEMMA
FORALL(x,y,z:Seq[A]) : comp(x,comp(y,z)) = comp(comp(x,y),z)

The proof of this lemma is a simple benchmark for a sequence formalisation (see e.g. [Pau97al).
The standard coinductive proof uses the bisimulation

R = {u,v: Seqlal |
EXISTS(x,y,z:Seq[4]) :
u = comp(x, comp(y, z)) AND v = comp(comp(x, y), z)}

which is the default bisimulation to be extracted from an equality. The proof follows in principle
the same structure as the one for the lemma at_eqn_rel. The only complication arises because
of the existential quantification inside R: we have to check for nonempty u and v that u=comp(x,
comp(y, z)) AND v= comp(comp(x, y), z) implies

EXISTS(x,y,z:Seq[A]) :
proj_2(down(next(u)))
AND
proj_2(down(next(v)))

comp(x, comp(y, z))

comp(comp(x, y), z)

The instantiations for the existential quantifier depend on the actual value of x, y, and z. For
instance, in the case that x is empty but y is not, the destruction of the composition is determined
by the destruction of y. Therefore we instantiate with the triple (x,proj_2(down(next(y))),z).
By a case distinction on what component of the composition is “active” (i.e. providing the next
observation) and a choice of the suitable instantiation we complete the proof.

Similar existentially quantified formulas arise during all proofs using a default bisimulation
such as R. As a rule of thumb the user may first determine the active variable (in the above sense)
and then instantiate its position with the successor state. This heuristic works well for a great
number of proofs. In Subsection 4.3 we will sketch a proof with a more sophisticated instantiation
in this proof step.

An interesting aspect of composition is the way how it deals with infinite values. For instance,
we prove

infinite_compl : LEMMA
FORALL(x,y:Seq[A]) : infinite?(x) IMPLIES comp(x,y) = x

which meets our intuition that sequences are characterised by the finite observations one can
perform. In Subsection 4.2 composition will be used for the definition of the prefix order on
sequences.

We defined the sequences type in a parameterised theory. Therefore Seq can be considered
as a construction which given a type A returns the type of sequences of elements of A, namely
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Seq[A]. The function seq_map(f):[Seq[A]->Seq[B]] is a natural extension of this construction
to functions £:[A ->B] applying £ to each element of a sequence. This function takes values in
Seq[B] and is, therefore, defined coinductively:

seq_map_struct(f:[A->B]) : [Seq[A] -> Lift[[B,Seq[4]1]]1] =
LAMBDA(x:Seq[A])
IF bot?(next(x)) THEN bot
ELSE up(f(proj_1i(down(next(x)))), proj_2(down(next(x))))
ENDIF

seq_map(f:[A->B]) : [Seq[A] -> Seq[B]] = coreduce(seq_map_struct(f))

The extension of Seq to a construction on functions satisfies various (standard) properties': it
preserves identities

seq_map_id : LEMMA
FORALL(x:Seq[A]) : seq_map(id[A])(x) = x

and composition of functions

seq_map_comp : LEMMA
FORALL(f:[A->B],g:[B->C],x:Seq[A])
seq_map(g o £)(x) = seq_map(g) (seq_map(f)(x))

The map function furthermore preserves injectivity of functions

seq_map_pres_inj : LEMMA
FORALL(f:[A->B]) : injective?(f) IMPLIES injective?(seq_map(f))

and therefore the Seq—construction permits the lifting of predicates.

We conclude this subsection with the formalisation of invariants on sequences and the corre-
sponding proof principles. Following Section 3, invariants are predicates on sequences which are
stable under destruction by next

invariant? : PRED[PRED[Seq[A]]] = LAMBDA(P:PRED[Seq[Al]l) :
FORALL(x:Seq[A]) : P(x) IMPLIES P(tail(x))

where tail(x) is an abbreviation for tail(x,1). For an arbitrary predicate P the predicate gi(P)
defined by

gi : [PRED[Seq[A]] -> PRED[Seq[A]l]] =
LAMBDA(P:PRED[Seq[A]]) : {x:Seq[A] | FORALL(n:nat) : P(tail(x,n))}

is the greatest invariant contained in P:

gi_invariant : LEMMA
FORALL(P:PRED[Seq[A]]) : invariant?(gi(P))

gi_greatest : LEMMA
FORALL(P,Q:PRED[Seq[A]]) :
invariant?(Q) AND (FORALL(x:Seq[A]) : Q(x) IMPLIES P(x))
IMPLIES (FORALL(x:Seq[A]) : Q(x) IMPLIES gi(P)(x))

Least invariants are defined in a dual fashion. Invariants correspond to safety properties; a se-
quence satisfies an invariant if the invariant holds at all of its tails. The greatest invariant is
therefore the most general safety property entailing a given predicate. We can generalise invari-
ants to arbitrary machines struct:

15Turning Seq into an endofunctor on the category of sets and total functions.
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invariant?(struct) : PRED[PRED[X]] =
LAMBDA(P:PRED[X]) : FORALL(x:X)
P(x) AND up?(struct(x)) IMPLIES P(proj_2(down(struct(x))))

Thus, an invariant is closed under application of struct, implying that if x is in P then P must
contain all states that are reachable from x (via struct).

In particular, we can now specify a “local” predicate!® P on a sequence by observation on a
finite number of single next steps. The greatest invariant extends P to all reachable states in the
weakest way—it globalises P. For instance, the predicate of those sequences all of whose elements
satisfy a predicate Q on the parameter set A can be defined as the greatest invariant

gi({x: Seq[A] | up?(next(x)) IMPLIES Q(proj_1i(down(next(x))))})

of a predicate which only involves single steps. This predicate gives a characterisation'? of the
type Seql[(Q)]. The greatest invariant definition has the advantage that it comes equipped with
a proof principle, see the next lemma below. Another example is the predicate ordered? used in
Subsection 5.2.

Least and greatest invariant definitions are a special instance of (co)inductive definitions us-
ing least and greatest fixedpoints of monotone operators on bounded sets (i.e. predicates) as
in [Pau97b]. The coreduce combinator can only define functions taking values in Seq[A]. Thus,
least and greatest invariants extend the expressiveness of our approach. The combination of the
finality of sequences, the maximality of the greatest invariants, and preservation of invariants by
homomorphisms of machines provides a coinductive proof principle for greatest invariants:'®

struct_gi_greatest : LEMMA
FORALL(P:PRED[X],Q:PRED[Seq[A]]) :
(invariant?(struct) (P) AND FORALL(x:X) : P(x)
IMPLIES Q(coreduce(struct)(x)))
IMPLIES
(FORALL(x:X) : P(x) IMPLIES gi(Q)(coreduce(struct)(x)))

If there is an invariant P on the generating automaton and it implies (translated by coreduce)
the local predicate Q, then P implies the greatest invariant of Q as well. We will use this method
in Subsection 5.2 to prove that a certain insert operation on sequences preserves ordering.

4.2 Prefix ordering: simulations and a proof principle for admissible
predicates

Thus far we have discussed coinductive proof methods for checking equalities of sequences. This
subsection is concerned with the prefix ordering on sequences mentioned in Section 3 and discusses
related proof techniques and results in our formalisation.

The prefix ordering on sequences relies on the composition operation

prefix : PRED[[Seq[A],Seq[A]]] =
LAMBDA(x,y:Seq[A]) : EXISTS(z:Seq[A]l) : comp(x,z) =y

We prove that prefix is a partial order and introduce, for convenience, various rewrites, for
instance

prefix_tail : LEMMA
FORALL(x,y:Seq[A]) : prefix(x,y) IMPLIES
FORALL(n:nat) : prefix(tail(x,n),tail(y,n))

prefix_infinite : LEMMA
FORALL(x,y:Seq[A]) : (infinite?(x) AND prefix(x,y)) IMPLIES x =y

16Tn general, P can be any predicate on sequences.
17Similar to the every predicate, which is generated for ADT definitions in PVs.
18 This is a special case of an invariant proof principle in [Jac97].
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The latter emphasises again that equality of sequences is determined by finite observation: if x is
an infinite prefix of y then it is indistinguishable from y. Note, moreover, that the empty sequence
is a prefix of every sequence.

In the same way as bisimulations serve as a local (single step) proof method for equalities,
simulations provide means for proving the prefix ordering. A simulation!? is a relation on sequences

satisfying

simulation? : PRED[PRED[[Seq[A],Seq[4]1]1]1] =
LAMBDA (R:PRED[[Seq[A],Seq[A]]]) :
FORALL(x,y:Seq[A]) : R(x,y) IMPLIES
(up?(next(x)) IMPLIES
(up?(next(y)) AND proj_1(down(next(x))) = proj_1(down(next(y)))
AND R(proj_2(down(next(x))),proj_2(down(next(y))))))

A simulation ensures that every step which can be taken by the first sequence can be matched by
a similar step of the related sequence. The simulation proof principle

prefix_simulation : LEMMA
FORALL(x,y:Seq[A]) : prefix(x,y) IFF
EXISTS(R:PRED[[Seq[A],Seq[A]]]) : simulation?(R) AND R(x,y)

follows from an application of the bisimulation proof principle. For the (only if) direction we show
that the prefix relation is a simulation. Vice versa, we perform a case distinction on whether
x 1s finite or infinite. In the finite case, the sequence y can be cut into the finite start with the
same length as x and a remainder which witnesses, as desired, the prefix order. If x is infinite the
relation

{x,y:Seq[A] | R(x,y) AND infinite?(x)}

is a bisimulation—following directly from the simulation properties of R. The empty sequence (as
any other sequence would do as well) then witnesses the prefix order.

Using the prefix order one can describe ascending chains AChains?[Seq[A] ,,prefix[A]] of
sequences as functions f:[nat -> Seq[A]] such that prefix(£(n),f(n+1)) holds?® for each n.
Interestingly, we can now define the least upper bound of an ascending chain by coinduction

lub_struct : [(AChains?[Seq[A],prefix[4]]) ->
Lift[[A, (AChains?[Seq[A]l,prefix[4]1]1)]1]1] =
LAMBDA(f: (AChains?[Seq[A] ,prefix[A]]))
IF FORALL(n:nat) : bot?(next(f(n))) THEN bot
ELSE up(proj_1(down(next(f(least({n:nat|NOT bot?(next(£(n)))}))))),
LAMBDA(n:nat) : tail(f(n),1))
ENDIF

lub : [(AChains?[Seq[A],prefix[A]]) -> Seql[Al] = coreduce(lub_struct)

The state space of the automaton lub_struct is the set of ascending chains. The destruction of
the chain of empty sequences just yields bot. Otherwise we can observe the head of any nonempty
chain element (for convenience we take the least). The new state is computed by the pointwise
application of tail. Now we can prove

seq_lub : LEMMA
FORALL(f: (AChains?[Seq[A],prefix[A]])) :
least_upperbound?[Seq[A],prefix[A]1](f) (lub(£f))

19The definitions of bisimulation and of invariant are determined by the functor T of the coalgebras that one is
considering. The notion of simulation is determined in a similar manner if there is an order on the objects T(X).
Tt is described as an “ordered bisimulation” in [Fio96]. Our notion of simulation for sequences is an instance of an
ordered bisimulation, using the flat order on the functor T(X) =1+ (4 x X).

20We could have used as well infinite sequences of sequences defining the ascending chain property as a greatest
invariant similarly to ordered? in Subsection 5.2.
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The simulation proof principle shows that 1ub(f) is an upper bound using the simulation (for all
n)

{ x,y:Seq[A] | EXISTS(m:nat) : x

y

tail(£f(n),m) AND
tail(lub(f),m)}

The same proof principle provides minimality: suppose there is another upper bound z of the
chain £ then the relation

{x,y:Seq[A] |
EXISTS(m:nat) :
x = lub(LAMBDA(n:nat) : tail(f(n),m)) AND
y = tail(z,m)}

is a simulation yielding prefix(lub(f),z). Therefore the prefix relation yields a complete partial
order. Moreover, we prove that every sequence is the least upper bound of the chain of its finite
prefixes. Together with the result that states that each sequence is finite if and only if it is a
compact element (see [DP96]) we conclude that the prefix ordering gives rise to an algebraic cpo.

This result implies another proof principle for sequences for admissible predicates. These are
predicates which are closed under least upper bounds:

admissible? : PRED[PRED[Seq[4]]] =
LAMBDA(p:PRED[Seq[A]]) : FORALL(f:(AChains?[Seq[A],prefix[A]]))
(FORALL(n:nat) : p(£(n))) IMPLIES p(lub(f))

We prove the induction principle

admissible_holds : LEMMA
FORALL (p:PRED[Seq[A]]) :
(admissible?(p) AND FORALL(1:1ist[A]) : p(1list_incl(1)))
IMPLIES FORALL(x:Seq[A]l) : p(x)

If an admissible predicate holds for all finite sequences (built up from lists) it therefore holds
for arbitrary sequences being a least upper bound of a chain of finite sequences. Thus, in order
to verify that an admissible predicate holds, induction on (finite) lists is sufficient. This (in our
approach derived) proof rule is fundamental in the domain theoretic formalisation of sequences as
presented in [MNO97]. Note, however, that the application of this induction principle involves the
proof of admissibility of the predicate in question. As long as we cannot guarantee this property
by extra simple (syntactic) criteria (as in [Reg95, MN97]) the induction principle is of little use in
our framework.

4.3 Filtering and flattening

Filtering and flattening of (finite) lists are frequently used standard operations. Filtering removes
all elements of a list which do not satisfy a given predicate. A list of lists is flattened by removing
the inner brackets. For finite lists both inductively defined operations do (naturally) terminate.

This picture changes for possibly infinite sequences. We can not expect that an algorithm for
filtering does terminate for all sequences, because for a given infinite sequence we might not be
able to determine in finitely many steps the first element for which the predicate in question holds.
The same is, less obviously, valid for flattening. Suppose we want to calculate the first element of
a flattened infinite sequence of lists. This requires the calculation of the first nonempty element
of the sequence (and then the first element of this list) which reduces to the filter problem. In the
following we will focus on filtering.

Filtering (as well as flattening) is defined coinductively (because their codomain is Seq[4]).
Recall that this requires us to determine a local one step structure map on the domain of the
operation. The structure map has to incorporate the search for the first element for which a
predicate holds. Instead of “programming” a search algorithm we use (declaratively) an oracle
which tells us the desired position if it exists and otherwise returns bot.
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holds_first_at : [[PRED[A],Seq[A]] -> Lift[natl]] =
LAMBDA(p:PRED[A],x:Seq[A]) :
IF (FORALL(n:nat) : up?(at(x,n)) IMPLIES NOT p(down(at(x,n))))

THEN bot
ELSE up[nat] (least({ n : nat | up?(at(x,n)) AND p(down(at(x,n)))}))
ENDIF
This oracle is of course not operational, instead the clause (FORALL(n:nat) : ... is descriptive.

Contrary to Paulson [Pau97a] we think that such a desciptive filter is relevant to computer science
application. We indicate its usefuleness for the development of meta theory in Subsection 5.1. Note
moreover that the negation of the descriptive clause in above definition characterises a subset of
sequences which are fair w.r.t. the given predicate as indicated in [Rei96]. Restricted to such fair
sequences the oracle has computational meaning.

The oracle is the essential part of the structure map for filtering;:

filter_struct : [[PRED[A],Seq[A]l] -> Lift[[A, [PRED[A],Seq[4]1]1]1]1] =
LAMBDA (p:PRED[A], x:Seq[Al)
IF bot7?(holds_first_at(p,x)) THEN bot
ELSE up(down(at(x,down(holds_first_at(p,x)))),
(p,tail(x,1+down(holds_first_at(p,x)))))
ENDIF

filter : [[PRED[A],Seq[A]l] -> Seq[A]] = coreduce(filter_struct)

In words, holds_first_at returns a natural number (if it exists) which is appropriately fed into
at and tail to calculate the next valid output and the successor state. Again for efficiency we
provide various rewrite rules for filter. For instance:

filter_cons : LEMMA
FORALL(p:PRED[A], x:Seq[A], a:A) : filter(p,cons_seq(a,x)) =
IF p(a)
THEN cons_seq(a,filter(p,x))
ELSE filter(p,x)
ENDIF

The filter operation does not commute with composition (concatenation) of arbitrary sequences,
i.e. the equation

filter(p,comp(x,y)) = comp(filter(p,x),filter(p,y))

does not hold in general (as discussed in Section 7). Nevertheless, if x is finite?! the above equation

holds:

filter_comp : LEMMA
FORALL(1:1ist[A],x:Seq[A]l,p:PRED[A]) :
filter(p,comp(list_incl(1l),x)) =
comp(filter(p,list_incl(1l)),filter(p,x))

The proof uses a simple induction on lists and the filter rewrites we supplied.
The lemma

filter_and : LEMMA
FORALL(x:Seq[A],p,q:PRED[A]) : filter(p,filter(q,x)) =
filter ((LAMBDA(a:4) : p(a) AND q(a)),x)

has a more challenging coinductive proof. We show that the standard candidate

21More generally x should be fair w.r.t. the filter predicate—here we prove just the finite case.
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{u,v:Seq[A] | EXISTS(x:Seq[A]) :
u = filter(p, filter(q, x)) AND
v = filter ((LAMBDA (a: A): p(a) AND q(a)), x)}

is a bisimulation. Firstly, the left hand side of the equality is empty if and only if the right hand
side is empty by expanding the definitions of filter and using properties of holds_first_at.
Secondly if both sides are not empty we have to check that the observable output (given by next)
is the same and the next states are again related. This involves a somewhat complicated reasoning
about those positions in x and filter(q,x) where the predicates hold the first time. We describe
just one (simple) case. Suppose the first position n, where g holds in x is strictly less than n,aq
(the first position for p and q). Further suppose between ng and npaq exist m elements for which
q does not hold. Then n,ry = n,+m+k, where k, is the first position in filter(q,x) for which
p holds as well. This equation can now be used to calculate the outputs and instantiations.
Our (simply typed) filter function can be typed more accurately by using dependent types

filter_pred(p:PRED[A]) : [Seq[A]l -> Seql(p)1] =
coreduce(filter_pred_struct(p))

where filter_pred_struct is defined similarly (but with tighter typing) to filter_struct. The
original filter function can be obtained from filter_pred but not vice versa:

pred_incl(p:PRED[A]) : [(p) -> A] = LAMBDA(x:(p)) : x

seq_pred_incl(p:PRED[A]) : [Seql[(p)] -> Seql[Aal] =
seq_map(pred_incl(p))

filter_pred_filter : LEMMA
FORALL(p:PRED[A],x:Seq[A]) :
seq_pred_incl(p) (filter_pred(p)(x)) = filter(p,x)

However, most of the properties of filter are reflected by seq_pred_incl using the fact from
Subsection 4.1 that seq_map preserves injectivity.
Filtering sequences does commute with seq_map in the following way

filter_map : LEMMA
FORALL (f: [A -> B], p: PRED[B], x: Seq[A]):
filter(p,seq_map(f)(x)) = seq_map(f)(filter((p o £),x))

Note that a predicate p: PRED[B] gives rise to a predicate p o f£: PRED[A] by using the “trans-
lation” £. This lemma looks more complicated for filter_pred

filter_pred_map : LEMMA
FORALL (f: [A -> B], p: PRED[B], q: PRED[A], x: Seql[al, g:[(q)->(p)1):
qg=po f AND f o pred_incl(q) = pred_incl(p) o g
IMPLIES
filter_pred(p) (seq_map(£f)(x)) = seq_map(g) (filter_pred(q) (x))

because the dependent types are taken into account. The proof of the refinement lemma in
Subsection 5.1 crucially relies on it.
Finally, the flatten function reads

flatten_struct : [Seq[list[A]] -> Lift[[A,Seq[1list[4]]1]1]] =
LAMBDA(x:Seq[list[Al]) :
LET y = holds_first_at((LAMBDA(1:1ist[A]) : NOT l=null),x) IN
IF bot?(y) THEN bot
ELSE up(car(down(at(x,down(y)))),
cons_seq(cdr(down(at(x,down(y)))),
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tail(x,1+down(y))))
ENDIF

flatten : [Seq[list[A]] -> Seq[A]l] = coreduce(flatten_struct)

The heart of flatten_struct is again the oracle holds_first_at for a predicate which checks if
a list is nonempty. The main flatten—lemma is

filter_flatten : LEMMA
FORALL(x:Seq[list[A]],p:PRED[A]) :
filter(p,flatten(x)) =
flatten(seq_map(LAMBDA(1:1ist[A]) : list_filter(p,1))(x))

which shows that filtering and flattening commute. The proof is akin to the lemma filter_and
because again we have to handle the filtering of a conjunction of two predicates.

This concludes our brief tour through our sequence formalisation. We present applications of
these notions and techniques in the next section.

5 Two challenges

In this section we apply the coalgebraic sequence formalisation to two areas: automata theory
and functional programming. Sequences occur in automata theory as executions and traces.
Executions are alternating sequences of states and actions which record the internal state changes
of an automaton. A trace is obtained from an execution by filtering out the information which
determines the externally visible behavior of an execution. In our case, where we distinguish
external and internal actions?? a trace consist solely of external actions. Using a trace semantics,
an automaton A implements an automaton B if every trace of A can be performed by B, that is
the set of traces of B is a superset of the set of traces of A. A refinement is a function between
the state sets of two automata which commutes with the transition relation of the automata in a
suitable way. The refinement lemma then states that the existence of a refinement implies trace
inclusion. This is an important proof method because local reasoning is sufficient for a refinement
proof. The refinement lemma is a (nontrivial) illustration for the use of filtering and mapping of
sequences.

cHARITY [CF92, CS95] is a programming language which is functional in style and is solely
based on induction for (initial) datatypes and coinduction for (final) codatatypes. A codatatype
for sequences supports definitions in the style of coreduce. The second challenge we briefly dis-
cuss in this section involves a coinductive definition of an insert operation for sequences w.r.t.
an order predicate on the elements. This insert operation can be programmed in CHARITY (us-
ing the coreduce equivalent). In PVS we prove its correctness: inserting an element preserves
ordering. Interestingly the ordering predicate is a greatest invariant, and the invariant proof prin-
ciple yields the correctness proof. This example appropriately combines coinductive techniques
for programming and reasoning.

5.1 Refinement lemma from automata theory

We consider automata with state space S as transition systems with two label sorts Ext and Int
for external and internal actions:

IEaut : TYPE = [# trans? : PRED[[S, Coprod[Int,Ext], S]], start? : PRED[S] #]

Here Coprod is the disjoint union defined as a pvs datatype with constructors (injections) ini
and in2. The type IEaut is a record type. The record projection trans? accesses the transition
relation, start? the set of start states. An automaton a of type IEaut can perform internal

22Tn T/O-automata theory [LV95] the external actions are further partitioned into input and output actions.
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transitions (s,in1(i),t) in trans?(a) or external transitions (s, in2(e),t) in trans?(a) which
can be distinguished by the tags in1 and in2 of the coproduct.

For the purpose of the formalisation of the refinement lemma we alter the standard definition
of an execution: instead of considering alternating sequences of states and actions starting with a
state in start?, an (“extended”) execution has the type

Seql[[S, Coprod[list[Int], [list[Int],Ext,list[Int]]], S1]

Its elements are triples (s,x,t) where s and t are states in S connected via the expanded transition
x. The expanded transition consists either of a list of silent (internal) actions of the considered
automaton or of an external action wrapped in two lists of internals. Intuitively, the notion of
P g . . .
an expanded transition resembles the = notation from automata theory where o is, in our case,
either the empty or singleton sequence of visible actions.
The predicate

expand(trans?) : PRED[[S, Coprod[list[Int], [list[Int],Ext,list[Int]]], S1]1]

ensures that the triples are indeed (expanded) transition steps of a given transition relation trans?.
Executions exec?(aut) are then defined as the greatest invariant of the (local) predicate

exec0?(trans?(aut)) : PRED[Seq[(expand?(trans?(aut)))]]

which guarantees that the third component of a (triple) element matches the first of the next
sequence element (if it exists). Finally, executions whose first state is a start state of aut are
collected in execof?(aut). To obtain a trace from an execution we first forget about the state
information, then filter out all internal steps, and finally project to a sequence of externals:

is_ext?(aut) : PRED[(expand(trans?(aut)))] =
LAMBDA(z: (expand(trans?(aut))))
is27[1list[Int], [list[Int],Ext,list[Int]]](proj_2(z))

remove_ints(aut) : [Seq[(is_ext?(aut))] -> Seq[Ext]] =
seq_map (LAMBDA (w: (is_ext?(aut))) : proj_2(out2(proj_2(w))))

exec2trace(aut) : [(exec?(aut)) -> Seq[Ext]] =
remove_ints(aut) o filter_pred(is_ext?(aut))

Observe that we use filter_pred, which produces a sequence of the subtype of expanded external
steps, instead of filter, which would not allow the appropriate composition of functions. The
predicate traces?(aut) consists then of those sequences which are filtered from an execution of
aut.

The structure of the extended executions reflects the notion of refinement between two au-
tomata:

refinement?(autl,aut2) : PRED[[[S1->S2], [Ext1->Ext2]]] =
LAMBDA(r:[S1->S2],f: [Ext1->Ext2]) :
(FORALL(s:S1) : start?(auti)(s) IMPLIES start?(aut2)(r(s))) AND
(FORALL(s,t:S1) :
(FORALL(a:Int1) : trans?(auti)(s,ini(a),t) IMPLIES
silent?(trans?(aut2))(r(s),r(t)))
AND
(FORALL(a:Ext1) : trans?(auti)(s,in2(a),t) IMPLIES
EXISTS(u,v:S2) : silent?(trans?(aut2))(r(s),u) AND
trans?(aut2) (u,in2(f(a)),v) AND
silent?(trans?(aut2))(v,r(t))))

A refinement following this definition, is a pair of a mapping r between the state spaces and a
translation?? £ between the externally visible actions preserving the start states and satisfying

23 This generalises refinements to automata with possibly different label sets.
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1. If the automaton aut1 can perform a silent action ini(a) then the automaton aut2 matches
this action with a sequence of silent actions.

2. If aut1 performs an external action in2(a) then aut2 matches this action by an expanded
transition containing the translated action in2(f(a)).

The refinement lemma now states that the existence of an refinement implies trace inclusion w.r.¢.
the translation £ of the refinement:

FORALL (x:(traces(autl))) : traces(aut2)(seq_map(f)(x))
In the sequel we collect two automata related by a refinement in the structure

auts_ref : VAR [# autl : IEaut[S1,Int1,Exti],
aut2 : IEaut[S2,Int2,Ext2],
ref : (refinement?(autl,aut2)) #]

The proof proceeds in three steps

1. Using the refinement properties we define a function

translate_steps(auts_ref) :
[(expand(trans?(auti(auts_ref)))) -> (expand(trans?(aut2(auts_ref))))]

which translates an expanded transition step of aut1 to an expanded transition step of aut2
and preserves the distinction between internal and external (translated by f) steps.

2. This translation is extended to sequences via seq_map

seq_refine2exec(auts_ref) : [Seq[(expand(trans?(autl(auts_ref))))] ->
Seq[(expand(trans?(aut2(auts_ref))))]] =
seq_map(translate_steps(auts_ref))

which preserves the greatest invariant

seq_refine2exec_in_exec : LEMMA
FORALL(x: (exec?(auti(auts_ref))))
exec?(aut2(auts_ref)) (seq_refine2exec(auts_ref) (x))

3. The proof succeeds by pasting together the definitions of seq_refine2exec and exec2trace
and applying the lemmas seq_map_comp and filter_pred_map from Subsection 4.1.

5.2 Sorted sequences

A sequence of elements of type A is ordered w.r.t. a relation <= on 4 if

ordered?(<=) : [Seq[A] -> bool] =

LAMBDA (s:Seq[A]) : FORALL (n:nat, al,a2:4)
at(s,n) = up(al) AND at(s,n+1) = up(a2)
IMPLIES al<=a2

holds for it. This ad hoc definition is, in fact, a greatest invariant of the local predicate

ord_local(<=) : [Seq[A] -> booll] =

LAMBDA (s:Seq[A]): FORALL (al,a2:A)
at(s,0) = up(al) AND at(s,1) = up(a2)
IMPLIES al <= a2
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This (simple) observation supplies us with the greatest invariant proof principle for checking if a
sequence is ordered.

We consider an operation which inserts an element in a given sequence without disturbing the
ordering given by <=. This insert operation is defined coinductively using the following machine

(resembling the definition from [Coc96]).

pd_struct(<=) : [[Lift[A],Seq[4]] -> Lift[[4,[[Lift[A],Seq[A]1]]1]1]1]=
LAMBDA (x:Lift[A], s:Seq[A])
IF bot?(x) THEN
IF bot?(next(s)) THEN bot
ELSE up(proj_1(down(next(s))), (bot,proj_2(down(next(s)))))
ENDIF
ELSE LET v = down(x) IN
IF bot?(next(s)) THEN up(v, (bot,empty_seq))
ELSE
LET a = proj_1(down(next(s))), t = proj_2(down(next(s))) IN
IF a <= v THEN up(a, (up(v), t))
ELSE up(v, (bot, cons_seq(a,t)))
ENDIF
ENDIF
ENDIF

The first component of the state space is either bot signaling that no further insert is needed, or
up(a) where a is an element which still should be inserted (at some later stage). In the case of
bot the machine reproduces the behavior of the given sequence. Otherwise the machine tries the
insertion at the current state. If the given sequence is empty or its head element is not related
to a then the insertion can take place: we produce a as the output and proceed with the original
sequence and bot in the first component. If the insertion cannot be performed we postpone it to
the next step.
We now prove that the resulting insert operation

pd(<=) : [[Lift[A],Seql[A]l] -> Seq[A]] = coreduce(pd_struct(<=))

push_down(<=) : [[A,Seq[A]l] -> Seq[Al] =
LAMBDA (a:A, s:Seql[A]) : pd(<=)(up(a),s)

preserves ordering of sequences (which we consider as a correctness criterion).

push_down_ordered : LEMMA
FORALL (x:Seq[A]) :
ordered?(<=)(x) IMPLIES
FORALL (a:A) : ordered?(<=)(push_down(<=)(a,x))

The proof of lemma push_down_ordered relies on the proof principle struct_gi_greatest for
greatest invariants from Subsection 4.1. This proof principle supports (as the (bi)simulation proof
principles do as well) local reasoning for global properties. Lemma push_down_ordered represents
a typical goal for this proof method: we wish to check if a greatest invariant (ordered?(<=)) holds
for images of the coreduce combinator (here pd(<=)) under the assumption that some other
predicate holds on the domain of coreduce. In our case the predicate

P = {z:[Lift[A],Seq[A]] | ordered?(<=)(proj_2(z))}

on the domain [Lift[A],Seq[A]] of pd(<=) is obtained from the assumption in the lemma by
substitution?*. Now the proof proceeds in two steps

24We apply the substitution functor for the second projection.
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e We check that P is an invariant for the structure map pd_struct. This basically involves a
case distinction following the structure of pd_struct. We observe that one step of pd_struct
preserves the extended predicate P and, thus, implicitly the ordering.

e If P holds on an element x of [Lift[A],Seq[A]] then pd(<=) (x) satisfies the local predicate
ord_local(<=). Here this proof step reduces to various simple rewrite steps.

In general, finding a suitable invariant P on the domain of the coreduce combinator is the heart
of a greatest invariant proof.

Interestingly, the formal proof of this correctness criterion revealed an inaccuracy in earlier
(CHARITY) versions. We had to strengthen <= from a preorder (as suggested in [Coc96]) to a
dichotomous preorder?®. All (standard) tests performed with finite observations in cHARITY had
(accidently) involved dichotomous orders only.

6 Coalgebraic datatypes, more generally

So far we have described various (Pvs-)theories of sequences based on the finality of the “next”
destructor operation on sequences. This may seem ad hoc to those who are not familiar with
coalgebraic datatypes. In order to put our approach in a wider context, we indicate in this
section how it forms part of a more general theory of coalgebraic datatypes. We will sketch a
possible syntax for such coalgebraic datatypes—based on the approach suggested first in [Hag87]
and implemented in cHARITY [CF92, CS95], but put in a form adapted to pvs. Additionally,
we sketch how to formulate associated proof principles with invariants and bisimulations for such
general coalgebraic datatypes, following [HJ95, HJ98, HJ97]. What we will say will be formulated
for logical languages, in contrast to type theoretic languages, where one may have coalgebraic
datatypes as well (like in the coq system [BBCt97, Gim95, Gim96]). We do so because these
logical languages are more familiar and therefore more suitable for conveying the main ideas.

We illustrate the syntax for (algebraic) datatypes in Pvs via the following example of finite
lists (of elements of some parameter type 4).

List[A : TYPE] : DATATYPE
BEGIN
nil : nil?
cons(hd : A, t1 : list) : comns?
END List

In this notation, nil and cons are the constructors for building elements of the datatype List [A],
hd and t1 are the accessors, and nil? and cons? are the recognisers. When the Pvs system type-
checks a file with this datatype definition, it internally generates theories (represented externally
in the separate file List_adt.pvs) which contain various associated axioms (essentially describing
these lists as initial algebras). For example, these theories comprise an induction principle and a
“map” definition for lists. See [ORSvH95, ORR*96, RSC96] for more information.

Given this syntax for algebraic datatypes, one can envisage a syntax for coalgebraic datatypes
in which we could write our type of sequences as:

Seq[A : TYPE] : CODATATYPE
BEGIN
next : Lift[[4, Seqll
END Seq

The proof assistant could then automatically generate associated definition- and proof-principles,
involving coreduce, map, record, bisimulations and invariants, and thus exploit the finality of
Seq[A]—according to the intended model of this type definition.

Following the CHARITY approach, the general form for such coalgebraic datatype definitions
could be as follows.

25 All elements are comparable.



NewType[A1, ..., An : TYPE] : CODATATYPE
BEGIN
destrl : [P1[As] -> Ti[As,NewTypel]

destrm : [Pm[As] -> Tm[As,NewTypel]
END

In this definition, the types A1, ..., An are type parameters. We have written As for the list
(A1, ..., An) of these parameters. The destri, ..., destrm are destructors, which tell us what we
can observe about the type NewType that we are defining. In explicit form they have types:

destri : [NewType[As] -> [Pi[As] -> Ti[As, NewType[As]]]]
Or equivalently, using Currying:
destri : [NewType[As], Pi[As] -> Ti[As, NewTypel[As]]]

The Pi are types of inputs, in which the type NewType that we are defining is not allowed to occur.
The Ti are the output types, in which NewType can occur. We may assume that the Pi and Ti
are built up from constant types, using finite products (written as A x B or [A, B]), coproducts
(or disjoint unions, written as A 4+ B) and previously defined datatypes and codatatypes.

We briefly describe associated definition principles using coreduce and record, like in CHAR-
ITY. For an arbitrary type X we have

coreduce : [[X, P1[As] -> Ti[As, X]],..., [X, Pm[As] -> Tm[As, X]]
-> [X -> NewTypel[As]]]

satisfying the equations (for 1 <i < m):
destri(coreduce(fs)(x), ai) = map_Ti(ids, coreduce(fs))(fi(x, ai))

where the £i are functions [X, Pi[As] -> Ti[As, X]], and ai is an element of the type Pi[As].
The record combinator is easier: it has type

record : [[P1[As] -> Ti[As, NewTypel[As]]],..., [Pm[As] -> Tm[As,
NewType[As]]]
-> NewType[4s]]

and satisfies the equations
destri(record(fs), a) = fi(a)

This record combinator gives an inverse to the m-tuple (destri, ..., destrm) of destructors, like
next_inv is inverse to next towards the end of Section 3. Note, that the record combinator can
be used to derive constructors for the datatype. However, these constructors may become clumsy
once exponentials appear in the codomain of destructors as in [A => Lift[[NewType[A,B],B]]]
where record remains the only “constructor”.

What we have described so far is essentially as in the (recent higher order version of the)
CHARITY language?®. We continue to sketch how one can formulate proof principles for bisimula-
tions and invariants with respect to general codatatype definitions as for NewType above, follow-
ing [HJ95, HJ98, HJ97]. This requires “liftings” of substitution in types from types to predicates
and to relations. For a type T[A] containing a parameter A, one can define by induction on the
structure of T the liftings:

pred_lift_T : [PRED[A] -> PRED[T[A]]]
rel_lift_T : [REL[A] -> REL[T[AI]]

261n fact, our approach has to handle variance problems as well: HeuType is required to occur only positively
inside the output type Ti, and (possible) positive, negative or mixed occurrences of type parameters Ai lead to a
slightly more complicated typing of map. These issues (as well as strength which we dropped for simplicity) will
be dealt with in a future more detailed proposal following the ideas manifested in CHARITY.
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where REL[A] is the type PRED[[A,A]] of binary relations on A. The precise form of this lifting is
not so important at this stage, and may be found in [HJ95, HJ98, HJ97].

Returning to our general codatatype NewType, we can now define that an arbitrary predicate
Q : PRED[NewTypel[As]] is an invariant (for this codatatype NewType) if it satisfies (for all 1 <
i< m):

FORALL(x : NewTypel[As]) : Q(x) IMPLIES
FORALL(a : Pi[As]) : pred_lift_Ti(As, Q)(destri(x, a))

Similarly, a binary relation R : REL[NewType[As]] is a bisimulation if (for all 1 < i < m):

FORALL(x, y : NewTypel[As]) : R(x,y) IMPLIES
FORALL(a : Pi[As]) : rel_1lift_Ti(As, R)(destri(x, a), destri(y, a))

The proof principles for bisimulations can now be formulated as:

FORALL(R : REL[NewType[As]]) : bisimulation?(R) IMPLIES
FORALL(x, y : NewTypel[As]) : R(x,y) IMPLIES x =y

Invariants play an important role in refinements (or implementations), see e.g. [LV95, LG86],
(and [Jac97] for a coalgebraic account). One obtains a proof principle for invariants as soon as
one has a notion of greatest invariant gi(Q) contained in an arbitrary predicate Q (see [Jac97] for
a definition of gi(Q) as countable meet, with the earlier definition for sequences as a special case).

Hopefully, this sketch will give the reader an idea of a general approach to coalgebraic data-
types, of which our formalisation of sequences is a special case. What we have described has not
been fully implemented in any of the currently available proof assistants. Several proof assistants
offer features which would allow for an implementation of such datatypes. Paulsons (co)inductive
definitions and datatype package in 1SABELLE /2F [Pau97b] encodes datatypes as least and greatest
fixed points of monotone operators. However these datatypes are merely recursive sets and are not
automatically equipped with the combinators. Nevertheless, these could be added by coinductive
definitions. Following the approach of [LP94] (weak) final coalgebras could be implemented by
existential types. The easiest “implementation” in any logic is, of course, the assertion of an extra
axiom stating the finality. However, depending on the logical framework such an axiom could may
lead to inconsistencies.

7 Concluding remarks

We briefly discuss some alternative approaches to the formalisation of sequences and infinite
objects in general in relation to our coalgebraic work.

Coquand [Coq94] proposes to encode possibly infinite objects or expressions by systems of
guarded recursive equations. These are defining equations in the flavour of inductive definitions
with the extra requirement that recursive occurences of functions are guarded by some constructors
of the lazy (or final) datatype in question. In fact, this restriction can be reformulated in terms of
destruction: an expression is guarded if it results from applications of destructors of the datatype.
The coreduce combinator in our approach defines unique solutions (f, for given h) to flat systems
of equations®”

next(f(zy1,...,z,)) = lift(id x f)(h(z1,...,2,))

however, our presentation in terms of defining machines or coalgebras does not impose the extra
restriction to guarded terms. Coquand is able to express general systems of equations where the
lookahead by destruction is possibly deeper than one. These can be unfolded to flat systems along
the lines of [BM96]. His proof principle appears to be a blend of our coinductive principles for
coinductive definition given by coreduce and greatest invariants. In fact, it states in our terms that
a proposition can be destructed and occur recursively in the proof, thus, expressing an invariant

27For multiple equations one can use a coproduct of state spaces.
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property. Hence, his inductive proof principle is truely coinductive in spirit (besides it is not
well-founded).

Leclerc and Paulin-Mohring [LP94, Pau96] suggest an impredicative encoding of streams (only
infinite sequences) using existential types in coqQ. Their encoding involves the definition of a
coreduce equivalent called “built”, and is based on [Wra89]. They develop stream specific proof
principles using indices or positions and also the notion of invariant. However, their encoding lacks
coinductive proof principles because existential types yield weakly final coalgebras and therefore
only the existence part of the definition of coreduce. Uniqueness of such encodings can be estab-
lished under additional parametricity assumptions, see e.g. [Has91, PA93].

Closest to our approach is Paulsons account on (co)datatypes in 1SaBELLE/HOL [Pau97al.
He focuses on the definitional encoding of codatatypes in higher order logics and derives basic
examples for coinductive definitions and proofs. We take off at exactly this point and demonstrate
that regardless of the implementation of the final coalgebra powerful tools can be derived. Our
theory development abstracts from the particular implementation because we desired a theory
which is, to a certain degree, independent from the tool or logic that is being used.

Various formalisations of sequences in proof assistants —not including the current coalgebraic
approach—are discussed in [DGM97]. One can distinguish three “direct” formalisations of se-
quences (of elements of some type A) in terms of suitable existing types. (1) Infinite sequences
of elements of Lift(A), i.e. of elements of A augmented with an extra element for undefined. This
approach occurs in [NS95]. (2) Disjoint union of finite and infinite sequences, see [CP96, Age94].
(3) Functions from downclosed subsets of the natural numbers to A, in [DG97]. One way or an-
other, all three approaches lead to unpleasantly or even unmanageably complicated details when
proving elementary properties about operations like filtering and flattening, see [DGM97].

When it comes to manageability, the domain theoretic approach of [MN97] (based on the for-
malization of domain theory in [Reg95]) often leads to easier proofs (than in the present coalgebraic
approach), since induction can be used for admissible predicates (see the end of Subsection 4.2).
Typically in domain theory initial algebras and final coalgebras coincide as a solution of a domain
equation (see e.g. [AJ94, Fio96]). Thus, their central induction proof principle is restricted to
such frameworks. Of course, the domain theoretic approach is perfect if the problem (involving
sequences) fits into the context of the Logic of Computable Functions. However, the domain
theoretic setting requires that all functions have to be continuous, and all predicates (subject to
inductive proofs) have to be admissible. This restricts the application domain, and generates extra
proof obligations. There is an obvious inclusion from the ordinary set/type theoretic world into
the domain theoretic world (via lifting with sets/types as flat domains), but once one has entered
the world of domains, there is no way out: all subsequent work that uses sequences has to be done
with domains.

Our formalisation in the general higher order logic of Pvs also allows the verification of proper-
ties of expressions which have (only) descriptive definitions. This is adequate if specifications are
not required to have computational meaning. Characteristic for our formalisation is that filtering
does not commute with composition, in the sense that the equation

filter(p, comp(z,y)) = comp(filter(p, ), filter(p, y)) (%)

does not hold for all sequences z,y: Seq(A). For example, if A = {0,1} and the predicate p: A —
bool is only true on 1, then by taking = to be the infinite sequence of 0s, and y to be the infinite
sequence of 1s, we obtain

filter(p, comp(z,y)) = filter(p, z) because z is infinite
= empty_seq.
comp(filter(p, z), filter(p,y)) = comp(empty_seq,y)

In the domain theoretic formalisation of sequences these outcomes are the same [DGM97], because
the (continous) filter function returns “divergence” on x which is preserved by composition. This
contradicts our intuition about sequences as formalised in this paper. However, the equation (%)

30



makes perfect sense in a domain theoretic context, where sequences may terminate normally or
abnormally. In a coalgebraic setting this behaviour (*) can also be realised by using an alternative
signature (or functor) for sequences: instead of X + lift(A x X) as used above, one can take
X — lift(lift(A x X)). In the latter case, two bottom elements are adjoined, one for normal and
one for abnormal termination. The associated final coalgebra then takes the form:

LCFSeq next lift(lift(A x LCFSeq(A))

An outcome next(c) either yields L = bot for abnormal termination (divergence), | = up(bot) for
normal termination, or (a, 0’) where a is an element of A, and ¢’ is a (tail) sequence. Composition
for such alternative sequences can be defined via the machine structure

L if next(o) = L or next(r) =

i) if next(o) = | and next(r) = J,
(a,(o,7") if next(o) = | and next(7) = (a, 7')
(a, (o’ (o) =

o',7)) if next(o) = (a,0’).

and an appropriate filter would produce divergence on unfair (w.r.t. p) sequences. For such a
sequence formalisation commutation of filter and composition can be established, in accordance
with our intuition.

Thus, coalgebraic datatypes in higher order logic may provide sequence formalisation with
either computational or descriptive semantics. A key advantage of the coalgebraic approach is that

comp_struct(co, 7) =

a,

refined observations manifest themselves in a refined type of the destructor codomain signature.
A disadvantage of the coalgebraic approach is that it is relatively unknown, and, as yet, not

fully supported by existing proof assistants. We hope that the present paper contributes to the

familiarity, acceptance and further development of coalgebraic notions and techniques.
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