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Preface

No victor believes in chance.

Friedrich Nietzsche,
Die fröhliche Wissenschaft, §258, 1882.

Originally in German:
Kein Sieger glaubt an den Zufall.

Probability is for losers — a defiant rephrase of the above aphorism of the
German philosopher Friedrich Nietzsche. According to him, winners do not
reason with probabilities, but with certainties, via Boolean logic, one could say.
However, this goes against the current trend, in which reasoning with proba-
bilities has become the norm, in large scale data analytics and in artificial in-
telligence (AI); it is Boolean reasoning that is now losing influence, see also
the famous End of Theory article [5] from 2008. This book is about the mathe-
matical structures underlying the reasoning, not of Nietzsche’s winners, but of
today’s apparent winners.

The phrase ‘structure in probability’ in the title of this book may sound
like a contradictio in terminis: it seems that probability is about randomness,
like in the tossing of coins, in which one may not expect to find much struc-
ture. Still, as we know since the seventeenth century, via the pioneering work
of Christiaan Huygens, Pierre Fermat, and Blaise Pascal, there is quite some
mathematical structure in the area of probability. The raison d’être of this book
is that there is more structure — especially algebraic and categorical — than
is commonly emphasised.

One can distinguish two important sources of probabilities, namely counting
and measuring. This is illustrated in the two pictures below. On the left we see
an urn filled with five coloured balls: two red (R) and three blue (B). In a
random draw of a single ball from the urn the probability of drawing a red ball
is 2

5 . This probability arises from counting: two of the five balls in total are red.
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R
R

B

B

B

probability-from-counting:
draw a ball

probability-from-measuring:
throw a dart

(0.1)

On the right the two coloured circles have radius 1 and 2. The outer red area is
thus three times bigger than the inner blue area. If we now randomly throw a
dart at the board — and know for sure that we will hit it — then the probability
that it hits red is 3

4 . This ‘continuous’ situation on the right can be approximated
by the ‘discrete’ approach on the left: when the two red and blue areas are
covered with finitely many, increasinly small areas, which are treated as balls
in an urn, then the probability of drawing red approximates 3

5 .
In this book we shall describe probability-from-counting systematically via

multisets, via an operation that we call frequentist learning. Informally, a mul-
tiset is like a subset, except that elements may occur multiple times. Urns filled
with coloured balls are physical realisations of multisets. In multiset form, the
above urn will be written as 2|R⟩ + 3|B⟩, expressing that it contains 2 red (R)
items and 3 blue ones. The ket notation | − ⟩ is just syntactic sugar that it used
to separate the multiplicities (2, 3) from the elements (R, B). This probability-
from-counting is often referred to as discrete probability, in contrast to contin-
uous probability, which is based on measuring the size of subsets, that is on
probability-from-measuring. Continuous probability theory is mathematically
more challenging than discrete probability theory. In computer science, dis-
crete probabilities suffice in many cases. Mathematicians typically go directly
to the continuous case and largely ignore multisets — a historic mistake. When
urns are represented not as multisets, but as subsets, they can have at most one
ball per colour. That does not work. Counting elements of subsets — a form of
measurement — is not a substitute for counting elements of multisets.

In the sequel we put much more emphasis on discrete probability theory
than on the continuous case. The interplay between them is relevant. One can
reduce the continuous case to the discrete case by discretisation: chopping up
the whole area into finitely many small areas. It involves a certain loss of preci-
sion. One can move from discrete to continuous via a (consistent) limit process,
as expressed by de Finetti’s theorem, as we shall see later.

The scientific roots of this book’s author lie outside probability theory, in
type theory and logic (including some quantum logic), in semantics and speci-
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fication of programming languages, in computer security and privacy, in state-
based computation (coalgebra), and in category theory. This scientific distance
to probability theory has advantages and disadvantages. Its obvious disadvan-
tage is that there is no deeply engrained familiarity with the field and with its
development. But at the same time this distance may be an advantage, since
it provides a fresh perspective, without sacred truths and without adherence to
common practices and notations. For instance, the terminology and notation in
this book are influenced by quantum theory, e.g. in using ket notation | − ⟩ for
multisets and discrete probability distributions, in using daggers as reversals,
in analogy with conjugate transposes (for Hilbert spaces), or in using the words
‘state’, ‘observable’ and ‘test’ — as synonyms for ‘distribution’, for R-valued
function on a sample space, and for compatible (summable) predicates

It should be said: for someone trained in formal methods, the area of prob-
ability theory can be rather sloppy: everything is called ‘P’, types are hardly
ever used, crucial ingredients (like distributions in expected values) are left
implicit, basic notions (like conjugate prior) are introduced only via examples,
calculation recipes and algorithms are regularly just given, without explana-
tion, goal or justification, etc. This hurts, especially because there is so much
beautiful mathematical structure around. For instance, the notion of a chan-
nel (see below) formalises the idea of a conditional probability and carries a
rich mathematical structure that can be used in compositional reasoning, with
both sequential and parallel composition and with reversal: the Bayesian inver-
sion (‘dagger’) of a channel does not only come with appealing mathematical
(categorical) properties — e.g. smooth interaction with sequential and parallel
composition — but is also extremely useful in inference and learning. Via this
dagger we can connect forward and backward inference (see Corollary 7.1.7:
backward inference is forward inference with the dagger, and vice-versa) and
capture the difference between Pearl’s and Jeffrey’s update rules (see Theo-
rem 6.1.5: Pearl increases validity, whereas Jeffrey decreases divergence).

We even dare to think that this ‘sloppiness’ is ultimately a hindrance to fur-
ther development of the field, especially in computer science, where computer-
assisted reasoning requires a clear syntax and semantics. For instance, it is hard
to even express the above-mentioned Corollary 7.1.7 and Theorem 6.1.5 in
standard probabilistic notation. One can speculate that states/distributions are
kept implicit in traditional probability theory because in many examples they
are used as a fixed implicit assumption in the background. Indeed, in mathe-
matical notation one tends to omit — for efficiency — the least relevant (im-
plicit) parameters. But the essence of probabilistic computation is state trans-
formation, where it has become highly relevant to know explicitly in which
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state one is working at which stage. The notation developed in this book helps
in such situations — and in many other situations as well, we hope.

Apart from having beautiful structure, probability theory also has magic. It
can be found, for instance, in the following two points.

1 Probability distributions can be updated, making it possible to absorb infor-
mation (evidence) into them and learn from it. Multiple updates, based on
data, can be used for training, so that a distribution absorbs more and more
information and can subsequently be used for prediction or classification.

2 The components of a joint distribution, over a product space, can ‘listen’
to each other, so that updating in one (product) component has crossover
effects in other components. These ripple effects look like what happens
in quantum physics, where measuring one part of an entangled quantum
systems changes other parts.

The combination of these two points is very powerful and forms the basis for
probabilistic reasoning. For instance, if we know that two phenomena are re-
lated, and we have new information about one of them, then we also learn
something new about the other phenomenon, after updating. We shall see that
such crossover ripple effects can be described in two equivalent ways, starting
from a joint distribution with evidence in one component.

• We can use the ‘weaken-update-marginalise’ approach, where we first wea-
ken the evidence from one component to the whole product space, so that
it fits the joint distribution and can be used for updating; subsequently, we
marginalise the updated state to the component that we wish to learn more
about. That’s where the ripple effect through the joint distribution becomes
visible.

• We can also use the ‘extract-infer’ technique, where we first extract a condi-
tional probability (channel) from the joint distribution and then do (forward
or backward) inference with the evidence, along the channel. This is what
happens if we reason in Bayesian networks, when information at one point
in the network is transported up and down the connections, in order to draw
conclusions at another point in the network.

The equivalence of these two approaches will be demonstrated and exploited
at various places in this book, see e.g. Remark 7.2.7.

Here is a characteristic illustration of our structure-based approach. A well
known property of the Poisson distribution pois is commonly expressed as:
if X1 ∼ pois[λ1] and X2 ∼ pois[λ2] then X1 + X2 ∼ pois[λ1 + λ2]. This
formulation uses random variables X1, X2, which are Poisson-distributed. We
shall formulate this fact as an (algebraic) structure preservation property of
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the Poisson distribution, without using any random variables. The property is:
pois[λ1+λ2] = pois[λ1] + pois[λ2]. It says that the Poisson channel pois is a
is a homomorphism of monoids, from non-negative reals R≥0 to distributions
D(N) on the natural numbers, see Proposition 2.7.6 for details. This result uses
a ‘convolution’ commutative monoid structure on distributions whose under-
lying space is itself a commutative monoid. This monoid structure plays a role
in many other situations, for instance in the fundamental distributive law that
turns multisets of distributions into distributions of multisets.

The following aspects characterise the approach of this book.

1 Channels are used as a cornerstone in probabilistic reasoning. The concept
of (communication) channel is widely used elsewhere, under various names,
such as conditional probability, stochastic matrix, probabilistic classifier,
Markov kernel, statistical model, conditional probability table (in Bayesian
network), probabilistic function/computation, signal (in Bayesian persua-
sion theory), and finally as Kleisli map (in category theory). Channels can
be composed sequentially and in parallel, and can transform both states and
predicates. Channels exist for all relevant collection types (lists, subsets,
multisets, distributions), for instance for non-deterministic, and for proba-
bilistic computation. However, after the first chapter about collection types,
channels will be used exclusively for distributions, in probabilistic form.

2 Multisets play a central role to capture various forms of data, like coloured
balls in an urn, draws from such an urn, tables, inputs for successive learn-
ing steps, etc. The interplay between multisets and distributions, notably in
learning, is a recurring theme.

3 States (distributions) are treated as separate from, and dual, to predicates.
These predicates are the ingredients of an (implicit) probabilistic logic, with,
for instance conjunction and negation operations. States are really different
entities, with their own operations, without, for instance conjunction and
negation. In this book, predicates standardly occur in fuzzy (soft, non-sharp)
form, taking values in the unit interval [0, 1]. Along a channel one can trans-
fer states forward, and predicates backward. A central notion is the validity
of a predicate in a state, written as |=. It is standardly called expected value.
Conditioning involves updating a state with a predicate.

4 Probabilistic reasoning in this book is done in an exact manner, using the
relevant mathematical formulas. Approximations via sampling of distribu-
tions is very relevant in practice, because state space explosions associated
with joint distributions quickly make calculations intractable. Nevertheless,
the focus here is on the mathematical structure in probability and not on
what is practically computable.
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It is not purely mathematical formality and aesthetics that drive the develop-
ments in this book. Probability theory nowadays forms the basis of large parts
of big data analytics and of artificial intelligence. These areas are of increas-
ing societal relevance and provide the basis of the modern view of the world
— more based on correlation than on causation — and also provide the ba-
sis for much of modern decision making, that may affect the lives of billions
of people in profound ways. There are increasing demands for justification of
such probabilistic reasoning methods and decisions, for instance in the legal
setting provided by Europe’s General Data Protection Regulation (GDPR). Its
recital 71 is about automated decision-making and talks about a right to obtain
an explanation:

In any case, such processing should be subject to suitable safeguards, which should
include specific information to the data subject and the right to obtain human interven-
tion, to express his or her point of view, to obtain an explanation of the decision reached
after such assessment and to challenge the decision.

It is not acceptable that your mortgage application is turned down because you
drive a blue car — in presence of a correlation between driving blue cars and
being late on one’s mortgage payments.

These and other developments have led to a new area called Explainable
Artificial Intelligence (XAI), which strives to provide decisions with explana-
tions that can be understood easily by humans, without bias or discrimination.
Although this book will not contribute to XAI as such, it aims to provide a
mathematically solid basis for such explanations.

In this context it is appropriate to quote Judea Pearl [146] from 1989 about
a divide that is still wide today.

To those trained in traditional logics, symbolic reasoning is the standard, and non-
monotonicity a novelty. To students of probability, on the other hand, it is symbolic
reasoning that is novel, not nonmonotonicity. Dealing with new facts that cause proba-
bilities to change abruptly from very high values to very low values is a commonplace
phenomenon in almost every probabilistic exercise and, naturally, has attracted special
attention among probabilists. The new challenge for probabilists is to find ways of ab-
stracting out the numerical character of high and low probabilities, and cast them in
linguistic terms that reflect the natural process of accepting and retracting beliefs.

This book does not pretend to fill this gap. One of the big embarrassments of
the field is that there is no widely accepted symbolic logic for probability, to-
gether with proof rules and a denotational semantics. Such a logic for symbolic
reasoning about probability will be non-trivial, because it will have to be non-
monotonic1 — a property that many logicians shy away from. This book does

1 Informally, a logic is non-monotonic if adding assumptions may make a conclusion less true.
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aim to contribute towards bridging the divide mentioned by Pearl, by provid-
ing a mathematical basis for such a symbolic probabilistic logic, consisting of
channels, states, predicates, transformations, conditioning, disintegration, etc.

From the perspective of this book, the structured categorical approach to
probability theory began with the work of Bill Lawvere (already in the 1960s)
and his student Michèle Giry. They recognised that taking probability dis-
tributions has the structure of a monad, which was published in the early
1980s in [63]. Roughly at the same time Dexter Kozen started the systematic
investigation of probabilistic programming languages and logics, published
in [116, 117]. The monad introduced back then is now called the Giry mo-
nad G, whose restriction to finite discrete probability distributions is written
as D. Most of this book concentrates on this discrete form. The language and
notation that is used, however, covers both discrete and continuous probability
— and quantum probability too (inspired by the general categorical notion of
effectus, see [25, 73]).

Since the early 1980s the area of categorical probability theory remained
relatively calm. It is only in the new millenium that there is renewed attention,
sparked in particular by several developments.

• The grown interest in probabilistic programming languages that incorporate
updating (conditioning) and/or higher order features, see e.g. [33, 34, 36, 49,
140, 170, 68, 8, 168].

• The compositional approach to Bayesian networks [29, 54] and to Bayesian
reasoning [32, 96, 98].

• The use of categorical and diagrammatic methods in quantum foundations,
including quantum probability, see [28] for an overview.

• The efforts to develop ‘synthetic’ probability theory via a categorical ax-
iomatisation, see e.g. [57, 58, 161, 23, 82].

This book builds on these developments.
The intended audience consists of students and professionals — in math-

ematics, computer science, artificial intelligence and related fields — with a
basic background in probability and in algebra and logic — and with an inter-
est in formal, logically oriented approaches. This book’s goal is not to provide
intuitive explanations of probability, like [174], but to provide clear and pre-
cise formalisations of the relevant structures. Mathematical abstraction (esp.
categorical air guitar playing) is not a goal in itself (except maybe towards the
end of Chapter 3): instead, the book tries to uncover relevant abstractions in
concrete problems. It includes several basic algorithms, with a focus on the

For instance, I may think that scientists are civilised people, until, at some conference dinner,
a heated scientific debate ends in a fist fight.
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algorithms’ correctness, not their efficiency. Each section ends with a series
of exercises, so that the book can also be used for teaching and/or self-study.
It aims at an undergraduate level. No familiarity with category theory is as-
sumed. The basic, necessary notions are explained along the way. People who
wish to learn more about category theory can use the references in the text,
consult modern introductory texts like [7, 123], or use online resources such as
ncatlab.org or Wikipedia.

Contents overview

We give a high-level overview of the various chapters of this book. Each chap-
ter starts with a more detailed description of its contents.

The first chapter of the book covers introductory material that is meant to
set the scene. It provides a crash course in discrete mathematics, building on
the basic collection types of lists, subsets, and multisets. The chapter discusses
the (free) monoid structure on all these collection types and introduces ‘unit’
and ‘flatten’ maps as their common, underlying structure. It also introduces
the basic concept of a channel, for these three collection types, and shows how
channels can be used for state transformation and how they can be composed,
both sequentially and in parallel. At the end, the chapter provides definitions
of the relevant notions from category theory. This first chapter contains var-
ious combinatorial results related to the basic collection types. They lay the
foundation for many discrete probability distributions later on.

In the second chapter (discrete) probability distributions first emerge, as a
special collection type, with their own associated form of (probabilistic) chan-
nel. The subtleties of parallel products of distributions (states), with entwined-
ness/correlation between components and the non-naturality of copying, are
discussed at this early stage. This culminates in an illustration of Bayesian net-
works in terms of (probabilistic) channels. It shows how predictions are made
within such Bayesian networks via state transformation and via compositional
reasoning, basically by translating the network structure into (sequential and
parallel) composites of channels. In this chapter we start using string diagrams
as graphical representation. They have been developed in physics and in cate-
gory theory, to deal with the relevant compositional structure (given by sym-
metric monoidal categories).

Blindly drawing coloured balls from an urn is a basic model in discrete
probability. Such draws are analysed systematically in Chapter 3 in three basic
forms: draw-delete (called ‘hypergeometric’), draw-replace (‘multinomial’) and
draw-duplicate (‘Pólya’). Formulated in terms of channels, these distributions
satisfy various compositionality properties. They are typical for our approach

xii
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and are (largely) absent in traditional treatments of this topic. Urns and draws
from urns are both described as multisets. The interplay between multisets and
distributions is an underlying theme in this chapter. There is a fundamental dis-
tributive law between multisets and distributions that expresses basic structural
properties.

The fourth chapter is more logically oriented, via observables X → R (in-
cluding factors, predicates and events) that can be defined on sample spaces
X, providing numerical information. The chapter concentrates on validity of
obervables in states and on transformation of observables. Where the second
chapter introduces state transformation along a probabilistic channel in a for-
ward direction, this fourth chapter adds observable (predicate) transformation
in a backward direction. These two operations are of fundamental importance
in program semantics, and also in quantum computation — where they are dis-
tinguished as Schrödinger’s (forward) and Heisenberg’s (backward) approach.
In this context, a random variable is a combination of a state and an observable,
on the same underlying sample space. The statistical notions of variance and
covariance are described in terms of of validity for such random variables in
Chapter 5. This chapter distinguishes two forms of covariance, with a ‘shared’
or a ‘joint’ state, which satisfy different properties.

A very special technique in the area of probability theory is conditioning,
also known as belief updating, or simply as updating. It involves the incor-
poration of evidence into a distribution (state), so that the distribution better
fits the evidence. In traditional probability such conditioning is only indirectly
available, via a rule P(B | A) for computing conditional probabilities. In Chap-
ter 6 we formulate conditioning as an explicit operation, mapping a state ω
and a predicate p to a new updated state ω|p. A key result is that the validity
of p in ω|p is higher than the validity of p in the original state ω. This means
that we have learned from p and adapted our state (of mind) from ω to ω|p.
This updating operation ω|p forms an action (of predicates on states) and sat-
isfies Bayes’ rule, in fuzzy form. The combination with forward and backward
transformation along a channel leads to the techniques of forward inference
(causal reasoning) and backward inference (evidential reasoning). These infer-
ence techniques are illustrated in many examples, including Bayesian networks
and hidden Markov models.

A channel from X to Y is a probabilistic computation, turning elements of
X into distributions on Y . Interestingly, such a channel can be reversed —
under suitable circumstances — giving a channel / computation from Y to X.
This corresponds to turning a conditional probability P(y | x) into P(x | y),
essentially via Bayes’ rule. Such reversal is also called Bayesian inversion and
will be described here using string diagrams and ‘daggers’ of channels. In fact,
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there is a more general mechanism called disintegration that allows us to ‘bend
wires around’. It is the topic of Chapter 7. These reversed, dagger channels
turn out to be important for basic tools in machine learning, such as naive
Bayesian classification and decision trees. Moreover, they form the basis of
a new update rule. The standard rule, based on backward inference, will be
called Pearl’s rule, and the alternative new rule is called Jeffrey’s rule. These
two rules are quite different, but their differences are poorly understood. What
we do offer is a mathematical characterisation: Pearl’s rule increases validity
and Jeffrey’s rule decreases divergence. More informally, one learns via Pearl’s
rule by improving what’s going well and via Jeffrey’s rule by reducing what’s
going wrong. Jeffrey’s rule is thus an error correction mechanism. This fits the
basic idea in predictive coding theory [70, 26] that the human mind is seen as
a Bayesian prediction engine that operates by reducing prediction errors.

One of the themes running through this book is how ‘crossover’ influence
can be captured via channels — extracted from joint states via disintegration
— in particular via forward and backward inference. This phenomenon is what
makes (reasoning in) Bayesian networks possible. Disintegration is of interest
in itself, but also provides an intuitive formalisation of the Bayesian inversion
of a channel. At this stage we like to quote [109, Ch. 8].

Modern probability theory can be said to begin with the notions of conditioning and
disintegration.

This book includes many examples, often copied from familiar sources,
with the deliberate aim of illustrating how the channel-based approach actu-
ally works. Since many of these examples are taken from the literature, the in-
terested reader may wish to compare the channel-based description used here
with the original description.

Status of the current incomplete version

An incomplete version of this book is made available online, in order to gen-
erate feedback and to justify a pause in the writing process. Feedback is most
welcome, both positive and negative, especially when it suggests concrete im-
provements of the text. This may lead to occasional updates of this text. The
date on the title page indicates the current version.

Some additional points.

• The (non-trivial) calculations in this book have been carried out with (a
follow-up version of) the EfProb library [23] for channel-based probability.
Several calculations in this book can be done by hand, typically when the
outcomes are described as fractions, like 117

2012 . Such calculations are meant
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to be reconstructable by a motivated reader who really wishes to learn the
‘mechanics’ of the field. Doing such calculations is a great way to really
understand the topic — and the approach of this book2. Outcomes written
in decimal notation 0.1234, as approximations, or as plots, serve to give an
impression of the results of a computation.

• For the rest of this book, beyond Chapter 7, several additional chapters ex-
ist in unfinished form, for instance on statistical learning, probabilistic au-
tomata, causality and on continuous probability. They will be incorporated
in due course.

Bart Jacobs, Nijmegen, May ??, 2023.

2 Doing the actual calculations can be a bit boring and time consuming, but there are useful
online tools for calculating fractions, such as
https://www.mathpapa.com/fraction-calculator.html. Recent versions of EfProb also allow
calculations in fractional form.
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1

Collections

The notion of a set X containing elements x ∈ X is used without further ex-
planation. When we have several elements x1, . . . , xn ∈ X from the same set
X, we can somehow put them together to form a ‘collection’ of elements. Ex-
amples of such collections are subsets, lists, multisets, and discrete probability
distributions. The latter distributions form the main topic of this book. But it
is useful to first review collections in general, in order to make similarities
explicit. For instance, lists, subsets and multisets all form monoids, by suit-
able unions of collections. Unions of distributions are more subtle and take the
form of convex combinations. Also, subsets, multisets and distributions can be
combined naturally via parallel products ⊗, though lists cannot.

This first chapter reviews several basic constructions and properties of lists,
subsets and multisets (also known as bags). Multisets are the least familiar
of these collection types. They do not get the attention that they deserve, even
though they play a key role in probability theory, for instance as urns filled with
coloured balls, as draws from such urns, or as collections of data in learning.
For now it suffices that multisets are ‘subsets’ in which elements may occur
multiple times. We shall use ‘ket’ notation | − ⟩ for multisets, so that 3|R⟩ +
2|G ⟩ + 1|B⟩ is a multiset that represents an urn with three red balls, two green
ones, and one blue ball.

The main differences between lists, subsets and multisets are summarised in
the table below.

lists subsets multisets

order of elements matters + - -
multiplicity of elements matters + - +

For instance, the lists [a, a, b], [a, b, a] and [a, b] are all different, since they
involve differences in order and multiplicity (occurrence frequency) of their

1
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elements a, b. The multisets 2|a⟩ + 1|b⟩ and 1|b⟩ + 2|a⟩, with the element a
occurring twice and the element b occurring once, are considered to be the
same. However, 1|a⟩ + 1|b⟩ is a different multiset, since its multiplicities are
different. The subsets {a, b}, {b, a}, and {a} ∪ {a, b} are all the same, since in a
subset we only care about whether an element occurs or not, and not about its
order or multiplicity.

These different properties of different collections are relevant in a proba-
bilistic setting.

1 If one successively learns from multiple data items and the learning method
is sensitive to the order of the items, then the data should be organised as a
list. If the order in which one learns is irrelevant, the appropriate collection
for the data items is a multiset. In general, the multiplicity of occurrences of
data items matters, but if not, one can use a set of data items.

2 It is a crucial property of a (discrete) probability distribution that its proba-
bilities add up to 1. This property usually relies on combinatorial formulas
for basic datatypes. For instance, there are formulas for the number of sub-
sets (or multisets) of size m of a set with n ≥ m elements, or for the number
of set (or multiset) partitions of a certain kind. These formulas typically in-
volve binomial

(
n
m

)
and multichoose

((
n
m

))
coefficients, or Stirling numbers

of the first or second kind.

This chapter not only reviews the basic collection types, but also the trans-
formations between them, such as turning a list into a multiset (via ‘accu-
mulation’) or into a set partition (via ’matching’). Ultimately, the situation is
summarised in a triangular prism Diagram (1.48), with many associated com-
binatorial properties that form the basis for later probability distributions.

The collection types that we review are important in themselves, in many
ways, as just illustrated. There is a another, less standard way, in which they
will be used, namely as outputs of what we call channels. Such channels are
functions of the form input → T (output), where T is a ‘collection’ operator.
It may combine output elements into lists, subsets, multisets, or distributions.
Such channels capture a form of computation, directly linked to the kind of
collection (of outputs). For instance, channels where T is powerset are used as
non-deterministic computations, in which each input element produces a sub-
set of possible output elements. In the probabilistic case these channels pro-
duce distributions — for a suitable instantiation of the operator T . Channels
will be used as typed computations, which can be used to build more compli-
cated computations via sequential and parallel composition.

As mentioned, this chapter does not contain any probability theory yet. It
first exposes the reader to some general considerations that set the scene. This

2
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requires some level of patience. Later on it will be useful to see the similarities
between probability distributions (in Chapter 2) and other collections, so that
constructions, techniques, notation, terminology and intuition that we use for
distributions can be put in a wider perspective and thus may become more
natural. Instead of fully submerging oneself in this first chapter, one can skim
or skip it, move quickly to Chapter 2 on probability distributions, and return
later on a call-by-need basis.

The final section of this chapter is more methodological in nature. It ex-
plains where the abstractions that we use come from, namely from an area of
mathematics called category theory. This area focuses on the structural aspects
of the field and makes similarities between various constructions and areas ex-
plicit. This last section gives a quick overview of the most relevant parts of this
theory and also illustrates how category theory will be used in the remainder
of this book, namely in order to present the essentials, often in diagrammatic
form. We use category theory pragmatically, as a tool, and not as a goal in
itself. No prior knowledge is assumed about category theory. What is needed
will be introduced along the way.

1.1 Notation

Much of the (mathematical) notation in this book will be explained at the point
where it is introduced. Moreover, at the end, at page ??, there is an overview
of notation. Some of the most basic matters are collected in this section.

We generally use capital letters for sets and small letters for elements. Fre-
quently we use the same letter, as in x ∈ X and y ∈ Y , so that the name of the
element gives an indication of the set that it inhabits.

We write N = {0, 1, 2, . . .} for the set of natural numbers and N>0 = {1, 2, . . .}
for the (sub)set of positive natural numbers. Similarly, R is the set of real num-
bers, with subsets R≥0 = {x ∈ R | x ≥ 0} and R>0 = {x ∈ R | x > 0} for
non-negative and positive numbers. The unit interval is the subset [0, 1] = {x ∈
R | 0 ≤ x ≤ 1} ⊆ R≥0. We may use a round bracket when the boundary is not
included, as in: (0, 1] = {x ∈ R | 0 < x ≤ 1}. Simililary there are sets [0, 1) and
(0, 1).

For a finite set X, say X = {x1, . . . , xn} we write |X | = n for its number of
elements. We call this number |X | the size of the set X. Sometimes we also
write size(X) = |X |. We recall that |X × Y | = |X | · |Y | and |X + Y | = |X | + |Y |,
where × is Cartesian product and + is disjoint union (also known as coproduct).
Further, |P(X) | = 2|X |, where P is used for powerset: P(X) is the set of subsets
U ⊆ X of X.

3
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For a number n ∈ N we write n = {0, 1, . . . , n − 1} for a canonical set with n
elements. Thus 0 = ∅, 1 = {0} and 2 = {0, 1}. This boldface notation n is short
and convenient. For instance, a function of the form X → 2 can be identified
with a predicate on the set X, or with a subset of X. Clearly, there is precisely
one function X → 1, namely the function that sends every element x ∈ X to
the sole element 0 in 1 = {0}. In the other direction, functions 1 → X can be
identified with elements of X.

Sometimes we like to be explicit about whether we start counting from 0 or
from 1. In that case we may write:

[n) B {0, 1, . . . , n − 1} = n and (n] B {1, 2, . . . , n}.

We use the symbolB for definitions.

A function f from a set X to a set Y is written as f : X → Y or as X
f
→ Y . In

that case we call X the domain and Y the codomain of the function. We include
the domain and codomain in the definition of a function and treat them as input
and output types. An alternative name for function is ‘map’ or ‘mapping’. We
may define a function via the symbol 7→, that describes which elements are
mapped to which. Thus x 7→ x + 1 on N describes the increment function
inc : N → N with inc(x) = x + 1. For each set X there is an identity function
id X : X → X, defined as id X(x) = x. When confusion is unlikely, we omit X
from id X and simply write id : X → X.

Given two functions f : X → Y and g : Y → Z we use g ◦ f : X → Z for
the composite function ‘g after f ’. It is defined as (g ◦ f )(x) = g

(
f (x)

)
. Then

idY ◦ f = f = f ◦ id X . We like to be explicit about these elementary matters
because later on we introduce channels as ‘probabilistic functions’. We will
write them with a special arrow→ and with their own composition ◦· .

We often use diagrammatic notation for functions. Consider for instance the
two diagrams below.

A
h

##

A
f

//

h
��

B
k
��

X
f

//

g
;;

Y X g
// Y

The triangle on the left expresses the equality of functions f = h ◦ g. This
means f (x) = h

(
g(x)

)
for each x ∈ X. Similarly, the rectangle on the right

expresses the identity k ◦ f = g ◦ h. Commutation of diagrams means that
all possible paths in the diagram are equal. Via such diagrams the situation
at hand can be clarified visually. Later on we shall use such commuting dia-
grams also for probabilistic functions (channels), via arrows→with a circle on

4
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their shaft. In addition, we will use another graphical formalism for channels,
namely string diagrams, with boxes and wires between them.

When two sets X,Y are isomorphic we write X � Y . This means that there
are functions f : X → Y and g : Y → X with g ◦ f = id X and f ◦ g = idY .
These maps f , g are then called isomorphisms. One oftens writes g = f −1

and where f −1 is called the inverse function of f . Similarly, one could write
f = g−1. We sometimes write f : X �

−→ Y to indicate that f is an isomorphism,
with f −1 : Y �

−→ X as associated inverse. An isomorphism is also called a
bijection or a permutation. For a finite set X, with n = |X | elements, there are
n! = n · (n−1) · . . . · 2 · 1 many bijections X �

→ X.
We may write a surjective function as X ↠ Y an an injective function as

X ↣ Y . A function that is surjective (injective) is also called a surjection
(injection). A function of the form f : X → X with the same domain and
codomain may be called an endofunction. Such an endofunction is called an
idempotent if f ◦ f = f . An split idempotent is a function f = s ◦ r, where
r ◦ s = id .

For an arbitrary function f : X → Y and a subset V ⊆ Y we write f −1(V) B
{x ∈ X | f (x) ∈ V} for the inverse image. For the special case when V is a
singleton {y}, we simply write f −1(y) for f −1({y}). The function f is surjective
if and only if all inverse images f −1(y), for y ∈ Y , are non-empty.

For a function φ : X → R there may be a maximum value maxφ ∈ R and an
‘argument maximum’ subset argmaxφ ⊆ X, defined as:

• maxφ is the least number s ∈ R≥0 with φ(x) ≤ s, for all x ∈ X; this means
that maxφ is the supremum of the subset {φ(x) | x ∈ X} ⊆ R;

• when this maximum / supremum exists, we define the ‘argmax’ as the subset
of arguments where this maximum is actually reached:

argmaxφ B {x ∈ X | φ(x) = maxφ}.

Sometimes we write argmaxx∈X φ(x) for argmaxφ to emphasise the variable
involved, and its range.

For a finite set X, each function φ : X → R has a maximum; it may be reached
for several arguments, so the argmax subset need not be a singleton. For in-
stance, when X = {a, b, c, d} and φ(a) = φ(c) = 4, φ(b) = 3

2 and φ(d) = 3, one
has maxφ = 4 and argmaxφ = {a, c}. When the set X is infinite, a maximum
may not exist, like for the inclusion N→ R. It may happen that the maximum
exists, but still the argmax subset is empty, for instance for the function N→ R
given by n 7→ 1 − 1

n+1 . Its maximum is 1, but it is never reached.
In a similar manner, one can have a minimum value minφ, and an argument

minimum subset argminφ.

5
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1.2 Coefficients

This section recalls the basics of various coefficients, commonly written as
(

n
m

)
,((

n
m

))
, [ n

m ] and { n
m }. These numbers play a fundamental role in combinatorics,

for counting items in different scenarios, and thereby for associated probabili-
ties. These scenarios will be described later on. Here we only give an overview
of the relevant mathematical properties of these coefficients, for future refer-
ence.

For a number n ∈ N the factorial n! ∈ N>0 is defined as:

n! B 1 · 2 · . . . · (n−1) · n which means

 0! = 1
(n + 1)! = (n + 1) · n!.

If we have n different items, then n! is the number of ways that we can arrange
these items in lists of length n.

These factorials are used in two constructions.

Definition 1.2.1. Let numbers n ≥ m ≥ 0 be given.

1 The falling factorial (n)m is defined as:

(n)m B
n!

(n − m)!
= n · (n − 1) · . . . · (n − m + 1).

The latter formulation shows that we can use the falling factorial notation
(n)m for arbitrary (real) numbers n.

2 The binomial coefficient
(

n
m

)
is given by the formula:(

n
m

)
B

n!
m! · (n − m)!

=
(n)m

m!
.

3 For numbers m1, . . . ,mK ∈ N with n =
∑

i mi there is the multinomial coeffi-
cent given by: (

n
m1 . . .mK

)
B

n!
m1! · . . . · mK!

.

The falling factorial (n)m is the number of lists containing m elements, each
occuring once, out of n given items. The binomial coefficient

(
n
m

)
is the number

of subsets with m elements, taken from a set of n items. The multinomial co-
efficient is used for multiple subsets. Later on, in Definition 1.7.1 (5), we shall
redefine it for multisets.

Binomial coefficients satisfy a recurrence relation that is called Pascal’s rule:
for 0 < m ≤ n, (

n + 1
m

)
=

(
n
m

)
+

(
n

m − 1

)
. (1.1)

6
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The following basic result will be useful later.

Lemma 1.2.2. Fix a number m ∈ N. Then:

lim
n→∞

(
n
m

)
nm =

1
m!
.

Proof. We may assume n ≥ m. Then:

lim
n→∞

(
n
m

)
nm = lim

n→∞

(n)m

m! · nm

=
1

m!
· lim

n→∞

n
n
·

n − 1
n
· . . . ·

n − m + 1
n

=
1

m!
·

(
lim
n→∞

n
n

)
·

(
lim
n→∞

n − 1
n

)
· . . . ·

(
lim
n→∞

n − m + 1
n

)
=

1
m!
.

Definition 1.2.3. Let n ≥ 1 and m ≥ 0.

1 The rising factorial (n)m is defined as:

(n)m B
(n + m − 1)!

(n − 1)!
= n · (n + 1) · . . . · (n + m − 1).

The latter formulation shows that the rising factorial notation can also be
used when n is a real number.

2 The multichoose coefficient is defined as:((
n
m

))
B

(n)m

m!
=

(n + m − 1)!
m! · (n − 1)!

=

(
n + m − 1

m

)
.

The rising factorial (n)m is also written as nm or as n(m). We prefer the nota-
tion (n)m for the rising factorial because of its similarity to the falling factorial
(n)m. The falling and rising factorials are used in a similar way to define coef-
ficients as

(
n
m

)
=

(n)m
m! and

((
n
m

))
=

(n)m

m! .

It is well-known that
(

n
m

)
is the number of subsets of size m contained in a

set with n elements. It is less well-known that
((

n
m

))
is the number of multisets

of size m over an n-element set. Details appear in Proposition 1.8.7.

1.2.1 Stirling numbers

So-called Stirling numbers are used for counting various objects in combina-
torics. They exists ‘of the first kind’ and ‘of the second kind’, written respec-
tively as [ n

m ] and { n
m }. We briefly recall the essentials of both varieties.

7
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Stirling numbers of the first kind are determined by the following equations,
for n ≥ 0 and m > 0.00

 = 1

0
m

 = m0
 = 0

n+1
m

 = n ·

n
m

 +  n
m−1

 (1.2)

The next result collects some basic facts about Stirling numbers of the first
kind. The proof is left as an exercise below.

Lemma 1.2.4. Let n ≥ 0.

1 [ n
m ] = 0 when m > n;

2 [ n
n ] = 1;

3
[

n+1
1

]
= n!;

4
[ n

n−1
]
=

(
n
2

)
, when n ≥ 2;

5 For r ∈ R, ∑
0≤m≤n

n
m

 · rm = (r)n = r · (r + 1) · . . . · (r + n − 1)

For n > 0 we may as well restrict the latter summation to 1 ≤ m ≤ n, since[ n
0
]
= 0 when n > 0.

We turn to Stirling numbers of the second kind, written as { n
m }, for n,m ≥ 0.

We use them primarily to count the number of ways to cover an n-element set
with m non-empty subsets, see Proposition 1.5.7. At this stage we introduce
these Stirling numbers via the following recurrence relations, for n ≥ 0 and
m > 0.0

0

 = 1

m
0

 =
0

m

 = 0

n+1
m

 = m ·

n
m

 +
 n

m−1

 . (1.3)

For convenience and future use we collect some basic facts about Stirling num-
bers of the second kind.

Lemma 1.2.5.

1 { n
m } = 0 when m > n;

2 { n
1 } = 1 when n ≥ 1;

3 { n
n } = 1 for all n ≥ 0;

4 For n ∈ N and r ∈ R,∑
0≤m≤n

n
m

 · (r)m = rn = r(r − 1) · · · (r − n + 1).

8
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Summations

For convenience we collect some basic results about finite summations below.
Infinite summations will appear later on, in Theorem 1.7.4.

Proposition 1.2.6. We use the following standard summation results, for n ∈
N.

1
∑

0≤i≤n

i =
n · (n + 1)

2 .

2
∑

0≤i≤n

i2 =
n · (n + 1) · (2n + 1)

6
. .

These results can be generalised to K-ary sums, for K ≥ 1.

3
∑

0≤i1,...,iK≤n

i1 + · · · + iK =
K · n · (n + 1)K

2 .

4
∑

0≤i1,...,iK≤n

(
i1 + · · · + iK

)2
=

K · n · (n + 1)K ·
(
(3K + 1) · n + 2

)
12

.

Proof. The first two items are standard, and easy to prove by induction on n.
The last two items are consequences, obtained again by induction, now on K.
Notice that sums start at 0; this is relevant for the multiple sums, in (3) and (4).

Exercises

1.2.1 Prove Pascal’s rule (1.1).
1.2.2 1 Use this rule (1.1) to prove:∑

0≤i≤n

(
m + i

m

)
=

(
n + m + 1

m + 1

)
.

2 Now use the previous equation and (1.1) to prove:∑
0≤i≤n

(n + 1 − i) ·
(
m + i

m

)
=

(
n + m + 2

m + 2

)
.

1.2.3 Let n1, . . . , nK ∈ N be given, for K > 2, with n =
∑

i ni. Show that
the multinomial coefficient can be written as a product of binomial
coefficients, via the equation:(

n
n1, . . . , nK

)
=

(
n
n1

)
·

(
n − n1

n2, . . . , nK

)
9
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1.2.4 Prove the statements about Stirling numbers of the first kind that are
listed in Lemma 1.2.4.

1.2.5 Prove that for n ≥ m ≥ 0,n
m

 = ∑
U⊆{1,...,n}, |U |=n−m

∏
k∈U

k − 1.

1.2.6 Prove also Lemma 1.2.5, about Stirling numbers of the second kind.
For item (4) the equation m · (x)m + (x)m+1 = x · (x)m is useful.

1.2.7 Prove the following equations for Stirling numbers of the second kind,
for n ≥ 2.

1 {
n

n−1 } =
(

n
2

)
.

2 {
n
2 } = 2n−1 − 1.

1.2.8 Prove Proposition 1.2.6.

1.3 Cartesian products

This section briefly reviews some (standard) terminology and notation related
to Cartesian products of sets.

Let X1 and X2 be two arbitrary sets. We can form their Cartesian product
X1 × X2, as the new set containing all pairs of elements from X1 and X2, as in:

X1 × X2 B
{
(x1, x2)

∣∣∣ x1 ∈ X1 and x2 ∈ X2
}
.

We thus write (x1, x2) for the ‘pair’ or ‘tuple’ of elements x1 ∈ X1 and x2 ∈ X2.
We have just defined a binary product set, constructed from two given sets
X1, X2. We can also do this in n-ary form, for n sets X1, . . . , Xn. We then get an
n-ary Cartesian product:

X1 × · · · × Xn B
{
(x1, . . . , xn)

∣∣∣ x1 ∈ X1, . . . , xn ∈ Xn
}
.

The tuple (x1, . . . , xn) is sometimes called an n-tuple. For convenience, it may
be abbreviated as a vector x⃗. The product X1 × · · · × Xn is sometimes written
differently using the symbol

∏
, as:∏

1≤i≤n

Xi or more informally as:
∏

Xi.

In the latter case it is left implicit what the range is of the index element i.
We allow n = 0. The resulting ‘empty’ product is then written as a singleton

set 1. For n = 1 the product X1 × · · · × Xn is (isomorphic to) the set X1.
If one of the sets Xi in a product X1 × · · · × Xn is empty, then the whole

10



1.3. Cartesian products 111.3. Cartesian products 111.3. Cartesian products 11

product is empty. Also, if all of the sets Xi are finite, then so is the product
X1 × · · · × Xn. In fact, the number of elements of X1 × · · · × Xn is then obtained
by multiplying all the numbers of elements of the sets Xi. Thus:∣∣∣X1 × · · · × Xn

∣∣∣ = ∣∣∣X1
∣∣∣ · . . . · ∣∣∣Xn

∣∣∣,
where | − | is used for the size of a finite set, that is, for its number of elements.

1.3.1 Projections and tuples

If we have sets X1, . . . , Xn as above, then for each number i with 1 ≤ i ≤ n
there is a projection function πi out of the product to the set Xi, as in:

X1 × · · · × Xn
πi // Xi given by πi

(
x1, . . . , xn

)
B xi.

This gives us functions out of a product. We also wish to be able to define
functions into a product, via tuples of functions: if we have a set Y and n
functions f1 : Y → X1, . . . , fn : Y → Xn, then we can form a new function
Y → X1 × · · · × Xn, namely:

Y
⟨ f1,..., fn⟩ // X1 × · · · × Xn via ⟨ f1, . . . , fn⟩(y) B ( f1(y), . . . , fn(y)).

There is an obvious result about projecting after tupling of functions:

πi ◦ ⟨ f1, . . . , fn⟩ = fi. (1.4)

This is an equality of functions. It can be proven easily by applying both sides
to an arbitrary element y ∈ Y .

There are some more ‘obvious’ equations about tupling of functions:

⟨ f1, . . . , fn⟩ ◦ g = ⟨ f1 ◦ g, . . . , fn ◦ g⟩ ⟨π1, . . . , πn⟩ = id , (1.5)

where g : Z → Y is an arbitrary function. In the last equation, id is the identity
function on the product X1 × · · · × Xn.

In a Cartesian product we place sets ‘in parallel’. We can also place functions
between them in parallel. Suppose we have n functions fi : Xi → Yi. Then we
can form the parallel composition:

X1 × · · · × Xn
f1×···× fn // Y1 × · · · × Yn

via:

f1 × · · · × fn = ⟨ f1 ◦ π1, . . . , fn ◦ πn⟩

so that: (
f1 × · · · × fn

)
(x1, . . . , xn) = ( f1(x1), . . . , fn(xn)).

11
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The latter formulation clearly shows how the functions fi are applied in parallel
to the elements xi.

We overload the product symbol ×, since we use it both for sets and for
functions. This may be a bit confusing at first, but it is in fact quite convenient.

1.3.2 Powers and exponents

Let X be an arbitrary set. A power of X is an n-fold product of X’s, for some
n. We write the n-th power of X as Xn, in:

Xn B X × · · · × X︸        ︷︷        ︸
n times

=
{
(x1, . . . , xn)

∣∣∣ xi ∈ X for each i
}
.

As special cases we have X1 = X and X0 = 1. Since powers are special cases of
Cartesian products, they come with projection functions πi : Xn → X and tuple
functions ⟨ f1, . . . , fn⟩ : Y → Xn for n functions fi : Y → X. Finally, for a func-
tion f : X → Y we write f n : Xn → Yn for the obvious n-fold parallelisation of
f .

There is a copy function ∆[K] : X → XK = X × · · · × X (K times), given as:

∆[K](x) B (x, . . . , x) (K times x).

We often omit the subscript K, when it is clear from the context, especially
when K = 2. These ∆ functions are alternatively called copiers or diagonals.

More generally, for two sets X,Y we shall occasionally write:

XY B
{
functions f : Y → X

}
.

This new set XY is sometimes called the function space or the exponent of X
and Y . Notice that this exponent notation is consistent with the above nota-
tion Xn for powers, since functions n → X can be identified with n-tuples of
elements in X.

These exponents XY are related to products in an elementary and useful way,
namely via a bijective correspondence:

Z × Y
f
// X

================
Z g

// XY
(1.6)

This means that for a function f : Z ×Y → X there is a corresponding function
f : Z → XY , and vice-versa, for g : Z → XY there is a function g : Z × Y → X,

in such a way that f = f and g = g. It is not hard to see that we can take
f (z) ∈ XY to be the function f (z)(y) = f (z, y), for z ∈ Z and y ∈ Y . Similarly,
we use g(z, y) = g(z)(y).

12
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The correspondence (1.6) is characteristic for so-called Cartesian closed cat-
egories.

Exercises

1.3.1 Check what a tuple function ⟨π2, π3, π6⟩ does on a product set X1 ×

· · · × X8. What is the codomain of this function?
1.3.2 Check that, in general, the tuple function ⟨ f1, . . . , fn⟩ is the unique

function h : Y → X1 × · · · × Xn with πi ◦ h = fi for each i.
1.3.3 Prove, using Equations (1.4) and (1.5) for tuples and projections, that:(

g1 × · · · × gn
)
◦

(
f1 × · · · × fn

)
= (g1 ◦ f1) × · · · × (gn ◦ fn).

1.3.4 Check that the copy function ∆ : X → XK is ‘natural’, in the following
sense. For each function f : X → Y the following diagram commutes.

X
f
��

∆ // XK

f K
��

Y ∆ // YK

Check that πi ◦ ∆ = id , for each 1 ≤ i ≤ K.
1.3.5 Define functions in both directions, using tuples and projections, that

yield isomorphisms:

X × Y � Y × X 1 × X � X X × (Y × Z) � (X × Y) × Z.

Try to use Equations (1.4) and (1.5) to prove these isomorphisms,
without reasoning with elements.

1.3.6 Similarly, show that exponents satisfy:

X1 � X 1Y � 1 (X × Y)Z � XZ × YZ XY×Z �
(
XY )Z

.

1.3.7 For K ∈ N and sets X,Y define:

XK × YK zip[K]
// (X × Y)K

by:

zip[K]
(
(x1, . . . , xK), (y1, . . . , yK)

)
B

(
(x1, y1), . . . , (xK , yK)

)
.

1 Show that zip is an isomorphism, with inverse function unzip[K] B
⟨(π1)K , (π2)K⟩.

13



14 Chapter 1. Collections14 Chapter 1. Collections14 Chapter 1. Collections

2 Show that the following diagram commutes.

XK × YK

� zip
��

π1

&&

X × Y

∆×∆ 22

∆ ++

XK

(X × Y)K (π1)K

99

1.4 Lists

The datatype of (finite) lists of elements from a given set is well-known in
computer science, especially in functional programming. This section collects
some basic constructions and properties, especially about the close relation-
ship between lists and monoids. Separately, some of the combinatorial aspects
associated with lists are discussed.

For an arbitrary set X we write L(X) for the set of all finite lists [x1, . . . , xn]
of elements xi ∈ X, for arbitrary n ∈ N. Notice that we use square brackets
[−] for lists, to distinguish them from tuples, which are typically written with
round brackets (−).

Thus, the set of lists over X can be defined as a (disjoint) union of all powers
of X, as in:

L(X) B
⋃
n∈N

Xn.

When the elements of X are seen as letters of an alphabet, then L(X) is the set
of words — the language — over this alphabet. The set L(X) is alternatively
written as X⋆, and called the Kleene star of X.

We zoom in on some trivial cases. One has L(0) � 1, since one can only
form the empty word over the empty alphabet 0 = ∅. If the alphabet contains
only one letter, a word consists of a finite number of occurrences of this single
letter. Thus: L(1) � N.

Lists over a set X, that is, elements of the set L(X), collect elements of
X in a particular manner: elements may occur multiple times, and the order of
occurrence matters: the lists [a, b] and [b, a] are different. In contrast, in subsets
elements may occur at most once and the order of elements does not matter;
in multisets elements may occur multiple times, but the order of elements is
irrelevant.

Let f : X → Y be an arbitrary function. It can be used to map lists over X
to lists over Y by applying the function f elementwise. This is what functional
programmers call map-list. It is convenient to overload the notation and apply

14
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L not only to sets but also to functions. Thus we write L( f ) : L(X) → L(Y)
for the map-list function, defined as:

L( f )
(
[x1, . . . , xn]

)
B [ f (x1), . . . , f (xn)].

In this way identity maps and compositions are preserved:

L(id ) = id L(g ◦ f ) = L(g) ◦ L( f ).

We shall say: the operation L is functorial, or simply L is a functor.
Functoriality can be used to define the marginal of a list on a product set,

via L(πi), where πi is a projection map. For instance, let ℓ ∈ L(X × Y) be a list
of tuples of the form ℓ = [(x1, y1), . . . , (xn, yn)]. The first marginal L(π1)(ℓ) ∈
L(X) is then computed as:

L(π1)(ℓ) = L(π1)
(
[(x1, y1), . . . , (xn, yn)]

)
= [ π1(x1, y1), . . . , π1(xn, yn) ]
= [x1, . . . , xn].

1.4.1 Monoids

A monoid is a very basic mathematical structure. For convenience we define it
explicitly.

Definition 1.4.1. A monoid consists of a set M with a binary operation M ×
M → M, written for instance as infix +, together with an identity element, say
0 ∈ M. The binary operation + is required to be associative and must have 0 as
identity on both sides. That is, for all a, b, c ∈ M,

a + (b + c) = (a + b) + c and 0 + a = a = a + 0.

The monoid is called commutative when a + b = b + a, for all a, b ∈ M. It is
called idempotent when a + a = a for all elements a ∈ M.

Let (M, 0,+) and (N, 1, ·) be two monoids. A function f : M → N is called a
homomorphism of monoids if f preserves the unit and binary operation, in the
sense that:

f (0) = 1 and f (a + b) = f (a) · f (b), for all a, b ∈ M.

Diagrammatically we can express the second equation as:

M × M
f× f

//

+
��

N × N
·
��

M
f

// N

(1.7)

15
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For brevity we also say that such an f is a map of monoids, or simply a monoid
map.

The natural numbers N with addition form a commutative monoid (N, 0,+).
But also with multiplication they form a commutative monoid (N, 1, ·). The
function f (n) = 2n is a homomorphism of monoids f : (N, 0,+)→ (N, 1, ·).

Various forms of collection types form monoids, with ‘union’ as binary op-
eration. We start with lists, in the next result. The proof is left as (an easy)
exercise to the reader.

Lemma 1.4.2.

1 For each set X, the set L(X) of lists over X is a monoid, with the empty list
[] ∈ L(X) as identity element, and with concatenation ++ : L(X) × L(X) →
L(X) as binary operation:

[x1, . . . , xn] ++ [y1, . . . , ym] B [x1, . . . , xn, y1, . . . , ym].

This monoid (L(X), [],++) is neither commutative nor idempotent.
2 For each function f : X → Y the associated map L( f ) : L(X) → L(Y) is a

homomorphism of monoids.

Thus, lists are monoids via concatenation. But there is more to say: lists are
free monoids. We shall occasionally make use of this basic property and so we
like to make it explicit. We shall encounter similar freeness properties for other
collection types.

Each element x ∈ X yields a singleton list, written as unit(x) B [x] ∈ L(X).
The resulting function unit : X → L(X) plays a special role, see also the next
subsection.

Proposition 1.4.3. Let X be an arbitrary set and let (M, 0,+) be an arbitrary
monoid, with a function f : X → M. Then there is a unique homomorphism of
monoids f : (L(X), [],++)→ (M, 0,+) with f ◦ unit = f .

The homomorphism f is called the free extension of f . Its freeness can be
expressed via a diagram, as below, where the vertical arrow is dashed, to indi-
cate uniqueness.

X unit //

f
**

L(X)

f , homomorphism
��

M

(1.8)

Proof. Since f preserves the identity element and satisfies f ◦ unit = f it is

16
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determined on empty and singleton lists as:

f
(
[]
)
= 0 and f ([x]) = f (x).

Further, on an list [x1, . . . , xn] of length n ≥ 2 we necessarily have:

f
(
[x1, . . . , xn]

)
= f

(
[x1] ++ · · · ++ [xn]

)
= f

(
[x1]

)
+ · · · + f

(
[xn]

)
= f (x1) + · · · + f (xn).

Thus, there is only one way to define f . By construction, this f : L(X)→ M is
a homomorphism of monoids.

The exercises at the end of this section contain illustrations of this freeness
result. For future use we introduce the notion of monoid action and the associ-
ated homomorphisms.

Definition 1.4.4. Let (M, 0,+) be a monoid.

1 An action of the monoid M on a set X is a function α : M×X → X satisfying:

α(0, x) = x and α(a + b, x) = α(a, α(b, x)),

for all a, b ∈ M and x ∈ X.
(Sometimes monoid actions occur of the form X × M → X, with the

monoid as second input; the difference is immaterial.)

2 A homomorphism or map of monoid actions from
(
M×X

α
−→ X

)
to

(
M×Y

β
−→

Y
)

is a function f : X → Y satisfing:

f
(
α(a, x)

)
= β

(
a, f (x)

)
for all a ∈ M, x ∈ X.

This last equation corresponds to commutation of the following diagram.

M × X
α
��

id× f
// M × Y

β
��

X
f

// Y

Monoid actions are quite common in mathematics. For instance, scalar mul-
tiplication s · v in a vector space forms an action, using the multiplicative
monoid structure on scalars: 1 · v = v and s · (s′ · v) = (s · s′) · v. Also, as we
shall see, probabilistic updating can be described via monoid actions. The ac-
tion map α : M×X → X can be understood intuitively as pushing the elements
in X forward with a quantity from M. It then makes sense that the zero-push is
the identity, and that a sum-push is the composition of two individual pushes.

17
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There is also a notion of ‘monoid without unit’. It is often called a semi-
group, and thus consists of a set with (only) an associative operation. A semi-
group may be commutative, in an obvious sense, see Exercise 1.4.3. One can
also have semigroup actions.

1.4.2 Unit and flatten for lists

We proceed to describe more elementary structure for lists, in terms of special
‘unit’ and ‘flatten’ functions. In subsequent sections we shall see that this same
structure exists for other collection types, like powerset, multiset and distribu-
tion. This unit and flatten structure will turn out to be essential for sequential
composition. At the end of this chapter we will see that it is characteristic for
what is called a ‘monad’ in category theory.

We have already seen the singleton-list function unit : X → L(X), given by
unit(x) B [x]. There is also a ‘flatten’ function which turns a list of lists into
a list by removing inner brackets. This function is written as flat : L(L(X))→
L(X). It is defined as:

flat
(
[[x11, . . . , x1n1 ], . . . , [xk1, . . . , xknk ]]

)
B [x11, . . . , x1n1 , . . . , xk1, . . . , xknk ].

Alternatively, one can describe flattening via concatenation, see Exercise 1.4.5.
The next result contains some basic properties about unit and flatten. These

properties will first be formulated in terms of equations, and then, alternatively
as commuting diagrams. The latter style is preferred in this book.

Lemma 1.4.5.

1 For each function f : X → Y one has:

unit ◦ f = L( f ) ◦ unit and flat ◦ L(L( f )) = L( f ) ◦ flat .

Equivalently, the following two diagrams commute.

X
f
��

unit // L(X)
L( f )
��

L(L(X))
L(L( f ))

��

flat // L(X)
L( f )
��

Y
unit
// L(Y) L(L(Y))

flat
// L(Y)

2 One further has:

flat ◦ unit = id = flat ◦ L(unit) flat ◦ flat = flat ◦ L(flat).

18
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These two equations can equivalently be expressed via commutation of:

L(X) unit // L(L(X))
flat
��

L(X)
L(unit)
oo L(L(L(X)))

L(flat)
��

flat // L(L(X))
flat
��

L(X) L(L(X))
flat

// L(X)

Proof. We shall do the first cases of each item, leaving the second cases to the
interested reader. First, for f : X → Y and x ∈ X one has:(
L( f ) ◦ unit

)
(x) = L( f )(unit(x)) = L( f )([x])

= [ f (x)] = unit( f (x)) =
(
unit ◦ f

)
(x).

Next, for the second item we take an arbitrary list [x1, . . . , xn] ∈ L(X). Then:(
flat ◦ unit

)
([x1, . . . , xn]) = flat

(
[[x1, . . . , xn]]

)
= [x1, . . . , xn](

flat ◦ L(unit)
)
([x1, . . . , xn]) = flat

(
[unit(x1), . . . , unit(xn)]

)
= flat

(
[[x1], . . . , [xn]]

)
= [x1, . . . , xn].

The equations in item 1 of this lemma are so-called naturality properties.
They express that unit and flat work uniformly, independent of the set X in-
volved. The equations in item 2 show that L is a monad, see Section 1.11 for
more information.

The next result connects monoids with the unit and flatten maps.

Proposition 1.4.6. Let X be an arbitrary set.

1 To give a monoid structure (u,+) on X is the same as giving an L-algebra,
that is, a map α : L(X) → X satisfying α ◦ unit = id and α ◦ flat = α ◦
L(α), as in:

X unit //

id $$

L(X)
α
��

L(L(X))
L(α)
//

flat
��

L(X)
α
��

X L(X) α // X

(1.9)

2 Let (M1, u1,+1) and (M2, u2,+2) be two monoids, with corresponding L-
algebras α1 : L(M1)→ M1 and α2 : L(M2)→ M2. A function f : M1 → M2

is then a homomorphism of monoids if and only if the diagram

L(M1)
α1
��

L( f )
// L(M2)

α2
��

M1
f
// M2.

(1.10)

19
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commutes.

This result says that instead of giving a binary operation + with an identity
element u we can give a single operation α that works on all sequences of el-
ements. This is not so surprising, since we can apply the sum multiple times.
The more interesting part is that the monoid equations can be captured uni-
formly by the diagrams / equations (1.9). We shall see that same diagrams also
work for other types of monoids (and collection types).

Proof. 1 If (X, u,+) is a monoid, we can define α : L(X) → X in one go as
α([x1, . . . , xn]) B x1 + · · · + xn. The latter sum equals the identity element
u when n = 0. Notice that the bracketing of the elements in the expression
x1 + · · · + xn does not matter, since the binary operation of a monoid is
associative. The order does matter, since we do not assume that the monoid
is commutative. It is easy to check the equations (1.9). From a more abstract
perspective we define α : L(X)→ X via freeness (1.8).

In the other direction, assume an L-algebra α : L(X) → X. We then
define an identity element u B α([]) ∈ X and the sum of x, y ∈ X as
x + y B α([x, y]) ∈ X. We have to check that u is identity for + and that
+ is associative. This requires some fiddling with the equations (1.9):

x + u = α
(
[x, α([])]

) (1.9)
= α

(
[α(unit(x)), α([])]

)
= α

(
L(α)

(
[ [x], [] ]

))
(1.9)
= α

(
flat

(
[ [x], [] ]

))
= α

(
[x]

) (1.9)
= x.

Similarly one shows u + y = y. Next, associativity of + is obtained in a
similar manner:

x + (y + z) = α
(
[x, α([y, z])]

) (1.9)
= α

(
[α(unit(x)), α([y, z])]

)
= α

(
L(α)

(
[ [x], [y, z] ]

))
(1.9)
= α

(
flat

(
[ [x], [y, z] ]

))
= α

(
[ x, y, z ]

)
= α

(
flat

(
[ [x, y], [z] ]

))
(1.9)
= α

(
L(α)

(
[ [x, y], [z] ]

))
= α

(
[α([x, y]), α(unit(z))]

)
(1.9)
= α

(
[α([x, y]), z]

)
= (x + y) + z.

2 Now let f : M1 → M2 be a homomorphism of monoids. Diagram (1.10)

20
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then commutes:(
α2 ◦ L( f )

)
([x1, . . . , xn]) = α2([ f (x1), . . . , f (xn)])

= f (x1) + · · · + f (xn)
= f (x1 + · · · + xn) since f is a homomorphism
=

(
f ◦ α1

)
([x1, . . . , xn]).

In the other direction, if (1.10) commutes for a function f : M1 → M2, then
f is a homomorphism of monoids, since:

f (u1) = f
(
α1([])

) (1.10)
= α2

(
L( f )([])

)
= α2([]) = u2.

Similarly one checks that sums are preserved:

f (x +1 y) = f
(
α1([x, y])

) (1.10)
= α2

(
L( f )([x, y])

)
= α2([ f (x), f (y)]) = f (x) +2 f (y).

We see that the algebraic structure (M, u,+) on the set M is expressed as an
algebra α : L(M)→ M, namely as a certain map to M. This will be a recurring
theme in the coming sections.

1.4.3 List combinatorics

Combinatorics is a subarea of mathematics focused on advanced forms of
counting. It is relevant for probability theory, since frequencies of occurrences
play an important role. We give a first taste of this, using lists.

We shall use the length ∥ℓ∥ ∈ N of a list ℓ, see Exercise 1.4.4 for more
details, and also the sum and product of a list of natural numbers, defined as:

sum
(
[n1, . . . , nk]

)
B n1 + · · · + nk =

∑
i ni

prod
(
[n1, . . . , nk]

)
B n1 · . . . · nk =

∏
i ni.

See also Exercise 1.4.7.
We restrict ourselves to lists over the subset N>0 = {n ∈ N | n > 0} of posi-

tive natural numbers. Clearly, we obtain restrictions sum, prod : L(N>0) → N
of the above sum and product functions.

Now fix N ∈ N>0. We are interested in lists ℓ ∈ L(N>0) with sum(ℓ) = N.
These lists are in the inverse image (i.e. preimage):

sum−1(N) B {ℓ ∈ L(N>0) | sum(ℓ) = N}.

For instance, for N = 4 this inverse image contains the eight lists:

[1, 1, 1, 1], [1, 1, 2], [1, 2, 1], [2, 1, 1], [2, 2], [1, 3], [3, 1], [4]. (1.11)
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We can interpret the situation as follows. Suppose we have arbitrarily many
coins of each value / amount n ∈ N>0. Then we can ask, for an amount N: how
many (ordered) ways are there to lay out the amount N in coins? For N = 4 the
different layouts are given above, in (1.11).

Here is a first, easy counting result.

Lemma 1.4.7. For N ∈ N>0, the subset sum−1(N) ⊆ L(N>0) has 2N−1 ele-
ments, that is,

∣∣∣sum−1(N)
∣∣∣ = 2N−1.

Proof. We use induction on N, starting with N = 1. Obviously, only the list
[1] sums to 1, and for N = 1, indeed, 2N−1 = 20 = 1.

For the induction step we use the familiar fact that for K ∈ N,∑
0≤k≤K

1
2k =

2K+1 − 1
2K . (∗)

This can be shown easily by induction on K. Then, for N > 1,∣∣∣∣ sum−1(N)
∣∣∣∣ = ∣∣∣∣ {[N]

}
∪

{
ℓ ++ [n]

∣∣∣ 1 ≤ n ≤ N−1 and ℓ ∈ sum−1(N−n)
} ∣∣∣∣

= 1 +
∑

1≤n≤N−1

∣∣∣∣ sum−1(N−n)
∣∣∣∣

(IH)
= 1 +

∑
1≤n≤N−1

2N−n−1

= 1 +

 ∑
0≤n≤N−1

2N−n−1

 − 2N−1

= 1 + 2N−1 ·

 ∑
0≤n≤N−1

1
2n

 − 2N−1

(∗)
= 1 + 2N−1 ·

(
2N − 1
2N−1

)
− 2N−1

= 1 + 2N − 1 − 2N−1

= 2N−1.

Next we describe an elementary fact about coin lists. It has a probabilistic
flavour, since it involves what we later call a convex sum of probabilities ri ∈

[0, 1] with
∑

i ri = 1. The proof of this result is postponed. It involves rather
complex probability distributions on multiset partitions, see Corollary ??. A
proof using distributions on coin lists may be found in [85]. We are not aware
of a (more) elementary proof.
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Theorem 1.4.8. For each N ∈ N>0,∑
ℓ∈sum−1(N)

1
∥ℓ∥! · prod (ℓ)

= 1. (1.12)

At this stage we only give an example, for N = 4, using the corresponding
lists ℓ in (1.11). The associated sum (1.12) is illustrated below.

[1, 1, 1, 1]_
��

[1, 1, 2]_
��

[1, 2, 1]_
��

[2, 1, 1]_
��

[2, 2]_
��

[1, 3]_
��

[3, 1]_
��

[4]_
��

1
4!·1

1
3!·2

1
3!·2

1
3!·2

1
2!·4

1
2!·3

1
2!·3

1
1!·4

1
24

1
12

1
12

1
12

1
8

1
6

1
6

1
4︸                                                                                              ︷︷                                                                                              ︸

with sum: 1

Obviously, elements in a list are ordered. Thus, in (1.11) we distinguish
between coin layouts [1, 1, 2], [1, 2, 1] and [2, 1, 1]. However, when we are
commonly discussing which coins add up to 4 we do not take the order into
account, for instance in saying that we use two coins of value 1 and one coin
of 2, without caring about the order. In doing so, we are not using lists as col-
lection type, but multisets — in which the order of elements does not matter.
These multisets form an important alternative collection type; they are dis-
cussed from Section 1.6 onwards.

We briefly look at how lists can be turned into subsets, by ignoring multiple
occurrences. The support of a list is the set of elements occurring in the list.
Thus:

supp[K]
(
[x1, . . . , xK]

)
B

{
x1, . . . , xK

}
. (1.13)

For instance, supp[5]
(
⟨a, a, b, c, b⟩

)
= {a, b, c}. Clearly, this support map ig-

nores the multiplicity of occurrences of elements in its input list. We can
describe support as a function supp[K] : XK → P(X), where P is used for
powerset. The parameter K in supp[K], used for the length of the list, will be
ommitted when it is clear from the context.

We can look at the sizes of inverse images of the support map. These sizes
describe the number of lists of a certain length that map to a given non-empty,
finite set U of a certain size. The formula involves Striling numbers

{ K
n
}

of
the second kind, see Section 1.2. The proof of the next result is postponed.
It will appear as a result of a more basic result about Stirling numbers, see
Remark 1.5.11 (2).

Lemma 1.4.9. Fix a number K ∈ N>0. For a non-empty set U with |U | ≤ K

23
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the number of lists of length K with U as support is:∣∣∣∣supp[K]−1(U)
∣∣∣∣ = |U |! ·  K

|U |

 . (1.14)

For instance, for the set U = {a, b} and number K = 4 there are |U |! ·
{

K
|U |

}
=

2! ·
{

4
2

}
= 2 · 7 = 14 lists of length 4 with support U, namely:

[a, a, a, b] [a, a, b, a] [a, a, b, b] [a, b, a, a] [a, b, a, b] [a, b, b, a] [a, b, b, b]
[b, a, a, a] [b, a, a, b] [b, a, b, a] [b, a, b, b] [b, b, a, a] [b, b, a, b] [b, b, b, a].

Exercises

1.4.1 Let X = {a, b, c} and Y = {u, v} be sets with a function f : X → Y
given by f (a) = u = f (c) and f (b) = v. Write ℓ1 = [c, a, b, a] and
ℓ2 = [b, c, c, c]. Compute consecutively:

• ℓ1 ++ ℓ2

• ℓ2 ++ ℓ1

• ℓ1 ++ ℓ1

• ℓ1 ++ (ℓ2 ++ ℓ1)
• (ℓ1 ++ ℓ2) ++ ℓ1

• L( f )(ℓ1)
• L( f )(ℓ2)
• L( f )(ℓ1) ++L( f )(ℓ2)
• L( f )(ℓ1 ++ ℓ2).

1.4.2 We write log for the logarithm function with some base b > 0, so that
log(x) = y iff x = by. Verify that the logarithm function log is a map
of monoids:

(R>0, 1, ·)
log
// (R, 0,+).

Often the log function is used to simplify a computation, by turning
multiplications into additions. Then one uses that log is precisely this
homomorphism of monoids. (An additonal useful property is that log
is monotone: it preserves the order.)

1.4.3 Consider the ‘root of squares’ function rs : R>0 ×R>0 → R>0 defined
by:

rs(x, y) =
√

x2 + y2.

Show that this yields a commutative semigroup structure on R>0.
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1.4.4 Define a length function ∥ − ∥ : L(X) → N on lists via the freeneess
property of Proposition 1.4.3.

1 Describe ∥ℓ∥ for ℓ ∈ L(X) explicitly.
2 Elaborate what it means that ∥ − ∥ is a homomorphism of monoids.
3 Write ! for the unique function X → 1 and check that ∥ − ∥ is L(!).

Notice that the previous item can then be seen as an instance of
Lemma 1.4.2 (2).

1.4.5 1 Check that the list-flatten operation L(L(X)) → L(X) can be de-
scribed in terms of concatenation ++ as:

flat
(
[ℓ1, . . . , ℓn]

)
= ℓ1 ++ · · · ++ ℓn.

2 Now consider the correspondence of Proposition 1.4.6 (1). Con-
clude that the algebra α : L(L(X)) → L(X) associated with the
monoid (L(X), [],++) from Lemma 1.4.2 (1) is flat .

1.4.6 Check Equation (1.12) yourself for N = 5.
1.4.7 Consider the set N of natural numbers with its additive monoid struc-

ture (0,+) and also with its multiplicative monoid structure (1, ·). Ap-
ply freeness from Proposition 1.4.3 with these two structures to define
two monoid homomorphisms:

L(N)
sum

))

prod

55 N

1 Describe these maps explicitly on a sequence [n1, . . . , nk] of natural
numbers ni.

2 Make explicit what it means that they preserve the monoid struc-
ture.

3 Prove that for an arbitrary set X, the list-length function ∥ − ∥ from
Exercise 1.4.4 satisfies:

sum ◦ L(∥ − ∥) = ∥ − ∥ ◦ flat .

In other words, the following diagram commutes.

L
(
L(X)

)
flat
��

L(∥−∥)
// L(N)

sum
��

L(X)
∥−∥

// N

A fancy way to prove that length is such an algebra homomorphism
is to use the uniqueness in Proposition 1.4.3.
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1.4.8 Let M = (M,+, 0) be an arbitrary monoid. We use the natural numbers
N as additive monoid. Check that there is a monoid action N × M →
M, given by (n, a) 7→ n · a = a + · · · + a, n times.

1.4.9 Let X be an arbitrary set.

1 Show that the set XX of functions X → X forms a monoid, via
composition, with the identity function as identity element.

2 Let M be a monoid. For a function α : X ×M → X define α : M →
XX by α(a)(x) = α(x, a). Show that α is a monoid action if and only
if α is a map of monoids.

3 Let X × Y → X be an arbitrary function. Turn it into a monoid
action X × Y⋆ → X, either via direct definition, or via freeness,
using the previous point.

1.5 Subsets

The next collection type that will be studied is powerset. The symbol P is
commonly used for the powerset operator. We will see that there are many
similarities with lists L from the previous section. We again pay attention to
monoid structures and to basic combinatorial facts.

For an arbitrary set X we write P(X) B {U | U ⊆ X} for the set of all subsets
of X. In addition, we use several variations:

P∗(X) B {U ∈ P(X) | U , ∅}
Pfin(X) B {U ∈ P(X) | U is finite}
P[K](X) B {U ∈ Pfin(X) | |U | = K}
P≤[K] B

{
U ∈ Pfin(X)

∣∣∣ 1 ≤ |U | ≤ K
}
.

(1.15)

If X is a finite set itself, there is no difference between P(X) and Pfin(X). In the
sequel we shall speak mostly about P, but basically all properties of interest
hold for Pfin as well.

First of all, P is a functor: it works both on sets and on functions. Given
a function f : X → Y we can define a new function P( f ) : P(X) → P(Y) by
taking the image of f on a subset. Explicitly, for U ⊆ X,

P( f )(U) = { f (x) | x ∈ U}.

The right-hand side is clearly a subset of Y , and thus an element of P(Y). We
have two equalities:

P(id ) = id P(g ◦ f ) = P(g) ◦ P( f ).
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We can use functoriality for marginalisation: for a subset (relation) R ⊆ X × Y
on a product set we get its first marginal P(π1)(R) ∈ P(X) as the subset:

P(π1)(R) = {π1(z) | z ∈ R} = {π1(x, y) | (x, y) ∈ R} = {x | ∃y. (x, y) ∈ R}.

The next topic is the monoid structure on powersets. The first result is an
analogue of Lemma 1.4.2 and its proof is left to the reader. What is character-
istic of powerset monoids is idempotency of its binary operation: V ∪ V = V .

Lemma 1.5.1.

1 For each set X, the powersetP(X) is a commutative and idempotent monoid,
with empty subset ∅ ∈ P(X) as identity element and union ∪ of subsets of X
as binary operation.

2 Each P( f ) : P(X)→ P(Y) is a map of monoids, for f : X → Y.

Both properties also hold for Pfin instead of P.

Next we define unit and flatten maps for subsets, much like for lists. The
function unit : X → P(X) sends an element to a singleton subset: unit(x) B
{x}. The flatten function flat : P(P(X)) → P(X) is given by union: for A ⊆
P(X),

flat(A) B
⋃

A =
{
x ∈ X

∣∣∣ ∃U ∈ A. x ∈ U
}
.

We mention, without proof, the following analogue of Lemma 1.4.5.

Lemma 1.5.2.

1 For each function f : X → Y the ‘naturality’ diagrams

X
f
��

unit // P(X)
P( f )
��

P(P(X))
P(P( f ))

��

flat // P(X)
P( f )
��

Y
unit
// P(Y) P(P(Y))

flat
// P(Y)

commute.

2 Additionaly, the ‘monad’ diagrams below commute.

P(X) unit // P(P(X))
flat
��

P(X)
P(unit)
oo P(P(P(X)))

P(flat)
��

flat // P(P(X))
flat
��

P(X) P(P(X))
flat

// P(X)
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1.5.1 From list to powerset

We have seen that lists and subsets behave in a similar manner. The con-
nection can be made explicit via the support function from (1.13), given by
supp

(
[x1, . . . , xn]

)
= {x1, . . . , xn}. It forms a function supp : L(X)→ Pfin(X).

There is no systematic way to go in the other direction, via a function
Pfin(X) → L(X) that works for each set X. Of course, one can for each subset
choose an order of the elements in order to turn the subset into a list. However,
this process is completely arbitrary and is not natural. By the way, we shall see
later in Exercise 2.4.13 that one can go from subsets to lists probabilistically,
by taking a uniform distribution over all lists whose support is a given subset
— via the formula in Lemma 1.4.9.

The support function interacts nicely with the structures that we have seen
so far. This is expressed in the result below, where we use the same notation
unit and flat for different functions, namely for L and for P. The context, and
especially the type of an argument, will make clear which one is meant.

Lemma 1.5.3. Consider the support map supp : L(X) → Pfin(X), for a fixed
set X.

1 It is a map of monoids (L(X), [],++)→ (Pfin(X), ∅,∪).
2 It is natural, in the sense that for f : X → Y one has:

L(X)
L( f )
��

supp
// Pfin(X)

Pfin ( f )
��

L(Y) supp
// Pfin(Y)

3 It commutes with the unit and flatten maps of list and powerset, as in:

X
unit
��

X
unit
��

L(L(X))
flat
��

L(supp)
// L(Pfin(X))

supp
// Pfin(Pfin(X))

flat
��

L(X) supp
// Pfin(X) L(X) supp

// Pfin(X)

Proof. The first item is easy and skipped. For item 2,(
Pfin( f ) ◦ supp

)
([x1, . . . , xn]) = Pfin( f )(supp([x1, . . . , xn]))

= Pfin( f )({x1, . . . , xn})
= { f (x1), . . . , f (xn)}
= supp([ f (x1), . . . , f (xn)])
= supp(L( f )([x1, . . . , xn]))
=

(
supp ◦ L( f )

)
([x1, . . . , xn]).
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In item 3, commutation of the first diagram is easy:(
supp ◦ unit

)
(x) = supp([x]) = {x} = unit(x).

The second diagram requires a bit more work. Starting from a list of lists we
get: (

flat ◦ supp ◦ L(supp)
)
([[x11, . . . , x1n1 ], . . . , [xk1, . . . , xknk ]])

=
(⋃
◦ supp

)
([supp([x11, . . . , x1n1 ]), . . . , supp([xk1, . . . , xknk ])])

=
(⋃
◦ supp

)
([{x11, . . . , x1n1 }, . . . , {xk1, . . . , xknk }])

=
⋃

({{x11, . . . , x1n1 }, . . . , {xk1, . . . , xknk }})
= {x11, . . . , x1n1 , . . . , xk1, . . . , xknk }

= supp([x11, . . . , x1n1 , . . . , xk1, . . . , xknk ])
=

(
supp ◦ flat

)
([[x11, . . . , x1n1 ], . . . , [xk1, . . . , xknk ]]).

1.5.2 Finite powersets and idempotent commutative monoids

We briefly dive a bit deeper into the relation between monoids and (finite)
powersets from Lemma 1.5.1. At an abstract level the situation is much like
for lists, as described in Subsection 1.4.1. For instance, the commutative idem-
potent monoids Pfin(X) are free, like lists, in Proposition 1.4.3.

Proposition 1.5.4. Let X be a set and (M, 0,+) a commutative idempotent
monoid, with a function f : X → M between them. Then there is a unique
homomorphism of monoids f : (Pfin(X), ∅,∪) → (M, 0,+) with f ◦ unit = f .
We represent this situation in the diagram below.

X unit //

f
**

Pfin(X)

f , homomorphism
��

M

(1.16)

Proof. Given the requirements, the only way to define f is as:

f
(
{x1, . . . , xn}

)
B f (x1) + · · · + f (xn), with special case f (∅) = 0.

The order in the above sum f (x1) + · · · + f (xn) does not matter since M is
commutative. The function f sends unions to sums since + is idempotent.

Commutative idempotent monoids can be described as algebras, in analogy
with Proposition 1.4.6.

Proposition 1.5.5. Let X be an arbitrary set.
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1 To specify a commutative idempotent monoid structure (u,+) on X is the
same as giving a Pfin-algebra α : Pfin(X)→ X, namely so that the diagrams

X unit //

id %%

Pfin(X)
α
��

Pfin(Pfin(X))
Pfin (α)

//

flat
��

Pfin(X)
α
��

X Pfin(X) α // X

(1.17)

commute.
2 Let (M1, u1,+1) and (M2, u2,+2) be two commutative idempotent monoids,

with corresponding Pfin-algebras α1 : Pfin(M1) → M1 and α2 : Pfin(M2) →
M2. A function f : M1 → M2 is a map of monoids if and only if the rectangle

Pfin(M1)
α1
��

Pfin ( f )
// Pfin(M2)

α2
��

M1
f

// M2.

(1.18)

commutes.

Proof. This works very much like in the proof of Proposition 1.4.6. If (X, u,+)
is a monoid, we define α : Pfin(X) → X by freeness as α({x1, . . . , xn}) B x1 +

· · · + xn. In the other direction, given α : Pfin(X) → X we define a sum as
x + y B α({x, y}) with unit u B α(∅). Clearly, the sum + on X is commutative
and idempotent.

This result concentrates on the finite powerset functorPfin . One can also con-
sider algebras P(X) → X for the (general) powerset functor P. Such algebras
turn the set X into a complete lattice, see [10, 104, 127] for details.

1.5.3 Extraction

So far we have emphasised the similarity between lists and subsets: the only
structural difference that we have seen up to now is that subsets form an idem-
potent and commutative monoid. But there are other important differences.
Here we look at subsets of product sets, also known as relations.

The observation is that one can extract functions from a relation R ⊆ X × Y
two functions of the form extr1(R) : X → P(Y) and extr2(R) : Y → P(X). The
are given by:

extr1(R)(x) B
{
y ∈ Y

∣∣∣ (x, y) ∈ R
}

extr2(R)(y) B
{
x ∈ X

∣∣∣ (x, y) ∈ R
}
.

In fact, one can easily reconstruct the relation R from extr1(R), and also from
extr2(R), via:

R =
{
(x, y)

∣∣∣ y ∈ extr1(R)(x)
}
=

{
(x, y)

∣∣∣ x ∈ extr2(R)(y)
}
.
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This all looks rather trivial, but such function extraction is less trivial for other
data types, as we shall see later on for distributions, where it will be called
disintegration, see Section 7.2.

Using the exponent notation from Subsection 1.3.2 we can summarise the
situation as follows. There are two isomorphisms:

P(Y)X � P(X × Y) � P(X)Y . (1.19)

Functions of the form X → P(Y) will later be called ‘channels’ from X to Y ,
see Section 1.10. What we have just seen will then be described in terms of
‘extraction of channels’.

There are no isomorphisms L(Y)X � L(X × Y) � L(X)Y for lists.

1.5.4 Set partitions

In this text we use two kinds of partitions, namely set partitions and multiset
partitions. The latter will appear in Definition 1.9.1. Here we introduce set par-
titions. They are also known as disjoint covers: collections of pairwise disjoint
subsets that cover the set. They correspond in a standard way to equivalence
relations, see Exercise 1.5.4.

Definition 1.5.6.

1 For a non-empty set X we write we write SP(X) for the set of set partitions
of X:

SP(X) B
{

P ⊆ P(X)
∣∣∣∣ ⋃ P = X and ∀B ∈ P. B , ∅ and
∀B, B′ ∈ P. B , B′ ⇒ B ∩ B′ = ∅

}
.

(1.20)

The subsets B ∈ P of X, for a partition P ∈ SP(X), are often called blocks.
2 For a number K ≥ 1 we simply write SP(K) = SP

(
{1, . . . ,K}

)
for the set of

partitions of the set (K] = {1, . . . ,K} of first K positive natural numbers.
This set of partitions comes with a function size[K] : SP(K) → (K],

where size[K](P) B |P | is the number of blocks in a partition P ∈ SP(K).
The parameter K in size[K] is omitted if it is clear from the context.

We shall simply call an element of SP(K) a ‘set partition of K’, instead of a
‘set partition of {1, . . . ,K}’. For instance, the set SP(3) contains the following
five partitions of 3.{

{1}, {2}, {3}
} {
{1, 2}, {3}

} {
{1, 3}, {2}

} {
{1}, {2, 3}

} {
{1, 2, 3}

}
.

The set partitions of 4 of size 3, that is the partitions in the subset size[4]−1(3),
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are: {
{1}, {2}, {3, 4}

}
,

{
{1}, {2, 4}, {3}

}
,

{
{1}, {2, 3}, {4}

}
,{

{1, 4}, {2}, {3}
}
,

{
{1, 3}, {2}, {4}

}
,

{
{1, 2}, {3}, {4}

}
.

Stirling numbers of the second kind give the size of such subsets. This may be
seen as their definining property.

Proposition 1.5.7. Let K ≥ 1 and 1 ≤ n ≤ K. The number of set partitions in
SP(K) of size n is given by the Stirling number

{ K
n
}

of the second kind:∣∣∣∣size[K]−1(n)
∣∣∣∣ = K

n

 where size[K] : SP(K) −→ {1, . . . ,K}.

Proof. We show, by induction on K ≥ 1, that the size expression
∣∣∣size[K]−1(n)

∣∣∣
satisfies the recurrence equations (1.3), where we concentrate on the situation
K ≥ 1 and 1 ≤ n ≤ K. When K = 1 we have n = 1 and

{
{1}

}
as only partition

of {1}, so that: ∣∣∣∣size[1]−1(1)
∣∣∣∣ = 1 =

1
1

 .
Next we consider a set partition P of {1, . . . ,K+1}. When size(P) = 1, it follows
that P is the singleton partition containing the whole set {1, . . . ,K+1}. Thus:∣∣∣∣size[K+1]−1(1)

∣∣∣∣ = 1 =

K+1
1

 , by Lemma 1.2.5 (2).

We continue with n > 1. For a set partition P of {1, . . . ,K+1} there are two
cases: the number K+1 is in a singleton block in P, or it is part of a non-
singlteton block. Thus, either:

• P = Q ∪
{
{K+1}

}
, where Q ∈ SP(K); then size(P) = size(Q) + 1;

• or P =
(
Q \ {B}

)
∪

{
B ∪ {K+1}

}
, where Q ∈ SP(K) and B ∈ Q. In this case

we have size(P) = size(Q). There are size(P) many ways in which this may
happen, namely for each block in P.

Thus we can perform the induction step as follows.∣∣∣∣size[K+1]−1(n)
∣∣∣∣ = n ·

∣∣∣∣size[K]−1(n)
∣∣∣∣ + ∣∣∣∣size[K]−1(n−1)

∣∣∣∣
(IH)
= n ·

K
n

 +
 K

n−1


(1.3)
=

K+1
n

 .
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Lists / sequences / tuples give rise to set partitions via an elementary con-
struction that we call match. It turns positions with the same ‘matching’ ele-
ments (in the list) into blocks, see [3, 152, 92].

Definition 1.5.8. Fix an arbitrary set X and a number K ≥ 1 . There is a match
function mat[K] : XK → SP(K) defined as:

mat[K]
(
x1, . . . , xK

)
B

{
{i | xi = x1}, . . . , {i | xi = xK}

}
. (1.21)

The parameter K in mat[K] is dropped when it is clear from the context.

We illustrate how blocks are formed from positions with equal elements:

mat
(
b, a, c, b, b, a

)
=

{
{1, 4, 5}, {2, 6}, {3}

}
.

This match function will show up in various places. At this stage we observe
the following two basic facts.

Lemma 1.5.9. Let X be a set and let K ∈ N>0.

1 The following rectangle commutes.

XK

supp
��

mat // SP(K)
size
��

P≤[K](X) size // (K] = {1, . . . ,K}

(1.22)

2 Now assume that the set X is finite with n = |X | elements. For a set partition
P ∈ SP(K) with |P | ≤ n, the number of lists in XK that match to P is a
falling factorial: ∣∣∣∣mat−1(P)

∣∣∣∣ = (n)|P | =
n!

(n − |P |)!
. (1.23)

Proof. 1 The number of blocks of mat(x⃗) equals the number of different el-
ements in x⃗ ∈ XK . This is what the rectangle expresses. It follows immedi-
ately from the formulation of match in (1.21).

2 By an elementary counting argument: given a set partition P ∈ SP(X) we
need to count all lists x⃗ ∈ XK with size(P) = |P | many different elements;
the partition prescribes at which positions in the list these elements must be
equal. This leaves n(n − 1)(n − 2) · · · (n − |P | + 1) = (n)|P | many choices.

Set partitions form combinatorially rich structures. We already saw how Stir-
ling numbers of the second kind and falling factorials show up. Also rising
factorials and Stirling numbers of first kind appear, in the result below and in
Exercise 1.5.8.
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Proposition 1.5.10. For a non-empty finite set X and a real number r ∈ R,∑
P∈SP(X)

r |P | ·
∏
B∈P

(
|B |−1

)
! = (r)|X | =

∏
0≤i<|X |

r + i. (1.24)

In particular, for r = 1, ∑
P∈SP(X)

∏
B∈P

(
|B |−1

)
! = |X |!.

The sum over partitions with a particular size n can be described via Stirling
numbers of the first kind, see Exercise 1.5.8.

Proof. We use induction on the size |X | ≥ 1 of the non-empty set X. When
|X | = 1, say with X = {x}, the only set-partition is

{
{x}

}
. The left-hand-side

of (1.24) is then equal to r. Clearly, also the right-hand-side equals r.
Next, let X = Y ∪ {x}, where x < Y . We assume that (1.24) holds for Y .∑

P∈SP(X)

r |P | ·
∏
B∈P

(
|B |−1

)
!

=
∑

Q∈SP(Y)

r |Q∪{{x}} | ·
∏

B∈Q∪{{x}}

(
|B |−1

)
!

+
∑

Q∈SP(Y)

∑
C∈Q

r | (Q\{C})∪{C∪{x}} | ·
∏

B∈(Q\{C})∪{C∪{x}}

(
|B |−1

)
!

=
∑

Q∈SP(Y)

r |Q |+1 ·
∏
B∈Q

(
|B |−1

)
! +

∑
Q∈SP(Y)

∑
C∈Q

r |Q | · |C | ·
∏
B∈Q

(
|B |−1

)
!

(IH)
= r ·

 ∏
0≤i<|Y |

r + i

 + |Y | ·
 ∏

0≤i<|Y |

r + i

 since
∑
C∈Q

|C | = |Y |

=
(
r + |Y |

)
·

 ∏
0≤i<|Y |

r + i


=

∏
0≤i<|X |

r + i.

Remark 1.5.11.

1 As a consequence of Proposition 1.5.7 we can determine the number of set
partitions of K as:∣∣∣∣SP(K)

∣∣∣∣ = ∑
1≤n≤K

∣∣∣∣size[K]−1(n)
∣∣∣∣ = K

1

 + · · · +
K

K

 .
The latter expression forms the K-th Bell number. The sequence of these
Bell numbers, starting at 1, is: 1, 2, 5, 15, 52, 203, 877, 4140, . . .. These are
thus the sizes of SP(1), SP(2), SP(3), . . .

34



1.5. Subsets 351.5. Subsets 351.5. Subsets 35

2 Eearlier we skipped the proof of Lemma 1.4.9. It can now be obtained from
Proposition 1.5.7. Let K ≥ 1 be given together with a set U of size |U | = n ≤
K. The question is: how many lists ℓ ∈ UK exist with supp(ℓ) = U. Well,
if ℓ contains n different elements, then the associated set partition mat(ℓ) ∈
SP(K) will have n blocks. Proposition 1.5.7 tells that there are

{ K
n
}

such set
partitions. There are n! many lists ℓ with elements from U that match to a
particular set partition. Hence in total we have n! ·

{ K
n
}
= |U |! ·

{
K
|U |

}
many

lists, as claimed in Lemma 1.4.9.

Exercises

1.5.1 Continuing Exercise 1.4.1, compute:

• supp(ℓ1)
• supp(ℓ2)
• supp(ℓ1 ++ ℓ2)
• supp(ℓ1) ∪ supp(ℓ2)
• supp(L( f )(ℓ1))
• Pfin( f )(supp(ℓ1)).

1.5.2 We have used finite unions (∅,∪) as monoid structure on P(X) in
Lemma 1.5.1 (1). Intersections (X,∩) give another monoid structure
on P(X).

1 Show that the negation / complement function ¬ : P(X) → P(X),
given by:

¬U = X \ U = {x ∈ X | x < U},

is a homomorphism of monoids between (P(X), ∅,∪) and (P, X,∩),
in both directions. In fact, if forms an isomorphism of monoids,
since ¬¬U = U.

2 Prove that the intersections monoid structure is not preserved by
maps P( f ) : P(X)→ P(Y).
Hint: Look at preservation of the unit X ∈ P(X).

1.5.3 1 Check that in general, ∣∣∣P( f )(U)
∣∣∣ , ∣∣∣U ∣∣∣.

Conclude that the powerset functor P does not restrict to a functor
P[K], for K ∈ N.
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2 Show that we do have: ∣∣∣P( f )(U)
∣∣∣ ≤ ∣∣∣U ∣∣∣.

Check that P does restrict to a functor P≤[K].
1.5.4 We consider set partitions on arbitrary sets X, as in Definition 1.5.6 (1).

1 Establish bijective correspondences between:

• set partitions P ∈ SP(X);
• equivalence relations E ⊆ X × X.
• equivalence classes of surjective functions X ↠ A, for some set

A where h : X ↠ A and k : X ↠ B are equivalent if there is an
isomorphism j : A �

→ B with j ◦ h = k.

2 Let P,Q ∈ SP(X) be set partitions, with corresponding equiva-
lence relations EP, EQ and functions hP, hQ, as in the previous item.
Prove that that the following points are equivalent:

• P ⊑ Q, as defined by: ∀B ∈ P.∃C ∈ Q. B ⊆ C;
• EP ⊆ EQ;
• j ◦ hP = hQ for some function j.

3 Check that the order ⊑ on SP(X) defined in the previous item is a
partial order. It has a least and greatest element; find out what they
are.

4 Let f : X ↠ Y be a surjective function. Show that it gives rise to a
function:

SP(X)
P(P( f ))

// SP(Y)

Can you make this work without the surjectivity requirement? Do
you see a functor here? From where to where?

1.5.5 Show that the list-support function can be described as supp : XK →

P≤[K](X), for each set X and number K ≥ 1. Check that these maps
are natural in X, in the sense that for each function f : X → Y the
following rectangle commutes.

XK supp
//

f K

��

P≤[K](X)
P( f )
��

YK supp
// P≤[K](X)

1.5.6 Let X be a (finite) set with n elements. Check that the binomial coef-
ficient counts the number of subsets of a particular size K ≤ n, in:∣∣∣∣P[K](X)

∣∣∣∣ = (
n
K

)
.
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1.5.7 Let 1 ≤ K ≤ N. Show that:∑
P∈SP(K)

1
(N − |P |)!

=
NK

N!
.

1.5.8 Prove that Stirling numbers of the first kind arise not only via subsets,
as in Exercise 1.2.5, but also via set partitions, as in:Kn

 = ∑
P∈SP(K), |P |=n

∏
B∈P

(
|B |−1

)
!.

1.6 Multisets

So far we have discussed two collection data types, namely lists and subsets.
In lists, elements occur in a particular order, and may occur multiple times (at
different positions). Both properties fail for subsets. In this section we look at
multisets, also called bags, which are ‘subsets’ in which elements may occur
multiple times. Hence multisets are inbetween lists and subsets, since they do
involve multiple occurrences, but the order of their elements is irrelevant.

The list and subset examples that we have seen are somewhat remote from
probability theory. But multisets are much more directly relevant: they can be
used for counting frequencies of elements, as a first step towards determining
their probabilities. Indeed, observed data can be organised nicely in terms of
multisets. For instance, for statistical analysis, a document, as a list of words,
is often analysed as a multiset of words, in which one keeps track of the words
that occur in the document together with their frequency (multiplicity); in that
case, the order of the words is ignored. Also, tables with observed data can
be organised naturally as multisets, see Subsection 1.6.1 below. An elementary
form of ‘frequentist’ learning from such tables will be described in Section 2.1,
as a (natural) transformation from multisets to distributions.

Despite their importance, multisets do not have a prominent role in com-
puter science, like lists have, or in mathematics. There are obvious applica-
tions where multisets are the better data structure, for instance in recording
votes in an election. Recording votes as a list, reflecting the order of incom-
ing votes, may leak information about who voted what — and thus compro-
mise confidentiality. Instead, votes are better recorded as multisets, capturing
the numbers of votes per candidate (or option). Also in mathematics, multi-
sets are not always recognised as such. For instance, eigenvalues of a matrix
form a clear example where the ‘multi’ aspect is ignored: eigenvalues may
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occur multiple times, so the proper thing to say is that a matrix has a mul-
tiset of eigenvalues, instead of a set. More generally, solutions of a polyno-
mial form a multiset, since solutations may occur multiple times. For instance
x3−7x2+16x−12 = (x−2)(x−2)(x−3) has as multiset of solutions 2|2⟩+1|3⟩.

One reason for the common use of lists (or sequences) instead of multisets
may be that there is no established notation for multisets. We shall use a ‘ket’
notation | − ⟩ that is borrowed from quantum theory, but interchangeably also
a functional notation. In the next chapter we start using the same notation for
discrete probability distributions. Since multisets are not so familiar, we take
ample time to introduce the basic definitions and properties, in Sections 1.6 –
1.9.

We start with an introduction about notation, terminology, and conventions
for multisets. Consider a set C = {R,G, B} for the three colours Red, Green,
Blue. An example of a multiset with elements from this set C is:

2|R⟩ + 5|G ⟩ + 0|B⟩.

In this multiset the element R occurs 2 times, G occurs 5 times, and B occurs
0 times. The latter means that B does not occur, that is, B is not an element of
the multiset. From a multiset perspective, we have 2 + 5 + 0 = 7 elements —
and not just 2. A multiset like this may describe an urn containing 2 red balls,
5 green ones, and no blue balls. Such multisets are quite common, in different
settings. For instance, the chemical formula C2H4O2 for vinegar may be read
as a multiset 2|C ⟩ + 4|H ⟩ + 2|O⟩, containing 2 carbon (C) atoms, 4 hydrogen
(H) atoms and 2 oxygen (O) atoms, see also Exercise 1.6.4.

In a situation where we have multiple data items, say arising from succes-
sive experiments, a basic question to ask is: does the order of the experiments
matter? If so, we need to order the data elements as a list. If the order does not
matter we should use a multiset. More concretely, if six successive experiments
yield data items d, e, d, f , e, d and their order is relevant we should model the
data as the list [d, e, d, f , e, d]. When the order is irrelevant, we can capture the
data as the multiset 3|d ⟩ + 2|e⟩ + 1| f ⟩.

The special brackets | − ⟩ form part of so-called ket notation, stemming from
quantum theory. These kets are meaningless syntax; they are used to separate
the natural numbers, called multiplicities, and the elements in the multiset.

We move to a more formal description. Let X be an arbitrary set. In terms of
the above ket notation, a (finite) multiset over X is an expression of the form:

n1
∣∣∣ x1

〉
+ · · · + nk

∣∣∣ xk
〉

where ni ∈ N and xi ∈ X.

This expression is a formal sum, not an actual sum (for instance in R). We may
write it as

∑
i ni| xi ⟩. We use the convention:
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• 0| x⟩may be omitted; but it may also be written explicitly in order to empha-
sise that the element x does not occur in a multiset;

• a sum n| x⟩ + m| x⟩ is the same as (n + m)| x⟩;
• the order and brackets (if any) in a sum do not matter.

Thus, for instance, there is an equality of multisets:

2|a⟩ +
(
5|b⟩ + 0|c⟩

)
+ 4|b⟩ = 9|b⟩ + 2|a⟩.

There is an alternative, functional description of multisets. A multiset can
be defined as a function φ : X → N that has finite support, where the support
supp(φ) ⊆ X is the subset supp(φ) = {x ∈ X | φ(x) , 0} where φ is non-zero.
Notice that the set X may be infinite, but each multiset φ over X is required to
have finite support supp(φ) ⊆ X.

For each element x ∈ X the number φ(x) ∈ N indicates how often x oc-
curs in the multiset φ. Such a function φ can also be written as a formal sum∑

x φ(x)| x⟩, where x ranges over supp(φ).
For instance, the multiset 9|b⟩ + 2|a⟩ over A = {a, b, c} corresponds to the

function φ : A → N given by φ(a) = 2, φ(b) = 9, φ(c) = 0. Its support is thus
{a, b} ⊆ A, with two elements. The number ∥φ∥ of elements in φ is 11.

We shall freely switch back and forth between the ket-description and the
function-description of multisets, and use whichever form is most convenient
for the goal at hand.

Having said this, we stretch the idea of a multiset and do not only allow
natural numbers n ∈ N as multiplicities (occurrence frequencies), but also al-
low non-negative numbers r ∈ R≥0. Thus we can have a multiset of the form
3
2 |a⟩ + π|b⟩ where π ∈ R≥0 is the famous constant of Archimedes: the ratio of
a circle’s circumference to its diameter. This added generality will be useful at
times, although many examples of multisets will simply have natural numbers
as multiplicities. We call such multisets natural.

Definition 1.6.1. Let X be an arbitrary set.

1 We writeM(X) for the set of all multisets over X. Thus, using the function
approach:

M(X) B
{
φ : X → R≥0

∣∣∣ supp(φ) is finite
}
.

The functions inM(X) may be called mass functions, as in [161]. We shall
often write such a function φ ∈ M(X) as formal sum

∑
x φ(x)| x⟩.

2 We write N(X) ⊆ M(X) for the subset of natural multisets, with natural
numbers as multiplicities — also called bags or urns. Thus, N(X) contains
functions φ ∈ M(X) with φ(x) ∈ N, for all x ∈ X.
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3 We shall writeM∗(X) for the set of non-empty multisets. Thus:

M∗(X) B
{
φ ∈ M(X)

∣∣∣ supp(φ) is non-empty
}

=
{
φ : X → R≥0

∣∣∣ supp(φ) is finite and non-empty
}
.

Similarly, N∗(X) ⊆ M∗(X) contains the non-empty natural multisets.
4 For a number K we shall writeM[K](X) ⊆ M(X) andN[K](X) ⊆ N(X) for

the subsets of multisets of size K, that is, with K elements. Thus:

M[K](X) B
{
φ ∈ M(X)

∣∣∣ ∥φ∥ = K
}

where ∥φ∥ B
∑

x φ(x). (1.25)

This size number ∥φ∥ gives the total number of elements in the multiset φ.
5 Finally, when the set X is finite, we use special notation for the subsets of

(natural) multisets φ with full support, that is with supp(φ) = X.

Mfs(X) B
{
φ ∈ M(X)

∣∣∣ supp(φ) = X
}

Nfs(X) B
{
φ ∈ N(X)

∣∣∣ supp(φ) = X
}
.

All ofM,N ,M∗,N∗,M[K],N[K] are functorial, in the same way. Hence
we concentrate on M. For a function f : X → Y we define M( f ) : M(X) →
M(Y) below, in two equivalent ways. Intuitively, when we see a multiset φ ∈
M(X) as an urn containing coloured balls, with colours from X, thenM( f )(φ) ∈
M(Y) is the urn with ‘repainted’ balls, where the new colours are taken from
the set Y . The function f : X → Y defines the transformation of colours. It tells
that a ball of colour x ∈ X in φ will be repainted with colour f (x) ∈ Y . Notice
that two different colours x, x′ ∈ X may have the same colour, after repainting,
namely when f (x) = f (x′).

Definition 1.6.2. For a function f : X → Y and a multiset φ ∈ M(X) over
X there is a multiset M( f )(φ) ∈ M(Y) that can be defined in two equivalent
ways. First, using ket notation as:

M( f )
(∑

i ri| xi ⟩
)
B

∑
i ri| f (xi)⟩.

Equivalently, using function notation:

M( f )(φ)(y) B
∑

x∈ f −1(y)

φ(x).

It may take a bit of effort to see that these two descriptions are the same,
see Exercise 1.6.1 below. Notice that in the sum

∑
i ri| f (xi)⟩ it may happen

that f (xi1 ) = f (xi2 ) for xi1 , xi2 , so that ri1 and ri2 are added together. Thus,
the support of M( f )

(∑
i ri| xi ⟩

)
may have fewer elements than the support of∑

i ri| xi ⟩, but the sum of all multiplicities is the same in M( f )
(∑

i ri| xi ⟩
)

and∑
i ri| xi ⟩, see Exercise 1.7.2 below.
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ApplyingM to a projection function πi : X1×· · ·×Xn → Xi yields a function
M(πi), from the set M(X1 × · · · × Xn) of multisets over a product to the set
M(Xi) of multisets over a component. ThisM(πi) is called a marginalisation
function. It computes what is ‘on the side’, in the marginal of a table, as will
be illustrated in Subsection 1.6.1 below.

Multisets, like lists and subset form a monoid. In terms of urns with coloured
balls, taking the sum of two multisets corresponds to pouring the balls from
two urns into a new, single urn.

Lemma 1.6.3.

1 The set M(X) of multisets over X is a commutative monoid. In functional
form, addition and zero (identity) element 0 ∈ M(X) are defined as:

(φ + ψ)(x) B φ(x) + ψ(x) 0(x) B 0.

These sums restrict to N(X).
2 The setM(X) is also a cone: it is closed under ‘scalar’ multiplication with

non-negative numbers r ∈ R≥0, via:

(r · φ)(x) B r · φ(x).

This scalar multiplication r · (−) : M(X)→M(X) preserves the sums (0,+)
from the previous item, and is thus a map of monoids.

3 For each f : X → Y, the function M( f ) : M(X) → M(Y) is a map of
monoids and also of cones. The latter means:M( f )(r · φ) = r · M( f )(φ).

4 The support map supp : M(X) → Pfin(X) is a homomorphism of monoids
and is natural in X. The latter means that for each function f : X → Y the
following rectangle commutes.

M(X)
supp

//

M( f )
��

Pfin(X)
P( f )
��

M(Y)
supp

// Pfin(Y)

The fact thatM( f ) preserves sums can be understood informally as follows.
If we have two urns, we can first combine their contents and then repaint ev-
erything. Alternatively, we can first repaint the balls in the two urns separately,
and then throw them together. The result is the same, in both cases.

The element 0 ∈ M(X) used in item (1) is the empty multiset, that is, the
urn containing no balls. Similarly, the sum of multisets + is implicit in the ket-
notation. The setN(X) of natural multisets is not closed in general under scalar
multiplication with r ∈ R≥0. It is closed under scalar multiplication with n ∈ N,
but such multiplications add nothing new since they can also be described via
repeated addition.
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1.6.1 Tables of data as multisets

Let’s assume that a group of 36 children in the age range 0 − 10 is participat-
ing in some study, where the number of children of each age is given by the
following table.

0 1 2 3 4 5 6 7 8 9 10

2 0 4 3 5 3 2 5 5 2 4

We can represent this table as a natural multiset over the set of ages {0, 1, . . . , 10}.

2
∣∣∣0〉
+ 4

∣∣∣2〉
+ 3

∣∣∣3〉
+ 5

∣∣∣4〉
+ 3

∣∣∣5〉
+ 2

∣∣∣6〉
+ 5

∣∣∣7〉
+ 5

∣∣∣8〉
+ 2

∣∣∣9〉
+ 4

∣∣∣10
〉
.

Notice that there is no summand for age 1 because of our convention to ommit
expressions like 0|1⟩ with multiplicity 0. We can visually represent the above
age data / multiset in the form of a histogram:

(1.26)

When such a histogram is given, it is generally easy to see what the underlying
multiset is.

Here is another example, not with numerical data, in the form of ages, but
with nominal data, in the form of blood types. Testing the blood type of 50
individuals produced the following table.

A B O AB

10 15 18 7

This corresponds to a (natural) multiset over the set {A, B,O, AB} of blood
types, namely to:

10
∣∣∣A〉
+ 15

∣∣∣B〉
+ 18

∣∣∣O〉
+ 7

∣∣∣AB
〉
.

It gives rise to the following bar graph, in which there is no particular ordering
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of elements. For convenience, we follow the order of the above table.

(1.27)

Next, consider the two-dimensional table (1.28) below where we have com-
bined numeric information about blood pressure (either high H, or low L) and
certain medicines (either type 1, type 2, or no medicine, indicated as 0). There
is data about 100 study participants:

no medicine medicine 1 medicine 2 totals

high 10 35 25 70
low 5 10 15 30

totals 15 45 40 100

(1.28)

We claim that we can capture this table as a (natural) multiset. To do so, we
first form sets B = {H,T } for blood pressure values, and M = {0, 1, 2} for types
of medicine. The above table can then be described as a natural multiset τ over
the product set / space B × M, that is, as an element τ ∈ N(B × M), namely:

τ = 10
∣∣∣H, 0〉

+ 35
∣∣∣H, 1〉

+ 25
∣∣∣H, 2〉

+ 5
∣∣∣L, 0〉

+ 10
∣∣∣L, 1〉

+ 15
∣∣∣L, 2〉

.

Such a multiset can be plotted in three dimensions as:
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We see that Table (1.28) contains ‘totals’ in its vertical and horizontal mar-
gins. They can be obtained from the multiset τ as marginals, using the functo-
riality of N . This works as follows. Applying the natural multiset functor N
to the two projections π1 : B × M → B and π2 : B × M → M yields marginal
distributions on B and M, namely:

N(π1)(τ) = 10
∣∣∣π1(H, 0)

〉
+ 35

∣∣∣π1(H, 1)
〉
+ 25

∣∣∣π1(H, 2)
〉

+ 5
∣∣∣π1(L, 0)

〉
+ 10

∣∣∣π1(L, 1)
〉
+ 15

∣∣∣π1(L, 2)
〉

= 10
∣∣∣H 〉
+ 35

∣∣∣H 〉
+ 25

∣∣∣H 〉
+ 5

∣∣∣L〉
+ 10

∣∣∣L〉
+ 15

∣∣∣L〉
= 70

∣∣∣H 〉
+ 30

∣∣∣L〉
.

N(π2)(τ) = (10 + 5)
∣∣∣0〉
+ (35 + 10)

∣∣∣1〉
+ (25 + 15)

∣∣∣2〉
= 15

∣∣∣0〉
+ 45

∣∣∣1〉
+ 40

∣∣∣2〉
.

The expression ‘marginal’ is used to describe such totals in the margin of a
multidimensional table. In Section 2.1 we describe how to obtain probabilities
from tables in a systematic manner.

1.6.2 Unit and flatten for multisets

There are unit and flatten maps for multisets too — like for lists and sub-
sets. The function unit : X →M(X) is simply given by the singleton multiset:
unit(x) B 1| x⟩. Flattening involves turning a multiset of multisets into a mul-
tiset. Concretely, this is done as:

flat
(

1
3

∣∣∣ 2|a⟩ + 2|c⟩
〉
+ 5

∣∣∣ 1|b⟩ + 1
6 |c⟩

〉 )
= 2

3 |a⟩ + 5|b⟩ + 3
2 |c⟩.
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More generally, flattening is the function flat : M(M(X))→M(X) with:

flat
(∑

i ri|φi ⟩
)
B

∑
x∈X

(∑
i ri · φi(x)

) ∣∣∣ x〉
.

Notice that the big outer sum
∑

x is a formal one, whereas the inner sum
∑

i is
an actual one, in R≥0, see the earlier example.

The following result, about unit and flatten for multisets, is formally similar
to such results about unit and flatten for lists and subsets, in Lemma 1.4.5
and 1.5.2. We formulate it for general multisets M, but it restricts to natural
multisets N .

Lemma 1.6.4.

1 For each function f : X → Y the two rectangles

X
f
��

unit //M(X)
M( f )
��

M(M(X))
M(M( f ))

��

flat //M(X)
M( f )
��

Y
unit
//M(Y) M(M(Y))

flat
//M(Y)

commute.
2 The next two diagrams also commute.

M(X) unit //M(M(X))
flat
��

M(X)
M(unit)
oo M(M(M(X)))

M(flat)
��

flat //M(M(X))
flat
��

M(X) M(M(X))
flat

//M(X)

The next result shows that natural multisets are free commutative monoids.
Arbitrary multisets are also free, but for other algebraic structures, see Exer-
cise 1.6.13.

Proposition 1.6.5. Let X be a set and (M, 0,+) a commutative monoid. Each
function f : X → M has a unique extension to a homomorphism of monoids
f : (N(X), 0,+) → (M, 0,+) with f ◦ unit = f . The diagram below captures
the situation, where the dashed arrow is used for uniqueness.

X unit //

f
**

N(X)

f , homomorphism
��

M

(1.29)

Proof. One defines:

f
(
n1| x1 ⟩ + · · · + nk | xk ⟩

)
B n1 · f (x1) + · · · + nk · f (xk).

where we write n · a for the n-fold sum a + · · · + a in a monoid.
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The unit and flatten operations for (natural) multisets can be used to cap-
ture commutative monoids more precisely, in analogy with Propositions 1.4.6
and 1.5.5

Proposition 1.6.6. Let X be an arbitrary set.

1 A commutative monoid structure (u,+) on X corresponds to an N-algebra
α : N(X)→ X making the two diagrams below commute.

X unit //

id %%

N(X)
α
��

N(N(X))
N(α)
//

flat
��

N(X)
α
��

X N(X) α // X

(1.30)

2 Let (M1, u1,+1) and (M2, u2,+2) be two commutative monoids, with corre-
spondingN-algebras α1 : N(M1)→ M1 and α2 : N(M2)→ M2. A function
f : M1 → M2 is a map of monoids if and only if the rectangle

N(M1)
α1
��

N( f )
// N(M2)

α2
��

M1
f

// M2.

(1.31)

commutes.

Proof. Analogously to the proof Proposition 1.4.6: if (X, u,+) is a commu-
tative monoid, we define α : N(X) → X by turning formal sums into actual
sums: α(

∑
i ni| xi ⟩) B

∑
i ni · xi, see (the proof of) Proposition 1.6.5. In the

other direction, given α : N(X)→ X we define a sum as x+y B α(1| x⟩+1|y⟩)
with unit u B α(0). Obviously, + is commutative.

1.6.3 Extraction

At the end of the previous section we have seen how to extract a function
(channel) from a binary subset, that is, from a relation. It turns out that one
can do the same for a binary multiset, that is, for a table. More specifically, in
terms of exponents, there are isomorphisms:

M(Y)X � M(X × Y) � M(X)Y . (1.32)

This is analogous to (1.19) for powerset.
How does this work in detail? Suppose we have an arbitary multiset / table

σ ∈ M(X × Y). From σ one can extract a function extr1(σ) : X →M(Y), and
also extr2(σ) : Y →M(X), via:

extr1(σ)(x) =
∑
y∈Y

σ(x, y)
∣∣∣y〉

extr2(σ)(y) =
∑
x∈X

σ(x, y)
∣∣∣ x〉

.
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Notice that we are — conveniently — mixing ket and function notation for
multisets. Conversely, σ can be reconstructed from extr1(σ), and also from
extr2(σ), via σ(x, y) = extr1(σ)(x)(y) = extr2(σ)(y)(x).

Functions of the form X → M(Y) will also be used as channels from X to
Y , see Section 1.10. That’s why we often speak about ‘channel extraction’.

As illustration, we apply extraction to the medicine - blood pressure Ta-
ble 1.28, described as the multiset τ ∈ M(B×M). It gives rise to two channels
extr1(τ) : B→M(M) and extr2(τ) : M →M(B). Explicitly:

extr1(τ)(H) =
∑
x∈M

τ(H, x)| x⟩ = 10|0⟩ + 35|1⟩ + 25|2⟩

extr1(τ)(L) =
∑
x∈M

τ(L, x)| x⟩ = 5|0⟩ + 10|1⟩ + 15|2⟩.

We see that this extracted function captures the two rows of Table 1.28. Simi-
larly we get the columns via the second extracted function:

extr2(τ)(0) = 10|L⟩ + 5|H ⟩
extr2(τ)(1) = 35|L⟩ + 10|H ⟩
extr2(τ)(2) = 25|L⟩ + 15|H ⟩.

Exercises

1.6.1 In the setting of Exercise 1.4.1, consider the multisets φ = 3|a⟩ +
2|b⟩ + 8|c⟩ and ψ = 3|b⟩ + 1|c⟩. Compute:

• φ + ψ

• ψ + φ

• M( f )(φ), both in ket-formulation and in function-formulation
• idem forM( f )(ψ)
• M( f )(φ + ψ)
• M( f )(φ) +M( f )(ψ).

1.6.2 Consider, still in the context of Exercise 1.4.1, the ‘joint’ multiset
φ ∈ M(X × Y) given by φ = 2|a, u⟩ + 3|a, v⟩ + 5|c, v⟩. Determine the
marginalsM(π1)(φ) ∈ M(X) andM(π2)(φ) ∈ M(Y).

1.6.3 Let P ⊆ N>0 be the subset of prime numbers. Describe an essen-
tial homomorphism property of prime number factorisation pnf as a
function:

N>0
pnf
// N(P)

Describe concretely pnf (2023).
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1.6.4 Consider the chemical equation for burning methane:

CH4 + 2 O2 −→ CO2 + 2 H2O.

Check that there is an underlying equation of multisets:

flat
(
1
∣∣∣1|C ⟩ + 4|H ⟩

〉
+ 2

∣∣∣2|O⟩〉)
= flat

(
1
∣∣∣1|C ⟩ + 2|O⟩

〉
+ 2

∣∣∣2|H ⟩ + 1|O⟩
〉)
.

It expresses the law of conservation of mass.
1.6.5 Recall that we write n B {0, . . . , n − 1} so that 0 = ∅, 1 = {0} and

2 = {0, 1}. Verify that for the list, powerset, natural multiset, multiset
and distribution functors satisfy:

L(0) � 1 P(0) � 1 N(0) � 1 M(0) � 1 N[K](0) � 0
L(1) � N P(1) � 2 N(1) � N M(1) � R≥0 N[K](1) � 1

P(n) � 2n N(n) � Nn M(n) � Rn
≥0 N[K](2) � K+1

1.6.6 Consider the set N(N) of multisets over the natural numbers.

1 Identify a multiset
∑

i ni| i⟩ in this set with a polynomial
∑

i nixi with
natural numbers as coefficients — where x is some placeholder
variable.

2 Check that addition of multisets corresponds to addition of poyno-
mials.

1.6.7 Check thatM(id ) = id andM(g ◦ f ) =M(g) ◦ M( f ).
1.6.8 Show that for each natural number K the mappings X 7→ M[K](X)

and X 7→ N[K](X) are functorial. Notice the difference with P[K],
see Exercise 1.5.3.

1.6.9 Consider for a set X the mapping units : Pfin(X) → N(X) given by
units

(
{x1, . . . , xn}

)
B

∑
i 1| xi ⟩. Check that this mapping units is not

natural in X.
1.6.10 Prove Lemma 1.6.4.
1.6.11 Consider both Lemma 1.6.4 and Proposition 1.6.6.

1 Notice that an abstract way of seeing that N(X) is a commutative
monoid is via the properties of the flatten map flat : N

(
N(X)) →

N(X).
2 Notice also that this flatten map is a homomorphism of monoids.

1.6.12 Verify that the support map supp : M(X) → Pfin(X) commutes with
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extraction functions, in the sense that the following diagram com-
mutes.

M(X × Y)
extr1
��

supp
// Pfin(X × Y)

extr1
��

M(Y)X
suppX

// Pfin(Y)X

Equationally, this amounts to showing that for τ ∈ M(X × Y) and
x ∈ X one has:

extr1
(
supp(τ)

)
(x) = supp

(
extr1(τ)(x)

)
.

Here we use that suppX( f ) B supp ◦ f , so that suppX( f )(x) =
supp( f (x)).

1.6.13 In Proposition 1.6.5 we have seen that natural multisets N(X) form
free commutative monoids. What about general multisetsM(X)? They
form free cones. Briefly, a cone is a commutative monoid M with
scalar multiplication r · (−) : M → M, for each r ∈ R≥0, forming a
homomorphism of monoids. It is like a vector space, not over all re-
als, but only over the non-negative reals. Homomorphisms of cones
preserve such scalar multiplications.

Let X be a set and (M, 0,+) a cone, with a function f : X → M.
Prove that there is a unique homomorphism of cones f : M(X) → M
with f ◦ unit = f .

1.7 Multisets in summations

The current and next section will dive deeper into the use of natural multisets
in combinatorics, as preparation for later use. This section will focus on the
use of multisets in summations, such as the multinomial theorem — which is
probably best known in binary form, as the binomial theorem for expanding
sums of the form (a + b)n. We shall describe various extensions, both for finite
and infinite sums. All material in this section is standard, but its presentation
in terms of multisets is not.

In this section we focus on counting with multisets, in particular in (infinite)
sums of powers. The next section focuses on counting multisets themselves,
where we ask, for instance, how many multisets of size K are there over a set
with n elements?

There are several ways to associate a natural number with a multiset φ. For
instance, we can look at the size of its support |supp(φ) | ∈ N, or at its size, as
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total number of elements ∥φ∥ =
∑

x φ(x) ∈ R>0. This size is a natural number
when φ is a natural multiset. Below we will introduce several more such num-
bers for natural multisets φ, namely φ and (φ ), and later on also a binomial
coefficient

(
ψ
φ

)
.

Definition 1.7.1.

1 For two multisets φ, ψ ∈ N(X) we write:

φ ≤ ψ ⇐⇒ ∀x ∈ X. φ(x) ≤ ψ(x).

When φ ≤ ψwe define subtraction ψ−φ of multisets as the obvious multiset,
defined pointwise as:

(
ψ − φ

)
(x) = ψ(x) − φ(x).

2 For an arbitrary number K ∈ N we use and order ≤K with K as subscript for:

φ ≤K ψ ⇐⇒ ∥φ∥ = K and φ ≤ ψ.

3 For a collection of numbers r = (rx)x∈X we write:

r φ B
∏
x∈X

r φ(x)
x = r⃗ φ.

The latter vector notation is appropriate in a situation with a particular order.
4 The factorial φ of a natural multiset φ ∈ N(X) is the product of the factorial

of its multiplicities:

φ B
∏

x∈supp(φ)

φ(x)! (1.33)

5 The multiset coefficient (φ ) is defined as:

(φ ) B
∥φ∥!
φ
=

∥φ∥!∏
x φ(x)!

=

(
∥φ∥

φ(x1), . . . , φ(xn)

)
.

The multinomial coefficient from Definition 1.2.1 (3) is used in the lat-
ter formulation; it assumes that the support of φ is somehow ordered as
[x1, . . . , xn].

For instance,

(3|R⟩ + 2|B⟩) = 3! · 2! = 12 and (3|R⟩ + 2|B⟩ ) =
5!
12
= 10.

In Proposition 1.7.2 below we make precise how the multinomial coefficient
(φ ) in item (5) counts the number of lists that ‘accumulate to’ the multiset φ.

The traditional notation
(

m
m1,...,mk

)
for multinomial coefficients, that we have

seen in Definition 1.2.1 (3), is suboptimal for two reasons: first, the number
m at the top is superflous, since it is determined by the mi as m =

∑
i mi;
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second, the order of the mi is irrelevant. These disadvantages are resolved by
the multiset variant (φ ). It has our preference.

For a multiset φ we have already used the ‘support’ definition supp(φ) =
{x | φ(x) , 0}. This yields a map supp : M(X) → Pfin(X), which is well-
behaved, in the sense that it is natural and preserves the monoid structures on
M(X) and Pfin(X), see Lemma 1.6.3 (4).

We have also seen a support map from lists L to finite powerset Pfin . This
support map factorises through multisets, as described with a new function acc
in the following triangle.

L(X)
supp

//

acc ,,

Pfin(X)

N(X) supp

BB
(1.34)

The ‘accumulator’ map acc : L(X)→ N(X) plays an important role in the rest
of this book; it can be traced back to early work in formal lanuage theory, see
e.g. [143, Defn. 13]. This map acc counts (accumulates) how many times an
element occurs in a list, while ignoring the order of occurrences. Thus, for a
list ℓ ∈ L(X),

acc(x1, . . . , xn) B 1| x1 ⟩ + · · · + 1| xn ⟩. (1.35)

Since multiple terms 1| x⟩ add up we have acc(ℓ)(x) = n if and only if the
element x occurs n times in the list ℓ.

In an example:

acc
(
a, b, a, b, c, b, b

)
= 2|a⟩ + 4|b⟩ + 1|c⟩.

The above diagram (1.34) reflects an earlier informal statement, namely that
multisets are somehow in between lists and subsets.

A basic question is: how many (ordered) sequences of coloured balls give
rise to a specific urn with balls? More technically, given a natural multiset
φ, how many lists ℓ statisfy acc(ℓ) = φ? In yet another form, what is the size∣∣∣acc−1(φ)

∣∣∣ of the inverse image? This is where the multiset coefficient (φ ) from
Definition 1.7.1 (5) comes in.

We shall use a K-ary version of accumulation, for K ∈ N, restricted to K-
many elements. It then becomes a mapping:

XK acc[K]
// N[K](X). (1.36)

The parameter K will often be omitted from acc[K] when it is clear from the
context.
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Proposition 1.7.2. For φ ∈ N[K](X) one has:

(φ ) =
∣∣∣∣acc−1(φ)

∣∣∣∣ = the number of lists ℓ ∈ XK with acc(ℓ) = φ.

Proof. We use induction on the number of elements of the support supp(φ) of
the multiset φ. If this number is 0, then φ = 0, with (0 ) = 1. And indeed, there
is precisely one list ℓ with acc(ℓ) = 0, namely the empty list [].

Next suppose that supp(φ) = {x1, . . . , xn, xn+1}. Take m B φ(xn+1) and φ′ B
φ−m| xn+1 ⟩ so that ∥φ′∥ = K −m and supp(φ′) = {x1, . . . , xn}. By the induction
hypothesis there are (φ′ )-many lists ℓ′ ∈ XK−m with acc(ℓ′) = φ′. Each such
list ℓ′ can be extended to a list ℓ with acc(ℓ) = φ by m times adding xn+1 to ℓ′.
How many such additions are there? It is not hard to see that this number of
additions is

(
K
m

)
. Thus:∣∣∣∣acc−1(φ)
∣∣∣∣ = (

K
m

)
· (φ′ )

=
K!

m! · (K − m)!
·

(K − m)!∏
i≤n φ

′(xi)!

=
K!∏

i≤n+1 φ(xi)!
since m = φ(xn+1) and φ′(xi) = φ(xi)

= (φ ).

Multinomial coefficients satisfy the following recurrence relations.(
K − 1

k1 − 1, . . . , kn

)
+ · · · +

(
K − 1

k1, . . . , kn − 1

)
=

(
K

k1, . . . , kn

)
(1.37)

for multinomial coefficients. A snappy re-formulation, for a natural multiset φ,
is: ∑

x∈supp(φ)

(φ − 1| x⟩ ) = (φ ). (1.38)

Multinomial coefficients, see Definition 1.2.1 (3), are useful, for instance in
the Multinomial Theorem (see e.g. [159]):

(
r1 + · · · + rn

)K
=

∑
ki,

∑
i ki=K

(
K

k1, . . . , kn

)
· rk1

1 · . . . · r
kn
n . (1.39)

An equivalent formulation using multisets is:(
r1 + · · · + rn

)K
=

∑
φ∈M[K]({1,...,n})

(φ ) · r⃗ φ

=
∑

φ∈M[K]({1,...,n})

(φ ) ·
∏

1≤i≤n

rφ(i)
i .

(1.40)
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Remark 1.7.3. The above formulation (1.40) of the Multinomial Theorem
involves multisets φ ∈ M[K]({1, . . . , n}) over the set {1, . . . , n}. The numbers
in this set are merely placeholders. The set {1, . . . , n} can thus be replaced by
an arbitrary set X, giving another level of abstraction.

Let M±(X) be the set of ‘multisets’ with both positive and negative multi-
plicities. ThusM±(X) = {ψ : X → R | ψ has finite support}. We extend the size
formulation ∥ψ∥ =

∑
x∈X ψ(x) to such ψ ∈ M±(X). The Multinomial Theorem

can now be formulated purely in terms of multisets: for ψ ∈ M±(X),

∥ψ∥K =
∑

φ∈M[K](X)

(φ ) ·
∏
x∈X

ψ(x)φ(x). (1.41)

There is an ‘infinite’ version of the Multinomial Theorem, known as the
(Binomial) Series Theorem. It holds more generally than formulated in the
first item below, for complex numbers, with adapted meaning of the binomial
coefficient, but that’s beyond the current scope.

Theorem 1.7.4. Fix a natural number K.

1 For a real number r ∈ [0, 1),∑
n≥0

(
n + K

K

)
· rn =

1
(1 − r)K+1 .

2 As a special case, ∑
n≥0

rn =
1

1 − r
.

3 Another consequence is, still for r ∈ [0, 1),∑
n≥1

n · rn =
r

(1 − r)2 .

4 For r1, . . . , rm ∈ [0, 1] with
∑

i ri < 1,∑
n1, ..., nm≥0

(
K +

∑
i ni

K, n1, . . . , nm

)
·
∏

i
rni

i =
1

(1 −
∑

i ri)K+1 .

Equivalently, ∑
φ∈N({1,...,m})

(
K + ∥φ∥

K

)
· (φ ) · r⃗ φ =

1
(1 −

∑
i ri)K+1 .

Proof. 1 The equation arises as the Taylor series f (x) =
∑

n
f (n)(0)

n! · x
n of the
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function f (x) = 1
(1−x)K+1 . One can show, by induction on n, that the n-th

derivative of f is:

f (n)(x) =
(n + K)!

K!
·

1
(1 − x)n+K+1 .

2 The second equation is a special case of the first one, for K = 0. There is also
a simple direct proof. Define sn = r0+r1+ · · ·+rn. Then sn−r · sn = 1−rn+1,
so that sn =

1−rn+1

1−r . Hence sn →
1

1−r as n→ ∞.
3 We choose to use the first item, but there are other ways to prove this result,

see Exercise 1.7.15.

r
(1 − r)2 = r ·

∑
n≥0

(
n + 1

1

)
· rn by item (1), with K = 1

=
∑
n≥0

(n + 1) · rn+1 =
∑
n≥1

n · rn.

4 The trick is to turn the multiple sums into a single ‘leading’ one, in:∑
n1, ..., nm≥0

(
K +

∑
i ni

K, n1, . . . , nm

)
·
∏

i
rni

i

=
∑
n≥0

∑
n1, ..., nm,

∑
i ni=n

(
K + n

K, n1, . . . , nm

)
·
∏

i
rni

i

=
∑
n≥0

∑
n1, ..., nm,

∑
i ni=n

(
K + n

K

)
·

(
n

n1, . . . , nm

)
·
∏

i
rni

i

=
∑
n≥0

(
K + n

K

)
·

∑
n1, ..., nm,

∑
i ni=n

(
n

n1, . . . , nm

)
·
∏

i
rni

i

(1.39)
=

∑
n≥0

(
K + n

K

)
·
(∑

i ri
)n

=
1

(1 −
∑

i ri)K+1 , by item (1).

Exercises

1.7.1 Consider the function f : {a, b, c} → {0, 1} given by f (a) = f (b) = 1
and f (c) = 0.

1 Take the natural multiset φ = 1|a⟩ + 3|b⟩ + 1|c⟩ ∈ N({a, b, c}) and
compute consecutively:

• (φ )
• N( f )(φ)
• (N( f )(φ) ).
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Conclude that (φ ) , (N( f )(φ) ), in general.
2 Now take ψ = 2|0⟩ + 3|1⟩ ∈ N({0, 1}).

• Compute (ψ ).
• Show that there are four multisets φ1, φ2, φ3, φ4 ∈ N({a, b, c})

withM( f )(φi) = ψ, for each i.
• Check that (ψ ) , (φ1 ) + (φ2 ) + (φ3 ) + (φ4 ).

What is the general formulation now?

1.7.2 Check that:

1 the size map ∥ − ∥ : M(X)→ R≥0 is a homomorphism of monoids,
preserving rescaling — and thus a homomorphism of cones, see
Exercise 1.6.13;

2 ∥M( f )(φ)∥ = ∥φ∥.

1.7.3 Show that for natural multisets φ, ψ ∈ N(X),

φ ≤ ψ ⇐⇒ ∃φ′ ∈ N(X). φ + φ′ = ψ.

1.7.4 Let Ψ ∈ N(N(X)) be given with ψ = flat(Ψ). Show that for φ ∈
supp(Ψ) one has φ ≤ ψ and flat

(
Ψ − 1|φ⟩

)
= ψ − φ.

1.7.5 Let φ be a natural multiset.

1 Show that: ∑
x∈supp(φ)

φ

(φ − 1| x⟩)
= ∥φ∥.

2 Derive the recurrence relation (1.38) from this equation.

1.7.6 Prove the multiset formulation (1.40) of the Multinomial Theorem,
by induction on K.

1.7.7 Let K ≥ 0 and let set X have n ≥ 1 elements. Prove that:∑
φ∈N[K](X)

(φ ) = nK .

This generalises the well known sum-formula for binomial coeffi-
cients:

∑
0≤k≤K

(
K
k

)
= 2K , for n = 2.

Hint: Use n = 1 + · · · + 1 in (1.40).
1.7.8 Fix N ≥ 0 and consider the obvious addition function sumN : NN →

N given by sumN(k1, . . . , kN) =
∑

i ki.

1 Use the previous exercise to show that for each m ∈ N,∣∣∣ (sumN
)−1(m)

∣∣∣ = Nm.
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2 Now restrict addition to non-negative numbers N>0, for which we
use the ad hoc notation sum∗N :

(
N>0)N → N>0. Show now that for

m ≥ N, ∣∣∣ (sum∗N
)−1(m)

∣∣∣ = (
m − 1
N − 1

)
.

1.7.9 Let φ be a natural multiset. Show that:

1 (φ ) = 1⇐⇒ supp(φ) is a singleton;
2 (φ ) = ∥φ∥! ⇐⇒ ∀x ∈ supp(φ). φ(x) = 1 ⇐⇒ φ consists of single-

tons.

1.7.10 Show that ∥acc(ℓ)∥ = ∥ℓ∥, using the length ∥ℓ∥ of a list ℓ from Exer-
cise 1.4.4.

1.7.11 Consider the K-ary accumulator function (1.36), for K > 0. Check
that acc is invariant under transposition, in the sense that for each
permutation π of the positions {1, . . . ,K} one has:

acc
(
x1, . . . , xK

)
= acc

(
xπ(1), . . . , xπ(K)

)
.

1.7.12 1 Check that the accumulator map acc : L(X) → N(X) is a homo-
morphism of monoids.

2 Check also that it arises via freeness of lists, as extension of the
function unitN : X → N(X), following Proposition 1.4.3:

X unitL //

unitN ))

L(X)

acc = unitN

��

N(X)

3 Prove that the accumulator map is natural: for an arbitrary function
f : X → Y the rectangle below commutes.

L(X)
L( f )
��

acc // N(X)
M( f )
��

L(Y) acc
// N(Y)

1.7.13 Prove that the following diagram commutes, where swap is the obvi-
ous map, comparable to transposition of a matrix.(

XK)L

swap �

��

acc[K]L
// N[K](X)L +

''

N[L·K](X)(
XL)K acc[L]K

// N[L](X)K
+

77
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Hint: Use, from the previous exercise, that accumulation is a homor-
phism of monoids.

1.7.14 Let n ≥ 1 and r ∈ (0, 1). Show that:∑
k≥n

(
k−1
n−1

)
· rn · (1 − r)k−n = 1.

1.7.15 Elaborate the details of the following two (alternative) proofs of the
equation in Theorem 1.7.4 (3).

1 Use the derivate d
d r on both sides of Theorem 1.7.4 (2).

2 Write s B
∑

n≥1 n · rn and exploit the following recursive equation.

s = r + 2r2 + 3r3 + 4r4 + · · ·

= r + (1 + 1)r2 + (1 + 2)r3 + (1 + 3)r4 + · · ·

=
(
r + r2 + r3 + r4 + · · ·

)
+ r ·

(
r + 2r2 + 3r3 + · · ·

)
=

r
1 − r

+ r · s, by Theorem 1.7.4 (2).

1.7.16 In the proof of Theorem 1.7.4 we have used Taylor’s formula for
a single-variable function. For multi-variable functions we can use
multisets for a compact, ‘multi-index’ formulation. For an an n-ary
function f (x1, . . . , xn) and a natural multiset φ ∈ N({1, . . . , n}) write:

∂φf B
(
∂x1

)φ(1)
· · ·

(
∂xn

)φ(n) f .

Check that Taylor’s expansion formula (around 0 ∈ Rn) then be-
comes:

f (x⃗) =
∑

φ∈N({1,...,n})

(∂φ f )(0)
φ

· x⃗ φ.

1.8 Coefficients of multisets

Binomial coefficients
(

n
k

)
for numbers n ≥ k are a standard tool in many ar-

eas of (discrete) mathematics, see Section 1.2 for the definition and the most
basic properties. Here we extend binomial coefficients from numbers to natu-
ral multisets: we define

(
ψ
φ

)
for natural multisets ψ, φ with ψ ≥ φ. In the next

section we shall also look at the extension of the less familiar ‘multichoose’
coefficients

((
n
m

))
to multiset form

((
ψ
φ

))
. The coefficients

(
ψ
φ

)
and

((
ψ
φ

))
will play

an important role in (multivariate) hypergeometric and Pólya distributions.

Definition 1.8.1. Let X be an arbitrary set.
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1 For two natural multisets φ, ψ ∈ N(X) with φ ≤ ψ, the multiset binomial is
defined as:(

ψ

φ

)
B

ψ

φ · (ψ − φ)

=

∏
x ψ(x)!(∏

x φ(x)!
)
·
(∏

x(ψ(x) − φ(x)
)
!)
=

∏
x∈supp(ψ)

(
ψ(x)
φ(x)

)
.

(1.42)

2 For a multiset φ ∈ N(X) and a number n ≥ ∥φ∥ we define a ‘mixed number
& multiset’ binomial coefficient:(

n
φ

)
B

n!
φ · (n−∥φ∥)!

. (1.43)

The second coefficient
(

n
φ

)
will occur only occasionally — for instance in

Lemma 1.9.6 — but the first one
(
ψ
φ

)
with two multisets will play a central role.

Here is an illustration:(
3|R⟩ + 2|B⟩
2|R⟩ + 1|B⟩

)
=

3! · 2!(
2! · 1!

)
·
(
1! · 1!

) = 6 = 3 · 2 =
(
3
2

)
·

(
2
1

)
.

The following result is a generalisation of Vandermonde’s formula. We re-
formulate it for numbers B,G ∈ N and K ≤ B +G. It says:(

B +G
K

)
=

∑
b≤B, g≤G, b+g=K

(
B
b

)
·

(
G
g

)
. (1.44)

Intuitively: if you select K children out of B boys and G girls, the number of
options is given by the sum over the options for b ≤ B boys times the options
for g ≤ G girls, with b + g = K.

Lemma 1.8.2. Let ψ ∈ N(X) be a multiset of size L = ∥ψ∥, with a number
K ≤ L. Then: ∑

φ≤Kψ

(
ψ

φ

)
=

(
L
K

)
so that

∑
φ≤Kψ

(
ψ
φ

)
(

L
K

) = 1.

We recall that φ ≤K ψ means that φ ≤ ψ and ∥φ∥ = K.

These fractions adding up to one will form the probabilities of the so-called
hypergeometric distribution, see Subsection 2.6.1 and Section 3.4 later on.

Proof. We use induction on the number of elements in supp(ψ). We go through
some initial values explicitly. If the number of elements in supp(ψ) is 0, then
ψ = 0 and so L = 0 = K and φ ≤K ψ means φ = 0, so that the result holds.
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Similarly, if supp(ψ) is a singleton, say {x}, then L = ψ(x). For K ≤ L and
φ ≤K ψ we have φ = K| x⟩ as the sole draw. The result then obviously holds.

The binary case of the lemma, where supp(ψ) = {x, y}, corresponds the ordi-
nary form of Vandermonde’s formula (1.44). We briefly show how this equa-
tion (1.44) can be proven by induction on G ∈ N. When G = 0 both sides
amount to

(
B
K

)
so we quickly proceed to the induction step. The case K = 0 is

trivial, so we may assume K > 0.∑
b≤B, g≤G+1, b+g=K

(
B
b

)
·
(
G+1

g

)
=

(
B
K

)
·
(
G+1

0

)
+

(
B

K−1

)
·
(
G+1

1

)
+ · · · +

(
B

K−G

)
·
(
G+1

G

)
+

(
B

K−G−1

)
·
(
G+1
G+1

)
(1.1)
=

(
B
K

)
·
(
G
0

)
+

(
B

K−1

)
·
(
G
1

)
+

(
B

K−1

)
·
(
G
0

)
+ · · · +

(
B

K−G

)
·
(
G
G

)
+

(
B

K−G

)
·
(

G
G−1

)
+

(
B

K−G−1

)
·
(
G
G

)
=

∑
b≤B, g≤G, b+g=K

(
B
b

)
·
(
G
g

)
+

∑
b≤B, g≤G, b+g=K−1

(
B
b

)
·
(
G
g

)
(IH)
=

(
B+G

K

)
+

(
B+G
K−1

)
(1.1)
=

(
B+G+1

K

)
.

For the induction step, let supp(ψ) = {x1, . . . , xn, y}, for n ≥ 2. Writing
ℓ = ψ(y), L′ = L − ℓ and ψ′ = ψ − ℓ|y⟩ ∈ N[L′]

(
{x1, . . . , xn}

)
gives:∑

φ≤Kψ

(
ψ
φ

)
=

∑
φ≤Kψ

∏
x

(
ψ(x)
φ(x)

)
=

∑
n≤ℓ

∑
φ≤K−n ψ′

(
ℓ
n

)
·
∏

i

(
ψ′(xi)
φ(xi)

)
(IH)
=

∑
n≤ℓ,K−n≤L−ℓ

(
ℓ
n

)
·
(

L−ℓ
K−n

) (1.44)
=

(
L
K

)
.

The next result connects multinomial and binomial coefficients of multisets.

Lemma 1.8.3. Let ψ ∈ N[L](X) be a natural multiset and let K ≤ L = ∥ψ∥.

1 For φ ≤K ψ one has:

(φ ) · (ψ − φ )
(ψ )

=

(
ψ
φ

)
(

L
K

) .
2 Now:

(ψ ) =
∑
φ≤Kψ

(φ ) · (ψ − φ ).

The earlier equation (1.38) is a special case, for K = 1.
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Proof. 1 Because:

(φ ) · (ψ − φ )
(ψ )

=
K!
φ
·

(L − K)!
(ψ − φ)

·
ψ

L!

=
K! · (L − K)!

L!
·

ψ

φ · (ψ − φ)
=

(
ψ
φ

)
(

L
K

) .
2 By the previous item and Vandermonde’s formula from Lemma 1.8.2:

∑
φ≤Kψ

(φ ) · (ψ − φ ) = (ψ ) ·

∑
φ≤Kψ

(
ψ
φ

)
(

L
K

) = (ψ ) ·

(
L
K

)(
L
K

) = (ψ ).

1.8.1 Multichoose coefficents

We proceed with another counting challenge. Let X be a finite set, say with n
elements. How many elements does the set of multisets N[K](X) have? That
is, how many multisets of size K are there over n elements? This is sometimes
formulated informally as: how many ways are there to divide K balls over n
urns? It is the multiset-analogue of Exercise 1.5.6, where the number of subsets
of size K of an n-element set is identified as

(
n
K

)
. Below we show that the

answer for multisets is given by the multiset number or multichoose number((
n
K

))
, see e.g. [159]. We have introduce this multichoose number in Section 1.2

as
((

n
K

))
=

(
n+K−1

K

)
; here we extend it from numbers to multisets, in analogy

with the extension of (ordinary) binomials to multisets in Definition 1.7.1.

Definition 1.8.4. Let ψ, φ be natural multisets over the same set X, where ψ is
non-zero and supp(φ) ⊆ supp(ψ).((

ψ

φ

))
B

∏
x∈supp(ψ)

((
ψ(x)
φ(x)

))
=

∏
x∈supp(ψ)

(
ψ(x) + φ(x) − 1

φ(x)

)
. (1.45)

Consider the set N[3]({a, b, c}) of multisets of size 3 over {a, b, c}. It has((
3
3

))
=

(
5
3

)
= 4·5

2 = 10 elements, namely:

3|a⟩, 3|b⟩, 3|c⟩, 2|a⟩ + 1|b⟩, 2|a⟩ + 1|c⟩, 1|a⟩ + 2|b⟩,
2|b⟩ + 1|c⟩, 1|a⟩ + 2|c⟩, 1|b⟩ + 2|c⟩, 1|a⟩ + 1|b⟩ + 1|c⟩.

Below, Proposition 1.8.7 states in general that
((

n
K

))
is the number of multisets

of size K over a non-empty n-element set. We first need to obtain a multichoose
analogue of Vandermonde’s (binary) formula (1.44).
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Lemma 1.8.5. Fix numbers B ≥ 1 and G ≥ 1. For all K on has:((
B +G

K

))
=

∑
0≤k≤K

((
B
k

))
·

((
G

K − k

))
. (1.46)

In particular:

(
B + K

K

)
=

((
B + 1

K

))
=

∑
0≤k≤K

((
B
k

))
=

∑
0≤k≤K

((
B

K − k

))
. (1.47)

Proof. The second equation (1.47) easily follows from the first one by taking
G = 1 and using that

((
1
n

))
=

(
n
n

)
= 1.

We shall make frequent use of the following equation, whose proof is left to
the reader (in Exercise 1.8.11) below.

((
n

K + 1

))
+

((
n + 1

K

))
=

((
n + 1
K + 1

))
. (∗)

We shall prove the first equation (1.46) in the lemma by induction on B ≥1. In
both the base case B = 1 and the induction step we shall use induction on K.
We shall try to keep the structure clear by using nested bullets.

• We first prove Equation (1.46) for B = 1, by induction on K.

– When K = 0 both sides in (1.46) are equal to 1.

– Assume Equation (1.46) holds for K (and B = 1).

∑
0≤k≤K+1

((
1
k

))
·
((

G
(K+1)−k

))
=

∑
0≤k≤K+1

((
G

K−(k−1)

))
=

((
G

K+1

))
+

∑
0≤ℓ≤K

((
G

K−ℓ

))
(IH)
=

((
G

K+1

))
+

((
G+1

K

))
(∗)
=

((
G+1
K+1

))
.

• Now assume Equation (1.46) holds for B (for all G,K). In order to show that
it then also holds for B + 1 we use induction on K.

– When K = 0 both sides in (1.46) are equal to 1.
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– Now assume that Equation (1.46) holds for K, and for B. Then:

∑
0≤k≤K+1

((
B+1

k

))
·
((

G
(K+1)−k

))
=

((
G

K+1

))
+

∑
0≤k≤K

((
B+1
k+1

))
·
((

G
K−k

))
(∗)
=

((
G

K+1

))
+

∑
0≤k≤K

[ ((
B

k+1

))
+

((
B+1

k

)) ]
·
((

G
K−k

))
=

((
G

K+1

))
+

∑
0≤k≤K

((
B

k+1

))
·
((

G
K−k

))
+

∑
0≤k≤K

((
B+1

k

))
·
((

G
K−k

))
(IH, K)
=

∑
0≤k≤K+1

((
B
k

))
·
((

G
(K+1)−k

))
+

((
(B+1)+G

K

))
(IH, B)
=

((
B+G
K+1

))
+

((
(B+1)+G

K

))
(∗)
=

((
(B+1)+G

K+1

))
.

We now get the double-bracket analogue of Lemma 1.8.2.

Proposition 1.8.6. Let ψ be a non-empty natural multiset. Write X = supp(ψ)
and L = ∥ψ∥. Then, for each K ∈ N,

∑
φ∈N[K](X)

((
ψ

φ

))
=

((
L
K

))
so

∑
φ∈N[K](X)

((
ψ
φ

))
((

L
K

)) = 1.

The fractions in this equation will show up later in so-called Pólya distribu-
tions, see Subsection 2.6.2 and Section 3.5. These fractions capture the proba-
bility of drawing a multiset φ from an urn ψ when for each drawn ball an extra
ball is added to the urn (of the same colour).

Proof. We use induction on the number of elements in the support X of ψ,
like in the proof of Lemma 1.8.2. By assumption X cannot be empty, so the
induction starts when X is a singleton, say X = {x}. But then ψ(x) = ∥ψ∥ = L
and φ(x) = ∥φ∥ = K, so the result obviously holds.

Now let supp(ψ) = X ∪ {y} where y < X and X is not empty. Write:

L = ∥ψ∥ ℓ = ψ(y) > 0 ψ′ = ψ − ℓ|y⟩ L′ = L − ℓ > 0.
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By construction X = supp(ψ′) and L′ = ∥ψ′∥. Now:∑
φ∈N[K](X∪{y})

((
ψ

φ

))
(1.45)
=

∑
φ∈N[K](X∪{y})

∏
x∈X∪{y}

((
ψ(x)
φ(x)

))
=

∑
0≤k≤K

∑
φ∈N[K−k](X)

((
ψ(y)

k

))
·
∏
x∈X

((
ψ(x)
φ(x)

))
=

∑
0≤k≤K

((
ℓ

k

))
·

∑
φ∈N[K−k](X)

((
ψ

φ

))
(IH)
=

∑
0≤k≤K

((
ℓ

k

))
·

((
L′

K − k

))
(1.46)
=

((
ℓ + L′

K

))
=

((
L
K

))
.

We finally come to our multiset counting result. It is the multiset-analogue
of Exercise 1.5.6 for subsets, saying that

(
n
K

)
is the number of subsets of size K

of a set with n elements.

Proposition 1.8.7. Let X be a non-empty set with n ≥ 1 elements. The number
of natural multisets of size K over X is

((
n
K

))
, that is:

∣∣∣N[K](X)
∣∣∣ = ((

n
K

))
=

(
n + K − 1

K

)
.

Proof. The statement holds for K = 0 since there is precisely 1 =
(

n−1
0

)
=

((
n
0

))
multiset set of 0, namely the empty multiset 0. Hence we may assume K ≥ 1,
so that Lemma 1.8.5 can be used.

We proceed by induction on n ≥ 1. For n = 1 the statement holds since there
is only 1 =

(
K
K

)
=

((
1
K

))
multiset of size K over 1 = {0}, namely K|0⟩.

The induction step works as follows. Let the set X have n elements, say
X = {x1, . . . , xn} and let y < X. For a multiset φ ∈ N[K]

(
X ∪ {y}

)
there are

K+1 possible multiplicities φ(y). If φ(y) = k, then the number possibilities for
φ(x1), . . . , φ(xn) is the number of multisets in N[K−k](X). Thus:∣∣∣N[K]

(
X ∪ {y}

) ∣∣∣ = ∑
0≤k≤K

∣∣∣N[K−k](X)
∣∣∣

(IH)
=

∑
0≤k≤K

((
n

K − k

))
=

((
n + 1

K

))
, by Lemma 1.8.5.

There is also a visual proof of this result, described in terms of stars and bars,
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see e.g. [52, II, proof of (5.2)], where multiplicities of multisets are described
in terms of ‘occupancy numbers’.

An associated question is: given a fixed element a in an n-element set X,
what is the sum of all multiplicities φ(a), for multisets φ over X with size K?

Lemma 1.8.8. For an element a ∈ X, where X has n ≥ 1 elements,∑
φ∈N[K](X)

φ(a) =
K
n
·

((
n
K

))
.

Proof. When we sum over a we get by Proposition 1.8.7:∑
a∈X

∑
φ∈N[K](X)

φ(a) =
∑

φ∈N[K](X)

∑
a∈X

φ(a) =
∑

φ∈N[K](X)

K = K ·
((

n
K

))
.

Since a ∈ X is arbitrary, the outcome should be the same for a different b ∈ X.
Hence we have to divide by n, giving the equation in the lemma.

Exercises

1.8.1 Generalise the familiar equation
∑

0≤k≤K

(
K
k

)
= 2K to:∑

φ≤ψ

(
ψ

φ

)
= 2∥ψ∥.

1.8.2 Let X be a finite set with n ≥ 1 elements and let K ≥ n. Prove:∣∣∣∣ {φ ∈ N[K](X)
∣∣∣ φ has full support

} ∣∣∣∣ = ((
n

K−n

))
.

1.8.3 Convince yourself that the following composite

N[K](X)L acc // N[L]
(
N[K](X)

) flat // N[L·K](X)

is the L-fold sum of multisets.
1.8.4 In analogy with the powerset operator, with typeP : P(X)→ P

(
P(X)

)
,

a powerbag operator PB : N(X) → N
(
N(X)

)
is introduced in [124]

(see also [39]). It can be defined as:

PB(ψ) B
∑
φ≤ψ

(
ψ

φ

) ∣∣∣φ〉
.

1 Take X = {a, b} and show that:

PB
(
1|a⟩ + 3|b⟩

)
= 1

∣∣∣0〉
+ 1

∣∣∣1|a⟩〉 + 3
∣∣∣1|b⟩〉 + 3

∣∣∣1|a⟩ + 1|b⟩
〉
+ 3

∣∣∣2|b⟩〉
+ 3

∣∣∣1|a⟩ + 2|b⟩
〉
+ 1

∣∣∣3|b⟩〉 + 1
∣∣∣1|a⟩ + 3|b⟩

〉
.
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2 Check that one can compute the powerbag of ψ as follows. Take
a list of elements that accumulate to ψ, such as [a, b, b, b] in the
previous item. Take the accumulation of all subsequences.

1.8.5 For N ≥ 2 many natural multisets φ1, . . . , φN ∈ N(X), with ψ B∑
i φi, define a multinomial coefficient of multisets as:(

ψ

φ1, . . . , φN

)
B

ψ

φ1 · . . . · φN
.

1 Check that for N ≥ 3, in analogy with Exercise 1.2.3,(
ψ

φ1, . . . , φN

)
=

(
ψ

φ1

)
·

(
ψ − φ1

φ2, . . . , φN

)
2 For K1, . . . ,KN ∈ N write K =

∑
i Ki and assume that ψ ∈ N[K](X)

is given. Show that:∑
φ1≤K1ψ, ..., φN≤KN ψ,∑

i φi=ψ

(
ψ

φ1, . . . , φN

)
=

(
K

K1, . . . ,KN

)
.

1.8.6 Let φ ∈ N[K](X) and ψ ∈ N[L](X) be given.

1 Prove that:

(φ + ψ ) =

(
K+L

K

)(
φ+ψ
φ

) · (φ ) · (ψ ).

2 Now assume that φ, ψ have disjoint supports, that is, supp(φ) ∩
supp(ψ) = ∅. Show that now:

(φ + ψ ) =
(
K+L

K

)
· (φ ) · (ψ ),

1.8.7 Let φ, ψ be natural multiset on the same finite set X, where ψ ≥ 1.

1 Show that one has:((
ψ

φ

))
=

(
ψ + φ − 1

φ

)
=

(ψ + φ − 1)
φ · (ψ − 1)

.

2 Conclude, analogously to Lemma 1.8.3 (1), that:

(φ ) · (ψ − 1 )
(ψ + φ − 1 )

=

((
ψ
φ

))
((

L
K

)) .
1.8.8 Let X be a non-empty finite set, say with N = |X | > 0 elements.
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1 Let ψ ∈ N[L](X) be a fixed multiset of size L. Use Proposition 1.8.6
to prove, for arbitrary K ∈ N,∑

φ∈N[K](X)

(
ψ + φ

φ

)
=

((
L + N

K

))
.

2 Now let L ≥ K and let φ ∈ N[K](X) be given. Use the previous
point to show that: ∑

υ∈N[L](X), φ≤Kυ

(
υ

φ

)
=

(
L + N − 1
K + N − 1

)
.

1.8.9 Let N ≥ 0 and M ≥ m ≥ 1 and be given. Use the multichoose Van-
dermonde Equation (1.47) to prove:∑

0≤i≤N

((
m
i

))
·

(
M − m + N − i

N − i

)
=

(
N + M

N

)
.

1.8.10 Let n ≥ 1 and m ≥ 0.

1 Show that: ((
n + 1
m + 1

))
=

((
n + 1

m

))
+

((
n

m + 1

))
.

2 Generalise this to:((
n + k
m + k

))
=

∑
0≤i≤k

(
k
i

)
·

((
n + i

m + k − i

))
.

1.8.11 Prove the following properties.

1
((

n−k
m−(k+1)

))
=

((
m−k

n−(k+1)

))
2

((
n
m

))
+

((
m
n

))
=

(
n+m

n

)
3 m ·

((
n
m

))
= n ·

((
n+1
m−1

))
.

4 n ·
((

n+1
m

))
= (n+m) ·

((
n
m

))
= (m+1) ·

((
n

m+1

))
.

1.8.12 1 Show that for numbers m ≤ n − 1,

n ·
(
n−1

m

)
= (m+1) ·

(
n

m+1

)
= (n−m) ·

(
n
m

)
.

2 Show similarly that for natural multisets φ, ψ with x ∈ supp(ψ) and
φ ≤ ψ − 1| x⟩,

ψ(x) ·
(
ψ−1| x⟩

φ

)
= (φ(x)+1) ·

(
ψ

φ+1| x⟩

)
= (ψ(x)−φ(x)) ·

(
ψ

φ

)
.
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3 For x ∈ supp(φ) ⊆ supp(ψ),

φ(x) ·
((
ψ

φ

))
= ψ(x) ·

((
ψ+1| x⟩
φ−1| x⟩

))
.

4 For supp(φ) ⊆ supp(ψ) and x ∈ supp(ψ),

ψ(x) ·
((
ψ+1| x⟩

φ

))
= (φ(x)+ψ(x)) ·

((
ψ

φ

))
= (φ(x)+1) ·

((
ψ

φ+1| x⟩

))
.

1.8.13 Let n ≥ 1 and m ≥ 1.

1 Show that: ∑
j<m

((
n
j

))
=

((
m
n

))
.

2 Deduce that for n ≥ 1 and k ≥ 0,∑
j≤k

((
n
j

))
=

(
n + k

n

)
.

3 Prove next, for n ≥ 1 and m ≥ 1,∑
i<n

((
m
i

))
+

∑
j<m

((
n
j

))
=

(
n + m

n

)
.

1.8.14 1 Extend Exercise 1.2.2 (1) to: for k ≥ 1,∑
0≤ j≤m

(
k + n + j

n

)
=

((
k + m + 1

n + 1

))
−

((
k

n + 1

))
.

Hint: One can use induction on m.
2 Show that one also has:∑

0≤i≤n

((
k
i

))
·

(
m + 1 + n − i

m

)
=

((
k + m + 1

n + 1

))
−

((
k

n + 1

))
.

Hint: Use the multichoose version (1.46) of Vandermonde’s for-
mula.

1.8.15 Check that Theorem 1.7.4 (1) can be reformulated as: for a real num-
ber x ∈ (0, 1) and K ≥ 1,∑

n≥0

((
K
n

))
· xn =

1
(1 − x)K

1.8.16 Let s ∈ [0, 1] and n,m ≥ 1.
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1 Prove first the following auxiliary result.∑
j<m

((
n+1

j

))
· s j =

1
(1− s)

·

∑
j<m

((
n
j

))
· s j −

((
n+1
m−1

))
· sm

 .
2 Take r = 1 − s so that r + s = 1 and prove:

rn ·
∑
j<m

((
n
j

))
· s j + sm ·

∑
i<n

((
m
i

))
· ri = 1.

3 Show also that:∑
i≥0

((
n

m + i

))
· si +

((
m

n + i

))
· ri =

1
rn · sm .

1.9 Multiset partitions and the triangular prism

So far we have seen lists, subsets, set partitions and multisets with various maps
between them. In this section we add one more collection type, namely multiset
partitions over a number K, written as MP(K). The following triangular prims
then gives an overview.

N[K](X) mc //

supp
��

MP(K)

size

��

XK

acc
44

mat //

supp $$

SP(K)
sc

55

size ##

P≤[K](X) size // (K]

(1.48)

We have already seen the triangle on the left — but not for a fixed size K —
namely in Diagram (1.34). The front rectangle appeared in Diagram (1.22).
The parts of the prism involving the set MP(K) of ‘multiset partitions’ is new
and will be discussed below.

This set MP(K) contains special multisets over the positive natural numbers
with sum equal to K. They will be called multiset partitions. The operations
of multiplicity count mc and size count sc in the above prism produce such
multiset partitions, see [84, 92, 83] for further information.

Definition 1.9.1. For a positive number K ∈ N>0 we write:

MP(K) B
{
α ∈ N(N>0)

∣∣∣ sum(α) = K
}
,

where sum(α) B
∑

n α(n) · n.
For α ∈ MP(K) we write size(α) = ∥α∥ =

∑
n α(n) for its size, as ordinary
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multiset. Since size(α) ≤ sum(α), this size forms a function MP(K)→ (K], as
in the prism (1.48).

It is not hard to see that the support of a multiset partition α ∈ MP(K) is
contained in (K] = {1, . . . ,K}. For instance, the set MP(4) contains the five
multiset partitions:

4|1⟩ 2|1⟩ + 1|2⟩ 1|1⟩ + 1|3⟩ 2|2⟩ 1|4⟩.

These can be understood as the different ways to ‘break’ the value 4 into coins.
In Subsection 1.4.3 we have looked at lists of coins with a fixed sum. Clearly,
the order matters in such lists, see especially (1.11). Here we use multisets
of coins, where the order is irrelevant. When asked to break 4, people will
reply with, for instance: I can give you two of 1 and one of 2. This answer
corresponds to a multiset 2|1⟩+1|2⟩. People will typically not take the different
orders [1, 1, 2], [1, 2, 1] and [2, 1, 1] into account.

The sizes of the sets MP(K) of multiset partitions, for K = 1, 2, . . ., are given
by the partition numbers:∣∣∣MP(1)

∣∣∣ = 1
∣∣∣MP(2)

∣∣∣ = 2
∣∣∣MP(3)

∣∣∣ = 3
∣∣∣MP(4)

∣∣∣ = 5∣∣∣MP(5)
∣∣∣ = 7

∣∣∣MP(6)
∣∣∣ = 11

∣∣∣MP(7)
∣∣∣ = 15

∣∣∣MP(8)
∣∣∣ = 22 · · ·

No closed formula is known for these partition numbers 1, 2, 3, 5, 7, 11, 15,
22, 30, 42, 56, 77, 101, 135, 176, 231, 297, . . . see [6].

We turn to the maps labeled mc and sc in (1.48).

Definition 1.9.2. Fix a number K ≥ 1.

1 For a set X we define the multiplicity count function mc[K] : N[K](X) →
MP(K) on a multiset φ ∈ N[K](X) as:

mc[K]
(∑

i ni| xi ⟩
)
B

∑
i 1|ni ⟩ that is mc[K](φ) B

∑
x∈supp(φ)

1
∣∣∣∣ φ(x)

〉
.

In the first formulation it is assumed implicitly that ni > 0 for each i. To
be precise and explicit, the multiplicity count function mc counts non-zero
multiplicities.

2 The size count function sc[K] : SP(K)→ MP(K) is defined on a set partition
P ∈ SP(K) as:

sc[K](P) B
∑
B∈P

1
∣∣∣∣ |B |〉 .

It thus counts the sizes of blocks B in the set partition P.

The parameter K in multiplicity / size count expressions mc[K] and sc[K] is
dropped when it is clear from the context.
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For instance, for X = {a, b, c} and K = 10,

mc
(
2|a⟩ + 6|b⟩ + 2|c⟩

)
= 1|2⟩ + 1|6⟩ + 1|2⟩ = 2|2⟩ + 1|6⟩

mc
(
2|a⟩ + 3|b⟩ + 5|c⟩

)
= 1|2⟩ + 1|3⟩ + 1|5⟩.

In these cases the multiplicities of elements a, b, c are counted, resulting in
multiset partitions. By counting the sizes of blocks in set partitions we also get
multiset partitions:

sc
({
{1, 2}, {3, 4, 5, 6, 7, 8}, {9, 10}

})
= 1|2⟩ + 1|6⟩ + 1|2⟩ = 2|2⟩ + 1|6⟩

sc
({
{1, 10}, {2, 5, 9}, {3, 4, 6, 7, 8}

)
= 1|2⟩ + 1|3⟩ + 1|5⟩.

We collect some basic facts about size and multiplicity count.

Lemma 1.9.3.

1 The back-rectangle in (1.48) commutes: size ◦ mc = size ◦ supp;
2 The right-triangle in (1.48) commutes: size ◦ sc = size;
3 When |X | ≥ K, the function mc : N[K](X)→ MP(K) is surjective;

Now let φ ∈ N[K](X) a natural multiset of size K ≥ 1.

4 Multiplicity count is invariant under substitution: for each permutation π : X �
→

X,

mc
(
N(π)(φ)

)
= mc(φ).

5 For an arbitrary element x ∈ X,

mc
(
φ + 1| x⟩

)
= mc

(
φ
)
+ 1

∣∣∣φ(x)+1
〉
− 1

∣∣∣φ(x)
〉
.

6 Similarly, for x ∈ supp(φ),

mc
(
φ − 1| x⟩

)
=

 mc
(
φ
)
− 1

∣∣∣1〉
if φ(x) = 1

mc
(
φ
)
+ 1

∣∣∣φ(x)−1
〉
− 1

∣∣∣φ(x)
〉

otherwise.

7 φ =
∏

1≤n≤K

(
n!

)mc(φ)(n).

Proof. 1 For φ ∈ N[K](X),

(
size ◦ mc

)
(φ) = size

 ∑
x∈supp(φ)

1
∣∣∣φ(xi)

〉 = ∑
x∈supp(φ)

1

=
∣∣∣∣supp(φ)

∣∣∣∣
=

(
size ◦ supp

)
(φ).
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2 For a set partition P ∈ SP(K),

(
size ◦ sc

)
(P) = size

∑
B∈P

1
∣∣∣∣ |B |〉 = ∑

B∈P

1 =
∣∣∣P ∣∣∣ = size(P).

3 Let α =
∑

1≤k≤K nk |k ⟩ ∈ MP(K) be given. We can construct a multiset
φK ∈ N[K](X) with mc(φK) = α as follows. We do so by constructing con-
secutively multisets φ0, φ1, . . . , φK . We start with the empty multiset φ0 = 0.

For each number m with 1 ≤ m ≤ K we set φm = φm−1+m| x1 ⟩+· · ·m| xnm ⟩,
where x1, . . . , xnm are freshly chosen elements from X, not occurring in φm−1.
This guarantees that φm has nm many elements occurring m times. By con-
struction mc(φm) =

∑
1≤k≤m nk |k ⟩. In particular, mc(φK) =

∑
1≤k≤K nk |k ⟩ =

α. This construction uses ∥α∥ many elements from X. Since K = sum(α) =∑
m nm ·m ≥

∑
m nm = ∥α∥, the construction always works for a set X with at

least K elements.
4 Obvious, since permuting the elements of a multiset does not change the

multiplicities that it has.
5 Let k = φ(x). If we add another element x to the multiset φ, then the number

mc(φ)(k) of elements in φ occuring k times is decreased by one, and the
number mc(φ)(k + 1) of elements occurring k + 1 times is increased by one.

6 By a similar argument.
7 By induction on K ≥ 1. The statement clearly holds when K = 1. Next, by

the using item (5),∏
1≤m≤K+1

(
k!

)mc(φ+1| x ⟩)(m)
=

(
(K+1)!

)mc(φ+1| x ⟩)(K+1)
·

∏
1≤m≤K

(
k!

)mc(φ+1| x ⟩)(m)

=


(K+1)! if φ = K| x⟩∏
1≤m≤K

(
k!

)mc(φ)(m)
·

(φ(x)+1)!
φ(x)!

otherwise

(IH)
=

(φ + 1| x⟩) if φ = K| x⟩

φ · (φ(x)+1) otherwise

= (φ + 1| x⟩) .

The last item in the above lemma gives rise to a separate ‘open’ factorial
for multiset partitions.

Definition 1.9.4. Let α ∈ MP(K) be a multiset partition with sum K.

1 The factorial α p ∈ N is defined as:

α p B
∏

1≤n≤K

(
n!

)α(n)
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2 Along the same lines we put:

(α)p B
sum(α)!
α p

=
K!
α p

.

These definitions make sense in the light of the following result.

Lemma 1.9.5. For φ ∈ N[K](X),

φ = mc(φ) p and (φ ) = (mc(φ))p . (1.49)

Proof. By Lemma 1.9.3 (7).

Several times in this chapter we have looked at sizes of inverse images. We
shall also do so for multiplicity count and size count.

Lemma 1.9.6. Let X be a finite set with N = |X | elements and let α ∈ MP(K)
be a multiset partition with ∥α∥ ≤ N. Then:∣∣∣∣mc[K]−1(α)

∣∣∣∣ = N!
α · (N−∥α∥)!

(1.43)
=

(
N
α

)
.

Proof. Let α =
∑

1≤i≤K ni| i⟩ ∈ MP(K). If φ ∈ N[K](X) satisfies mc(φ) = α,
then φ must have ni elements of X occurring i times, for each i. The number of
choices for these elements is:(

N
n1

)
·

(
N−n1

n2

)
· . . . ·

(
N−n1− · · · −nK−1

nK

)
=

N! · (N−n1)! · . . . · (N−n1− · · · −nK−1)!
n1! · (N−n1)! · n2! · (N−n1−n2)! · . . . · nK! · (N−n1− · · · −nK)!

=
N!

n1! · n2! · . . . · nK! · (N−n1− · · · −nK)!

=
N!

α · (N−∥α∥)!
.

We turn to size count, from set partitions to multiset partitions.

Lemma 1.9.7. For α ∈ MP(K),∣∣∣∣sc[K]−1(α)
∣∣∣∣ = (α)p

α
=

K!
α p · α

.

Proof. Let α =
∑

i ni| i⟩ with
∑

i ni · i = K. We need to find the number of set
partitions of the set (K] = {1, . . . ,K} whose size count equals α. We switch to
lists ℓ of length K over (K] with supp(ℓ) = (K]. There are K! many such lists.
Given such a list ℓ there are

∏
i ni! = α many ways to break up the list into

sublists, with ni-many subslists of length i. This gives K!
α

many set partitions.
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We still have to divide by α p because within each block of size i we have to
take the i! many permutations of the elements into account.

We include one more combinatorial result.

Lemma 1.9.8. Let X be a finite set with |X | ≥ K ≥ 1. Consider a multiset
φ ∈ N[K](X) and a set partition P ∈ SP(K) with,

acc(φ) = sc(P)
= α ∈ MP(K), say.

Then there are α many sequences x⃗ ∈ XK with acc(x⃗) = φ and mat(x⃗) = P,
that is: ∣∣∣∣ {x⃗ ∈ XK

∣∣∣ acc(x⃗) = φ and mat(x⃗) = P
} ∣∣∣∣ = α .

Proof. Let x⃗ ∈ XK be a candidate sequence with acc(x⃗) = φ and mat(x⃗) = P.
The multiset φ tells us that an element y ∈ supp(φ) must occur φ(y) many
times in x⃗. The set partition P tells where in x⃗ elements must be equal. Suppose
that there is only one element y ∈ supp(φ) with φ(y) = 3, so occurring three
times in x⃗; then we know precisely where to put y in the candidate sequence x⃗,
since there are precisely three equal elements in x⃗. More generally, if α(i) = n,
where α = mc(φ) = sc(P), then there are n elements occurring i-many times
in φ. There are then n! many ways to place these n elements in x⃗, namely at
the n subsequences of x⃗ with i-many equal elements. This works for each i, so
that in total there are

∏
i α(i)! = α many sequences x⃗ with acc(x⃗) = φ and

mat(x⃗) = P.

Exercises

1.9.1 1 Double-check that all subdiagrams of Diagram (1.48) commute.
2 Check in detail that starting from the list [b, a, b, c] gives the fol-

lowing outcomes.

1|a⟩ + 2|b⟩ + 1|c⟩ � mc //
A

supp
��

2|1⟩ + 1|2⟩O

size

��

[b, a, b, c]
)

acc
44

� mat //

�
supp ##

{
{1, 3}, {2}, {4}

}- sc

66

�
size

""
{a, b, c} � size // 3

1.9.2 Fix K ≥ 1.

1 Let ℓ ∈ XK be a sequence. Show that

supp(ℓ) = supp
(
acc(ℓ)

)
� mat(ℓ).
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2 Let P ∈ SP(K) be a set partition. Show that there is a sequence ℓ
with mat(ℓ) = P = supp(ℓ).

1.9.3 Let α ∈ MP(K) and β ∈ MP(L) be multiset partitions.

1 Write α + β ∈ N(N>0) for the pointwise sum of multisets, so that(
α + β)(i) = α(i) + β(i).

Check that this α + β is an element of MP
(
K+L

)
.

2 Calculate:
(
2|1⟩ + 1|2⟩ + 2|3⟩

)
+

(
2|2⟩ + 3|4⟩

)
.

3 Write α ⋆ β ∈ N(N>0) for
∑

i, j α(i) · β( j)
∣∣∣ i · j

〉
.

Show that α ⋆ β is in MP
(
K · L

)
.

4 Calculate:
(
2|1⟩ + 1|2⟩ + 2|3⟩

)
⋆

(
2|2⟩ + 3|4⟩

)
.

5 Check that + and ⋆ on multiset partitions are commutative.
6 Prove that multiplication ⋆ distributes over sum + in:

(α1 + α2) ⋆ β = (α1 ⋆ β) + (α2 ⋆ β).

1.9.4 Let natural multisets φ, ψ ∈ N(X) have disjoint supports: supp(φ) ∩
supp(ψ) = ∅. Show that then:

mc
(
φ + ψ

)
= mc(φ) +mc(ψ).

Give an example that demonstrates that the disjointness requirement
is necessary.

1.9.5 In Exercises 1.2.5 and 1.5.8 we have seen how Stirling numbers of the
first kind arise via sums over subsets and via sums over sub partitions.
This also works with multiset partitions:Kn

 = ∑
α∈MP(K), ∥α∥=n

K!
α · prod (α)

where prod (α) =
∏

i

iα(i)

=
∑

α∈MP(K), ∥α∥=n

∏
1≤i≤K

1
α(i)! · iα(i)−1 ,

Prove this equation.
1.9.6 Check that the binomial coefficient (1.43) satisfies the following for-

mula. ∑
α∈MP(K), ∥α∥≤n

(α)p ·

(
n
α

)
= nK for all K, n ∈ N>0.

Hint: Combine Exercise 1.7.7 with Lemmas 1.9.5 and 1.9.7.
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1.10 Channels

The previous sections covered the collection types of lists, subsets, and multi-
sets, with much emphasis on the similarities between them. In this section we
will exploit these similarities in order to introduce the concept of channel, in a
uniform approach, for all of these collection types at the same time. This will
illustrate how these data types are not only used for certain types of collections,
but also for certain types of computation. Much of the rest of this book builds
on the concept of a channel, especially for probabilistic computations, which
are introduced in the next chapter. The same general approach to channels that
will be described in this section will work for probability distributions.

Let T be one of the collection functors L, P, or M, respectively for list,
powerset and multiset. What we call a state of type T on Y is an element
ω ∈ T (Y), for some set Y; it collects a number of elements of Y in a particular
manner. In this section we abstract away from the particular type of collection.
A channel, or sometimes more explicitly, a T-channel, is a collection of states,
parameterised by a set. Thus, a channel is a function of the form c : X →
T (Y). Such a channel turns an element x ∈ X into a certain collection c(x) of
elements of Y . An ordinary function f : X → Y can be seen as a deterministic
computation, giving a single outcome f (x) ∈ Y for each input x ∈ X. A T -
channel, in contrast, is a computation of type T . For instance, for T = P, a
channel X → P(Y) is a non-deterministic computation; for T =M, a channel
X → M(Y) is a ‘weighted’ computation that can produce multiply occurring
elements.

When it is clear from the context what T is, we often write a channel using
functional notation, as c : X → Y , with a special arrow→ that carries a circle
on its shaft.

Definition 1.10.1. Let T ∈ {L,P,M}. We use that T is functorial and comes
with its own unit and flatten operations, as described in previous sections.

1 A T-channel from a set X to a set Y is a function of the form c : X → T (Y).
It will be written as c : X → Y , when T is clear from the context, and then
simply called a channel. The set X is called the domain and Y is called the
codomain of this channel.

2 For a state ω ∈ T (X) on the domain of a channel c : X → T (Y) we can form
a new state c =≪ω in T (Y), on the codomain. It is defined as:

c =≪ω B
(
flat ◦ T (c)

)
(ω) where T (X)

T (c)
// T (T (Y)) flat // T (Y).

This operation ω 7→ c =≪ω is called state tranformation, sometimes with ad-
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ditional clarification along the channel c. It may also be called push forward.
In functional programming it is commonly called bind1.

3 Let c : X → Y and d : Y → Z be two channels. Then we can compose them
and get a new channel d ◦· c : X → Z via:(

d ◦· c
)
(x) B d =≪c(x) so that d ◦· c = flat ◦ T (d) ◦ c.

Notice that we use special notation ◦· for composition of channels, different
from standard composition ◦ for ordinary functions.

We first look at some examples of state transformation.

Example 1.10.2. Take X = {a, b, c} and Y = {u, v}.

1 For T = L an example of a state ω ∈ L(X) is ω = [c, b, b, a]. An L-channel
f : X → L(Y) can for instance be of the form:

f (a) = [u, v] f (b) = [u, u] f (c) = [v, u, v].

State transformation f =≪ω amounts to ‘map list’ with f and then flattening.
It turns a list of lists into a list, as in:

f =≪ω = flat
(
L( f )(ω)

)
= flat

(
[ f (c), f (b), f (b), f (a)]

)
= flat

(
[[v, u, v], [u, u], [u, u], [u, v]]

)
= [v, u, v, u, u, u, u, u, v].

2 We consider the analogous example for T = P. We thus take as state σ =
{a, b, c} and as channel g : X → P(Y), now given by subsets:

g(a) = {u, v} g(b) = {u} g(c) = {u, v}.

Then:

g =≪σ = flat
(
P( f )(σ)

)
=

⋃{
g(a), g(b), g(c)

}
=

⋃{
{u, v}, {u}, {u, v}

}
= {u, v}.

1 Our bind notation c =≪ω differs from the one used in the functional programming language
Haskell; there one writes the state first, as in ω =≪c. For us, the channel c acts on the state ω
and is thus written before the argument. This is in line with standard notation f (x) in
mathematics, for a function f acting on an argument x. Later on, we shall use predicate
transformation c ≫= p along a channel, where we also write the channel first, since it acts on
the predicate p. Similarly, in categorical logic the corresponding pullback (or substitution) is
written as c∗(p) with the channel before the predicate. The operation =≪works forwardly, in the
direction of the channel, whereas ≫= works backwardly, against the direction of the channel.
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3 For multisets, a state inM(X) could be of the form τ = 3|a⟩ + 2|b⟩ + 5|c⟩
and a channel h : X →M(Y) could have:

h(a) = 10|u⟩ + 5|v⟩ h(b) = 1|u⟩ h(c) = 4|u⟩ + 1|v⟩.

We then get as state transformation:

h =≪τ = flat
(
M(h)(τ)

)
= flat

(
3
∣∣∣h(a)

〉
+ 2

∣∣∣h(b)
〉
+ 5

∣∣∣h(c)
〉)

= flat
(
3
∣∣∣10|u⟩ + 5|v⟩

〉
+ 2

∣∣∣1|u⟩〉 + 5
∣∣∣4|u⟩ + 1|v⟩

〉)
= 30|u⟩ + 15|v⟩ + 2|u⟩ + 20|u⟩ + 5|v⟩

= 52|u⟩ + 20|v⟩.

We shall mostly be using multiset — and probabilistic channels, as special
case — and so we explicitly describe state transformation =≪in these cases. So
let c : X → M(Y) be anM-channel. Transformation of a state ω on X can be
described as:

(c =≪ω)(y) =
∑
x∈X

ω(x) · c(x)(y). (1.50)

Equivalently, we can describe the transformed state c =≪ω as a formal sum:

c =≪ω =
∑
y∈Y

∑
x∈X

c(x)(y) · ω(x)

 ∣∣∣y〉
. (1.51)

We now prove some general properties about state transformation and about
composition of channels, demonstrating that they behave well. The proofs are
based on the abstract description in Definition 1.10.1 and use the ‘monad’
properties of flatten and unit.

Lemma 1.10.3.

1 Channel composition ◦· has an identity channel, namely unit : Y → Y, so
that:

unit ◦· c = c and d ◦· unit = d,

for all channels c : X → Y and d : Y → Z. Another way to write the second
equation is: d =≪unit(y) = d(y).

2 Channel composition ◦· is associative:

e ◦· (d ◦· c) = (e ◦· d) ◦· c,

for all channels c : X → Y, d : Y → Z and e : Z → W.
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3 State tranformation via a composite channel is the same as two consecutive
transformations: (

d ◦· c
)

=≪ω = d =≪
(
c =≪ω

)
.

4 Each ordinary function f : Y → Z gives rise to a ‘trivial’ or ‘deterministic’
channel ‹ f › B unit ◦ f : Y → Z. This construction ‹−› satisfies:

‹ f › =≪ω = T ( f )(ω),

where T is the type of channel involved. Moreover:

‹g› ◦· ‹ f › = ‹g ◦ f › ‹ f › ◦· c = T ( f ) ◦ c d ◦· ‹ f › = d ◦ f ,

for all functions g : Z → W and channels c : X → Y and d : Y → W.

Proof. We can give generic proofs, without knowing the type T ∈ {L,P,M}
of the channel, by using uniform results in Lemma 1.4.5, 1.5.2, and 1.6.4 about
unit and flatten. In the calculations below we carefully distinguish channel
composition ◦· and ordinary function composition ◦.

1 Both equations follow from the flat-unit law. By Definition 1.10.1 (3):

unit ◦· c = flat ◦ T (unit) ◦ c = id ◦ c = c.

For the second equation we use naturality of unit in:

d ◦· unit = flat ◦ T (d) ◦ unit = flat ◦ unit ◦ d = id ◦ d = d.

2 The proof of associativity uses naturality and also the commutation of flatten
with itself (the ‘flat-flat law’), expressed as flat ◦ flat = flat ◦ T (flat).

e ◦· (d ◦· c) = flat ◦ T (e) ◦ (d ◦· c)
= flat ◦ T (e) ◦ flat ◦ T (d) ◦ c
= flat ◦ flat ◦ T (T (e)) ◦ T (d) ◦ c by naturality of flat
= flat ◦ T (flat) ◦ T (T (e)) ◦ T (d) ◦ c by the flat-flat law
= flat ◦ T

(
flat ◦ T (e) ◦ d

)
◦ c by functoriality of T

= flat ◦ T
(
e ◦· d

)
◦ c

= (e ◦· d) ◦· c
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3 Along the same lines:(
d ◦· c

)
=≪ω =

(
flat ◦ T (d ◦· c)

)
(ω)

=
(
flat ◦ T (flat ◦ T (d) ◦ c)

)
(ω)

=
(
flat ◦ T (flat) ◦ T (T (d)) ◦ T (c)

)
(ω) by functoriality of T

=
(
flat ◦ flat ◦ T (T (d)) ◦ T (c)

)
(ω) by the flat-flat law

=
(
flat ◦ T (d) ◦ flat ◦ T (c)

)
(ω) by naturality of flat

=
(
flat ◦ T (d)

)((
flat ◦ T (c)

)
(ω)

)
=

(
flat ◦ T (d)

)(
c =≪ω

)
= d =≪

(
c =≪ω

)
.

4 All these properties follow from elementary facts that we have seen before:

‹ f › =≪ω =
(
flat ◦ T (unit ◦ f )

)
(ω)

=
(
flat ◦ T (unit) ◦ T ( f )

)
(ω) by functoriality of T

= T ( f )(ω) by a flat-unit law
‹g› ◦· ‹ f › = flat ◦ T (unit ◦ g) ◦ unit ◦ f

= flat ◦ unit ◦ (unit ◦ g) ◦ f by naturality of unit
= unit ◦ g ◦ f by a flat-unit law
= ‹g ◦ f ›

‹ f › ◦· c = flat ◦ T (unit ◦ f ) ◦ c
= flat ◦ T (unit) ◦ T ( f ) ◦ c by functoriality of T
= T ( f ) ◦ c by a flat-unit law

d ◦· ‹ f › = flat ◦ T (d) ◦ unit ◦ f
= flat ◦ unit ◦ d ◦ f by naturality of unit
= d ◦ f by a flat-unit law.

In the sequel we often omit writing the brackets ‹−› that turn an ordinary
function f : X → Y into a channel ‹ f ›. For instance, in a state transformation
f =≪ω, it is clear that we use f as a channel, so that the expression should be
read as ‹ f › =≪ω.

Exercises

1.10.1 For a function f : X → Y define an inverse image (or preimage) P-
channel f −1 : Y → X by:

f −1(y) B {x ∈ X | f (x) = y}.

Prove that:

(g ◦ f )−1 = f −1 ◦· g−1 and id−1 = unit .
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1.10.2 Notice that a state of type X can be identified with a channel 1→ T (Y)
with singleton set 1 = {0} as domain. Check that under this identifica-
tion, state transformation c =≪ω corresponds to channel composition
c ◦· ω.

1.10.3 Let f : X → Y be a channel.

1 Prove that if f is a Pfin-channel, then the state transformation func-
tion f =≪ (−) : Pfin(X) → Pfin(Y) can also be defined via freeness,
namely as the unique function f in Proposition 1.5.4.

2 Similarly, show that f =≪ (−) = f when f is an M-channel, as in
Exercise 1.6.13.

1.10.4 1 Describe how (non-deterministic) powerset channels can be reversed,
via a bijective correspondence between functions:

X −→ P(Y)
===========
Y −→ P(X)

(A description of this situation in terms of ‘daggers’ will appear in
Example 7.9.1.)

2 Show that for finite sets X,Y there is a similar correspondence for
multiset channels.

1.11 The role of category theory

The previous sections have highlighted several structural properties of, and
similarities between, the collection types list, subset, multiset. Later on we can
add probability distributions as such a collection type. By now readers may
ask: what is the underlying structure? Surely someone must have axiomatised
what makes all of this work!

Indeed, this axiomatisation is part of the field of category theory. It provides
a foundational language for mathematics, which was first formulated in the
1950s by Saunders Mac Lane and Samuel Eilenberg (see the first overview
book [129]). Category theory focuses on the structural aspects of mathemat-
ics and shows that many mathematical constructions have the same underlying
structure. It emphasises similarities between different areas (see e.g. [130]).
Category theory has become very useful in (theoretical) computer science too,
since it involves a clear distinction between specification and implementation,
see books like [7, 11, 123, 149]. We refer to those sources for more informa-
tion.

The role of category theory in capturing the mathematical essentials and
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estabilishing connections also applies to probability theory. William Lawvere,
another founding father of the area, first worked in this direction. Lawvere him-
self published little on this approach to probability theory, but his ideas can be
found in e.g. the early notes [122]. This line of work was picked up, extended,
and published by his PhD student Michèle Giry. Her name continues in the
‘Giry monad’ G of continuous probability distributions, see Section ??. The
precise source of the distribution monadD for discrete probability theory, that
will be introduced in Section 2.1 in the next chapter, is less clear, but it can be
regarded as the discrete version of G. Probabilistic automata have been stud-
ied in categorical terms as coalgebras, see Chapter ??, and e.g. [167] and [74]
for general background information on the area of coalgebra. There is a recent
surge in interest in more foundational, semantically oriented studies in prob-
ability theory, through the rise of probabilistic programming languages (see
e.g. [64, 168]), probabilistic Bayesian reasoning [29, 54, 32, 98], and category
theory [57]. Probabilistic methods have received wider attention, for instance,
via the current interest in data analytics (see the essay [5]), in quantum proba-
bility [139, 28], and in cognition theory [70, 166].

Readers who know category theory will have recognised its implicit use in
earlier sections. For readers who are not familiar (yet) with category theory,
some basic concepts will be explained informally in this section. This is in no
way a serious introduction to the area, for instance because the categorical no-
tion of an adjunction is not covered. The remainder of this book will continue
to make implicit use of category theory, but will make this usage increasingly
explicit. Hence it is useful to know the basic concepts of category, functor, nat-
ural transformation, and monad. Category theory is sometimes seen as a dif-
ficult area to get into. But our experience is that it is easiest to learn category
theory by recognising its concepts in constructions that one already knows.
That is why this chapter started with concrete descriptions of various collec-
tions and their use in channels. For more solid expositions of category theory
we refer to the sources listed above.

1.11.1 Categories

A category is a mathematical structure given by a collection of ‘objects’ with
‘morphisms’ between them. The requirements are that these morphisms are
closed under (associative) composition and that there is an identity morphism
on each object. Morphisms are also called ‘maps’ or ‘arrows’, and are written
as f : X → Y , where X,Y are objects and f is a homomorphism from X to Y . It
is tempting to think of morphisms in a category as actual functions, but there
are plenty of examples where this is not the case.
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A category is like an abstract universe of discourse, giving a setting in which
one is working, with properties of that setting depending on the category at
hand. We shall give a number of examples.

1 There is the category Sets, whose objects are sets and whose morphisms are
ordinary functions between them. This is a standard example.

2 One can also restrict to finite sets as objects, in the category FinSets, with
functions between them. This category is more restrictive, since for instance
it contains objects n = {0, 1, . . . , n−1} for each n ∈ N, but not N itself. Also,
in Sets one can take arbitrary products

∏
i∈I Xi of objects Xi, over arbitrary

index sets I, whereas in FinSets only finite products exist. Hence FinSets is
a more restrictive world.

3 Monoids and monoid maps have been mentioned in Definition 1.4.1. They
can be organised in a category Mon, whose objects are monoids, and whose
homomorphisms are monoid maps. We now have to check that monoid maps
are closed under composition and that identity functions are monoid maps;
this is easy. Many mathematical structures can be organised into categories
in this way, where the morphisms preserve the relevant structure. For in-
stance, one can form a category PoSets, with partially ordered sets (posets)
as objects, and monotone functions between them as morphisms (also closed
under composition, with identity).

4 For T ∈ {L,P,M} we can form the category Chan(T ). Its objects are arbi-
trary sets X, but its morphisms X to Y are T -channels, X → T (Y), written as
X → Y . We have already seen that channels are closed under composition ◦·
and have unit as identity, see Lemma 1.10.3. We can now say that Chan(T )
is a category.

These categories of channels form good examples of the idea that a cate-
gory forms a universe of discourse. For instance, in Chan(P) we are in the
world of non-deterministic computation, whereas Chan(M) is the world of
weighted computation in which resources are counted.

We will encounter several more examples of categories later on in the book.
Occasionally, the following construction will be used. Given a category C, a
new ‘opposite’ category Cop can be formed. It has the same objects as C, but
its morphisms are reversed. Thus f : Y → X in Cop means f : X → Y in C.

Also, given two categories C, D one can form a product category C ×D. Its
objects are pairs (X, A) with X an object in C and A an object in D. Similarly,
an arrow (X, A)→ (Y, B) in C×D is given by a pair ( f , g) of arrows f : X → Y
in C and g : A→ B in D.
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1.11.2 Functors

Category theorists like abstraction, hence the question arises: if categories are
so important, then why not organise them as objects themselves in a superlarge
category Cat, with morphisms between them preserving the relevant structure?
The latter morphisms between categories are called ‘functors’. More precisely,
given categories C and D, a functor F : C → D between them consists of two
mappings, both written F, sending an object X in C to an object F(X) in D,
and a morphism f : X → Y in C to a morphism F( f ) : F(X) → F(Y) in D.
This mapping F should preserve composition and identities, as in: F(g ◦ f ) =
F(g) ◦ F( f ) and F(id X) = id F(X).

Earlier we have already called some operations ‘functorial’ for the fact that
they preserve composition and identities. We can now be a bit more precise.

1 Each T ∈ {L,P,Pfin ,P∗,P≤[K],M,M∗,N ,N∗,N[K]} is a functor T : Sets→
Sets. This has been described in the beginning of each of the sections 1.4 –
1.6.

2 Taking lists is also a functor L : Sets→Mon. This is in essence the content
of Lemma 1.4.2. One can also view P,Pfin andM as functors Sets→Mon,
see Lemmas 1.5.1 and 1.6.3. Moreover, one can describe P,Pfin as a functor
Sets → PoSets, by considering each set of subsets P(X) and Pfin(X) with
its subset relation ⊆ as partial order. In order to verify this claim one has
to check that P( f ) : P(X) → P(Y) is a morphism of posets, that is, forms a
monotone function. But that is easy.

3 There is also a functor J : Sets→ Chan(T ), for each T . It is the identity on
sets / objects: J(X) B X. But it sends a functon f : X → Y to the channel
J( f ) B ‹ f › = unit ◦ f : X → Y . We have seen, in Lemma 1.10.3 (4), that
J(g ◦ f ) = J(g) ◦ J( f ) and that J(id ) = id , where the latter identity id is
unit in the category Chan(T ). This functor J shows how to embed the world
of ordinary computations (functions) into the world of compuations of type
T (channels).

4 Taking the product of two sets can be described as a functor × : Sets×Sets→
Sets. Its action on morphisms was already described at the end of Subsec-
tion 1.3.1, see also Exercise 1.3.3.

5 If we have functors Fi : Ci → Di, for i = 1, 2, then we also have a product
functor F1 × F2 : C1 × C2 → D1 × D2 between product categories, simply
by (F1 × F2)(X1, X2) = (F1(X1), F2(X2)), and similarly for morphisms.
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1.11.3 Natural transformations

Let us move one further step up the abstraction ladder and look at morphisms
between functors. These are called natural transformations. We have already
seen examples of those as well. Given two functors F,G : C → D, a natural
transformation α from F to G is a collection of maps αX : F(X) → G(X) in D,
indexed by objects X in C. Naturality means that α works in the same way on
all objects and is expressed as follows: for each morphism f : X → Y in C, the
rectangle

F(X)
F( f )
��

αX // G(X)
G( f )
��

F(Y)
αY
// G(Y)

in D commutes.
Such a natural transformation is often denoted by a double arrow α : F ⇒ G.

We briefly review some of the examples of natural transformations that we
have seen.

1 The support maps supp : L ⇒ Pfin , supp : M ⇒ Pfin for lists and multisets
are natural transformations, see the overview Diagram 1.34. Also accumu-
lation forms a natural transformation acc : L ⇒ N .

2 For each T ∈ {L,P,M} we have described maps unit : X → T (X) and
flat : T (T (X)) → T (X) and have seen naturality results about them. We can
now state more precisely that they are natural transformations unit : id ⇒
T and flat : (T ◦ T ) ⇒ T . Here we have used id as the identity functor
Sets → Sets, and T ◦ T as the composite of T with itself, also as a functor
Sets→ Sets.

1.11.4 Monads

A monad on a category C is a functor T : C → C that comes with two natural
transformations unit : id ⇒ T and flat : (T ◦ T )⇒ T satisfying:

flat ◦ unit = id = flat ◦ T (unit)
flat ◦ flat = flat ◦ T (flat).

(1.52)

All the collection functors L,P,P∗,Pfin ,M,M∗,N ,N∗ that we have seen so
far are monads, see e.g., Lemma 1.4.5, 1.5.2, or 1.6.4. For each monad T we
can form a category Chan(T ) of T -channels, that capture computations of type
T , see Subsection 1.11.1. In category theory this is called the Kleisli category
of T . Composition in this category Chan(T ) is called Kleisli composition. In
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this book it is written as ◦· , where the context should make clear what the monad
T at hand is.

Monads have become popular in functional programming [136] as mecha-
nisms for including special effects (e.g., for input-output, writing, side-effects,
continuations) into a functional programming language2. The structure of prob-
abilistic computation is also given by monads, namely by the discrete distribu-
tion monadsD,D∞ and by the continuous distribution monad G.

We thus associate the (Kleisli) category Chan(T ) of channels with a mo-
nad T . A second category is associated with a monad T , namely the category
EM(T ) of “Eilenberg-Moore” algebras. The objects of EM(T ) are algebras
α : T (X)→ X, satisfying α ◦ unit = id and α ◦ flat = α ◦ T (α). We have seen
algebras for the monads L, Pfin , andM in Propositions 1.4.6, 1.5.5, and 1.6.6.
They capture monoids, commutative idempotent monoids, and commutative
monoids respectively. A morphism in EM(T ) is a morphism of algebras, given
by a commuting rectangle, as described in these propositions. In general, alge-
bras of a monad capture algebraic structure in a uniform manner.

Here is an easy result that describes so-called writer monads.

Lemma 1.11.1. Let M = (M,+, 0) be an arbitrary monoid. The mapping X 7→
M × X forms a monad on the category Sets.

Proof. Let us write T (X) = M × X. For a function f : X → Y we define
T ( f ) : M × X → M × Y by T ( f )(m, x) = (m, f (x)). There is a unit map
unit : X → M × X, namely unit(x) = (0, x) and a flattening map flat : M ×
(M × X) → M × X by µ(m,m′, x) = (m + m′, x). We skip naturality and con-
centrate on the monad equations (1.52). First, for (m, x) ∈ T (X) = M × X,(

flat ◦ unit
)
(m, x) = flat(0,m, x) = (0 + m, x) = (m, x)(

flat ◦ T (unit)
)
(m, x) = flat

(
m, unit(x)

)
= flat(m, 0, x) = (m, x).

Next, the flatten-equation holds by associativity of the monoid addition +. This
is left to the reader.

We have seen natural transformations as maps between functors. In the spe-
cial case where the functors involved are monads, these natural transformations
can be called maps of monads if they additionally commute with the unit and
flatten maps.

Definition 1.11.2. Let T1 = (T1, unit1,flat1) and T2 = (T2, unit2,flat2) be two
monads (on Sets). A map / homomorphism of monads from T1 to T2 is a natural

2 See the online overview https://wiki.haskell.org/Monad_tutorials_timeline
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transformation α : T1 ⇒ T2 that commutes with unit and flatten in the sense
that the two diagrams

Xunit1

��

unit2

��

T1(T1(X))
flat1
��

α // T2(T1(X))
T2(α)
// T2(T2(X))

flat2
��

T1(X) α // T2(X) T1(X) α // T2(X)

commute, for each set X.

The writer monads from Lemma 1.11.1 give simple examples of maps of
monads: if f : M1 → M2 is a map of monoids, then the maps α B f × id : M1×

X → M2 × X form a map of monoids.
For a historical account of monads and their applications we refer to [71].

Exercises

1.11.1 We have seen the functor J : Sets → Chan(T ). Check that there is
also a functor Chan(T ) → Sets in the opposite direction, which is
X 7→ T (X) on objects, and c 7→ c =≪ (−) on morphisms. Check ex-
plicitly that composition is preserved, and find the earlier result that
stated that fact implicitly.

1.11.2 Recall from (1.25) the subset N[K](X) ⊆ M(X) of natural multisets
with K elements. Prove that N[K] is a functor Sets→ Sets.

1.11.3 Show that Exercise 1.10.1 implicitly describes a functor Setsop →

Chan(P), which is the identity on objects.
1.11.4 Show that the zip function from Exercise 1.3.7 is natural: for each

pair of functions f : X → U and g : Y → V the following diagram
commutes.

XK × YK zip
//

f K×gK
��

(X × Y)K

( f×g)K
��

UK × VK zip
// (U × V)K

1.11.5 Fill in the remaining details in the proof of Lemma 1.11.1: that T is
a functor, that unit and flat are natural transformation, and that the
flatten equation holds.

1.11.6 For arbitrary sets X, A, write X + A for the disjoint union (coproduct)
of X and A, which may be described explicitly by tagging elements
with numbers 1, 2 in order to distinguish them:

X + A = {(x, 1) | x ∈ X} ∪ {(a, 2) | a ∈ A}.
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Write κ1 : X → X + A and κ2 : A → X + A for the two obvious func-
tions.

1 Keep the set A fixed and show that the mapping X 7→ X + A can be
extended to a functor Sets→ Sets.

2 Show that it is actually a monad; it is sometimes called the excep-
tion monad, where the elements of A are seen as exceptions in a
computation.

1.11.7 Check that the support and accumulation functions form maps of
monads in the situations:

1 supp : M(X)⇒ P(X);
2 acc : L(X)⇒ N(X).

1.11.8 Let T = (T, unit ,flat) be a monad. By definition, it involves T as a
functor T : Sets → Sets. Show that T can be ‘extended’ to a functor
T : Chan(T ) → Chan(T ). It is defined on objects as T (X) B T (X)
and on a morphism f : X → Y as:

T ( f ) B
(
T (X)

T ( f )
// T (T (Y)) flat // T (Y) unit // T (T (Y))

)
.

Prove that T is a functor, i.e. that it preserves (channel) identities and
composition.
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Discrete probability distributions

At this stage we are well-prepared to move into the area of probability theory.
This chapter introduces the basics of discrete probability distributions and of
probabilistic channels / computations. These notions will play a central role in
the rest of this book. Distributions will be defined as special multisets where
multiplicities add up to one. As a result there is a simple inclusion of the set of
distributions in the set of multisets multisets (on the same space). This allows
us to use the same (ket) notation for distributions that we used for multisets.
Also, much of the structure that we have seen for multisets restricts to distri-
butions, especially the monad structure given by unit and flatten.

In the other direction, this chapter describes the ‘frequentist learning’ op-
eration, which turns a (non-empty) multiset into a distribution, essentially by
normalisation. It yields probabilities via counting. This basic operation that
will show up in many situations.

Distributions can be put in parallel, via an operation called tensor product
⊗. It gives a ‘joint’ distribution, on the product of the underlying spaces. This
tensor also exists for subsets and multisets. However, tensors ⊗ of distributions
are special since they may involve dependencies / correlations which create a
dynamic that is essential to the field. This chapter introduces the basics of such
product distributions and illustrates how they can be used to introduce new
(image) distributions, like ‘multinomial’, ‘coupon’ and ‘coincidence’.

The previous chapter introduced the concept of channel, as a special function
for a form of computation that is determined by the monad involved. An exam-
ple is non-deterministic computation for the powerset monad P. This chapter
extends these ideas to probabilistic computations, via the distribution monad
D. The resulting probabilistic channels are in essence conditional probabil-
ities or stochastic matrices. They will be used for transformation of states /
distributions along the channel, in a forward direction. This is also known
as prediction. Channels can be composed both sequentially and in parallel,
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giving an expressive calculus of channels. For this calculus we use a graphi-
cal representation in terms of so-called string diagrams. They look a bit like
Bayesian networks, since the conditional probability tables that are associated
with nodes in a Bayesian network are instances of probabilistic channels. But
there are essential graphical differences between Bayesian networks and string
diagrams, for instance in the way copying is handled. We shall prefer string
diagrams over Bayesian networks since they have a clear semantics in terms of
channels.

Important examples of probability distributions are obtained via the intuitive
model of an urn filled with multiple balls of different colours. The probability
of drawing a ball of a particular colour is determined by the proportion of balls
of that colour in the urn. There are multiple ways to proceed after a ball has
been drawn: it can be left out, it can be returned to the urn, or it can be re-
turned together with an additional ball of the same colour as the drawn ball.
These different modes give rise to hypergeometric, multinomial and Pólya dis-
tributions. They are introduced in this chapter as illustration, but they will be
studied more systematically in the next chapter.

This chapter also introduces the convolution (sum) of two distributions. It
works when the underlying space of these distributions is the same and hap-
pens to be a commutative monoid. This construction is mathematically well-
behaved. It occurs regularly and is thus included in this first chapter on proba-
bility.

One way to compare two distributions (on the same space) is via the so-
called Kullback-Leibler divergence. Its essential properties will be discussed
towards the end of the chapter. Later on we shall also define a metric dis-
tance function on distributions. The chapter closes with a systematic look at
exchangeability, in two forms: transposition and substitution. These two ver-
sions are closely related to the operations of accumulation and matching that
we saw in the previous chapter.

2.1 Probability distributions

This section introduces discrete probability distributions, which we often sim-
ply call distributions. We may also call them states. In the literature they are
sometimes called multinomial or categorical distributions, but we avoid those
terms since they clash with the terminology in this book. The notation and
definitions that we use for distributions are inherited from multisets. Indeed, a
distribution is a special multiset, with multiplicities adding up to one.

In this section we first introduce finite distributions, having finite support,

89



90 Chapter 2. Discrete probability distributions90 Chapter 2. Discrete probability distributions90 Chapter 2. Discrete probability distributions

like for multisets. Towards the end we also describe distributions with infinite
support. There are several important examples of such infinite distributions,
but for the most part the emphasis will be on the finite ones.

A distribution over a set X is a finite formal convex sum of the form:

r1| x1 ⟩ + · · · + rn| xn ⟩ where xi ∈ X and ri ∈ [0, 1] with
∑

i ri = 1.

We can write such an expression as a (formal) sum
∑

i ri| xi ⟩. It is called a
convex sum since the probabilities ri ∈ [0, 1] add up to one. Thus, a distribu-
tion over X is a special ‘probabilistic’ multiset, inhabiting a subset D(X) ⊆
M(X). In particular, we may equivalently describe a distribution as a function
ω : X → [0, 1] with finite support and with

∑
x ω(x) = 1. As for multisets, we

often switch back-and-forth between the representations as formal sum and as
function.

Definition 2.1.1. For an arbitrary set X we write D(X) ⊆ M(X) for the set of
distributions on X, consisting of multisets ω ∈ M(X) ⊆ RX

≥0 whose multiplici-
ties add up to one:

∑
x∈X ω(x) = 1.

In functional form a distribution ω ∈ D(X) restricts to a map ω : X → [0, 1]
with the unit interval [0, 1] ⊆ R≥0 as codomain. It is sometimes called the
probability mass function or the density function. However, the term ‘density’
is more often reserved for continuous distributions. Therefore, we shall avoid
it in the discrete case.

When the set X is finite, we write Dfs(X) ⊆ D(X) for the subset of distri-
butions ω ∈ D(X) with full support; this means that supp(ω) = X, that is,
ω(x) > 0, for each x ∈ X.

Via the inclusions D(X) ⊆ M(X), we use the same conventions for dis-
tributions, as for multisets; they were described in the three bullet points in
the beginning of Section 1.6. The set X is often called the sample space, see
e.g. [158], the outcome space, the underlying space, or simply the underlying
set. Each element x ∈ X gives rise to a distribution 1| x⟩ ∈ D(X), which is 1 on
x and 0 everywhere else. It is called a Dirac distribution, a point mass, a point
state, or also a point distribution. The mapping x 7→ 1| x⟩ is the unit function
unit : X → D(X).

This unit map does not exist when one switches to distributionsDfs with full
support — unless the underlying set is a singleton. There are other desirable
properties of distributions that disappear when we require support to be full —
like topological completeness, see Theorem 4.5.9. Therefor we prefer to work
with distributions in general, without requiring full support. We shall only use
full support when really needed, like in stick breaking, see Theorem 2.2.6.

For a coin we can use the set {H,T }with elements for head and tail as sample
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space. A fair coin is described on the left below, as a distribution over this set;
the distribution on the right gives a coin with a slight bias.

1
2 |H ⟩ +

1
2 |T ⟩ 0.51|H ⟩ + 0.49|T ⟩.

In general, for a non-empty finite set X there a uniform distribution unifX ∈

D(X) that assigns the same probability to each element. Thus, it is given by:

unifX B
∑
x∈X

1
|X |

∣∣∣ x〉
where |X | ∈ N>0 is the size of X.

The above fair coin is a uniform distribution on the two-element set {H,T }.
Similarly, a fair dice can be described as unifpips =

1
6 |1⟩ +

1
6 |2⟩ +

1
6 |3⟩ +

1
6 |4⟩ +

1
6 |5⟩ +

1
6 |6⟩, where pips = {1, 2, 3, 4, 5, 6}. Figure 2.1 shows bar charts

of several distributions. The last one describes the letter frequencies in English
for the latin alphabet. One commonly does not distinguish upper en lower cases
in such frequencies, so we take the 26-element set A = {a, b, c, . . . , z} of lower
cases as sample space. The distribution itself can be described as formal sum:

0.082|a⟩ + 0.015|b⟩ + 0.028|c⟩ + 0.043|d ⟩ + 0.13|e⟩ + 0.022| f ⟩
+ 0.02|g⟩ + 0.061|h⟩ + 0.07| i⟩ + 0.0015| j⟩ + 0.0077|k ⟩
+ 0.04| l⟩ + 0.024|m⟩ + 0.067|n⟩ + 0.075|o⟩ + 0.019| p⟩
+ 0.00095|q⟩ + 0.06|r ⟩ + 0.063| s⟩ + 0.091| t ⟩ + 0.028|u⟩
+ 0.0098|v⟩ + 0.024|w⟩ + 0.0015| x⟩ + 0.02|y⟩ + 0.0074|z⟩.

These frequencies have been copied from Wikipedia. Interestingly, they do not
precisely add up to 1, but to 1.01085, probably due to rounding. Thus, strictly
speaking, this is not a probability distribution but a multiset.

Below we describe several standard examples of distributions that will play
an important role in the remainder of the book. We use above the formal convex
sum notation. To start, we look at distributions that have a probability r ∈ [0, 1]
as parameter.

Example 2.1.2.

1 The coin that we have seen above can be parametrised via a ‘bias’ probabil-
ity r ∈ [0, 1]. The resulting coin will be called flip and is defined as:

flip(r) B r|1⟩ + (1−r)|0⟩.

It uses 1 for ’head’ and 0 for ‘tail’. We may thus see flip as a function
flip : [0, 1]→ D(2) from probabilities to distributions over the sample space
2 = {0, 1} of Booleans. This flip(r) is often called the Bernoulli distribution,
with parameter r ∈ [0, 1].
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Figure 2.1 Plots of a slightly biased coin distribution 0.51|H ⟩ + 0.49|T ⟩ and a
fair (uniform) dice distribution on {1, 2, 3, 4, 5, 6} in the top row, together with the
distribution of letter frequencies in English at the bottom. We see that the letter e
has the highest probability, as it occurs most frequently.

2 For each number K ∈ N and probability r ∈ [0, 1] there is the binomial
distribution bn[K](r) ∈ D

(
{0, 1, . . . ,K}

)
. It captures probabilities for iterated

coin flips, and is given by the convex sum:

bn[K](r) B
∑

0≤k≤K

(
K
k

)
· rk · (1−r)K−k

∣∣∣k〉
. (2.1)

The multiplicity probability before |k ⟩ in this expression is the chance of
getting k heads of out K coin flips, where each flip has bias r ∈ [0, 1].
The binomial coefficient

(
K
k

)
is needed because we ignore the order of heads

and tails. The probabilities in the above expression (2.1) add up to 1 by the
Multinomial Theorem (1.39).

Here is an example, for K = 4 and r = 1
3 .

bn[4]
( 1

3
)
=

(
4
0

)
·
( 1

3
)0
·
( 2

3
)4∣∣∣0〉

+
(

4
1

)
·
( 1

3
)1
·
( 2

3
)3∣∣∣1〉

+
(

4
2

)
·
( 1

3
)2
·
( 2

3
)2∣∣∣2〉

+
(

4
3

)
·
( 1

3
)3
·
( 2

3
)1∣∣∣3〉

+
(

4
4

)
·
( 1

3
)4
·
( 2

3
)0∣∣∣4〉

= 16
81

∣∣∣0〉
+ 32

81

∣∣∣1〉
+ 8

27

∣∣∣2〉
+ 8

81

∣∣∣3〉
+ 1

81

∣∣∣4〉
.
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bn[10]( 1
3 ) bn[10]( 3

4 )

Figure 2.2 Plots of two binomial distributions, see Examples 2.1.2.

We can organise binomial distributions as a function bn[K] : [0, 1] →
D

(
{0, 1, . . . ,K}

)
. The binomial probabilities are plotted as bar charts in Fig-

ure 2.2, for two binomial distributions, both for K = 10 on the associated
sample space {0, 1, . . . , 10}.

In Section 2.6 we shall put these binomial distributions in the more gen-
eral perspective of ‘draw’ distributions, associated with drawing coloured balls
from an urn.

We have written D(X) ⊆ M(X) for the subset of distributions on a set X,
with multiplicities adding up to one. In Definition 1.6.2 we have seen thatM
is functorial: it acts not only on sets, but also on functions. This works for D
as well, via suitable restriction.

Lemma 2.1.3. The mapping X 7→ D(X) is functorial: for a function f : X → Y
we haveD( f ) : D(X)→ D(Y) defined either as:

D( f )
(∑

i ri| xi ⟩
)
B

∑
i ri| f (xi)⟩ or as: D( f )(ω)(y) B

∑
x∈ f −1(y)

ω(x).

A distribution of the formD( f )(ω) ∈ D(Y), for ω ∈ D(X), is sometimes called
an image distribution. One also says that ω is pushed forward along the func-
tion f .

Proof. One has to check that D( f )(ω) is a distribution again, that is, that its
multiplicities add up to one. This works as follows.∑

y∈Y

D( f )(ω)(y) =
∑
y∈Y

∑
x∈ f −1(y)

ω(x) =
∑
x∈X

ω(x) = 1.

We present two examples where functoriality of D is used. It provides a
powerful technique to produce new distributions from old, as images.

Example 2.1.4.
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1 Computing marginals of ‘joint’ distributions involves functoriality of D. In
general, one speaks of a joint distribution if its sample space is a product
set, of the form X1 × X2, or more generally, X1 × · · · × Xn, for n ≥ 2. The
i-th marginal of a joint distribution ω ∈ D(X1 × · · · × Xn) is defined as
the image distribution D(πi)(ω) ∈ D(Xi), obtained via the i-th projection
function πi : X1 × · · · × Xn → Xi.

For instance, the first marginal of the joint distribution,

ω = 1
12

∣∣∣H, 0〉
+ 1

6

∣∣∣H, 1〉
+ 1

3

∣∣∣H, 2〉
+ 1

6

∣∣∣T, 0〉
+ 1

12

∣∣∣T, 1〉
+ 1

6

∣∣∣T, 2〉
on the product space {H,T } × {0, 1, 2} is the distribution on {H,T } that is
computed explicitly as:

D(π1)(ω) = 1
12

∣∣∣π1(H, 0)
〉
+ 1

6

∣∣∣π1(H, 1)
〉
+ 1

3

∣∣∣π1(H, 2)
〉

+ 1
6

∣∣∣π1(T, 0)
〉
+ 1

12

∣∣∣π1(T, 1)
〉
+ 1

6

∣∣∣π1(T, 2)
〉

= 1
12

∣∣∣H 〉
+ 1

6

∣∣∣H 〉
+ 1

3

∣∣∣H 〉
+ 1

6

∣∣∣T 〉
+ 1

12

∣∣∣T 〉
+ 1

6

∣∣∣T 〉
= 7

12

∣∣∣H 〉
+ 5

12

∣∣∣T 〉
.

In the same way one obtains as second marginalD(π2)(ω) = 1
4

∣∣∣0〉
+ 1

4

∣∣∣1〉
+

1
2

∣∣∣3〉
.

2 Suppose we throw two (fair) dices and we look at the maximum of the pips
that come up. What distribution do we get? We can describe it as an image
distribution.

Recall that we write pips = {1, 2, 3, 4, 5, 6} for the sample space of a dice.
Let max: pips × pips → pips be the function that take the maximum of two
numbers. We use the uniform distribution unif ∈ D(pips × pips) given by
unif =

∑
i, j∈pips

1
36 | i, j⟩. Then, in functional form:

D(max)
(
unif

)
(k) =

∑
i, j with max(i, j)=k

unif(i, j)

=
∑
i≤k

unif(i, k) +
∑
j<k

unif(k, j) =
2k − 1

36
.

We can write this image distribution in ket notation as:

D(max)(unif) = 1
36 |1⟩ +

3
36 |2⟩ +

5
36 |3⟩ +

7
36 |4⟩ +

9
36 |5⟩ +

11
36 |6⟩.

In this illustration we use the uniform distribution unif on the product space
pips × pips. We will discuss products ⊗ of distributions in Section 2.3. Then
we can equivalently describe this distribution unif on the product as prod-
uct ⊗ of two dices — which are themselves uniform distributions. This is
the same, since products ⊗ of uniform distributions are uniform, see Exer-
cise 2.3.3.
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In the previous chapter we have seen that the sets L(X), P(X) and M(X)
of lists, subsets and multisets all carry a monoid structure. One may expect a
similar result saying that D(X) forms a monoid too, via an elementwise sum,
like for multisets. But that does not work. Instead of arbitrary sums, one can
take convex sums of distributions. This works as follows. Suppose we have two
distributions ω, ρ ∈ D(X) and a number s ∈ [0, 1]. Then we can form a new
distribution σ ∈ D(X), as convex combination of ω and ρ, namely:

σ B s · ω + (1 − s) · ρ that is σ(x) = r · ω(x) + (1 − s) · ρ(x). (2.2)

This obviously generalises to an n-ary convex sum. Such a convex sum of
distributions is often called a ‘mixture’, see Example 2.3.6.

At this stage we shall not axiomatise structures with such convex sums; they
are sometimes called ‘convex sets’ or ‘barycentric algebras’, see [171] or [72]
for details. A brief historical account occurs in [111, Remark 2.9].

2.1.1 Discrete distributions with infinite support

So far we have been using multisets and distributions with finite support only.
It makes sense, for certain applications, to drop this finiteness requirement,
especially for distributions.

Definition 2.1.5. For an arbitrary set X we can form a set D∞(X) of distribu-
tions with (possibly) infinite support as:

D∞(X) B {ω : X → [0, 1] |
∑

x∈X ω(x) = 1}.

This operationD∞ is functorial too, likeD: for a function f : X → Y there is a
functionD∞( f ) : D∞(X)→ D∞(Y) given byD∞( f )

(∑
i ri| xi ⟩

)
=

∑
i ri| f (xi)⟩.

The equation
∑

n rn = 1
1−r from Theorem 1.7.4 (2), for r ∈ [0, 1), can be used

as source of examples, of the form:∑
n∈N

(1−r) · rn
∣∣∣n〉
∈ D∞(N).

For instance, r = 1
4 gives an infinite distribution

∑
n

3
4n+1 |n⟩ = 3

4 |0⟩ +
3
16 |0⟩ +

3
64 |0⟩ + · · · .

The sum
∑

in the above formulation in Definition 2.1.5 is assumed to exist,
as limit of finite sums. We show that it involves at most countably many non-
zero probabilities.

Lemma 2.1.6. The support of a distribution ω ∈ D∞(X) is necessarily count-
able, so either finite or of the same cardinality as the natural numbers.
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Proof. For ω ∈ D∞(X) and n ∈ N>0 we write:

suppn(ω) B
{
x ∈ X

∣∣∣ ω(x) > 1
n
}
.

Since
∑

x∈X ω(x) = 1 this set suppn(ω) can have at most n elements. In par-
ticular, it is finite. We can write the support of the distribution ω ∈ D∞(X) as
countable union:

supp(ω) =
{
x ∈ X

∣∣∣ ω(x) > 0
}
=

⋃
n∈N

suppn(ω).

We see that supp(ω) is a countable union of finite sets; hence it is either finite
or countably infinite.

Below we describe several (standard) examples of infinite distributions, like
Poisson and negative binomials. Exercise 2.1.10 contains another example,
namely the geometric distribution. There are many more distributions with in-
finite support, such as the zeta (or zipf) distribution, see e.g. [159].

Examples 2.1.7.

1 A famous infinite distribution on N is the Poisson distribution pois[λ] with
‘mean’, ‘rate’ or ‘intensity’ parameter λ ∈ R≥0. It can be described as infinite
formal convex sum:

pois[λ] B
∑
k∈N

e−λ ·
λk

k!

∣∣∣k〉
∈ D∞(N). (2.3)

The multiplicities add up to one in the Poisson distribution because of the
well known formula describing an exponential via an infinite sum:

eλ =
∑
k∈N

λk

k!
. (2.4)

The Poisson distribution is typically used for counts of rare events. The rate
or intensity parameter λ is the average number of events per time period.
The Poisson distribution then gives for each k ∈ N the probability of having
k events per time period. This works when events occur independently. As
a border case, we do allow a rate λ = 0. Then pois[0] = 1|0⟩ since all the
terms 0n vanish, except for n = 0.

2 We can modify pois[λ] from a distribution on N to a distribution mpois[λ]
on natural multisets N(X) over a finite set X. This happens as follows. Let
X have N elements.

mpois[λ] B
∑

φ∈N(X)

e−λ ·

(
λ
N

)∥φ∥
φ

∣∣∣φ〉
∈ D

(
N(X)

)
.
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Notice that this is the ordinary Poisson distribution when X is a singleton.
This multiset Poisson distribution mpois[λ] is a special case of a Poisson
point process Pmn[λ](unifX), see Definition 3.9.1, for the uniform distribu-
tion on X.

The probabilities in mpois[λ] add up to one since:

∑
φ∈N(X)

e−λ ·

(
λ
N

)∥φ∥
φ

= e−λ ·
∑
K∈N

∑
φ∈N[K](X)

(
λ
N

)∥φ∥
φ

= e−λ ·
∑
K∈N

(
λ
N

)K

K!

∑
φ∈N[K](X)

K!
φ

= e−λ ·
∑
K∈N

λK

NK · K!
· NK by Exercise 1.7.7

(2.4)
= 1.

This is a countable sum since N(X) � NN , see Exercise 1.6.5. The mul-
tiset Poisson and ordinary Poisson distributions are connected via the size
function, see Exercise 2.1.11, in a so-called sufficient statistic situation, see
Exercise 4.3.3.

3 Our next example of an infinite distribution is the negative binomial distri-
bution, of the form nbn[K](s) ∈ D∞(N), for K ≥ 1 and s ∈ (0, 1). It captures
the probability of reaching K successes, with probability s, in n + K trials.
This can be formulated in several ways:

nbn[K](s) B
∑
n∈N

((
K
n

))
· sK · (1− s)n

∣∣∣n〉
=

∑
n∈N

(
K+n−1

K−1

)
· sK · (1− s)n

∣∣∣n〉
=

∑
m≥K

(
m−1
K−1

)
· sK · (1− s)m−K

∣∣∣m − K
〉
.

One can use Theorem 1.7.4 (or Exercise 1.7.14) to show that this forms a
distribution.∑

n∈N

((
K
n

))
· sK · (1− s)n = sK ·

∑
n∈N

(
n+K−1

K−1

)
· (1− s)n

= sK ·
1

(1 − (1− s))K by Theorem 1.7.4 (1)

= 1.

We shall encounter multivariate negative distributions in Section ??.
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Exercises

2.1.1 Check that a marginal of a uniform distribution is again a uniform
distribution; more precisely, D(π1)(unifX×Y ) = unifX , for non-empty
finite sets X,Y .

2.1.2 1 Prove that flip : [0, 1]→ D(2) is an isomorphism.
2 Check that flip(r) is the same as bn[1](r).
3 Describe the distribution bn[3]( 1

4 ) concretely and interpret this dis-
tribution in terms of coin flips.

2.1.3 Recall that nB {0, . . . , n − 1} and check that:

D(0) � 0 D(1) � 1 D(2) � [0, 1].

The set D
(
n+1

)
is often called the n-simplex, or the probability sim-

plex. Describe it as a subset of Rn+1, and also as a subset of Rn.
2.1.4 Consider the binomial distribution bn[K] from Example 2.1.2 (2).

Show that for r ∈ [0, 1] and k ∈ {0, 1, . . . ,K},

bn[K](r)
(
K−k

)
= bn[K]

(
1−r

)
(k).

Check that this means that the rectangle

[0, 1]
minus(1,−) �

��

bn[K]
// D

(
{0, 1, . . . ,K}

)
D(minus(K,−))
��

[0, 1]
bn[K]

// D
(
{0, 1, . . . ,K}

)
commutes, where minus(x, y) B x − y.

2.1.5 Assume out of K > 0 trials we see k ∈ {0, 1, . . . ,K} successes. Which
success rate probability r ∈ [0, 1] gives maximal binomial probability
bn[K](r)(k), that is, what is argmaxr∈[0,1] bn[K](r)(k)?

1 What do you expect this probability to be?
2 Write f (r) = ln

(
bn[K](r)(k)

)
, where ln is the natural logarithm.

Check for yourself that we may as well determine the maximum of
f .

3 Check that the derivative of f is:

f ′(r) =
k
r
−

K − k
1 − r

.

4 Show that solving f ′(r) = 0 gives r = k
K .

Proposition 3.3.10 will generalise this result to multinomial distribu-
tions.
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2.1.6 Let a number r ∈ [0, 1] and a finite set X be given. Show that:∑
U∈P(X)

r|U | · (1−r)|X\U | = 1.

Hint: Recall the binomial distribution from Example 2.1.2 (2) and
recall also Exercise 1.5.6.

2.1.7 Let ω ∈ D(X) be a distribution, considered as a function ω : X →
[0, 1] with finite support. Use functoriality ofD to show that:

D(ω)(ω) =
∑

x∈supp(ω)

ω(x)
∣∣∣ω(x)

〉
∈ D

(
[0, 1]

)
.

2.1.8 Check that the powerbag operation from Exercise 1.8.4 can be turned
into a probabilistic powerbag PPB via:

PPB(ψ) B
∑
φ≤ψ

(
ψ
φ

)
2∥ψ∥

∣∣∣φ〉
.

2.1.9 1 Recall Theorem 1.7.4 (1) and conclude that lim
n→∞

(
n+K

K

)
· rn = 0,

for r ∈ [0, 1). (This is general result: if partial sums of a series
converge, the limit of the series itself is zero.)

2 Conclude that for r ∈ (0, 1] one has:

lim
n→∞

bn[n+m](r)(m) = 0.

Explain yourself what this means.
2.1.10 For a (non-zero, non-one) probability r ∈ (0, 1) one defines the geo-

metric distribution geo[r] ∈ D∞(N>0) as:

geo[r] B
∑

k∈N>0

r · (1−r)k−1
∣∣∣k〉

.

It captures the probability of being successful for the first time after
k − 1 unsuccesful tries. Prove that this is a distribution indeed: its
multiplicities add up to one.

2.1.11 Recall the ordinary and multiset Poisson distributions (channels) from
Example 2.1.7 (1) and (2). Show that they are connected by size, as
in the following diagram.

D∞
(
N
)

D∞
(
N(X)

)D∞(∥−∥)
oo

R≥0
pois

VV

mpois

FF
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2.1.12 Let ω ∈ D(X) be an arbitrary distribution on a set X. We extend it to a
distribution ω⋆ on the setL(X) of lists of elements from X. We define
the function ω⋆ : L(X)→ [0, 1] by:

ω⋆
(
[x1, . . . , xn]

)
B

ω(x1) · . . . · ω(xn)
2n+1 .

1 Prove that ω⋆ ∈ D∞
(
L(X)

)
.

2 Consider the function f : {a, b, c} → {1, 2} with f (a) = 1, f (b) = 1,
f (c) = 2. Take ω = 1

3 |a⟩ +
1
4 |b⟩ +

5
12 |c⟩ ∈ D({a, b, c}) and ℓ =

[1, 2, 1] ∈ L({1, 2}). Verify both equations on the next line.

D( f )(ω)⋆(ℓ) = 245
27648 = D∞(L( f ))(ω⋆)(ℓ).

Using the ⋆-operation as a function:

D(X)
(−)⋆
// D∞

(
L(X)

)
we can describe the above equation as:

D({a, b, c}) ∋ ω � //
_

��

ω⋆ ∈ D∞
(
L({a, b, c})

)
_

��

D∞
(
L( f )

)
(ω⋆)

D({1, 2}) ∋ D( f )(ω) � // D( f )(ω)⋆ ∈ D∞
(
L({1, 2})

)
3 Prove in general that (−)⋆ is a natural transformation from D to
D∞ ◦ L.

2.2 Frequentist learning and stick breaking

We have introduced distributions as special multisets, namely as multisets in
which the multiplicities add up to one, so that D(X) ⊆ M(X). We will en-
counter various relations and interactions between distributions and multisets.
In Section 2.6 we shall further exploit that an urn containing coloured balls
is aptly described as a multiset and that the probability distribution associated
with drawing balls from the urn can then be derived from the multiset, using
the proportions of the different colours. In this section we first describe this
situation in more abstract terms, via a mapping from multisets to distributions,
called ‘frequentist learning’. In essence, it involves counting and normalisa-
tion. Later on in this book we shall see how more general forms of learning
from data can be described in terms of such passages from multisets to distri-
butions. This forms a central topic.
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In the other direction, going from distributions to multisets, may be done
via sampling. When a probrability distribution is sampled, multiple items are
‘drawn’ from its support, in accordance with the probabilities of the elements
in the distribution. In the limit, frequentist learning from the samples must
reproduce the original distribution, as explained in Subsection 2.2.1.

The third part of this section focuses on stick breaking. This is an alternative
method to produce distributions, not from a multisets, but from a finite list of
numbers between 0 and 1 (not necessarily adding up to one). Stick breaking
also involves normalisation, not of all numbers at the same time, but in a suc-
cessive manner. Stick breaking is a useful technique that pops up occasionally.
Later on we show how it can be used to express multinomial probabilities in
terms of successive binomial ones, see Proposition 2.6.9.

In the previous chapter we have seen several (natural) mappings between
collection types, in the form of support and accumulation maps, see the sum-
mary in Diagram (1.34). We now add the mapping Flrn : M∗(X) → D(X),
from (non-empty) multisets to distributions. The name Flrn stands for ‘fre-
quentist learning’, and may be pronounced as ‘eff-learn’. The frequentist inter-
pretation of probability theory views probabilities as long term frequencies of
occurrences. Here, these occurrences are given via multisets, which form the
inputs of the Flrn function. Later on, in Theorem 4.5.9 we show that these out-
comes of frequentist learning ly dense in the set of distributions (over a fixed
finite set). It means that we can approximate each distribution with arbitrary
precision via frequentist learning of (natural) multisets.

Recall that M∗(X) is the collection of non-empty multisets
∑

i ri| xi ⟩, with
ri , 0 for at least one index i. Equivalently one can require that the size s B∑

i ri = ∥
∑

i ri| xi ⟩∥ is non-zero.
The Flrn maps turns a (non-empty) multiset into a distribution, essentially

by normalisation. It is defined as follows.

Flrn
(
r1

∣∣∣ x1
〉
+ · · · + rk

∣∣∣ xk
〉)
B

r1

s

∣∣∣ x1
〉
+ · · · +

rk

s

∣∣∣ xk
〉

where s B
∑

i ri.
(2.5)

The normalisation step forces the formal sum on the right-hand side to be a
convex sum, with factors adding up to one. Clearly, we can learn distributions
only from non-empty multisets, since for an empty multiset the above size s is
zero so that we cannot divide by s.

Using scalar multiplication from Lemma 1.6.3 (2) we can define the Flrn
function more succintly via its size as:

Flrn(φ) B
1
∥φ∥
· φ where ∥φ∥ B

∑
x φ(x). (2.6)
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We use frequentist learning for arbitrary multisets, and not just for the natural
ones, with natural numbers as multiplicities.

Remark 2.2.1. As noted before, (natural) multisets are mathematical repre-
sentations of urns filled with finitely many coloured balls. Frequentist learn-
ing Flrn forms a further, associated formalisation step: for a non-empty urn
υ ∈ N(X) over a set of colours X, the probability of drawing a ball of colour
x ∈ X from υ is given by the fraction of balls of colour X and the total number
of balls in the urn:

Flrn(υ)(x) =
υ(x)
∥υ∥

∈ [0, 1].

This formalises the idea that was presented pictorially (0.1) in the Preface.

Example 2.2.2. We present two illustrations of frequentist learning.

1 Suppose we have some coin of which the bias is unkown. Experimental
data show that out of 50 tossings, 20 times come up head (H) and 30 yield
tail (T ). We can represent these data as a multiset φ = 20|H ⟩ + 30|T ⟩ ∈
M∗

(
{H,T }

)
. When we wish to learn the resulting probabilities, we apply the

frequentist learning map Flrn and get a distribution inD
(
{H,T }

)
, namely:

Flrn(φ) = 20
20+30 |H ⟩ +

30
20+30 |T ⟩ =

2
5 |H ⟩ +

3
5 |T ⟩.

Thus, the bias (twowards head) is 2
5 . In this simple case we could have ob-

tained this bias immediately from the data, but the Flrn map captures the
general mechanism.

Notice that with frequentist learning, more (or less) consistent data gives
the same outcome. For instance if we knew that 40 out of 100 tosses were
head, or 2 out of 5, we would still get the same bias. Intuitively, more (or
less) data should give more (or less) confidence about the distribution. How-
ever, these aspects are not covered by frequentist learning, see Equation (2.7)
below. A more sophisticated form of ‘Bayesian’ learning will be used for
this later. It has the additional advantage that it can handle prior knowledge,
if any, about the bias.

2 Recall the medical table (1.28) captured by the multiset τ ∈ N(B × M).
Learning from τ yields the following joint distribution:

Flrn(τ) = 10
100

∣∣∣H, 0〉
+ 35

100

∣∣∣H, 1〉
+ 25

100

∣∣∣H, 2〉
+ 5

100

∣∣∣L, 0〉
+ 10

100

∣∣∣L, 1〉
+ 15

100

∣∣∣L, 2〉
.

Such a distribution, directly derived from a table, is sometimes called an
empirical distribution [37].
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In the above coin example we saw a property that is typical of frequentist
learning, namely that learning from more of the same does not have any effect.
We can make this precise via the equation:

Flrn
(
s · φ

)
= Flrn(φ) for s ∈ R>0. (2.7)

In [62] it is argued that in general, people are not very good at probabilis-
tic (esp. Bayesian) reasoning, but that they are much better at reasoning with
“frequency formats”. Simply put: the information (fromD) that there is a 0.04
probability of getting a disease is more difficult to process than the information
(fromM) that 4 out of 100 people get the disease. In the current setting these
frequency formats would correspond to natural multisets; they can be turned
into distributions via the frequentist learning map Flrn.

The following elementary observation captures the essence of frequentist
learning.

Lemma 2.2.3. For each set X the tuple of size and frequentist learning forms
an isomorphism in:

M∗(X)
⟨size,Flrn⟩

�
// R>0 ×D(X)

Proof. The inverse is scaling: it sends a positive number s ∈ R>0 and a distri-
bution ω ∈ D(X) to the multiset s · ω =

∑
x s · ω(x)

∣∣∣ x〉
.

It turns out that the learning map Flrn is ‘natural’, in the sense that it works
uniformly for each set.

Lemma 2.2.4. The frequentist learning maps Flrn : M∗(X)→ D(X) from (2.5)
are natural in X. This means that for each function f : X → Y the following
diagram commutes.

M∗(X)
M( f )
��

Flrn // D(X)
D( f )
��

M∗(Y)
Flrn

// D(Y)

As a special case, frequentist learning commutes with marginalisation, via pro-
jection functions.

Proof. Pick an arbitrary non-empty multiset φ =
∑

i ri| xi ⟩ inM∗(X) and write
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s B ∥φ∥ =
∑

i ri. By non-emptyness of φ we have s , 0. Then:(
Flrn ◦ M∗( f )

)
(φ) = Flrn

(∑
i ri| f (xi)⟩

)
=

∑
i

ri
s | f (xi)⟩

)
= D( f )

(∑
i

ri
s | xi ⟩

)
=

(
D( f ) ◦ Flrn

)
(φ).

We can apply this basic result to the medical data in Table (1.28), via the
multiset τ ∈ N(B × M). We have already seen in Section 1.6 that the multiset-
marginals N(πi)(τ) produce the marginal columns and rows, with their totals.
We can learn the distributions from the colums as:

Flrn
(
M(π1)(τ)

)
= Flrn

(
70|H ⟩ + 30|L⟩

)
= 7

10 |H ⟩ +
3
10 |L⟩.

We can also take the distribution-marginal of the ‘learned’ distribution from
the table, as described in Example 2.2.2 (2):

M(π1)
(
Flrn(τ)

)
=

(
10

100 +
35
100 +

25
100

)
|H ⟩ +

(
5

100 +
10
100 +

15
100

)
|L⟩

= 7
10 |H ⟩ +

3
10 |L⟩.

Thus, frequentist learning and marginalisation commute. This is a simple re-
sult, which many practitioners in probability are surely aware of, at an intuitive
level, but maybe not in the mathematically precise form of Lemma 2.2.4.

Remark 2.2.5. In Lemma 2.2.4 we have seen that Flrn : M∗ ⇒ D is a natural
transformation. Since bothM∗ and D are monads, one can ask if Flrn is also
a map of monads. It would mean that Flrn also commutes with the unit and
flatten maps, see Definition 1.11.2. This is not the case.

It is easy to see that Flrn commutes with the unit maps, simply because
Flrn(1| x⟩) = 1| x⟩. But commutation with flatten’s fails. Here is a simple coun-
terexample. Consider the multiset of multsets Φ ∈ M(M({a, b, c})) given by:

Φ B 1
∣∣∣ 2|a⟩ + 4|c⟩

〉
+ 2

∣∣∣ 1|a⟩ + 1|b⟩ + 1|c⟩
〉
.

First flattening the multiset, and then doing frequentist learning gives:

Flrn
(
flat(Φ)

)
= Flrn

(
4|a⟩ + 2|b⟩ + 6|c⟩

)
= 1

3 |a⟩ +
1
6 |b⟩ +

1
2 |c⟩.

However, first (outer en inner) learning and then flattening the resulting distri-
bution of distributions yields:

flat
(
Flrn

(
M(Flrn)(Φ)

))
= flat

(
1
3

∣∣∣ 1
3 |a⟩ +

2
3 |c⟩

〉
+ 2

3

∣∣∣ 1
3 |a⟩ +

1
3 |b⟩ +

1
3 |c⟩

〉)
= 1

3 |a⟩ +
2
9 |b⟩ +

4
9 |c⟩.
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2.2.1 Sampling

Sampling is a technique for choosing individual elements from the support
supp(ω) ⊆ X of a distribution ω ∈ D(X), in accordance with the probabilities
in ω. Sampling is important in computing with probability distributions, espe-
cially when these distributions become too large to handle. Sampling exists in
many programming languages with some level of support for probability. For
instance, in Python, the numpy.random package allows to write a command
(after the prompt >>> below) for sampling from a multinomial (i.e. discrete)
distribution:

>>> multinomial(10, [1/2, 1/3, 1/6])
array([5, 4, 1])

The distribution involved has three probabilities 1/2, 1/3, 1/6, corresponding to
a distribution in ket form 1

2 |0⟩ +
1
3 |1⟩ +

1
6 |2⟩, say on the three-element set

3 = {0, 1, 2}. The above number 10 specifies that we wish to get 10 individ-
ual samples from this distribution. These 10 samples are collected in the ar-
ray [5, 4, 1], given as output on the above second line. In the notation of this
book this array forms a multiset 5|0⟩+4|1⟩+1|2⟩. These numbers correspond
roughly to the original distribution from which we sample, after frequentist
learning: Flrn

(
5|0⟩ + 4|1⟩ + 1|2⟩

)
= 1

2 |0⟩ +
2
5 |1⟩ +

1
5 |2⟩.

Running the same command again may give a different outcome, as in:

>>> multinomial(10, [1/2, 1/3, 1/6])
array([4, 3, 3])

Thus, sampling is not a deterministic operation. Hence it is mathematically
awkward.

If we increase the number of samples to say 1000 we may get:

>>> multinomial(10000, [1/2, 1/3, 1/6])
array([509, 331, 160])

We now obtain a better approximation of the original distribution: Flrn
(
509|0⟩+

331|1⟩ + 160|2⟩
)
= 509

1000 |0⟩ +
331

1000 |1⟩ +
160
1000 |2⟩ ≈

1
2 |0⟩ +

1
3 |1⟩ +

1
6 |2⟩.

The key idea is that, as the number N of samples taken from a distribution
ω increases, the resulting multiset φN of samples, of size N, approaches ω via
frequentist learning: Flrn(φN)→ ω as N → ∞.

Thus, informally, sampling may be seen as an approximate inverse to fre-
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quentist learning. It exists in many probabilistic programming languages, see
e.g. [64] for an overview. Sampling a single element x from a distribution
ω ∈ D(X) may be written as:

x ← ω or as x ∼ ω.

Whenever we use such sampling, we shall write it in this first form x← ω.
How does this sampling from a discrete distribution work? We assume that

there is some way to obtain an arbitrary number r ∈ [0, 1] from the unit in-
terval. Any programming language offers such functionality — in a pseudo-
random manner. We sketch how to use it to obtain sampling from discrete dis-
tributions. Let’s take as concrete example ω = 1

4 |a⟩ +
1
8 |b⟩ +

1
4 |c⟩ +

3
8 |d ⟩. We

order the elements in the support, here in the obvious way, as a, b, c, d and we
break up the unit interval in line fragments with sizes given by the respective
probabilities, in order. In this case we get:

0 1
1
4

a

1
8

b

1
4

c

3
8

d
•

Now one asks for a random number r ∈ [0, 1], say r = 0.72. One then looks
up in which interval this number lands, see the above red dot. The correspond-
ing element from the support of the distribution, in this case d, is returned as
sample result. This approach obviously generalises to an arbitrary distribution∑

i ri| xi ⟩, where
∑

i ri = 1.
Computation via sampling is a very powerful technique, especially in sit-

uations where the distribution and/or the problem at hand is complicated and
does not lend itself easily to an analytical solution. Consider for instance the
following challenge. If we pick three random numbers i, j, k from the set of
numbers {1, 2, . . . , 100}, what is the probability that i ≤ j ≤ k? It is easy to
write a probabilistic program for this. Let unif100 be the uniform distribution
on {1, 2, . . . , 100}.

i← unif100
j← unif100
k← unif100
if i <= i and j <= k:

return yes
else:

return no

(2.8)

This program yields as distribution, approximately, 0.17
∣∣∣yes

〉
+ 0.83

∣∣∣no
〉
.
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This book is not about such probabilistic programming: it has a more math-
ematical (‘exact’) focus. From this mathematical perspective, the multinomial
distribution mn[K](ω) ∈ D

(
N[K](X)

)
, that we introduce later on, can be un-

derstood as a ‘correct’ distribution over multiset samples, see Theorem 3.3.3
and also Theorem 5.5.4, and the subsequent discussions.

2.2.2 Stick breaking

Frequentist learning is a method for obtaining a distribution from a sequence
of multiplicities (of a multiset). Stick breaking is an alternative method for
producing a distribution, from a sequence of probabilities. It does not work via
a single normalisation, but via iterated normalisations. It is a basic technique
(see e.g. [165] or [106, Defn. 1]) that will be introduced below and will be
used occasionally in the sequel. We follow the description of [86] and start
with some basic observations.

We writeDfs
(
{R,G, B,Y}

)
for the set of all distributions with full support on

the set {R,G, B,Y} of four colours (Red, Green, Blue, Yellow). Explicitly:

Dfs
(
{R,G, B,Y}

)
=

{
r0|R⟩ + r1|G ⟩ + r2|B⟩ + r3|Y ⟩

∣∣∣∣ r0, r1, r2, r3 ∈ (0, 1)

with r0 + r1 + r2 + r3 = 1
}
.

Because fullness of support is required, none of the ri may be zero or one. It is
needed below to prevent division by zero.

The above equation describes the set of distributions (on these four colours)
as a simplex, of dimension three. Indeed, it is easy to see that one of the ri is
superfluous, since it is determined by the others. Explicitly, there is an isomor-
phism:

Dfs
(
{R,G, B,Y}

)
�

{
(r0, r1, r2) ∈ (0, 1)3

∣∣∣∣ r0 + r1 + r2 < 1
}
.

The above set on the right-hand-side is clearly a proper subset of the cube
(0, 1)3. In essence, the stick breaking construction yields an isomorphism:

Dfs
(
{R,G, B,Y}

)
� (0, 1)3. (2.9)

This may not be immediate at first sight. One has to do (appropriate) rescaling.
There is an intuitive explanation of stick breaking in terms of successively

breaking up a stick. We adapt this account to the above set of four colours.
We start from three numbers s0, s1, s2 ∈ (0, 1) and intend to turn them into a
distribution on the set of colour {R,G, B,Y}.
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0

1

s0

s1(1−s0)

s2(1−s1)(1−s0)

(1−s2)(1−s1)(1−s0)
Imagine a stick of length one, as described

vertically on the right. We take our first number
s0 ∈ (0, 1) and decide to paint the lower part
/ proportion s0 red. We now have an unpainted
part of length 1−s0. We paint the s1 proportion of
it green. The newly painted part then has length
s1(1−s0). The unpainted part is now (1−s2)(1−
s0). We paint the s2-proportion of this remainder
blue. The final remainder is then of length (1−
s2)(1−s2)(1−s0). We paint it yellow. Note that the resulting distribution has full
support.

This construction can also be described in terms of breaking a stick, at each
position where we have a change of colour in the above picture. The effect is a
map (0, 1)3 → Dfs

(
{R,G, B,Y}

)
.

We turn to the general description.

Theorem 2.2.6. For a number r ∈ [0, 1] we write r⊥ = 1−r.

1 For each number N > 1, with associated N-element set N = {0, 1, . . . ,N−1},
there is a “stick breaking” isomorphism:

(0, 1)N−1 stbr
�

// Dfs(N)

(r0, . . . , rN−2) � // r0
∣∣∣0〉
+ r⊥0 r1

∣∣∣1〉
+ r⊥0 r⊥1 r2

∣∣∣2〉
+ · · ·

+ r⊥0 · · · r
⊥
N−3rN−2

∣∣∣N−2
〉
+ r⊥0 · · · r

⊥
N−2

∣∣∣N−1
〉
.

(2.10)

2 This isomorphism extends to countably infinite sequences, as:

(0, 1)N stbr
�

// D∞,fs(N)

r⃗ � //
∑
n∈N

(∏
i<n r⊥i

)
rn

∣∣∣n〉
,

(2.11)

where D∞,fs is used for distributions with full support, without finiteness
restriction, see Definition 2.1.5.

After the proof, Example 2.2.7 elaborates these descriptions in concrete
form. Notice that the numbers 0, 1 are excluded in the domain type of the
stick breaking function. The number r = 1 cannot be used because of divi-
sion by r⊥ = 1− r. The number r = 0 is subsequently exclused in order to
get a symmetric formulation, corresponding to having distributions with full
support.
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Proof. 1 It is easy to see that the finite stick break definition in (2.10) satisfies
for 1 ≤ i < N − 1,

1 −
∑
j≤i

stbr
(⃗
r
)
( j) =

∏
j≤i

r⊥j (2.12)

This gives
∑

i<N stbr
(⃗
r
)
(i) = 1, so that stickbreaking produces a probability

distribution, on N.
In the reverse direction we start from a distribution ω ∈ D(N) and define

a sequence of N − 1 numbers in (0, 1) by:

stbr−1(ω)0 B ω(0) and stbr−1(ω)i+1 B
ω(i+1)

1 −
∑

j≤i ω( j)

This inverse operation satisfies, for 0 ≤ i < N − 2,∏
j≤i

(
stbr−1(ω) j

)⊥
= 1 −

∑
j≤i

ω( j). (2.13)

These operations are each other’s inverses, since:

stbr−1
(
stbr

(⃗
r
))

0
= stbr

(⃗
r
)
(0) = r0

stbr−1
(
stbr

(⃗
r
))

i+1
=

stbr
(⃗
r
)
(i+1)

1 −
∏

j≤i stbr
(⃗
r
)
( j)

(2.12)
=

(
∏

j≤i r⊥j )ri+1∏
j≤i r⊥j

= ri+1.

And, the other way around, the case i = 0 is simple again. And for 0 < i <
N − 1,

stbr
(
stbr−1(ω)

)
(i+1) =

∏
j≤i

(
stbr−1(ω) j

)⊥ stbr−1(ω)i+1

(2.13)
=

1 −∑
j≤i

ω( j)

 ω(i + 1)
1 −

∑
j≤i ω( j)

= ω(i + 1).

2 For an infinite sequence r⃗ ∈ (0, 1)N definition (2.11) yields a probability
distribution since:

1 −
∑
n∈N

stbr
(⃗
r
)
(n) = 1 − lim

N→∞

∑
n≤N

(∏
i<n r⊥i

)
rn

= lim
N→∞

1 −
∑
n≤N

stbr
(
r0, . . . , rn

)
(n)

(2.12)
= lim

N→∞

∏
n≤N

r⊥n = 0.

The latter holds since r⊥n = 1 − rn < 1 for each n.
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In the other direction we can define, for ω ∈ D∞,fs(X),

stbr−1(ω)i B
ω(i)

1 −
∑

j<i ω( j)
.

These two definitions are pointwise each other’s inverses, as we have seen
in the previous item.

Example 2.2.7.

1 Here is a simple illustrations of the stick break operation, in the finite case,
for N = 4.

stbr
(

3
4 ,

2
3 ,

1
5

)
= 3

4

∣∣∣0〉
+ 1

4 ·
2
3

∣∣∣1〉
+ 1

4 ·
1
3 ·

1
5

∣∣∣2〉
+ 1

4 ·
1
3 ·

4
5

∣∣∣3〉
= 3

4

∣∣∣0〉
+ 1

6

∣∣∣1〉
+ 1

60

∣∣∣2〉
+ 1

15

∣∣∣3〉
.

In the other direction we get, as expected, the original sequence:

stbr−1
(

3
4

∣∣∣0〉
+ 1

6

∣∣∣1〉
+ 1

60

∣∣∣2〉
+ 1

15

∣∣∣3〉)
=

(
3
4 ,

1/6

1 − 3/4
,

1/60

1 − 3/4 − 1/6

)
=

(
3
4 ,

1/6

1/4
,

1/60

1/12

)
=

(
3
4 ,

2
3 ,

1
5

)
.

2 Consider the infinite distribution:

ω =
∑
n∈N

2
5 ·

( 3
5
)n ∣∣∣n〉

= 2
5

∣∣∣0〉
+ 6

25

∣∣∣1〉
+ 18

125

∣∣∣2〉
+ 54

625

∣∣∣3〉
+ · · ·

We can see that it is a distribution via Theorem 1.7.4 (2):∑
n∈N

ω(n) = 2
5 ·

∑
n∈N

( 3
5
)n
= 2

5 ·
1

1 − 3/5
=

2
5 − 3

= 1.

The sequence of numbers in (0, 1) corresponding to ω is constant:

stbr−1(ω) = ( 2
5 ,

2
5 ,

2
5 , . . .).

In general, for r ∈ (0, 1), we have stbr(r, r, r, . . .) =
∑

n∈N r(1 − r)n
∣∣∣n〉

.

Exercises

2.2.1 Recall the data / multisets about child ages and blood types in the
beginning of Subsection 1.6.1. Compute the associated (empirical)
distributions.

Plot these distributions as a graph. How do they compare to the
plots (1.26) and (1.27)?
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2.2.2 Check that frequentist learning from a constant multiset yields a uni-
form distribution. And also that frequentist learning is invariant under
(non-zero) scalar multiplication, as described in (2.7).

2.2.3 1 Prove that for multisets φ, ψ ∈ M∗(X) one has:

Flrn
(
φ + ψ

)
=

∥φ∥

∥φ∥ + ∥ψ∥
· Flrn(φ) +

∥ψ∥

∥φ∥ + ∥ψ∥
· Flrn(ψ).

This means that when one has already learned Flrn(φ) and new
data ψ arrives, all probabilities have to be adjusted, as in the above
convex sum of distributions.

2 Check that the following formulation for natural multisets of fixed
sizes K > 0, L > 0 is a special case of the previous item.

N[K](X) × N[L](X) + //

Flrn×Flrn
��

N[K+L](X)
Flrn
��

D(X) ×D(X)
K

K+L (−)+ L
K+L (−)

// D(X)

2.2.4 Show that Diagram (1.34) can be refined to:

L∗(X)
supp

//

acc **

Pfin(X)

M∗(X)
Flrn

// D(X) supp

FF

(2.14)

where L∗(X) ⊆ L(X) is the subset of non-empty lists.
2.2.5 Consider the program in (2.8) and show analytically that the outcome

distribution is 1717
10000

∣∣∣yes
〉
+ 8283

10000

∣∣∣no
〉
.

2.2.6 Consider ω = 1
6 |0⟩ +

1
5 |1⟩ +

1
4 |2⟩ +

1
3 |3⟩ +

1
20 |4⟩ ∈ D(5).

1 Calculate x⃗ B stbr−1(ω) ∈ (0, 1)4.
2 Check what stbr(x⃗) is.

2.2.7 Fix N > 1.

1 Let υ = unifN =
∑

i∈N
1
N | i⟩. Show that:

stbr−1(υ) =
( 1

N ,
1

N−1 ,
1

N−2 , . . . ,
1
2
)
∈ (0, 1)N−1.

2 Show that for an arbitrary r ∈ (0, 1) one has:

stbr
(
r, . . . , r︸  ︷︷  ︸
N−1 times

)
=

∑
0≤i<N−1

r(1 − r)i
∣∣∣ i〉 + (1 − r)N−1

∣∣∣N − 1
〉
.

2.2.8 Prove Equations (2.12) and (2.13).
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2.3 Parallel products

Early on this book, in Section 1.3, we have seen Cartesian products X × Y
of sets X,Y . Here we shall look at products for various collection types: sub-
sets, multisets, and distributions. These new products will be written as tensors
⊗. They form parallel combinations. These tensors exist for subsets, multisets
and distributions, but not for lists because they are not commutative, see Re-
mark 2.3.3.

In this section we start with a brief uniform description of parallel products,
for multiple collection types — in the style of the first chapter — but we shall
quickly zoom in on the probabilistic case. Products ⊗ of distributions have their
own dynamics, due to the requirement that probabilities, also over a product,
must add up to one. This means that the two components of a ‘joint’ distri-
bution, over a product space, can be correlated. Indeed, a joint distribution is
typically not equal to the product of its marginals: the whole is more than the
product of its parts, giving crossover effects: as we shall see in Chapter 6, up-
dating in one component has effect in other components: the components of a
joint distribution ‘listen’ to each other.

Once parallel product (tensors) of distributions are defined, we can produce
other, new distributions via images, such as ‘coincidence’ and ‘coupon’ distri-
butions, see Subsection 2.3.1. Another construction of interest using products
are convolutions of distributions, see Section 2.7.

Definition 2.3.1. Tensors ⊗, also called parallel products, will be defined sep-
arately for for subsets, multisets and distributions. For arbitrary sets X,Y , we
describe functions ⊗ : P(X) × P(Y) → P(X × Y) and ⊗ : M(X) × M(Y) →
M(X × Y) and ⊗ : D(X) ×D(Y)→ D(X × Y).

1 For subsets U ∈ P(X) and V ∈ P(Y) the product subset U ⊗V ∈ P(X × Y) is
defined as:

U ⊗ V B
{
(x, y) ∈ X × Y

∣∣∣ x ∈ U and y ∈ V
}
.

The product U ⊗V is often written simply as a product of sets U ×V , but for
reasons of uniformity we prefer to have separate notation for this product of
subsets.

2 For multisets φ ∈ M(X) and ψ ∈ M(Y) there is a product multiset φ ⊗ ψ ∈
M(X × Y), namely:

φ ⊗ ψ B
∑

x∈X,y∈Y

φ(x) · ψ(y)
∣∣∣ x, y〉

that is
(
φ ⊗ ψ)(x, y) = φ(x) · ψ(y).

3 For distributions ω ∈ D(X) and ρ ∈ D(Y) we use ω ⊗ ρ as in the previous
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item (for multisets). This is well-defined, with outcome in D(X × Y), since
the relevant multiplicities add up to one. This tensor of distributions also
works for infinite support, i.e. forD∞.

We shall use tensors not only in binary form ⊗, but also in n-ary form ⊗ · · · ⊗,
for n ≥ 2.

We see that all of these tensors ⊗ involve the product × of the underlying
sets. A simple illustration of a (probabilistic) tensor product is:(

1
6

∣∣∣u〉
+ 1

3

∣∣∣v〉
+ 1

2

∣∣∣w〉)
⊗

(
3
4

∣∣∣0〉
+ 1

4

∣∣∣1〉)
= 1

8

∣∣∣u, 0〉
+ 1

24

∣∣∣u, 1〉
+ 1

4

∣∣∣v, 0〉
+ 1

12

∣∣∣v, 1〉
+ 3

8

∣∣∣w, 0〉
+ 1

8

∣∣∣w, 1〉
.

These tensor products tend to grow quickly in size, since the number of entries
of the two parts have to be multiplied.

We collect some basic properties.

Lemma 2.3.2.

1 The size of a tensor product of subsets or multisets is the multiplication of
the sizes of the components:∣∣∣U ⊗ V

∣∣∣ = ∣∣∣U ∣∣∣ · ∣∣∣V ∣∣∣ ∥∥∥φ ⊗ ψ ∥∥∥ = ∥∥∥φ∥∥∥ · ∥∥∥ψ∥∥∥.
2 Marginalisation separates tensors into the original components — assuming

that the subsets U,V are non-empty.

P(π1)
(
U ⊗ V) = U M(π1)

(
φ ⊗ ψ) = ∥ψ∥ · φ D(π1)

(
ω ⊗ ρ) = ω

P(π2)
(
U ⊗ V) = V M(π2)

(
φ ⊗ ψ) = ∥φ∥ · ψ D(π2)

(
ω ⊗ ρ) = ρ.

3 Tensors are natural: for functions f : X → A and g : Y → B,

P( f × g)(U ⊗ V) = P( f )(U) ⊗ P(g)(V)
M( f × g)(φ ⊗ ψ) = M( f )(φ) ⊗M(g)(ψ)
D( f × g)(ω ⊗ ρ) = D( f )(ω) ⊗D(g)(ρ).

4 The support maps supp : M⇒ P and supp : D ⇒ P commute with tensors,
in the sense that:

supp
(
φ ⊗ ψ

)
= supp(φ) ⊗ supp(ψ) supp

(
ω ⊗ ρ

)
= supp(ω) ⊗ supp(ρ).

5 The frequentist learning map Flrn : M∗ ⇒ D also commutes with tensors:

Flrn
(
φ ⊗ ψ

)
= Flrn(φ) ⊗ Flrn(ψ).

The last two items express that support and frequentist learning are ‘monoidal’
natural transformations.
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Proof. 1 The case of subsets is trivial. For multisets:∥∥∥φ ⊗ ψ ∥∥∥ = ∑
x∈X, y∈Y

φ(x) · ψ(y) =

∑
x∈X

φ(x)

 ·
∑

y∈Y

ψ(y)

 = ∥∥∥φ∥∥∥ · ∥∥∥ψ∥∥∥.
2 For subsets we have

P(π1)
(
U ⊗ V) =

{
π1(x, y)

∣∣∣ x ∈ U, y ∈ V
}
= U, using that V , ∅.

For multisets the size shows up:

M(π1)
(
φ ⊗ ψ) =

∑
x∈X,y∈Y

φ(x) · ψ(y)
∣∣∣π1(x, y)

〉
=

∑
x∈X

∑
y∈Y

φ(x) · ψ(y)

 ∣∣∣ x〉
=

∑
x∈X

φ(x) ·

∑
y∈Y

ψ(y)

 ∣∣∣ x〉
=

∑
x∈X

φ(x) · ∥ψ∥
∣∣∣ x〉
= ∥ψ∥ · φ.

For distributions ω, ρ, the computation D(π1)
(
ω ⊗ ρ) works similarly and

yields ∥ρ∥ · ω = ω since ∥ρ∥ = 1.
3 We do the distribution case and leave the other two cases to the reader.

D( f × g)(ω ⊗ ρ) =
∑

x∈X, y∈Y

ω(x) · ρ(y)
∣∣∣ ( f × g)(x, y)

〉
=

∑
x∈X, y∈Y

ω(x) · ρ(y)
∣∣∣ f (x), g(y)

〉
=

∑
x∈X

ω(x)
∣∣∣ f (x)

〉 ⊗
∑

y∈y

ρ(y)
∣∣∣g(y)

〉
= D( f )(ω) ⊗D(g)(ρ).

4 We prove the required result for multisets; the proof for distributions works
in the same way.

supp
(
φ ⊗ ψ

)
=

{
(x, y)

∣∣∣ (φ ⊗ ψ)(x, y) , 0
}

=
{
(x, y)

∣∣∣ φ(x) · ψ(y) , 0
}

=
{
(x, y)

∣∣∣ φ(x) , 0 and ψ(y) , 0
}

=
{
(x, y)

∣∣∣ x ∈ supp(φ), y ∈ supp(ψ)
}

= supp(φ) ⊗ supp(ψ).

5 We use commutation of size with tensor from item (1) in:

Flrn
(
φ ⊗ ψ

)
(x, y) =

(φ ⊗ ψ)(x, y)
∥φ ⊗ ψ∥

=
φ(x)
∥φ∥
·
ψ(y)
∥ψ∥

= Flrn(φ)(x) · Flrn(ψ)(y)
=

(
Flrn(φ) ⊗ Flrn(ψ)

)
(x, y).
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As promised we look into why parallel products do not work for lists.

Remark 2.3.3. Suppose we have two list [a, b, c] and [u, v] and we wish to
form their parallel product. Then there are many ways to do so. For instance,
two obvious choices are:

[⟨a, u⟩, ⟨a, v⟩, ⟨b, u⟩, ⟨b, v⟩, ⟨c, u⟩, ⟨c, v⟩]
[⟨a, u⟩, ⟨b, u⟩, ⟨c, u⟩, ⟨a, v⟩, ⟨b, v⟩, ⟨c, v⟩].

There are many other possibilities. The problem is that there is no canonical
choice. Since the order of elements in a list matters, there is no commutativity
property which makes all options equivalent, like for multisets. Technically,
the tensor for L does not exist because L is not a commutative (i.e. monoidal)
monad; this is an early result in category theory going back to [112].

Back to tensors of distributions. We can form a K-ary product XK for a set X.
But also for a distribution ω ∈ D(X) we can form ωK = ω ⊗ · · · ⊗ ω ∈ D(XK).
This lies at the heart of the notion of ‘independent and identical distributions’.
We define separate functions for such constructions.

Definition 2.3.4. Fix a set X and a number K.

1 Independent and identical K-ary distributions are obtained via the function:

D(X)
iid [K]

// D(XK) with iid [K](ω) B ω ⊗ · · · ⊗ ω︸        ︷︷        ︸
K times

. (2.15)

2 The K-ary tensors form a function:

D(X)K
⊗

[K]
// D(XK) with

⊗
[K](ω⃗) B ω1 ⊗ · · · ⊗ ωK . (2.16)

The parameter K in iid [K] and
⊗

[K] may be omitted. For K = 0 we use that
XK is a singleton set, so thatD(XK) is also a singleton.

We can describe iid [K] diagrammatically as composite, making the copying
of distributions explicit:

D(X)

∆ ,,

iid [K]
// D(XK)

D(X)K ⊗
[K]

BB (2.17)

We collect some basic properties, involving the zip isomorphism zip : XK ×

YK �
−→ (X × Y)K from Exercises 1.3.7 and 1.11.4.

Lemma 2.3.5. Fix a number K ∈ N.
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1 The iid and
⊗

maps are natural: for each function f : X → Y the following
two diagrams commutes.

D(X) iid //

D( f )
��

D(XK)
D( f K )
��

D(X)K
⊗
//

D( f )K
��

D(XK)
D( f K )
��

D(Y) iid // D(YK) D(YK)
⊗
// D(YK)

2 The zip function commutes with multiple tensors in the following way.

D(X)K ×D(Y)K
⊗
×

⊗
//

zip
��

D(XK) ×D(YK) ⊗ // D(XK × YK)
D(zip)
��(

D(X) ×D(Y)
)K ⊗K

// D(X × Y)K
⊗

// D
(
(X × Y)K)

3 Zip also commutes with copied tensors:

D(X) ×D(Y)
⊗
��

iid×iid // D(XK) ×D(YK) ⊗ // D
(
XK × YK)

D(zip)
��

D(X × Y) iid // D
(
(X × Y)K)

Proof. 1 This is a direct consequence of Lemma 2.3.2 (3).
2 For distributions ωi ∈ D(X), ρi ∈ D(Y) and elements xi ∈ X, yi ∈ Y we

elaborate:(
D(zip) ◦ ⊗ ◦ (

⊗
×

⊗
)
)(
ω⃗, ρ⃗

)
=

∑
x⃗∈XK , y⃗∈YK

(⊗
(ω⃗) ⊗

⊗
(ρ⃗)

)
(x⃗, y⃗)

∣∣∣zip(x⃗, y⃗)
〉

=
∑

x⃗∈XK , y⃗∈YK

⊗
(ω⃗)(x⃗) ·

⊗
(ρ⃗)(⃗y)

∣∣∣zip(x⃗, y⃗)
〉

=
∑

x⃗∈XK , y⃗∈YK

ω1(x1) · . . . · ωK(xK) · ρ1(y1) · . . . · ρK(yK)
∣∣∣zip(x⃗, y⃗)

〉
=

∑
x⃗∈XK , y⃗∈YK

ω1(x1) · ρ1(y1) · . . . · ωK(xK) · ρK(yK)
∣∣∣zip(x⃗, y⃗)

〉
=

∑
x⃗∈XK , y⃗∈YK

(
ω1 ⊗ ρ1

)
(x1, y1) · . . . ·

(
ωK ⊗ ρK

)
(xK , yK)

∣∣∣zip(x⃗, y⃗)
〉

=
∑

x⃗∈XK , y⃗∈YK

⊗(
ω1 ⊗ ρ1, . . . , ωK ⊗ ρK

)(
(x1, y1), . . . , (xK , yK)

) ∣∣∣zip(x⃗, y⃗)
〉

=
∑

z⃗∈(X×Y)K

⊗(
ω1 ⊗ ρ1, . . . , ωK ⊗ ρK

)
(⃗z)

∣∣∣ z⃗〉
=

(⊗
◦ ⊗K)(

(ω1, ρ1), . . . , (ωK , ρK)
)

=
(⊗
◦ ⊗K ◦ zip

)(
ω⃗, ρ⃗

)
.
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3 This follows from the previous item and (2.17), using the equation zip ◦
(∆ × ∆) = ∆, see Exercise 1.3.7.

Example 2.3.6. Suppose we have a distribution ω ∈ D(n) for n ≥ 2, where,
recall, n = {0, . . . , n−1}. We like to use ω to form a mixture of n distributions
ρ0, . . . , ρn−1 ∈ D(X), for some set X. This takes the form of a convex sum of
distributions (2.2):

mix
(
ω, ρ⃗

)
B ω(0) · ρ0 + · · · + ω(n−1) · ρn−1 =

∑
i∈n

ω(i) · ρi. (2.18)

Using tensors we can describe this function mix as a composite of the follow-
ing form:

D(n) ×D(X)n mix //

id×
⊗
��

D(X)

D(n) ×D(Xn) ⊗ // D
(
n× Xn)D(proj)
OO

where proj(i, x⃗) = xi. Indeed:(
proj ◦ ⊗ ◦ (id ×

⊗
)
)(
ω, ρ⃗

)
=

∑
i∈n, x⃗∈Xn

(
ω ⊗ (

⊗
ρ⃗)

)
(i, x⃗)

∣∣∣proj(i, x⃗)
〉

=
∑

i∈n, x⃗∈Xn

ω(i) · (
⊗

ρ⃗)(x⃗)
∣∣∣ xi

〉
=

∑
i∈n, x⃗∈Xn

ω(i) · ρ0(x0) · . . . · ρn−1(xn−1)
∣∣∣ xi

〉
=

∑
i∈n, y∈X

ω(i) · ρi(y)
∣∣∣y〉

=
∑
i∈n

ω(i) · ρi.

Exercise 2.4.5 will describe this mixture in terms of state transformation =≪.

2.3.1 Image distributions from products

In this section we describe two classes of distributions via images of products.
More specifically, for a distribution ω ∈ D(X) we first form the K-ary product
iid [K](ω) = ωK = ω ⊗ · · · ⊗ ω ∈ D(XK) and then take image / pushforward
distributions of the form D( f )

(
ωK)

, for two different functions f : XK → Y .
The two functions f that we use come from the triangular prism (1.48), namely
matching mat , and support supp. Later, in Theorem 2.6.7, we shall also use the
accumulation function acc in this manner (for the multinomial distribution).
The two distributions that we introduce below will be called coincidence cd
and coupon cpn. The descriptions are copied from [83] and use the match
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function mat : XK → SP(K) from lists to set partitions (1.21) and the support
fuction supp : XK → P≤[K](X) from lists to subsets (1.13). Explanations and
illustrations will be provided below.

Definition 2.3.7. Let ω ∈ D(X) be distribution and let K ∈ N.

1 The coincidence distribution cd is defined via pushforward along the match
function as:

cd [K](ω) B D(mat)
(
iid [K](ω)

)
∈ D

(
SP(K)

)
. (2.19)

2 The coupon distribution cpn arises via pushforward along the support func-
tion:

cpn[K](ω) B D(supp)
(
iid [K](ω)

)
∈ D

(
P≤[K](X)

)
. (2.20)

We explain the latter coupon distribution first. We now think of the elements
of the set X as different ‘coupons’ in cereal boxes. The number ω(x) ∈ [0, 1]
gives the probability of finding coupon x in an arbitrary box. Thus, we are
assuming that each box contains a coupon, but it is unclear from the outside
which one. The idea is that people are interested in collecting a complete set
of coupons. Hence duplicates are irrelevant — except possibly for exchange,
which we ignore here.

To calculate the probability of such subsets of coupons we apply pushfor-
ward along the support function supp : XK → P≤[K](X) to a product distribu-
tion ωK , see (2.20). The recipe (2.20) tells that for a subset U we have to sum
the probabilities of all list ℓ with supp(ℓ) = U.

For an illustration we use the distribution ρ = 1
2 |a⟩ +

1
3 |b⟩ +

1
6 |c⟩. The

probabilities for the various non-empty subsets (of coupons) of X = {a, b, c},
when we buy four boxes of cereal, are given by the following distribution.

cpn[4](ρ) = 1
16

∣∣∣∣ {a}〉 + 1
81

∣∣∣∣ {b}〉 + 11
27

∣∣∣∣ {a, b}〉 + 1
1296

∣∣∣∣ {c}〉
+ 29

216

∣∣∣∣ {a, c}〉 + 4
81

∣∣∣∣ {b, c}〉 + 1
3

∣∣∣∣ {a, b, c}〉 .
We elaborate the probability 11

27 of the subset {a, b}. Lemma 1.4.9 tells that the
number of lists ℓ of length 4 with support {a, b} is 2 ·

{
4
2

}
= 2 · 7 = 14. Below

we describe the probabilities ω4(ℓ) for all these lists ℓ with supp(ℓ) = {a, b}.

ω4(a, a, a, b) = 1
24 ω4(a, a, b, a) = 1

24 ω4(a, a, b, b) = 1
36

ω4(a, b, a, a) = 1
24 ω4(a, b, a, b) = 1

36 ω4(a, b, b, a) = 1
36

ω4(a, b, b, b) = 1
54 ω4(b, a, a, a) = 1

24 ω4(b, a, a, b) = 1
36

ω4(b, a, b, a) = 1
36 ω4(b, a, b, b) = 1

54 ω4(b, b, a, a) = 1
36

ω4(b, b, a, b) = 1
54 ω4(b, b, b, a) = 1

54

118



2.3. Parallel products 1192.3. Parallel products 1192.3. Parallel products 119

One may check that these 14 probabilities add up to 11
27 . In a similar way one

obtains the other probabilities of the above distribution cpn[4](ρ).
This coupon distribution is most familiar for the special case when the dis-

tribution is uniform. Let’s assume that the set X has N ≥ 1 elements, with
uniform distribution υ =

∑
x∈X

1
N | x⟩. The resulting coupon probabilities are

determined by the size of the subsets:

cpn[K](υ) =
∑

U∈P≤[K](X)

|U |!
NK ·

 K
|U |

 ∣∣∣U 〉
.

This follows from Equation (1.14).

We next illustrate the coincidence distribution (2.19), obtained via a push-
forward along the match function mat : XK → SP(K) from (1.21). It assigns
to each set partition P ∈ SP(K) a probability, given as sum of probabilities of
lists in XK that match to P.

For instance, for the same distribution ρ = 1
2 |a⟩ +

1
3 |b⟩ +

1
6 |c⟩ that we used

above, and for parameter K = 3, there is the following coincidence distribution
over the set SP(3) of set partitions over {1, 2, 3}.

cd [3](ρ) = 1
6

∣∣∣∣ {{1, 2, 3}}〉 + 2
9

∣∣∣∣ {{1, 2}, {3}}〉 + 2
9

∣∣∣∣ {{1, 3}, {2}}〉
+ 2

9

∣∣∣∣ {{1}, {2, 3}}〉 + 1
6

∣∣∣∣ {{1}, {2}, {3}}〉 .
We elaborate the probability 2

9 of the set partition P =
{
{1, 2}, {3}

}
∈ SP(3).

According to Lemma 1.5.9 (2) there are 3!
(3−2)! = 6 lists ℓ of length 3 with

mat(ℓ) = P. The probabilities ω3(ℓ) are:

ω3(a, a, b) = 1
12 ω3(a, a, c) = 1

24 ω3(b, b, a) = 1
18

ω3(b, b, c) = 1
54 ω3(c, c, a) = 1

72 ω3(c, c, b) = 1
108

These 6 probabilities add up to 2
9 .

When a set X has N ≥ K elements and υ is the uniform distribution on X,
then via Equation (1.23) we get as coincidence distribution:

cd [K](υ) =
∑

P∈SP(K)

N!
(N − |P |)! · NK

∣∣∣P〉 (1.23)
=

∑
P∈SP(K)

|mat−1(P) |
NK

∣∣∣P〉
.

This is a proper probability distribution by Exercise 1.5.7. For instance, for
N = 4 and K = 3,

cd [3](υ) = 1
16

∣∣∣∣ {{1, 2, 3}}〉 + 3
16

∣∣∣∣ {{1, 2}, {3}}〉 + 3
16

∣∣∣∣ {{1, 3}, {2}}〉
+ 3

16

∣∣∣∣ {{1}, {2, 3}}〉 + 3
8

∣∣∣∣ {{1}, {2}, {3}}〉 .
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2.3.2 Marginalisation and copying

We introduce special, post-fix notation for marginalisation via ‘masks’. It cor-
responds to the idea of listing only the relevant variables, where a distribution
on a product set is often written as ω(x, y) and its first marginal as ω(x).

Definition 2.3.8. Let T be one of P,M orD.

1 A mask M is a finite list of 0’s and 1’s, that is, an element M ∈ L({0, 1}).
For a joint state ω ∈ T

(
X1 × · · · × Xn

)
of type T and a mask M of length n

we write:

ωM

for the marginal with mask M. Informally, it keeps all the parts from ω at a
position where there is 1 in M and it projects away parts where there is 0.
This is best illustrated via an example:

ω
[
1, 0, 1, 0, 1

]
= T (⟨π1, π3, π5⟩)(ω) ∈ T (X1 × X3 × X5).

2 A joint state ω ∈ T (X ×Y) is called non-entwined if it is the parallel product
of its marginals:

ω = ω
[
1, 0

]
⊗ ω

[
0, 1

]
.

Otherwise it is called entwined. This notion of entwinedness may be formu-
lated with respect to n-ary states, via a mask, see for example Exercise 2.3.2,
but it may then need some re-arrangement of components.

3 Let σ ∈ T (X) and τ ∈ T (Y) be given. A coupling of σ, τ is a joint state
ω ∈ T (X × Y) that marginalises to both σ and τ, as in:

ω
[
1, 0

]
= σ ω

[
0, 1

]
= τ.

In the probabilistic case there typically are infinitely many couplings, see
Exercise 2.3.5.

A product distribution of the form ω1 ⊗ ω2 ∈ D
(
X1 × X2

)
is always non-

entwined, see Lemma 2.3.2 (2). But in general, joint distributions are entwined,
as will be illustrated below.

This entwinedness of a joint distribution means that the different parts are
correlated and can influence each other. This is a mechanism that will play an
important role in the sequel, via updating, see for instance in Example 6.1.2 (2).
A joint distribution is thus more than the product of its parts.

Non-entwined joint distributions are called separable in [28]. Sometimes
they are called independent, although independence is also used for random
variables. We like to have separate terminology for states only, so we use the
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phrase (non-)entwinedness, which is a new expression. Independence for ran-
dom variables is described in Section 5.4.

Example 2.3.9. Take sets X = {u, v} and A = {a, b}.

1 Consider the joint subset:

W =
{
(u, a), (u, b), (v, a) } ⊆ X × A.

Its marginals are the subsets:

W
[
1, 0

]
= P(π1)(W) = {u, v} = X W

[
0, 1

]
= P(π2)(W) = {a, b} = A.

But clearly, W , X ⊗ A = W
[
1, 0

]
⊗W

[
0, 1

]
. Hence, W is an entwined joint

subset.
2 Now consider the joint distribution ω ∈ D(X × A) given by:

ω = 1
8 |u, a⟩ +

1
4 |u, b⟩ +

3
8 |v, a⟩ +

1
4 |v, b⟩.

We claim that ω is entwined. The first and second marginals ω
[
1, 0

]
=

D(π1)(ω) ∈ D(X) and ω
[
0, 1

]
= D(π2)(ω) ∈ D(A) are:

ω
[
1, 0

]
= 3

8 |u⟩ +
5
8 |v⟩ and ω

[
0, 1

]
= 1

2 |a⟩ +
1
2 |b⟩.

The original state ω differs from the product of its marginals:

ω
[
1, 0

]
⊗ ω

[
0, 1

]
= 3

16 |u, a⟩ +
3
16 |u, b⟩ +

5
16 |v, a⟩ +

5
16 |v, b⟩.

This entwinedness follows from a general characterisation, see Exercise 2.3.7
below.

We move from discarding (via marginalisation) to copying. Recall the copy
function ∆ : X → XK from Subsection 1.3.2. It is used in the following obser-
vation.

Fact 2.3.10. A pushforward along a copy differes from an iterated tensor. This
will be illustrated for subsets and distributions. We consider the binary case,
with copier ∆ : X → X × X, given by ∆(x) = (x, x).

1 For a subset U ⊆ X,

P(∆)(U) , U ⊗ U.

For instance, for X = {a, b, c} and U = {a, b} one has:

P(∆)(U) =
{
∆(x)

∣∣∣ x ∈ U
}
=

{
(a, a), (b, b)

}
.

U ⊗ U =
{
(x, y)

∣∣∣ x, y ∈ U
}
=

{
(a, a), (a, b), (b, a), (b, b)

}
.
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2 Similarly, for a distribution ω ∈ D(X),

D(∆)(ω) , ω ⊗ ω

The following simple example illustrates this fact. First, for ω = 1
3 |0⟩ +

2
3 |1⟩,

D(∆)(ω) = 1
3

∣∣∣∆(0)
〉
+ 2

3

∣∣∣∆(1)
〉
= 1

3

∣∣∣0, 0〉
+ 2

3

∣∣∣1, 1〉
. (2.21)

In contrast:

ω ⊗ ω = 1
9

∣∣∣0, 0〉
+ 2

9

∣∣∣0, 1〉
+ 2

9

∣∣∣1, 0〉
+ 4

9

∣∣∣1, 1〉
. (2.22)

In Exercise 2.3.9 we see that only point distributions are ‘copyable’.

Exercises

2.3.1 1 Prove that if a joint state has full support, then each of its marginals
has full support.

2 Consider the joint distribution ω = 1
2 |a, b⟩ +

1
2 |a

⊥, b⊥ ⟩ ∈ D(A × B)
for A = {a, a⊥} and B = {b, b⊥}. Check that both marginals ω

[
1, 0

]
∈

D(A) and ω
[
0, 1

]
∈ D(B) have full support, but ω itself does not.

Conclude that the converse of the previous point does not hold.
2.3.2 Check that the distribution ω ∈ D

(
{a, b} × {a, b} × {a, b}

)
given by:

ω = 1
24 |aaa⟩ + 1

12 |aab⟩ + 1
12 |aba⟩ + 1

6 |abb⟩
+ 1

6 |baa⟩ + 1
3 |bab⟩ + 1

24 |bba⟩ + 1
12 |bbb⟩

satisfies:

ω = ω
[
1, 1, 0

]
⊗ ω

[
0, 0, 1

]
.

2.3.3 Let X,Y be two non-empty finite sets. Show that:

unifX ⊗ unifY = unifX×Y .

Conclude the uniform distribution on a product is non-entwined.
2.3.4 Find different joint states σ, τ with equal marginals:

σ
[
1, 0

]
= τ

[
1, 0

]
and σ

[
0, 1

]
= τ

[
0, 1

]
but σ , τ.

Hint: Use Example 2.3.9 (2).
2.3.5 1 For numbers 0 ≤ s ≤ r ≤ 1 form the joint distribution:

ω B s
∣∣∣1, 1〉

+ (r − s)
∣∣∣1, 0〉

+ (1 − r)
∣∣∣0, 0〉

∈ D
(
2 × 2

)
.

Show that ω is a coupling of flip(r) and flip(s), i.e. that: ω
[
1, 0

]
=

flip(r) and ω
[
0, 1

]
= flip(s), see Definition 2.3.8 (3).
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2 Let s, t ∈ (0, 1) be given. Show that there infinitely many couplings
of flip(s) and flip(t).

2.3.6 Check that:

ω
[
0, 1, 1, 0, 1, 1

][
0, 1, 1, 0

]
= ω

[
0, 0, 1, 0, 1, 0

]
What is the general result behind this?

2.3.7 Let X = {u, v} and A = {a, b} as in Example 2.3.9. Prove that a state
ω = r1|u, a⟩ + r2|u, b⟩ + r3|v, a⟩ + r4|v, b⟩ ∈ D(X × A), where r1 +

r2 + r3 + r4 = 1, is non-entwined if and only if r1 · r4 = r2 · r3.
2.3.8 Show that tensoring of multisets is linear, in the sense that for φ ∈

M(X) the ‘tensor with φ’ operation φ ⊗ (−) : M(Y) → M(X × Y) is
linear w.r.t. the cone structure of Lemma 1.6.3 (2): for ψ1, . . . , ψn ∈

M(Y) and r1, . . . , rn ∈ R≥0 one has:

φ ⊗
(
r1 · ψ1 + · · · + rn · ψn

)
= r1 ·

(
φ ⊗ ψ1

)
+ · · · + rn ·

(
φ ⊗ ψn

)
.

The same hold in the other coordinate, for (−)⊗ψ. As a special case we
obtain that when φ is a probability distribution, then φ⊗ (−) preserves
convex sums of distributions.

2.3.9 For a state ω ∈ D(X), show that the following statements are equiva-
lent.

• ω is copyable, that is, ω ⊗ ω = D(∆)(ω);
• ω is a point distribution;
• ω is {0, 1}-valued, i.e. restricts to a function X → {0, 1}.

2.3.10 Show that the following diagram commutes, in which flat is the flatten
operation for lists, that removes inner brackets.

D(X)
iid [K]

//

iid [K·L] ..

D
(
XK) iid [L]

// D
(
(XK)L)
D(flat)
��

D
(
XK·L)

2.3.11 Show that the big tensor
⊗

: D(X)K → D(XK) from (2.17) com-
mutes with unit and flatten, as described below.

XK

unit K

��

unit

��

D2(X)K

flat K
��

⊗
// D

(
D(X)K) D(

⊗
)
// D2(XK)

flat
��

D(X)K
⊗
// D(XK) D(X)K

⊗
// D(XK)

Abstractly this shows that the K-fold tensor functor (−)K distributes
over the monadD.
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2.4 Probabilistic channels

In the previous chapter we have seen channels of the form X → L(Y), or
X → P(Y), or X → M(Y). We will now introduce probabilistic channels of
the form X → D(Y). Recall that we often use a special arrow → for such
channels and then simply write them as X → Y .

We have seen that the operations L, P, M used for these channels are all
monads, via special ‘unit’ and ‘flatten’ functions. Moreover, in terms of these
unit and flatten maps we have defined identity and composition for these chan-
nels, leading to categories of channels Chan(L), Chan(P) and Chan(M), for
associated forms of computation. In this section we will show that the same
monad structure exists for the distribution functorD— and for the infinite ver-
sion D∞ too — and that we can thus also also organise probabilistic channels
in the form of a category Chan(D), with sets as objects and probabilistic com-
putations X → D(Y) as morphisms X → Y . In the remainder of this book the
emphasis will be almost exclusively on this probabilistic case, so that ‘chan-
nel’ will standardly mean ‘probabilistic channel’ and that the notation Chan
will be used for Chan(D).

Lemma 2.4.1. The unit and flatten maps for multisets from Subsection 1.6.2
restrict to distributions. The unit function unit : X → D(X) is simply unit(x) B
1| x⟩. Flattening is the function flat : D(D(X))→ D(X) with:

flat
(∑

i ri|ωi ⟩
)
B

∑
i ri · ωi =

∑
x∈X

(∑
i ri · ωi(x)

) ∣∣∣ x〉
.

The formulation in the middle uses a convex sum of distributions (2.2).
The familiar properties of unit and flatten hold for distributions too: the

analogue of Lemma 1.6.4 holds, with ‘multiset’ replaced by ‘distribution’.

Proof. The only thing that needs to be checked is that flattening yields a con-
vex sum, i.e. that its probabilities add up to one. This is easy:∑

x
(∑

i ri · ωi(x)
)
=

∑
i ri ·

∑
x ωi(x) =

∑
i ri · 1 = 1.

We conclude that D, with these unit and flat maps, is a monad. The same
holds for the ‘infinite’ variationD∞ from Subsection 2.1.1.

In Lemma 2.1.3 we have seen pushforward of a distribution ω along a func-
tion f , producing an image distribution D( f )(ω). There is also pushforward
along a channel, which we describe next, with a special notation =≪. It may be
formulated in terms of multiplication of stochastic matrices, see Exercise 2.4.2.

Definition 2.4.2.
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1 A probabilistic channel c : X → Y is a function c : X → D(Y). One can
think of it as an X-indexed collection

(
c(x)

)
x∈X of distributions c(x) ∈ D(Y)

on Y . As such it is often written as a conditional probability P(y | x).

2 For a distribution / state ω ∈ D(X) on the domain X of a channel c : X → Y
we can do a pushforward, also known as state transformation or predic-
tion, and produce a new distribution / state c =≪ ω ∈ D(Y) on the chan-
nel’s codomain Y . This happens via the standard definition for =≪from Sec-
tion 1.10, see especially (1.50) and (1.51):

c =≪ω B flat
(
D(c)(ω)

)
=

∑
x∈X

ω(x) · c(x)

=
∑
y∈Y

∑
x∈X

c(x)(y) · ω(x)

 ∣∣∣y〉
.

(2.23)

The first sum
∑

x ω(x) · c(x) involves a convex sum (mixture) over distribu-
tions c(x) ∈ D(Y). This formulation is easiest in actual computations.

We have already seen that unit and flatten restrict to distribution, so as a
result the description (2.23) produces a new distribuition c =≪ω. But we can
double-check that probabilities add up to one:

∑
y∈Y

(
c =≪ω

)
(y) =

∑
y∈Y

∑
x∈X

c(x)(y) · ω(x)


=

∑
x∈X

∑
y∈Y

c(x)(y)

 · ω(x) =
∑
x∈X

1 · ω(x) = 1.

One may describe state tranformation c =≪ω in operational terms via sampling
(see Subsection 2.2.1). Then it looks as a probabilistic program fragment of
the form:

x← ω
y← c(x)
return y

(2.24)

Later, in Subsection 3.7.1, we provide a mathematical justification for this no-
tation.

Example 2.4.3 (Copied from [81]). Let’s assume we wish to capture the mood
of a teacher, as a probabilistic mixture of three possible options namely: pes-
simistic (p), neutral (n) or optimistic (o). We thus have a three-element proba-
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bility space X = {p, n, o}. We assume a mood distribution:

ω = 1
8 | p⟩ +

3
8 |n⟩ +

1
2 |o⟩ with plot

This mood thus tends towards optimism.
Associated with these different moods the teacher has different views on

how pupils perform in a particular test. This performance is expressed in terms
of marks, which can range from 1 to 10, where 10 is best. The probability space
for these marks is written as Y = {1, 2, . . . , 10}.

The view of the teacher is expressed via a channel c : X → Y . It is defined
via the following three mark distributions, one for each element in the set of
moods X = {p, n, o}.

c(p)
= 1

50 |1⟩ +
2
50 |2⟩ +

10
50 |3⟩ +

15
50 |4⟩ +

10
50 |5⟩

+ 6
50 |6⟩ +

3
50 |7⟩ +

1
50 |8⟩ +

1
50 |9⟩ +

1
50 |10⟩

pessimistic mood marks

c(n)
= 1

50 |1⟩ +
2
50 |2⟩ +

4
50 |3⟩ +

10
50 |4⟩ +

15
50 |5⟩

+ 10
50 |6⟩ +

5
50 |7⟩ +

1
50 |8⟩ +

1
50 |9⟩ +

1
50 |10⟩

neutral mood marks

c(o)
= 1

50 |1⟩ +
1
50 |2⟩ +

1
50 |3⟩ +

2
50 |4⟩ +

4
50 |5⟩

+ 10
50 |6⟩ +

15
50 |7⟩ +

10
50 |8⟩ +

4
50 |9⟩ +

2
50 |10⟩.

optimistic mood marks

Now that the state ω ∈ D(X) and the channel c : X → Y have been described,
we can form the transformed state c =≪ ω ∈ D(Y). Following the formula-
tion (2.23) we get for each mark i ∈ Y the predicted probability:(

c =≪ω
)
(i) =

∑
x ω(x) · c(x)(i)

= ω(p) · c(p)(i) + ω(n) · c(n)(i) + ω(o) · c(o)(i)
= 1

8 · c(p)(i) + 3
8 · c(n)(i) + 1

2 · c(o)(i).
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The outcome is in the plot below. It contains a convex combination of the
above three distributions (and plots), for c(p), c(n) and c(o), where the weights
are determined by the mood distribution ω. This plot contains the ‘predicted’
marks, corresponding to the state of mind of the teacher.

We view channels X → Y as probabilistic computations. Such computations
can be composed, both sequentially, via ◦· , and in parallel, via ⊗.

Definition 2.4.4.

1 Let X
c
→ Y and Y

d
→ Z be two channels. We can form the composite channel

d ◦· c : X → Z via the monad structure.

d ◦· c B
(
X c // D(Y)

D(d)
// D(D(Z)) flat // D(Z)

)
.

More explicitly, there is a formula, for x ∈ X,

(d ◦· c)(x) = d =≪c(x) =
∑
z∈Z

∑
y∈Y

c(x)(y) · d(y)(z)

 ∣∣∣z〉.
This composition ◦· is associative and has unit channels unit : X → X as
identity maps, see Lemma 1.10.3. It gives us a category of probabilistic
channels, written as Chan(D), or simply as Chan.

2 Now let’s assume that we have channels X
c
→ Y and A

d
→ B. Then we can

form the parallel product (or tensor) channel c ⊗ d : X × A→ Y × B via:

c ⊗ d B
(
X × A c×d // D(Y) ×D(B) ⊗ // D(Y × B)

)
.

This means for elements x ∈ X and a ∈ A,(
c ⊗ d

)
(x, a) = c(x) ⊗ d(a) =

∑
y∈Y, b∈B

c(x)(y) · d(a)(b)
∣∣∣y, b〉

.

3 When two channels c : Z → X and d : Z → Y have the same domain we can
form a tuple channel ⟨c, d⟩ : Z → X × Y as:

⟨c, d⟩ B (c ⊗ d) ◦ ∆ so that ⟨c, d⟩(z) = c(z) ⊗ d(z).
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4 In particular, for a distribution ω on Z and a channel d : Z → Y we define
the graph as the joint distribution on Z × Y defined by:

⟨id , d⟩ =≪ω so that
(
⟨id , d⟩ =≪ω

)
(y, z) = ω(y) · d(y)(z).

5 Finally, for a channel c : X → Y1 × · · · × Yn and a mask M of length n we
write cM for the channel x 7→ c(x)M. This means that masks are used for
channels too, in a pointwise manner.

Thus, the category Chan = Chan(D) of probabilistic channels has sets X as
objects and channels X → Y as morphisms / maps. These morphisms can be
composed sequentially via ◦· and in parallel via ⊗. More formally, this means
that Chan is a symmetric monoidal category. Below, in Subsection 2.5.1, we
will introduce a convenient graphical notation for this category.

An ordinary function f : X → Y can be turned into a (probabilistic) channel
‹ f › : X → Y . Explicitly, ‹ f ›(x) = 1| f (x)⟩. This can be formalised in terms of
a functor Sets→ Chan. Often, we don’t write the ‹−› angles when the context
makes clear what is meant. For convenience we recall the most basic laws for
deterministic channels — see Lemma 1.10.3 (4).

‹g› ◦· ‹ f › = ‹g ◦ f › c ◦· ‹ f › = c ◦ f ‹ f › ⊗ ‹g› = ‹ f × g›
‹ f › =≪ω = D( f )(ω) g ◦· c = D(g) ◦ c ⟨‹ f ›, ‹g›⟩ = ‹⟨ f , g⟩›.

(2.25)

As a special case we get:

unit ⊗ unit = ‹id › ⊗ ‹id › = ‹id × id › = ‹id › = unit . (2.26)

We have already seen several examples of probabilistic channels. For in-
stance, the flip and binomial distributions from Example 2.1.2 form channels:

[0, 1] ◦
flip
// {0, 1} and [0, 1] ◦

bn[K]
// {0, 1, . . . ,K}

Frequentist learning has been described as a function Flrn : M∗(X) → D(X)
and thus forms a channel, as on the left below. A tensor also forms a channel,
as in the middle. Even the identity functionD(X)→ D(X) can be described as
a channel, which we call sample, abbreviated to sam.

M∗(X) ◦
Flrn // X D(X) ×D(Y) ◦

⊗ // X × Y D(X) ◦
sam // X

The coincidence and coupon functions from Subsection 2.3.1 form channels
of the form:

D(X) ◦
cd // SP(K) D(X) ◦

cpn
// P≤[K](X)

The formalism of channels, including their sequential and parallel composition
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◦· and ⊗, allows us to express some of the basic properties in probability theory.
This is an underlying theme in this book. It forms the basis for the area of
categorical probability theory.

In the next example we show how products, multisets and distributions come
together in an elementary combinatorial situation. It shows how the accumula-
tor function from lists to multisets has a probabilistic inverse.

Example 2.4.5. Let X be an arbitrary set and K be a fixed positive natural
number. We recall the accumulation function acc : XK → N[K](X) mapping
lists to natural multisets, via acc(x1, . . . , xK) = 1| x1 ⟩ + · · · + 1| xK ⟩, see (1.36).

In Proposition 1.7.2 we have seen that for a natural multiset φ ∈ N[K](X)
there are (φ ) many lists x⃗ ∈ XK that accumulate to φ, that is, with acc(x⃗) = φ.
We are interested in an inverse to accumulation. Which of these (φ ) many lists
in acc−1(φ) do we pick? The trick is not to make a choice, but to take them all,
in a uniform distribution. This gives a channelN[K](X)→ D(XK) in the other
direction. We call it arrangement, abbreviated as arr .

arr(φ) B
∑

x⃗∈acc−1(φ)

1
(φ )

∣∣∣ x⃗〉
=

∑
x⃗∈acc−1(φ)

∏
x φ(x)!
K!

∣∣∣ x⃗〉
(2.27)

For instance, for X = {a, b} with multiset φ = 3|a⟩ + 1|b⟩ there are (φ ) =(
4

3,1

)
= 4!

3!·1! = 4 arrangements of φ, namely [a, a, a, b], [a, a, b, a], [a, b, a, a],
and [b, a, a, a], so that:

arr
(
3|a⟩ + 1|b⟩

)
= 1

4

∣∣∣a, a, a, b〉
+ 1

4

∣∣∣a, a, b, a〉
+ 1

4

∣∣∣a, b, a, a〉
+ 1

4

∣∣∣b, a, a, a〉
.

Our next question is: how are accumulation acc and arrangement arr re-
lated? We like to say that arrangement is left-inverse of accumulation, that
is: accumulation after arrangement is the identity. Here we hit the problem
that accumulation is a function, but arrangement is a channel. What kind of
composition should we use, as ‘after’? The trick is to turn the accumulation
function acc : XK → N[K](X) into a (deterministic) channel ‹acc› : XK →

D
(
N[K](X)

)
, where ‹acc›(x⃗) = 1

∣∣∣acc(x⃗)
〉
, and then to compose as channels.

The intended left-inverse property can now be expressed via commutation
of the following diagram of channels. Recall that unit is the identity channel,
which we simply write as id .

N[K](X) ◦
arr //

◦
id

XK

◦ ‹acc›
��

N[K](X)

that is: ‹acc› ◦· arr = id . (2.28)
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We elaborate the details, for an arbitrary multiset φ ∈ N[K](X).

(
‹acc› ◦· arr

)
(φ)

(2.25)
= D(acc)

(
arr(φ)

) (2.27)
= D(acc)

 ∑
x⃗∈acc−1(φ)

1
(φ )

∣∣∣ x⃗〉
=

∑
x⃗∈acc−1(φ)

1
(φ )

∣∣∣acc(x⃗)
〉

=
∑

x⃗∈acc−1(φ)

1
(φ )

∣∣∣φ〉
= 1

∣∣∣φ〉
by Proposition 1.7.2

= unit(φ).

In the other direction, arr(acc(x⃗)) does not return x⃗. It yields a uniform distri-
bution over all permutations of the sequence x⃗ ∈ XK , see Section 2.9 for more
information.

What we have done in this example can be generalised to a probabilistic
inverse of a function h. It will be written as h∼1. The tilde ∼ in the notation h∼1,
at the place where one writes −1 for ordinary inverses, is meant to induce an
association with uncertainty.

Definition 2.4.6. Let h : X ↠ Y be a surjective function with finite inverse
images h−1(y) = {x ∈ X | f (x) = y}. These subsets are non-empty by surjectiv-
ity of h. We define the probabilistic inverse as a channel h∼1 : Y → D(X) via
uniform distributions:

h∼1(y) B
∑

x∈h−1(y)

1
|h−1(y) |

∣∣∣ x〉
. (2.29)

Then one has: ‹h› ◦· h∼1 = unit , precisely as in the previous example.

Thus, the arrangement map is defined in (2.27) as arr = acc∼1, with an
explicit formula for the sizes of inverse images.

Exercises

2.4.1 Consider the sets X = {x, y, z} and Y = {u, v}, with state ω = 1
6 | x⟩ +

1
2 |y⟩ +

1
3 |z⟩ ∈ D(X) and channel c : X → D(Y) given by:

c(x) = 1
2 |u⟩ +

1
2 |v⟩ c(y) = 1|u⟩ c(z) = 3

4 |u⟩ +
1
4 |v⟩.

1 Compute the state transformation c =≪ω ∈ D(Y).
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2 Consider a new channel d : {u, v} → {1, 2, 3, 4} given by:

d(u) = 1
4 |1⟩ +

1
8 |2⟩ +

1
2 |3⟩ +

1
8 |4⟩ d(v) = 1

4 |1⟩ +
1
8 |3⟩ +

5
8 |4⟩.

Describe the composite channel d ◦· c : {a, b, c} → {1, 2, 3, 4} con-
cretely.

2.4.2 Consider for the channel c and the distribution ω in the previous ex-
ercise the associated matrices:

Mc =

 1
2 1 3

4
1
2 0 1

4

 Mω =


1
6
1
2
1
3


Such matrices are called stochastic, since each of their columns has
non-negative entries that add up to one.

1 Check that the matrix associated with the transformed state c =≪ω

is the matrix-column multiplication Mc · Mω.
2 Check also that channel composition corresponds to matrix multi-

plication: Md◦·c = Md · Mc, for the channel d described above.

(A general description appears in Remark 4.3.5.)
2.4.3 Recall from Proposition 1.8.7 that the set N[K](X) of K-sized nat-

ural multisets over a set X with n elements contains
((

n
K

))
members.

We write unifN[K](X) ∈ D
(
N[K](X)

)
for the uniform distribution over

such multisets.

1 Check that:

unifN[K](X) =
∑

φ∈N[K](n)

1((
n
K

)) ∣∣∣φ〉
.

2 Use Lemma 1.8.8 to prove that Flrn =≪unifN[K](X) = unifX ∈ D(X).

2.4.4 Recall that the identity function D(X) → D(X) is used as sample
channel sam : D(X) → X. Check that for ω ∈ D(X), c : X → Y , and
Ω ∈ D

(
D(X)

)
one has:(

c ◦· sam
)
(ω) = c =≪ω and sam =≪Ω = flat(Ω).

2.4.5 Recall the mixture map mix : D(n) × D(X)n → D(X) from Exam-
ple 2.3.6. Show that it is essentially state transformation:

mix
(
ω, c

)
= c =≪ω,

where a channel c : n → X is identified with an n-tuple of distribu-
tions c(0), . . . , c(n−1) ∈ D(X).
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2.4.6 Let f : X → Y be a function and c : Y → Z be a channel. Show that for
a distribution ω ∈ D(X) the following expressions are all the same.

c =≪D( f )(ω) = c =≪
(
f =≪ω

)
=

(
c ◦· f

)
=≪ω.

We have left the brackets ‹−› that promote f to a channel implicit.
Fill them in yourself where appropriate.

2.4.7 For an arbitrary set X and a number K ∈ N>0 define a ‘uniform pro-
jection’ channel unpr[K] : XK → X by:

unpr[K](x⃗) B
∑

1≤i≤K

1
K

∣∣∣ xi
〉
.

This channel is written as ε[K] in [82]. It can be understood as fre-
quentist learning for sequences, see the triangles below.

1 Prove that unpr[K] is natural in X.
2 Check that the following diagram commutes, for K, L ≥ 1.

XK × XL

++ �
��

unpr[K]×unpr[L]
// D(X) ×D(X)

K
K+L ·(−)+ L

K+L ·(−)
��

XK+L unpr[K+L]
// D(X)

3 Show that the following two triangles (of channels) commute.

XK ◦
unpr[K]

//

◦
acc ''

X XK ◦
unpr[K]

// X

N[K](X)
◦

Flrn

DD

N[K](X)
◦

arr

ZZ

◦
Flrn

DD

4 Let ω1, . . . , ωK ∈ D(X) be given. Show that:

unpr[K] =≪
(
ω1 ⊗ · · · ⊗ ωK

)
= 1

K · ω1 + · · · +
1
K · ωK

= flat
(
unpr[K](ω1, . . . , ωK)

)
.

This means that the following rectangle commute, via Exercise 2.4.4:

D(X)K

◦
⊗
��

◦
unpr[K]

// D(X)
◦ sam
��

XK ◦
unpr[K]

// X

Deduce that unpr[K] =≪ωK = ω.
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2.4.8 1 Check that the following two diagrams commute.

X1 × · · · × Xn

◦c1⊗···⊗cn
��

◦
πi // Xi

◦ ci
��

X
◦⟨d1,...,dn⟩
��

◦
di

��

Y1 × · · · × Yn ◦
πi // Yi Y1 × · · · × Yn ◦

πi // Yi

Express these equations also in string diagrammatic form.
2 Show that:

(c ⊗ d) =≪(ω ⊗ ρ) = (c =≪ω) ⊗ (d =≪ρ).

3 Use the previous equation to show:

(e ⊗ f ) ◦· (c ⊗ d) = (e ◦· c) ⊗ ( f ◦· d).

Check that this equation trivialises when written in diagrammatic
form.

4 Prove that for a channel c : X → Y the following diagram com-
mutes.

D(X) ◦
iid //

c =≪(−)
��

XK

◦ cK= c⊗ ··· ⊗ c
��

D(Y) ◦
iid // YK

5 Show that the following diagram commutes.

D
(
D(X)

)
◦

iid //

flat
��

D(X)K

◦
⊗
��

D(X) ◦
iid // XK

that is
⊗

=≪iid (Ω) = iid
(
flat(Ω)

)
.

2.4.9 Recall that we write sam : D(X) → X for the identity function, as
channel. Prove that one can write the iid and

⊗
channels from Defi-

nition 2.3.4 as:

iid = ⟨sam, . . . , sam⟩ and
⊗
= sam ⊗ · · · ⊗ sam.

2.4.10 Prove that state transformation along D-channels preserves convex
combinations (2.2), that is, for r ∈ [0, 1],

c =≪
(
r · ω + (1−r) · ρ

)
= r ·

(
c =≪ω

)
+ (1−r) ·

(
c =≪ρ

)
.

2.4.11 1 Prove that the arrangement map arr = acc∼1 from Example 2.4.5 is
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natural: for each function f : X → Y the following diagram com-
mutes.

N[K](X)
N( f )
��

arr // D
(
XK)

D( f K )
��

N[K](Y) arr // D
(
YK)

(This is not easy; you may wish to check first what this means in a
simple case and then content yourself with a ‘proof by example’.)

2 Show that arrangement can be interpreted as a channel arr : N(X)→
L(X) and that it is also natural in this form, without explicit size K.

2.4.12 Recall the match function mat : XK → SP(K) from (1.21). We as-
sume K ≤ |X |. Use (1.23) to check that the probabilistic inverse chan-
nel mat∼1 : SP(K)→ XK can be described as:

mat∼1(P) =
∑

x⃗∈mat−1(P)

(|X | − |P |)!
|X |!

∣∣∣ x⃗〉
.

Describe this channel for K = 3 and X = {a, b, c, d}.
2.4.13 Use Lemma 1.4.9 to define a probabilistic inverse for the support

function supp[K] : XK → P≤[K](X), where K ≥ 1.
2.4.14 This exercise is meant to show that probabilistic inverses do not com-

pose. Consider the following commutative triangle of surjective func-
tions with finite inverse images:

{1, 2, 3, 4}

f=g◦h "" ""

h // // {u, v,w}

g
}}}}

{a, b}

where

h(1) = h(2) = u
h(3) = v
h(4) = w

g(u) = g(v) = a
g(v) = b.

Check the inequality , in:

h∼1 ◦· g∼1 , f ∼1 = (g ◦ h)∼1.

2.4.15 Recall the bijective correspondences from Exercise 1.10.4.

1 Let X,Y be finite sets and c : X → D(Y) be a D-channel. We
can then define an M-channel c† : Y → M(X) by swapping ar-
guments: c†(y)(x) = c(x)(y). We call c a ‘bi-channel’ if c† is also a
D-channel, i.e. if

∑
x c(x)(y) = 1 for each y ∈ Y .

Prove that the identity channel is a bi-channel and that bi-channels
are closed under composition.
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2 Take A = {a0, a1} and B = {b0, b1} and define a channel bell : A ×
2→ D(B × 2) as:

bell(a0, 0) = 1
2 |b0, 0⟩ + 3

8 |b1, 0⟩ + 1
8 |b1, 1⟩

bell(a0, 1) = 1
2 |b0, 1⟩ + 1

8 |b1, 0⟩ + 3
8 |b1, 1⟩

bell(a1, 0) = 3
8 |b0, 0⟩ + 1

8 |b0, 1⟩ + 1
8 |b1, 0⟩ + 3

8 |b1, 1⟩
bell(a1, 1) = 1

8 |b0, 0⟩ + 3
8 |b0, 1⟩ + 3

8 |b1, 0⟩ + 1
8 |b1, 1⟩

Check that bell is a bi-channel.
(It captures the famous Bell table from quantum theory; we have
deliberately used open spaces in the above description of the chan-
nel bell so that non-zero entries align, giving a ‘bi-stochastic’ ma-
trix, from which one can read bell† vertically, that is, as transpose.)

3 Show that both first marginals bell(x, z)
[
1, 0

]
and bell†(y, z)

[
1, 0

]
are uniform.

2.4.16 Check that the inclusions D(X) ↪→ M(X) form a map of monads, as
described in Definition 1.11.2.

2.4.17 Let c : X → D(Y) be a D-channel and φ ∈ M(X) be a multiset.
BecauseD(Y) ⊆ M(Y) we can also consider c as anM-channel, and
use c =≪φ. Prove that:

Flrn(c =≪φ) = c =≪Flrn(φ) = Flrn(c =≪Flrn(φ)).

2.4.18 Consider a state σ ∈ D(X) and an ‘endo’ channel c : X → X.

1 Check that the following two statements are equivalent.

• ⟨id , c⟩ =≪σ = ⟨c, id ⟩ =≪σ inD(X × X);
• σ(x) · c(x)(y) = σ(y) · c(y)(x) for all x, y ∈ X.

2 Show that the conditions in the previous item imply that σ is a fixed
point for state transformation, that is:

c =≪σ = σ.

Such a σ is also called a stationary state.

2.5 String diagrams and Bayesian networks

In this book we use commuting diagrams, like in category theory, both for
functions and for channels, see for instance Diagram 2.28. For channels we
will use a second graphical formalism, called string diagrams. Such diagrams
better display the flows involved. Moreover, string diagrams can be used for
equational reasoning. This section first introduces these string diagrams. Then
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it discusses an alternative graphical formalism that is used in probabilistic rea-
soning: Bayesian networks. We introduce them via an example from the litera-
ture and show that they are also formalisations of channels. However, Bayesian
networks do not reflect sequential and parallel composition of channels. Hence
we prefer to work with string diagrams.

2.5.1 A graphical language for channels

At this stage we introduce these string diagrams informally. How they are
used will become clear along the way. For more information we refer to the
literature, see e.g. [163]. For usage of string diagram in probability theory,
see [54, 57], and in quantum theory, see [28].

In this language of string diagrams a channel c : X → Y is written as a box
with two wires, as on the left below, where the flow is from bottom to top.
Wires have sets as types. Below on the left the domain and codomain X,Y are
included as types of the input and output wire. These types of wires are usually
omitted when they can be deduced from the context. In the middle below we
see how a composite of two channels d◦· c is written via a sequential connection
of the wires of two boxes. On the right we see the graphical notation for the
parallel composition c ⊗ d of two channels, as boxes.

c

X

Y

c

d
c d

Sometimes we write a function f in such a box. We then implicitly promote it
to a deterministic channel ‹ f ›.

A state / distribution is a box without incoming wires, as on the left below.
It may have multiple outgoing wires, when it is a joint state, for instance in
D(X × Y × Z), as in the middle. On the right we see how marginalisation is
described graphically, via the discard symbol . In this case we discard the first
and third wire. It corresponds to what we have written via a mask as ρ

[
0, 1, 0

]
,

see Definition 2.3.8, where only the middle output remains.

ω ρ

For each finite set X there is a uniform distribution unifX ∈ D(X), for which
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we use special notation, on the left below, as upside-down of discarding.

unifX = X 1|y⟩ =
y

Y
(2.30)

For an element y ∈ Y of an arbitrary set we simply put y in the box, as on the
right, instead of 1|y⟩.

There are also equations between string diagrams. When all wires of a chan-
nel are discarded, the whole box disappears, as in:

· · ·

· · ·

= · · · in particular
· · ·

=

The dashed box on the right indicates ‘nothing’.
A copy is written as a splitting of wires: . It satisfies a number of diagram-

matic equations, expressing associativity, commutativity and a co-unit prop-
erty:

= = = (2.31)

Because copying is associative, it does not matter which order of copying we
use in successive copying. Therefore we feel free to write such n-ary copying
as coming from a single node •, as in:

· · ·

In this formalism of string diagrams a single wire | of type X × Y is the same
as two parallel wires | | of types X and Y respectively. This is notationally
sometimes a bit awkward and means that we have to use equations like:

X × Y
=

X Y
= = X YX × Y X Y

(2.32)
We illustrate the use of string diagrams in the following result that connects

several of the probabilistic operations that we have seen so far. The diagrams,
with flows going from top to bottom, make clear in an intuitive manner what is
connected to what and how the computation proceeds. Later on we shall recog-
nise that the equation below expresses that the bit-sum function is a sufficient
statistic, see Section 7.6.
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Theorem 2.5.1. Consider the K-fold bit-sum function sum : 2K → {0, . . . ,K}
given by sum(b1, . . . , bK) =

∑
i bi.

1 The probabilistic inverse sum∼1 : {0, . . . ,K} → 2K is given by:

sum∼1(n) =
∑

b⃗∈sum−1(n)

1(
K
n

) ∣∣∣ b⃗〉
.

2 There is the following equality of channels [0, 1]→ {0, . . . ,K} × 2K .

bn[K]

=

sum∼1

flip flip· · ·

sum
· · · · · ·

(2.33)

Proof. 1 In order to have K bits bi sum to n ∈ {0, . . . ,K} precisely n of them
need to be 1. There are

(
K
n

)
ways to choose these n bits out of K. Thus, in a

uniform distribution sum∼1(n) each of these ways gets probability 1/(K
n).

2 We have for r ∈ [0, 1],

⟨sum, id ⟩ =≪ ⟨flip, . . . ,flip⟩(r)

=
∑
b⃗∈2K

∑
n∈{0,...,K}

‹sum›(b⃗)(n) · flip(r)(b1) · . . . · flip(r)(bK)
∣∣∣n, b⃗〉

=
∑

n∈{0,...,K}

∑
b⃗∈sum−1(n)

rb1 · (1−r)1−b1 · . . . · rbK · (1−r)1−bK
∣∣∣n, b⃗〉

=
∑

n∈{0,...,K}

∑
b⃗∈sum−1(n)

r
∑

i bi · (1−r)K−
∑

i bi
∣∣∣n, b⃗〉

=
∑

n∈{0,...,K}

∑
b⃗∈sum−1(n)

1(
K
n

) · (K
n

)
· rn · (1−r)K−n

∣∣∣n, b⃗〉
=

∑
b⃗∈2K

∑
n∈{0,...,K}

sum∼1(n)(b⃗) · bn[K](r)(n)
∣∣∣n, b⃗〉

= ⟨id , sum∼1⟩ =≪bn[K](r).

Concentrating only on the left, or only on the right, side of Diagram 2.33
gives interesting equations.

Corollary 2.5.2. There are the following two equations of channels [0, 1] →
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{0, . . . ,K} and [0, 1]→ 2K .

bn[K]=
flip flip· · ·

sum

bn[K]

sum∼1

flip flip

· · · · · ·

=and

Proof. We do only the equation on the left, since the one on the right can be
obtained in a similar manner. We give two proofs and first reason diagrammat-
ically by using the rule for the discarding after a copier, in (2.31), and the rule
for discarding of boxes:

bn[K]

flip flip· · ·

sum

bn[K]

=

sum∼1

flip flip· · ·

sum · · · · · ·

=(2.33)
=

bn[K]

=

Alternatively, the corresponding equational proof uses Exercise 2.4.8:

sum ◦· ⟨flip, . . . ,flip⟩ = π1 ◦· ⟨sum, id ⟩ ◦· ⟨flip, . . . ,flip⟩
(2.33)
= π1 ◦· ⟨id , sum∼1⟩ ◦· bn[K] = bn[K].

Remark 2.5.3. We should be careful that boxes can in general not be “pulled
through” copiers, as expressed below.

,
f

f f

This equation does hold for deterministic channels, that is for functions f .
In fact, such commutation can be used as characteristic of such deterministic
channels, see Exercise 2.5.2.

2.5.2 A Bayesian network example

Bayesian networks are graphical representations of joint distributions and are
useful for reasoning: in presence of information about certains nodes in the
network, one can draw conclusions about other nodes via probabilistic updat-
ing. For instance, a Bayesian network may capture the probabilistic depen-
dencies between phenomena in a particular medical affliction. Given certain
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Figure 2.3 The wetness Bayesian network (from [37, Chap. 6]), with only the
nodes and edges between them; the conditional probability tables associated with
the nodes are given separately in the text.

observations, the network may give a doctor (updated) information about the
likelihoods of various scenarios, see e.g. [51]. We shall go deeper into such rea-
soning in Section 6.4, once probabilistic updating has been introduced. At this
stage we introduce, via an example, how Bayesian networks are formulated
in the literature. Then we provide a reformulation in terms of string diagrams
(see Subsection 2.5.1). The latter representation will be used for prediction,
that is for state transformation. The lesson of this section is that Bayesian net-
works can be understood as configurations of channels and are thus described
appropriately via string diagrams.

The particular Bayesian network that we use as illustration is a standard
one, copied from the literature, namely from [37]. Bayesian networks were in-
troduced in [145], see also [120, 9, 14, 15, 102, 115]. They form a popular
technique for displaying probabilistic connections and for efficiently present-
ing joint states, without state explosion.

Consider the diagram / network in Figure 2.3. It is meant to capture prob-
abilistic dependencies between several wetness phenomena in the oval boxes.
For instance, in winter it is more likely to rain (than when it’s not winter), and
also in winter it is less likely that a sprinkler is on. Still the grass may be wet
by a combination of these occurrences. Whether a road is slippery depends on
rain, not on sprinklers.

The letters A, B,C,D, E in this diagram are written exactly as in [37]. Here
they are not used as sets of Booleans, with inhabitants true and false, but in-
stead we use these sets with elements:

A = {a, a⊥} B = {b, b⊥} C = {c, c⊥} D = {d, d⊥} E = {e, e⊥}.
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The notation a⊥ is read as ‘not a’. In this way the name of an elements suggests
to which set the element belongs.

The diagram in Figure 2.3 becomes a Bayesian network when we provide
it with conditional probability tables. For the lower three nodes they look as
follows.

� �
� �

w
in

te
r a a⊥

3/5 2/5 � �
� �

sp
ri

nk
le

r A b b⊥

a 1/5 4/5

a⊥ 3/4 1/4

� �
� �

ra
in

A c c⊥

a 4/5 1/5

a⊥ 1/10 9/10

And for the upper two nodes we have:

� �
� �

w
et

gr
as

s

B C d d⊥

b c 19/20 1/20

b c⊥ 9/10 1/10

b⊥ c 4/5 1/5

b⊥ c⊥ 0 1 � �
� �

sl
ip

pe
ry

ro
ad C e e⊥

c 7/10 3/10

c⊥ 0 1

This Bayesian network is thus given by nodes, each with a conditional proba-
bility table, describing likelihoods in terms of previous ‘ancestor’ nodes in the
network (if any).

How to interpret all this data? How to make it mathematically precise? It is
not hard to see that the first ‘winter’ table describes a probability distribution,
abbreviated as wi , on the set A = {a, a⊥}, which, in ket notation is:

wi = 3
5 |a⟩ +

2
5 |a

⊥ ⟩ ∈ D(A).

Thus, it is assumed with probability of 60% that we are in a winter situation.
This is often called the prior distribution, or also the initial state.

We move to the above ‘sprinkler’ table. Note that it contains two distribu-
tions on B, one for the element a ∈ A and one for a⊥ ∈ A. Here we recognise a
channel, namely a channel A→ D(B). This is a crucial insight! We abbreviate
this channel as sp, and define it explicitly as:

A ◦
sp
// B with

 sp(a) = 1
5 |b⟩ +

4
5 |b

⊥ ⟩

sp(a⊥) = 3
4 |b⟩ +

1
4 |b

⊥ ⟩.

We read this channel as: if it’s winter, there is a 20% chance that the sprinkler
is on, but if it’s not winter, there is 75% chance that the sprinkler is on.

Similarly, the ‘rain’ table corresponds to a channel:

A ◦
ra // C with

 ra(a) = 4
5 |c⟩ +

1
5 |c

⊥ ⟩

ra(a⊥) = 1
10 |c⟩ +

9
10 |c

⊥ ⟩.
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Before continuing we can see that the formalisation (partial, so far) of the
wetness Bayesian network in Figure 2.3 in terms of states and channels, al-
ready allows us to do something meaningful, namely state transformation =≪.
Indeed, we can form distributions:

sp =≪wi on B and ra =≪wi on C.

These (transformed) distributions capture the derived, predicted probabilities
that the sprinkler is on, and that it rains. Using the definition of state transfor-
mation, see (2.23), we get:(

sp =≪wi
)
(b) =

∑
x sp(x)(b) · wi(x)

= sp(a)(b) · wi(a) + sp(a⊥)(b) · wi(a⊥)

= 1
5 ·

3
5 +

3
4 ·

2
5 =

21
50(

sp =≪wi
)
(b⊥) =

∑
x sp(x)(b⊥) · wi(x)

= sp(a)(b⊥) · wi(a) + sp(a⊥)(b⊥) · wi(a⊥)

= 4
5 ·

3
5 +

1
4 ·

2
5 =

29
50 .

Thus the overall distribution for the sprinkler (being on or not) is:

sp =≪wi = 21
50 |b⟩ +

29
50 |b

⊥ ⟩.

In a similar way one can compute the probability distribution for rain as:

ra =≪wi = 13
25 |c⟩ +

12
25 |c

⊥ ⟩.

Such distributions for non-initial nodes of a Bayesian network are called pre-
dictions. They are obtained via forward state transformation =≪, following the
structure of the network.

We still have to translate the upper two nodes of the network from Figure 2.3
into channels. In the conditional probability table for the ‘wet grass’ node we
see 4 distributions on the set D, one for each combination of elements from the
sets B and C. The table thus corresponds to a channel:

B ×C ◦
wg
// D with


wg(b, c) = 19

20 |d ⟩ +
1

20 |d
⊥ ⟩

wg(b, c⊥) = 9
10 |d ⟩ +

1
10 |d

⊥ ⟩

wg(b⊥, c) = 4
5 |d ⟩ +

1
5 |d

⊥ ⟩

wg(b⊥, c⊥) = 1|d⊥ ⟩.

Finally, the table for the ‘slippery road’ table gives:

C ◦
sr // E with

 sr(c) = 7
10 |e⟩ +

3
10 |e

⊥ ⟩

sr(c⊥) = 1|e⊥ ⟩.

142



2.5. String diagrams and Bayesian networks 1432.5. String diagrams and Bayesian networks 1432.5. String diagrams and Bayesian networks 143

We illustrate how to obtain predictions for ‘rain’ and for ‘slippery road’. We
start from the latter. Looking at the network in Figure 2.3 we see that there are
two arrows between the initial node ’winter’ and our node of interest ‘slippery
road’. This means that we have to do two state successive transformations,
giving: (

sr ◦· ra
)

=≪wi = sr =≪
(
ra =≪wi

)
= sr =≪

(
13
25 |c⟩ +

12
25 |c

⊥ ⟩
)
= 91

250 |e⟩ +
159
250 |e

⊥ ⟩.

The first equation follows from Lemma 1.10.3 (3). The second one involves
elementary calculations, where we can use the distribution ra =≪ wi that we
calculated earlier.

Getting the predicted wet grass probability requires some care. Inspection of
the network in Figure 2.3 is of some help, but leads to some ambiguity — see
below. One might be tempted to form the parallel product ⊗ of the predicted
distributions for sprinkler and rain, and do state transformation on this product
along the wet grass channel wg, as in:

wg =≪
(
(sp =≪wi) ⊗ (ra =≪wi)

)
.

But this is wrong, since the winter probabilities are now not used consistently,
see the different outcomes in the calculations (2.21) and (2.22). The correct
way to obtain the wet grass prediction involves copying the winter state, via
the copy channel ∆, see:(

wg ◦· (sp ⊗ ra) ◦· ∆
)

=≪wi = wg =≪
(
(sp ⊗ ra) =≪

(
∆ =≪wi

))
= wg =≪

(
⟨sp, ra⟩ =≪wi

)
= 1399

2000 |d ⟩ +
601
2000 |d

⊥ ⟩.

Such calcutions are laborious, but essentially straightforward. We shall do this
in one in detail, just to see how it works. Especially, it becomes clear that all
summations are automatically done at the right place. We proceed in two steps,
where for each step we only elaborate the first case.(

⟨sp, ra⟩ =≪wi
)
(b, c) =

∑
x sp(x)(b) · ra(x)(c) · wi(x)

= sp(a)(b) · ra(a)(c) · 3
5 + sp(a⊥)(b) · ra(a⊥)(c) · 2

5

= 1
5 ·

4
5 ·

3
5 +

3
4 ·

1
10 ·

2
5 =

63
500(

⟨sp, ra⟩ =≪wi
)
(b, c⊥) = · · · = 147

500(
⟨sp, ra⟩ =≪wi

)
(b⊥, c) = 197

500(
⟨sp, ra⟩ =≪wi

)
(b⊥, c⊥) = 93

500 .
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We conclude that:

(sp ⊗ ra) =≪
(
∆ =≪wi

)
= ⟨sp, ra⟩ =≪wi

= 63
500 |b, c⟩ +

147
500 |b, c

⊥ ⟩ + 197
500 |b

⊥, c⟩ + 93
500 |b

⊥, c⊥ ⟩.

This distribution is used in the next step:(
wg =≪

(
⟨sp, ra⟩ =≪wi

))
(d) =

∑
x,y wg(x, y)(d) ·

(
(sp ⊗ ra) =≪(∆ =≪wi)

)
(x, y)

= wg(b, c)(d) · 63
500 + wg(b, c⊥)(d) · 147

500

+ wg(b⊥, c)(d) · 197
500 + wg(b⊥, c⊥)(d) · 93

500

= 19
20 ·

63
500 +

9
10 ·

147
500 +

4
5 ·

197
500 + 0 · 93

500

= 1399
2000(

wg =≪
(
⟨sp, ra⟩ =≪wi

))
(d⊥) = 601

2000 .

We have thus shown that the predicted wet grass probability is around 70%:

wg =≪
(
⟨sp, ra⟩ =≪wi

)
= 1399

2000 |d ⟩ +
601
2000 |d

⊥ ⟩ ≈ 0.7|d ⟩ + 0.3|d⊥ ⟩.

2.5.3 Redrawing Bayesian networks as string diagrams

We have illustrated how prediction computations for Bayesian networks can
be done, basically by following the graph structure and translating it into suit-
able sequential and parallel compositions (◦· and ⊗) of channels. The match
between the graph and the computation is not perfect, and requires some care,
especially with respect to copying. Since channels provide a solid semantics,
we like to use it in order to improve the network drawing and achieve a better
match between the underlying mathematical operations and the graphical rep-
resentation. String diagrams neatly reflect channels with their sequential and
parallel composition. Therefore we prefer to draw Bayesian networks, not as
in Figure 2.3, but via string diagrams. The switch involves several changes.

• Copying is written explicity in string diagrams, as in the binary case; in
general one can have n-ary copying, for n ≥ 2;

• Wires between nodes in Figure 2.3 represent channels and will thus become
boxes in string diagrams.

• The relevant sets / types — like A, B,C,D, E — are not included in the
nodes, but are associated with the wires of the string diagram.

• final nodes have outgoing arrows, labeled with their type.

Adapting the original Bayesian network in Figure 2.3 according to these points
yields its representation as string diagram in Figure 2.4. In this way the nodes
(with their conditional probability tables) are clearly recognisable as channels,
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sprinkler

wet grass

rain

winter

A

B
C

D E

slippery road

Figure 2.4 The wetness Bayesian network from Figure 2.3 redrawn as a string
diagram, reflecting the underlying channel-based semantics, via explicit copiers
and typed wires.

in general of type A1 × · · · × An → B, where A1, . . . , An are the types on the
incoming wires, and B is the type of the outgoing wire. Initial nodes have no
incoming wires, which formally leads to a channel 1 → B, where 1 = {0} is
the empty product. As we have seen, such channels 1 → B correspond to dis-
tributions / states on B. In the adapted diagram one easily forms sequential and
parallel compositions of channels, so that it becomes clearer that the wetness
prediction is obtained via the expression

(
wg ◦· (sp ⊗ ra) ◦· ∆

)
=≪wi . We may

even replace the symbol =≪in the latter expression by ◦· , when we see the win-
ter distribution also as a channel, of type wi : 1 → A. This tightens the match
between the string diagram and the computation.

Exercises

2.5.1 Consider the probabilistic channel f : X → Y from Exercise 2.4.1 and
show that on the one hand ∆ ◦· f : X → Y × Y is given by:

x 7−→ 1
2 |u, u⟩ +

1
2 |v, v⟩

y 7−→ 1|u, u⟩
z 7−→ 3

4 |u, u⟩ +
1
4 |v, v⟩.

On the other hand, ( f ⊗ f ) ◦· ∆ : X → Y × Y is described by:

x 7−→ 1
4 |u, u⟩ +

1
4 |u, v⟩ +

1
4 |v, u⟩ +

1
4 |v, v⟩

y 7−→ 1|u, u⟩
z 7−→ 9

16 |u, u⟩ +
3

16 |u, v⟩ +
3

16 |v, u⟩ +
1
16 |v, v⟩.
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This demonstrates that channels do not commute with copiers, as
claimed in Remark 2.5.3.

2.5.2 Deterministic channels are in fact the only ones that commute with
copy (see for an abstract setting [20]). Let c : X → Y commute with
diagonals, in the sense that ∆ ◦· c = (c ⊗ c) ◦· ∆. Use Exercise 2.3.9 to
prove that c commutes with diagonals if and only if c is deterministic,
i.e. of the form c = ‹ f › = unit ◦ f for a function f : X → Y .

2.5.3 Show that the tuple operation ⟨−,−⟩ for channels, described in Defi-
nition 2.4.4 (4), satisfies both:

πi ◦· ⟨c1, c2⟩ = ci and ⟨π1, π2⟩ = unit ,

but, essentially as in Exercise 2.5.1:

⟨c1, c2⟩ ◦· d , ⟨c1 ◦· d, c2 ◦· d⟩.

2.5.4 Prove that, for finite sets X,Y , and for elements u, v,

1 = = X YX × Y X Y

2 =
(u, v) u v

3 = =1
1

2.5.5 1 Describe the channel in Theorem 2.5.1 (1) in detail for K = 3.
2 Add types to all wires in the string diagrams in Theorem 2.5.1 (2).

2.5.6 In [37, §6.2] the (predicted) joint distribution on D × E that arises
from the Bayesian network example Subsection 2.5.2 is reprented as
a table. It translates into a joint distribution:

30,443
100,000 |d, e⟩ +

39,507
100,000 |d, e

⊥ ⟩ + 5,957
100,000 |d

⊥, e⟩ + 24,093
100,000 |d

⊥, e⊥ ⟩.

Following the structure of the diagram in Figure 2.4, it is obtained in
the present setting as:(

(wg ⊗ sr) ◦· (id ⊗ ∆) ◦· (sp ⊗ ra) ◦· ∆
)

=≪wi
= (wg ⊗ sr) =≪((id ⊗ ∆) =≪(⟨sp, ra⟩ =≪wi)).

Perform the calculations and check that this expression equals the
above distribution.

(Readers may wish to compare the different calculation methods,
using sequential and parallel composition of channels — as done here
— or using multiplications of tables — as in [37].)
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2.6 Draw distributions

What we call ‘draw’ distributions capture the probabilities associated with
draws of coloured balls from an urn. The proportion of balls of each colour
determines these probabilities. Urns filled with coloured balls form an intu-
itive often-used model in probability theory, like coins and dices. This section
provides a first account of these draw distributions in the newly introduced
context of probabilistic channels. The entire next chapter is devoted to draw
distributions and provides many more details.

The topic of draw distributions is about the interaction between multisets
and distributions. Indeed, an urn with coloured balls forms a (natural) multiset
over these colours. For instance, an urn with ten balls, three red, two blue
and five green, will be described as a multiset 3|R⟩ + 2|B⟩ + 5|G ⟩ of size 10
over the set {R,G, B}. Hence the urn is an element of the set N[10]

(
{R,G, B}

)
.

Similarly, a draw of five balls from this urn, say with two red, two blue and one
green, is a multiset 2|R⟩+2|B⟩+1|G ⟩. Draw distributions assign probabilities
to such multisets of draws (say of size 5), and are thus elements of the set
D

(
N[5]

(
{R,G, B}

))
.

For successive draws of multiple balls from the same urn, the following three
options are distinguished.

1 Draw-and-delete, where the drawn ball is removed from the urn.

2 Draw-and-replace, where the drawn ball is returned to the urn, so that each
draw is from the same urn;

3 Draw-and-duplicate, where the drawn ball is returend to the urn together
with an additional ball of the same colour.

These three modes are called, respectively, hypergeometric, multinomial, and
Pólya. A short description uses the numbers −1, 0, or +1 to indicate the urn
change. Below we devote a seperate subsection to each of these different modes
of drawing.

This section contains illustrations and formalisations of these three modes
of drawing. It uses a set X where the elements of X are seen as colours. An
urn filled with balls whose colours are in X will be represented as a natural
multiset υ — the Greek letter upsilon — from the set N(X). The probability
of drawing a ball with colour x from an urn υ ∈ N(X) is given by the fraction
υ(x)
∥υ∥
= Flrn(υ)(x) ∈ [0, 1] of x-coloured balls in the urn υ. When a ball with

colour x is removed or added to an urn υ ∈ N(X), we describe the resulting
urn as υ − 1| x⟩ or as υ + 1| x⟩.
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2.6.1 Hypergeometric draw-and-delete draws

Let us take, for instance, the multiset υ = 4|R⟩ + 6|B⟩ + 2|G ⟩ as urn, over the
set X = {R, B,G} with colours red, green, blue. We are interested in draws of
three balls, using the hypergeometric draw-and-delete mode. Such a draw can
also be represented as a multiset, namely from the set N[3](X). We first ask:
what is the probability of drawing three red balls. This draw corresponds to the
multiset 3|R⟩ ∈ N[3](X). We reason as follows.

1 The probability of drawing the first red ball from υ is Flrn(υ)(R) = υ(R)
∥υ∥
=

4
12 =

1
3 . The resulting urn is υ1 = υ − 1|R⟩ = 3|R⟩ + 6|B⟩ + 2|G ⟩.

2 The probability of drawing the second red ball, now from υ1 = υ − 1|R⟩ is
given by the same formula: Flrn(υ1)(R) = υ1(R)

∥υ1∥
= 3

11 . This results in an urn
υ2 = υ1 − 1|R⟩ = 2|R⟩ + 6|B⟩ + 2|G ⟩.

3 The probability of the third red ball is now Flrn(υ2)(R) = υ2(R)
∥υ2∥
= 2

10 =
1
5 .

The probability that we thus assign to the draw 3|R⟩ from υ is 1
3 ·

3
11 ·

1
5 =

1
55 .

Next we look at a draw 2|R⟩+1|B⟩, consisting of two red and one blue ball.
We can go through the above three steps, for each of the sequences of draws
[R,R, B], [R, B,R] and [B,R,R]. Successive drawing gives the same probability
for each of these three sequences. The resulting probability for the draw 2|R⟩+
1|B⟩ is thus:

3 ·
4 · 3 · 6

12 · 11 · 10
=

9
55
.

In this way we can assign a probability to each draw φ ∈ N[3](X). We then
get a distribution over N[3](X), inhabiting D

(
N[3](X)

)
. We now describe the

general type and formula of these kind of ‘hypergeometric’ draws — where
drawn balls are deleted.

Definition 2.6.1. Let X be a set (of colours) and υ ∈ N(X) be an urn of size
L = ∥υ∥, filled with X-coloured balls. Let K ∈ N describe the size of the draws
from υ, where we assume K ≤ L = ∥υ∥. This guarantees that the urn contains
sufficiently many balls and that we do not ‘overdraw’.

The hypergeometric distribution hg[K]
(
υ
)

over N[K](X) assigns probabili-
ties to K-sized draws φ ≤K υ via the formula:

hg[K]
(
υ
)
B

∑
φ≤Kυ

(
υ
φ

)
(

L
K

) ∣∣∣φ〉
=

∑
φ≤Kυ

∏
x

(
υ(x)
φ(x)

)
(

L
K

) ∣∣∣φ〉
. (2.34)

The formula (2.34) involves binomial coefficients for numbers and for mul-
tisets (see Definition 1.8.1). The probabilities add up to one by Vandermonde’s
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hg[10]
(
10|0⟩ + 20|1⟩

)
hg[10]

(
16|0⟩ + 14|1⟩

)

pl[10]
(
1|0⟩ + 2|1⟩

)
pl[10]

(
8|0⟩ + 7|1⟩

)
Figure 2.5 Plots of hypergeometric and Pólya distributions; see Definitions 2.6.1
and 2.6.3 for details.

result, see Lemma 1.8.2. The demonstration that this formula is the right one
will be provided soon, in Theorem 2.6.2.

First we provide an illustration. The hypergeometric distribution for draws
of size 3, that we used above, is:

hg[3]
(
4|R⟩ + 6|B⟩ + 2|G ⟩

)
= 1

55

∣∣∣∣ 3|R⟩
〉
+ 9

55

∣∣∣∣ 2|R⟩ + 1|B⟩
〉
+ 3

11

∣∣∣∣ 1|R⟩ + 2|B⟩
〉
+ 1

11

∣∣∣∣ 3|B⟩
〉

+ 3
55

∣∣∣∣ 2|R⟩ + 1|G ⟩
〉
+ 12

55

∣∣∣∣ 1|R⟩ + 1|B⟩ + 1|G ⟩
〉
+ 3

22

∣∣∣∣ 2|B⟩ + 1|G ⟩
〉

+ 1
55

∣∣∣∣ 1|R⟩ + 2|G ⟩
〉
+ 3

110

∣∣∣∣ 1|B⟩ + 2|G ⟩
〉
.

The hypergeometric distribution can be described as a channel of the form:

N[L](X) ◦
hg[K]

// N[K](X). (2.35)

The domain is the set of multisets / urns N[L](X) of size L. The codomain
is the set of distributions over the set of draws N[K](X) of size K, where we
assume K ≤ L.

The next result demonstrates that the hypergeometric distribution captures
the probabilities of successive draw-and-deletes, as illustrated in the beginning
of this subsection. We see that the frequentist learning operation Flrn plays the
role in the formalisation of drawing, see Remark 2.2.1.
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Theorem 2.6.2. Let X be a set of colours and υ ∈ N[L](X) be a multiset / urn
of size L. For each K ≤ L and draw φ ≤K υ,

hg[K](υ)(φ)

=
∑

x⃗∈acc−1(φ)

Flrn
(
υ
)
(x1) · Flrn

(
υ − 1| x1 ⟩

)
(x2) · . . . · Flrn

(
υ −

∑
i<K1| xi ⟩

)
(xK).

Proof. Let’s write the draw multiset as φ =
∑

j n j|y j ⟩. Then, for each list
x⃗ = (x1, . . . , xK) ∈ XK with acc(x⃗) = φ, each element y j occurs n j times in x⃗.
We first prove the following claim, for x⃗ ∈ acc−1(φ).∏

1≤i≤K

(
υ −

∑
j<i 1| x j ⟩

)
(xi) =

υ

(υ − φ)
. (∗)

The product on the left-hand-side in (∗) does not depend on the order of the
elements in x⃗ : each element y j occurs n j times in this product, with multiplic-
ities υ(y j), υ(y j) − 1, . . . , υ(y j) − n j + 1, independently of the posititions of the
y j in x⃗. Thus:∏

1≤i≤K

(
υ −

∑
j<i 1| x j ⟩

)
(xi) =

∏
j
υ(y j) · (υ(y j) − 1) · . . . · (υ(y j) − n j + 1)

=
∏

j
υ(y j) · . . . · (υ(y j) − φ(y j) + 1)

=
∏

j

υ(y j)!
(υ(y j) − φ(y j))!

=
υ

(υ − φ)
.

Now we can finish the proof:∑
x⃗∈acc−1(φ)

∏
1≤i≤K

Flrn
(
υ −

∑
j<i 1| x j ⟩

)
(xi)

=
∑

x⃗∈acc−1(φ)

∏
1≤i≤K

(
υ −

∑
j<i 1| x j ⟩

)
(xi)

L − i + 1

(∗)
=

∑
x⃗∈acc−1(φ)

υ

(υ − φ)
·

1∏
1≤i≤K L − i + 1

= (φ ) ·
υ

(υ − φ)
·

(L − K)!
L!

by Proposition 1.7.2

=
υ

φ · (υ − φ)
·

K! · (L − K)!
L!

by Definition 1.7.1 (5)

(1.42)
=

(
υ
φ

)
(

L
K

)
(2.34)
= hg[K](υ)(φ).
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2.6.2 Pólya draw-and-duplicate draws

In the hypergeometric distributions the balls that are drawn disappear from the
urn. This seems obvious, certainly from a physical perspective. One can also
organise things differently. In so-called Pólya urns one draws a ball, registers
its colour, puts it back in the urn, together with a new ball of the same colour.
One can envisage a situation where next to the urn at hand there is an infi-
nite supply of balls, of each colour, from which one can take an extra ball to
add to the urn. This leads to a new dynamics, where the size of the urn grows
— instead of decreases, as in the hypergeometric case — and the (succes-
sive) drawing can go on indefinitely. Intuitively, the colours that occur often
in the urn get reinforced. The additional ball has a strengthening effect that
can capture situations with a cluster dynamics, like in the spread of contagious
diseases [67], the flow of tourists [119], or topic classification [16].

Let’s elaborate this dynamics for the urn υ = 4|R⟩+6|B⟩+2|G ⟩ ∈ N[12](X),
for set of colours X = {R, B,G}. We look at draws of size three, beginning with
a draw 3|R⟩ of three red balls.

1 The probability of drawing a single red ball is Flrn(υ)(R) = υ(R)
∥υ∥
= 1

3 . The
resulting urn now has an additional red ball: υ1 = υ + 1|R⟩ = 5|R⟩ + 6|B⟩ +
2|G ⟩.

2 The draw of the next red ball happens with probability Flrn(υ1)(R) = υ1(R)
∥υ1∥
=

5
13 , giving an urn υ2 = υ1 + 1|R⟩ = 6|R⟩ + 6|B⟩ + 2|G ⟩.

3 The probability of the third red ball is now Flrn(υ2)(R) = υ2(R)
∥υ2∥
= 3

7 .

The Pólya probability assigned to the multiset draw 3|R⟩ is thus 1
3 ·

5
13 ·

3
7 =

5
91 .

The probability assigned to a draw 2|R⟩ + 1|B⟩ has to take the three different
orders of doing so into account and yields:

3 ·
4 · 5 · 6

12 · 13 · 14
=

15
91
.

We now introduce the general formulation.

Definition 2.6.3. Let υ ∈ N[L](X) be a non-empty urn over a set X, of size
L = ∥υ∥ > 0, with a number K ∈ N describing the size of the draws from υ.
Since Pólya urns grow in size, we do not have need to put any restrictions on
K.

The Pólya distribution pl[K]
(
υ
)

uses the multichoose coefficients from Def-
initions 1.2.3 and 1.8.4, both for numbers and for multisets.

pl[K](υ) =
∑

φ∈N[K](supp(υ))

((
υ
φ

))
((
∥υ∥
K

)) ∣∣∣φ〉
. (2.36)
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Notice that the draws φ are required to be multisets over supp(υ). This guar-
antees that supp(φ) ⊆ supp(υ), so that we can only draw balls that are in the
urn. In this situation it is most natural to use urns υ with full support, that is
with υ(x) > 0 for each x ∈ X. In that case the urn contains at least one ball of
each colour.

The above Pólya formula (2.36) yields a proper distribution by the multi-
choose version of Vandermonde, see Proposition 1.8.6. A justification for the
Pólya formula appears below, in Theorem 2.6.4.

Here is an example Pólya distribution, with the same urn as in the above
explanations, and draws of size 3.

pl[3]
(
4|R⟩ + 6|B⟩ + 2|G ⟩

)
= 5

91

∣∣∣∣ 3|R⟩
〉
+ 15

91

∣∣∣∣ 2|R⟩ + 1|B⟩
〉
+ 3

13

∣∣∣∣ 1|R⟩ + 2|B⟩
〉
+ 2

13

∣∣∣∣ 3|B⟩
〉

+ 5
91

∣∣∣∣ 2|R⟩ + 1|G ⟩
〉
+ 12

91

∣∣∣∣ 1|R⟩ + 1|B⟩ + 1|G ⟩
〉
+ 3

26

∣∣∣∣ 2|B⟩ + 1|G ⟩
〉

+ 3
91

∣∣∣∣ 1|R⟩ + 2|G ⟩
〉
+ 9

182

∣∣∣∣ 1|B⟩ + 2|G ⟩
〉
+ 1

91

∣∣∣∣ 3|G ⟩
〉
.

In general, we can describe Pólya distributions as a channel of the form:

Nfs(X) ◦
pl[K]

// N[K](X).

For convenience, we assume here that urns are multisets with full support.
Implicitly, X is a finite set (of colours). More generally, one can take the set
N∗(X) of non-empty multisets as domain.

Figure 2.5 contains bar plots for ‘bivariate’ hypergeometric and Pólya dis-
tributions, with two colours, so with X = 2 = {0, 1}, and with draws of size 10.
These plots show the probabilities for numbers 0 ≤ k ≤ 10 in a drawn multiset
k|0⟩ + (10−k)|1⟩.

There is an analogue of Theorem 2.6.2 for Pólya, in which drawn colours x
are not removed (subtracted) but added to the urn. Frequentist learning is used
as in Remark 2.2.1.

Theorem 2.6.4. Let X be a set of colours and υ ∈ N[L](X) be a multiset / urn
of size L. For each draw φ ∈ N(X) with supp(φ) ⊆ supp(υ),

pl[K](υ)(φ)

=
∑

x⃗∈acc−1(φ)

Flrn
(
υ
)
(x1) · Flrn

(
υ + 1| x1 ⟩

)
(x2) · . . . · Flrn

(
υ +

∑
i<K1| xi ⟩

)
(xK).

Proof. We write the draw multiset as φ =
∑

j n j|y j ⟩. We now use, for x⃗ ∈
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acc−1(φ), the equation:∏
1≤i≤K

(
υ +

∑
j<i 1| x j ⟩

)
(xi) =

(υ + φ − 1)
(υ − 1)

, (∗)

where 1 =
∑

x∈supp(υ) 1| x⟩. It holds by the same reasoning as in the proof of
Theorem 2.6.2:∏

0≤i<K

(
υ +

∑
j<i 1| x j ⟩

)
(xi) =

∏
j
υ(y j) · (υ(y j) + 1) · . . . · (υ(y j) + φ(y j) − 1)

=
∏

j

(υ(y j) + φ(y j) − 1)!
(υ(y j) − 1)!

=
(υ + φ − 1)

(υ − 1)
.

Now we can derive the Pólya probability:∑
x⃗∈acc−1(φ)

∏
1≤i≤K

Flrn
(
υ +

∑
j<i 1| x j ⟩

)
(xi)

=
∑

x⃗∈acc−1(φ)

∏
1≤i≤K

(
υ +

∑
j<i 1| x j ⟩

)
(xi)

L + i − 1

(∗)
=

∑
x⃗∈acc−1(φ)

(υ + φ − 1)
(υ − 1)

·
1∏

1≤i≤K L + i − 1

= (φ ) ·
υ

(υ − φ)
·

(L − 1)!
(L + K − 1)!

=
(υ + φ − 1)
φ · (υ − 1)

·
K! · (L − 1)!
(L + K − 1)!

=

((
υ
φ

))
((

L
K

)) by Exercise 1.8.7

(2.36)
= pl[K](υ)(φ).

Remark 2.6.5. We have described the hypergeometric and Pólya distributions
with natural multisets as urns. In the Pólya case there is a way to formulate the
distribution for arbitrary, not necessarily natural, multisets as urns. This works
via the gamma funtion Γ, defined as:

Γ(z) B
∫ ∞

0
xz−1 · ex dx. (2.37)

The variable z can be instantiated with any complex number with positive real
part. We shall use it for positive real numbers only. For a positive natural num-
ber n > 0 the above gamma function satisfies:

Γ(n) = (n − 1)! (2.38)
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This property guarantees that the formulation below really is a generalisation
of the earlier formulation (2.36) of the Polya distribution.

Let υ ∈ Mfs(X) be an urn, with full support, whose multiplicities υ(x) are
thus positive real numbers. We (re)define:

pl[K](υ) B
∑

φ∈N[K](X)

(φ ) ·
Γ
(
∥υ∥

)
Γ
(
∥υ∥ + K

) ·∏
x∈X

Γ
(
υ(x) + φ(x)

)
Γ
(
υ(x)

) ∣∣∣φ〉
. (2.39)

Notice that the draws φ are still natural multisets. We shall occasionally use this
general Pólya formulation. It is sometimes called the Dirichlet-multinomial
distribution, since it can be obtained via state tranformation of the (continuous)
Dirichlet distribution along the multinomial channel, see Proposition ??.

2.6.3 Multinomial draw-and-replace draws

We have seen that the hypergeometric distribution is based on a draw-and-
delete mode, whereas Pólya uses a draw-and-duplicate mode. There is a third,
intermediate draw-and-replace mode, where the drawn ball is restored to the
urn (after inspection), and assumed to be mixed-in randomly. In this case the
urn remains unchanged. The resulting distributions are called multinomial.

In this multinomial case, since the urn remains unchanged, we may describe
it more abstractly as a probability distribution ω ∈ D(X). The probability of
drawing a ball with colour x is then simply given by the associated probability
ω(x) ∈ [0, 1]. Drawing an x-ball three times has probability ω(x)3. This is
assigned to the multiset 3| x⟩. And the draw 2| x⟩ + 1|y⟩, for x , y, will get
probability 3 · ω(x)2 · ω(y). The number 3 appears since we have to take the
three possible orders into account.

Definition 2.6.6. Let ω ∈ D(X) be a distribution, representing an abstract urn.
The multinomial distribution mn[K](ω) on N[K](X) is defined as:

mn[K](ω) B
∑

φ∈N[K](X)

(φ ) · ωφ
∣∣∣φ〉

=
∑

φ∈N[K](X)

(φ ) ·
∏
x∈X

ω(x)φ(x)
∣∣∣φ〉

.
(2.40)

For a channel c : X → D(Y) we sometimes write more generally mn[K](c) B
mn[K] ◦ c : X → D

(
N[K](Y)

)
. This general pointwise form of multinomial,

for a channel c, arises naturally in an axiomatic setting [82].

We recall that the number (φ ) is the multinomial coefficient K!∏
x φ(x)! , see

Definition 1.7.1 (5). It takes care of the different lists of single draws that ac-
cumulate to φ, see Proposition 1.7.2.
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The Multinomial Theorem (1.40) ensures that the probabilities in (2.40) add
up to one:

∑
φ∈N[K](X)

(φ ) ·
∏

x
ω(x)φ(x) (1.40)

=
(∑

x ω(x)
)K
= 1K = 1.

For space X = {R, B,G} and urn ω = 1
3 |R⟩ +

1
2 |B⟩ +

1
6 |G ⟩ the draws of size

3 form a distribution of the form:

mn[3](ω) = 1
27

∣∣∣∣ 3|R⟩
〉
+ 1

6

∣∣∣∣ 2|R⟩ + 1|B⟩
〉
+ 1

4

∣∣∣∣ 1|R⟩ + 2|B⟩
〉
+ 1

8

∣∣∣∣ 3|B⟩
〉

+ 1
18

∣∣∣∣ 2|R⟩ + 1|G ⟩
〉
+ 1

6

∣∣∣∣ 1|R⟩ + 1|B⟩ + 1|G ⟩
〉
+ 1

216

∣∣∣∣ 3|G ⟩
〉

+ 1
36

∣∣∣∣ 1|R⟩ + 2|G ⟩
〉
+ 1

24

∣∣∣∣ 1|B⟩ + 2|G ⟩
〉
+ 1

8

∣∣∣∣ 2|B⟩ + 1|G ⟩
〉
.

In general, we can describe multinomial distributions as a channel:

D(X) ◦
mn[K]

// N[K](X).

In the end, we note that the draw multisets φ in (2.40) can be restricted to those
with supp(φ) ⊆ supp(ω). Indeed, if ω(x) = 0, but φ(x) , 0, for some x ∈ X,
then ω(x)φ(x) = 0, so that the whole product

∏
becomes zero, and so that φ

does not contribute to the above multinomial distribution.
There is an analogue of Theorem 2.6.2 and 2.6.2 for multinomial distribu-

tions. For a distribution ω ∈ D(X), considered as urn, the product distribution
iid [K](ω) = ωK ∈ D(XK) assigns probablities ωK(x⃗) to K successive draws
x⃗ ∈ XK , as lists, in which the order of the individual draws is taken into ac-
count. When we wish to ignore the order of the elements in a draw, we think
of a draw (of size K) as a multiset over X, in N[K](X). We can obtain the
probability of such draws via pushforward, see Lemma 2.1.3, along the accu-
mulation function acc : XK → M[K](X) from (1.35). In this way we recover
the multinomial distribution, in analogy with coupon an coincidence distribu-
tions from Definition 2.3.7.

Theorem 2.6.7. The K-draw multinomial distribution arises by pushforward
along accumulation of a K-fold product:

mn[K](ω) = D(acc)
(
iid [K](ω)

)
. (2.41)
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Proof. By unfolding the relevant definitions:

D(acc)
(
iid [K](ω)

)
=

∑
x⃗∈XK

ωK(
x⃗
) ∣∣∣acc(x⃗)

〉
(∗)
=

∑
x⃗∈XK

∏
y∈X

ω(y)acc(x⃗)(y)
∣∣∣acc(x⃗)

〉
=

∑
φ∈M[K](X)

∑
x⃗∈acc−1(φ)

∏
y∈X

ω(y)acc(x⃗)(y)
∣∣∣acc(x⃗)

〉
=

∑
φ∈M[K](X)

∑
x⃗∈acc−1(φ)

∏
y∈X

ω(y)φ(y)
∣∣∣φ〉

=
∑

φ∈M[K](X)

(φ ) ·
∏
y∈X

ω(x)φ(y)
∣∣∣φ〉

by Proposition 1.7.2

= mn[K](ω).

The marked equation
(∗)
= is the crucial step:

ωK(x⃗) = ω(x1) · . . . · ω(xK)

=
∏
y∈X

ω(y)ny where ny is the number of occurrences of y in x⃗

=
∏
y∈X

ω(y)φ(y) where φ = acc(x⃗).

The literature sometimes distinguishes ‘bivariate’ and ‘multivariate’ draw
distributions. In the bivarite case there are only two colours (of balls), corre-
sponding to having 2 = {0, 1} as set of colours. The multivariate case involves
multiple (more than two) balls. In this book we typically work with the general
multivariate form, and treat the bivariate situation as a special case.

In Example 2.1.2 (2) we have seen the binomial distribution. It is this special
bivariate case of the multinomial distribution, as we shall see, after a bit of
massaging. The two results below make this precise.

Lemma 2.6.8. The binomial distribution bn[K] : [0, 1] → D
(
{0, . . . ,K}

)
is a

bivariate version of the multinomial distribution mn[K] : D(X)→ D
(
N[K](X)

)
,

namely for X = 2 = {0, 1}, via the following two isomorphisms.

• The unit interval [0, 1] is isomorphic to the set of distributions D(2) on the
two-element set 2, via the flip function from Example 2.1.2 (1), given by
flip(r) = r|1⟩ + (1−r)|0⟩.

• The set {0, 1, . . . ,K} of the first K+1 =
((

2
K

))
natural numbers is isomorphic

to the set of natural multisetsN[K](2) of size K, over the two-element set 2.
This works via the isomorphism ones(k) = k|1⟩ + (K−k)|0⟩.
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Via these two isomorphisms we get a commuting diagram that connects bino-
mial and multinomial distributions:

[0, 1]
bn[K]

//

flip �
��

D
(
{0, . . . ,K}

)
� D(ones)
��

D(2)
mn[K]

// D
(
N[K](2)

) (2.42)

Proof. For r ∈ [0, 1],

(
mn[K] ◦ flip

)
(r)

=
∑

φ∈N[K](2)

(φ ) ·
∏
i∈2

flip(r)(i)φ(i)
∣∣∣φ〉

=
∑

k∈{0,...,K}

K!
k! · (K−k)!

· rk · (1−r)K−k
∣∣∣∣ k|1⟩ + (K−k)|0⟩

〉
=

∑
k∈{0,...,K}

bn[K](r)(k)
∣∣∣ones(k)

〉
=

(
D

(
ones

)
◦ bn[K]

)
(r).

Via stick breaking one can express multinomial distributions in terms of
multiple binomial distributions. This is a folklore result that occurs for instance
in [86].

Proposition 2.6.9. For a sequence of probabilities r⃗ = (r0, . . . , rn−2) ∈ (0, 1)n−1

of length n > 1, and for a draw multiset φ ∈ N[K](n) over n = {0, . . . , n−1},

mn[K]
(
stbr (⃗r)

)
(φ) = bn[K](r0)

(
φ(0)

)
· bn[K−φ(0)](r1)

(
φ(1)

)
· bn[K−φ(0)−φ(1)](r2)

(
φ(2)

)
· . . . · bn[K−

∑
i<n−2 φ(i)]

(
φ(n−2)

)
.

Proof. We use induction on n > 1. When n = 2 one has stbr(r0) = r0|0⟩+ (1−
r0)|1⟩, so that for φ ∈ N[K](2),

mn[K]
(
stbr(r0)

)
(φ) =

(
K
φ(0)

)
· rφ(0)

0 · (1−r0)φ(1) = bn[K](r0)(φ(0)).

Next, let φ =
∑

i≤n ki| i⟩ ∈ M[K](n+1) and r⃗ = r0, . . . , rn−1 ∈ (0, 1)n be given.
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We use a shifted multiset φ′ =
∑

i<n−1 ki+1| i⟩ of size K−k0. Then:

bn[K](r0)(k0) · bn[K−k0](r1)(k1) · . . . · bn[K−
∑

i<n−1 ki](rn−1)(kn−1)
(IH)
= bn[K](r0)(k0) ·mn[K−k0]

(
stbr(r1, . . . , rn−1)

)
(φ′)

=

(
K
k0

)
· rk0

0 · (1−r0)K−k0 · (φ′ ) ·
∏
i>0

stbr(r1, . . . , rn−1)(i)ki

=
K!

k0! · (K−k0)!
·

(K−k0)!
k1! · · · kn−1!

· rk0
0 ·

∏
i>0

(
stbr(r1, . . . , rn−1)(i) · (1−r0)

)ki

= (φ ) ·
∏

i≥0 stbr(r0, . . . , rn−1)(i)ki

= mn[K]
(
stbr (⃗r)

)
(φ).

Exercises

2.6.1 Let X = {R, B,G} with draw φ = 2|R⟩ + 3|B⟩ + 2|G ⟩ ∈ N[7](X).

1 Consider distribution ω = 1
3 |R⟩ +

1
2 |B⟩ +

1
6 |G ⟩ and show that:

mn[7](ω)(φ) = 35
432 .

Explain this outcome in terms of iterated single draws.
2 Consider urn υ = 4|R⟩ + 6|B⟩ + 2|G ⟩ ∈ N[12](X) and compute:

hg[7](υ)(φ) = 5
33 .

3 Check that the Pólya probability of the same draw from the same
urn is given by:

pl[7](υ)(φ) = 35
663 .

2.6.2 Let X be a non-empty finite set with n elements, carrying the uniform
distribution unifX =

∑
x∈X

1
n | x⟩. Show that:

mn[K]
(
unifX

)
=

∑
φ∈N[K](X)

(φ )
nK

∣∣∣φ〉
.

Describe this distribution for X = {R, B,G} and K = 4. Relate it to
Exercise 1.7.7.

2.6.3 Let X be a finite set with n ≥ 1 elements. Write 1 =
∑

x∈X 1| x⟩ for
the multiset of singletons over X. Show that Pólya of this singleton
multiset is the uniform distribution on N[K](X), that is:

pl[K](1) = unifN[K](X) =
∑

φ∈N[K](X)

1((
n
K

)) ∣∣∣φ〉
.

2.6.4 Let υ be a natural multiset. Use (2.38) to show that the two Pólya
formulations (2.36) and (2.39) coincide.
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2.6.5 Consider the multinomial computation from Exercise 2.6.1, with out-
come 35

432 . Obtain this same outcome via successive binomials, fol-
lowing Proposition 2.6.9.

2.6.6 Check that:
mn[1](ω) =

∑
x∈supp(ω)

ω(x)
∣∣∣1| x⟩〉.

2.6.7 Use the formulation of the multinomial distribution in Theorem 2.6.7
together with the naturality of accumulation, in Exercise 1.7.12, and
of iid, in Lemma 2.3.5 (1), to obtain the naturality of the multinomial
channel: for each function f : X → Y the following diagram com-
mutes.

D(X)
mn[K]

//

D( f )
��

D
(
N[K](X)

)
D(N( f ))
��

D(X)
mn[K]

// D
(
N[K](X)

)
2.6.8 Show that one can obtain the coupon distribution from Definition 2.3.7

via pushforward of the multionial distribution, i.e. show that:

D(supp)
(
mn[K](ω)

)
= cpn[K](ω).

2.6.9 Can you generalise Exercise 2.1.6 to numbers r1, . . . , rn and set parti-
tions of X of size n?

2.6.10 Define yourself ‘sequence’ versions of the hypergeometric and Pólya
distributions, forming channels:

N[L](X) ◦
seqhg[K]

// XK N∗(X)◦
seqpl[K]

oo

where X is finite and K ≤ L. Do this in such a way that:

acc ◦· seqhg[K] = hg[K] and acc ◦· seqpl[K] = pl[K].

Hint: Use the formulations of Theorem 2.6.2 and 2.6.4, or more ab-
stractly, the arrangement channel from (2.27).

2.7 Convolution

A convolution is a particular kind of (binary) operation in mathematics. In
general, a convolution of parallel maps f , g : X → Y is a composite of the
form:

X
split
// X × X

f⊗g
// Y × Y

join
// Y (2.43)
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The split and join operations depend on the situation. In the sequel they are
typically copy and sum.

This section describes convolution for probability distributions and chan-
nels. It does not work for all distributions, but only for those whose underlying
space is a commutative monoid, like natural numbers N with addition (or mul-
tiplication). In the description given below, this monoid structure is ‘lifted’ to
distributions. The construction makes essential use of parallel products (ten-
sors ⊗) of distributions, like in the above diagram (2.43).

Definition 2.7.1. Let M = (M,+, 0) be a commutative monoid. One defines a
sum and zero element onD(M) via:

ω + ρ B D(+)
(
ω ⊗ ρ

)
0 B 1|0⟩

using

 + : M × M → M
0 ∈ M.

(2.44)

This structure +, 0 onD(M) is called convolution. As we shall see, it turns the
setD(M) of distributions on M into a commutative monoid.

Alternative, equivalent descriptions of this sum of distributions are:

ω + ρ =
∑

a,b∈M

ω(a) · ρ(b)
∣∣∣a + b

〉
(∑

i
ri

∣∣∣ai
〉)
+

(∑
j
s j

∣∣∣b j
〉)
=

∑
i, j

ri · s j

∣∣∣ai + b j
〉
.

We may also describe this convolution ω+ ρ ∈ D(M) also as a string diagram,
on the left below, or as a probabilistic program (with sampling), on the right.

ω ρ

+
a← ω
b← ρ
return a+b

(2.45)

The sum of discrete distributions ω + ρ occurs in [111, p.82], but does not
seem to be widely used and/or familiar. It is an instance of an abstract form of
convolution in [114, §10], like in Diagram (2.43).

As announced, convolution gives a commutative monoid structure. But there
is more to say.

Proposition 2.7.2.

1 Via sums +, 0 of distributions (2.44), the set D(M) forms a commutative
monoid.

2 If f : M → N is a homomorphism of commutative monoids, then so is
D( f ) : D(M)→ D(N).
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Let CMon be the category with commutative monoids as objects, and with
monoid homomorphisms as arrows between them. The above two items tell
that the distribution functor D : Sets → Sets can be restricted to a functor
D : CMon→ CMon in a commuting diagram:

CMon

��

D // CMon

��

Sets D // Sets
(2.46)

The vertical arrows ‘forget’ the monoid structure, by sending a monoid to its
underlying set.

In Exercise 2.7.8 we shall see that the restricted (or lifted) functorD : CMon→
CMon is also a monad. The same construction works forD∞.

Proof. 1 Commutativity and associativity of + on D(M) follow from com-
mutativity and associativity of + on M, and of multiplication · on [0, 1].
Next,

ω + 0 = ω + 1|0⟩ =
∑
a∈M

ω(a) · 1
∣∣∣a + 0

〉
=

∑
a∈M

ω(a)
∣∣∣a〉
= ω.

2 The unit 1|0⟩ of the monoid onD(M) is preserved since:

D( f )(1|0⟩) = 1| f (0)⟩ = 1|0⟩.

By assumption f : M → N is a homomorphism of monoids. We then have
an equation f ◦ + = + ◦ ( f × f ), see Diagram (1.7). Hence:

D( f )
(
ω + ρ

) (2.44)
=

(
D( f ) ◦ D(+)

)
(ω ⊗ ρ)

= D
(
f ◦ +

)
(ω ⊗ ρ)

= D
(
+ ◦ ( f × f )

)
(ω ⊗ ρ) f is a homomorphism

=
(
D(+) ◦ D( f × f )

)
(ω ⊗ ρ)

= D(+)
(
D( f )(ω) ⊗D( f )(ρ)

)
by Lemma 2.3.2 (3)

(2.44)
= D( f )(ω) +D( f )(ρ).

The next example illustrates how we sometimes have to stretch the underly-
ing space a bit to make it into a monoid so that the convolution structure can
be used for convolution.

Example 2.7.3. Recall that we write dice for the uniform (fair) dice distribu-
tion

∑
1≤i≤6

1
6 | i⟩ ∈ D

(
pips

)
, where pips = {1, 2, 3, 4, 5, 6}. When we throw two

dices and we wish to look at the sum of outcomes, we have go beyond pips.
It turns out to be convenient to use the inclusion pips ⊆ N and to consider a
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dice as a distribution dice ∈ D(N) on the natural numbers. This change is a
formality, since the support of dice is still finite: supp(dice) = pips.

A big benefit of this change of perspective is that we can exploit that the set
N of natural numbers carries a commutative monoid structure, in this case via
addition. Hence we can form the convolution (sum) of two dices as:

2 · dice = dice + dice
(2.44)
= D(+)(dice ⊗ dice)

= D(+)

 ∑
i, j∈pips

1
36

∣∣∣ i, j
〉

=
∑

i, j∈pips

1
36

∣∣∣ i + j
〉

= 1
36

∣∣∣2〉
+ 1

18

∣∣∣3〉
+ 1

12

∣∣∣4〉
+ 1

9

∣∣∣5〉
+ 5

36

∣∣∣6〉
+ 1

6

∣∣∣7〉
+ 5

36

∣∣∣8〉
+ 1

9

∣∣∣9〉
+ 1

12

∣∣∣10
〉
+ 1

18

∣∣∣11
〉
+ 1

36

∣∣∣12
〉
.

This gives a new distribution in D(N). The construction can be generalised
easily to an n-throw n · dice = dice + · · · + dice ∈ D(N).

In Example 2.1.4 (2) we have described the maximum of two dices as an
image distribution. It can also be described as a convolution, by using the max-
imum as a commutative monoid operation on the set pips. In that case we do
not need to go beyond pips to N.

Exercise 2.7.4 contains another variation, with modular arithmetic.

The general structure of Diagram (2.43) becomes clear when we apply con-
volution in the context of channels. We do a simple example first, in which we
consider flips and binomials as distributions on N.

Proposition 2.7.4.

1 The convolution sum of multiple flip distributions is a binomial distribution:
for r ∈ [0, 1],

flip(r) + flip(r) = bn[2](r).

In a diagram:

[0, 1] ∆ //

◦
bn[2] //

[0, 1] × [0, 1] ◦
flip⊗flip

// N × N
◦+
��

N

More generally, in K-ary form:

K · flip(r) = flip(r) + · · · + flip(r)︸                    ︷︷                    ︸
K times

= bn[K](r).
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2 Binomials themselves are closed under convolution:

[0, 1] ∆ //

◦
bn[K+L] //

[0, 1] × [0, 1] ◦
bn[K]⊗bn[L]

// N × N
◦+
��

N

This last equation can also be obtained by marginalising out the wire on the
right in Theorem 2.5.1 (2). We shall see later in Exercise 3.3.9 that multinomial
distributions are also closed under convolution.

Proof. 1 We do the binary case:

flip(r) + flip(r)

= D(+)
(
flip(r) ⊗ flip(r)

)
= D(+)

((
r|1⟩ + (1−r)|0⟩

)
⊗

(
r|1⟩ + (1−r)|0⟩

))
= D(+)

(
r2

∣∣∣1, 1〉
+ r · (1−r)

∣∣∣1, 0〉
+ (1−r) · r

∣∣∣0, 1〉
+ (1−r)2

∣∣∣0, 0〉)
= r2

∣∣∣2〉
+ 2 · r · (1 − r)

∣∣∣1〉
+ (1 − r)2

∣∣∣0〉
=

∑
0≤i≤2

(
2
i

)
· ri · (1 − r)2−i

∣∣∣ i〉 = bn[2](r).

2 For r ∈ [0, 1] and K, L ∈ N we compute, via Vandermonde’s binary for-
mula (1.44):

D(+)
(
bn[K](r) ⊗ bn[L](r)

)
= D(+)

 ∑
0≤i≤K

∑
0≤ j≤L

(
K
i

)
· ri · (1 − r)K−i ·

(
L
j

)
· r j · (1 − r)L− j

∣∣∣ i, j
〉

=
∑

0≤i≤K

∑
0≤ j≤L

(
K
i

)
·

(
L
j

)
· ri+ j · (1 − r)(K+L)−(i+ j)

∣∣∣ i + j
〉

=
∑

0≤m≤K+L

 ∑
0≤i≤K, 0≤ j≤L, i+ j=m

(
K
i

)
·

(
L
j

) · rm · (1 − r)(K+L)−m
∣∣∣m〉

(1.44)
=

∑
0≤m≤K+L

(
K+L

m

)
· rm · (1 − r)(K+L)−m

∣∣∣m〉
= bn[K+L](r).

The following result for independent and identical distributions has a def-
inite convolution-flavour, but does not fully fit in the convolution mold. We
can see inclusions XK ⊆ L(X) at work, but the monoid of lists L(X), with
concatenation ++, is not commutative. Still the following result makes sense.
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Lemma 2.7.5. For a distribution ω ∈ D(X) and numbers K, L,

D(++)
(
iid [K](ω) ⊗ iid [L](ω)

)
= iid [K+L].

This means that the following convolution-style diagram commutes.

D(X) ∆ //

◦
iid [K+L] ..

D(X) ×D(X) ◦
iid [K]⊗iid [L]

// XK × XL

◦++�
��

XK+L

Proof. Since:(
++ ◦· (iid [K] ⊗ iid [L]) ◦· ∆

)
(ω) =

∑
x⃗∈XK ,⃗y∈XL

ωK(x⃗) · ωL (⃗y)
∣∣∣ x⃗ ++ y⃗

〉
=

∑
x⃗∈XK ,⃗y∈XL

ωK+L(x⃗ ++ y⃗)
∣∣∣ x⃗ ++ y⃗

〉
=

∑
z⃗∈XK+L

ωK+L (⃗z)
∣∣∣ z⃗〉

= ωK+L

= iid [K + L](ω).

We conclude with a basic property of Poisson distributions pois[λ], see (2.3).
This property is commonly expressed in terms of random variables Xi as: if
X1 ∼ pois[λ1] and X2 ∼ pois[λ2] then X1 + X2 ∼ pois[λ1+λ2]. We have not
discussed random variables yet, but we do not need them for the channel-based
reformulation that we use below. It involves a parallel product pois ⊗ pois of
channels, as introduced in Definition 2.4.4 (2).

Recall that the Poisson distribution has infinite support, so that we need to
use D∞ instead of D, see Definition 2.1.5, but that difference is immaterial
here. We now use the mapping λ 7→ pois[λ] as a function R≥0 → D∞(N) and
as aD∞-channel pois : R≥0 → N.

Proposition 2.7.6. The Poisson channel pois : R≥0 → D∞(N) is a homomor-
phism of monoids. Indeed, for λ1, λ2 ∈ R≥0,

pois[λ1+λ2] = pois[λ1] + pois[λ2] and pois[0] = 1|0⟩.

This monoid structure on D∞(N) is the one from Definition 2.7.1, building on
the additive monoid structure of N.

One can express the above two equations via commutation of the following
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two diagrams of channels.

R≥0 × R≥0 ◦
+ //

◦pois ⊗ pois
��

R≥0

◦ pois
��

1 ◦
0 //

◦unit

R≥0

◦ pois
��

N × N ◦
+ // N 1 ◦

0 // N

Alternatively, these two equations can be expressed via equations of string
diagrams:

pois pois

pois+

+

= pois

0
0

=

Proof. We reason equationally and first do preservation of sums +, for which
we pick arbitrary λ1, λ2 ∈ R≥0 and k ∈ N.(

pois[λ1] + pois[λ2]
)
(k)

(2.44)
= D(+)

(
pois[λ1] ⊗ pois[λ2]

)
(k)

=
∑

k1, k2, k1+k2=k

(
pois[λ1] ⊗ pois[λ2]

)
(k1, k2)

=
∑

0≤m≤k

pois[λ1](m) · pois[λ2](k−m)

(2.3)
=

∑
0≤m≤k

(
e−λ1 ·

λm
1

m!

)
·

e−λ2 ·
λk−m

2

(k−m)!


=

∑
0≤m≤k

e−(λ1+λ2)

k!
·

k!
m! · (k−m)!

· λm
1 · λ

k−m
2

=
e−(λ1+λ2)

k!
·

∑
0≤m≤k

(
k
m

)
· λm

1 · λ
k−m
2

(1.39)
=

e−(λ1+λ2)

k!
· (λ1+λ2)k

(2.3)
= pois[λ1+λ2](k).

Finally, in the expression pois[0] =
∑

k e0 · 0k

k! |k ⟩ everything vanishes except
for k = 0, since only 00 = 1. Hence pois[0] = 1|0⟩.

Exercises

2.7.1 Describe 3 · dice ∈ D(N) in detail, following Example 2.7.3.
2.7.2 The set of natural numbers N has two commutative monoid structures,

one additive with +, 0, and one multiplicative with ·, 1. Accordingly,
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Definiton 2.7.1 gives two commutative monoid structures on D(N),
namely:

ω + ρ = D(+)
(
ω ⊗ ρ

)
and ω ⋆ ρ = D(·)

(
ω ⊗ ρ

)
.

Consider the following three distributions on N.

ρ1 =
1
2 |0⟩ +

1
3 |1⟩ +

1
6 |2⟩ ρ2 =

1
2 |0⟩ +

1
2 |1⟩ ω = 2

3 |0⟩ +
1
3 |1⟩.

Show consecutively:

1 ρ1 + ρ2 =
1
4 |0⟩ +

5
12 |1⟩ +

1
4 |2⟩ +

1
12 |3⟩;

2 ω ⋆ (ρ1 + ρ2) = 3
4 |0⟩ +

5
36 |1⟩ +

1
12 |2⟩ +

1
36 |3⟩;

3 ω ⋆ ρ1 =
5
6 |0⟩ +

1
9 |1⟩ +

1
18 |2⟩;

4 ω ⋆ ρ2 =
5
6 |0⟩ +

1
6 |1⟩;

5 (ω ⋆ ρ1) + (ω ⋆ ρ2) = 25
36 |0⟩ +

25
108 |1⟩ +

7
108 |2⟩ +

1
108 |3⟩.

Observe that ⋆ does not distribute over + on D(N). More generally,
conclude that the convolution construction of Definition 2.7.1 does
not extend to commutative semirings.

2.7.3 Show that negative binomials nbn, see Example 2.1.7 (3), are also
closed under convolution:

nbn[K](s) + nbn[L](s) = nbn[K+L](s),

where the sum + of distributions on the left-hand-side is the one from
Definition 2.7.1 forD∞.

2.7.4 Recall that for N ∈ N>0 we write N = {0, 1, . . . ,N −1} for the set
of natural numbers (strictly) below N. It is an additive monoid, via
addition modulo N. As such it is sometimes written as ZN or as Z/NZ.
Prove that:

unifN + unifN = unifN , with + from Definition 2.7.1.

You may wish to check this equation first for N = 4 or N = 5. It
works for the modular sum, not for the ordinary sum (on N), as one
can see from the sum dice + dice, see Example 2.7.3. See [162] for
more info.

2.7.5 Consider a function f : X → M where X is an ordinary set and M
is a commutative monoid. We can add noise to the function f via a
channel c : X → M. The result is a channel noise( f , c) : X → M given
by pointwise convolution:

noise( f , c) B ‹ f › + c.
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Check that we can concretely describe this noise channel as:

noise( f , c)(x) =
∑
y∈Y

c(x)(y)
∣∣∣ f (x) + y

〉
.

2.7.6 Convolution as described in Definition 2.7.1 for distributions D can
also be formulated for multisets N andM, via their tensors. For this
purpose, let M = (M,+, 0) be a commutative monoid.

1 Write the convolution operation multiplicatively as ⋆ in:

⋆ B
(
N(M) × N(M) ⊗ // N(M × M)

N(+)
// N(M)

)
and describe concretely what φ ⋆ ψ is for multisets φ, ψ ∈ N(M).

2 Check that⋆ preserves +, 0 in each coordinate and thus turnsN(M)
into a commutative semiring with unit.

3 Take M = N and use the identification of elements of N(N) with
polynomials from Exercise 1.6.6. Compute both:(

2|1⟩ + 3|2⟩
)
⋆

(
1|0⟩ + 1|1⟩ + 1|2⟩

)(
2x + 3x2

)
·
(
1 + x + x2

)
.

Show in general that ⋆ corresponds to multiplication of polynomi-
als.

2.7.7 We consider the binomial distribution from Example 2.1.2 (2) as a
channel bn[−](−) : N × [0, 1] → N with two arguments / inputs. We
further write prod : [0, 1] × [0, 1]→ [0, 1] for the obvious multiplica-
tion function prod (r, s) = r · s, and consider it as a deterministic chan-
nel. Together with the number 1 it forms a (commutative) monoid.
Consider the equations of string diagrams:

bn[−](−)

bn[−](−) bn[−](−)

=

prod
=

bn[−](−)

1

1 Check that these equations corresponds to the equations

bn[−](s) =≪bn[K](r) = bn[K](r · s) bn[K](1) = 1|K ⟩.

2 Prove these equations.
3 Check that they express that bn[−](−) : N × [0, 1] → [0, 1] is an

action of the multiplicative monoid [0, 1] on N, in the category of
channels.
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(Commonly this situation is not described in terms of a monoid ac-
tion, but as a ‘conditional binomial’.)

2.7.8 Consider the situation described in Proposition 2.7.2, with a commu-
tative monoid M, and induced monoid structure onD(M).

1 Check that 1|a⟩ + 1|B⟩ = 1|a + b⟩, for all a, b ∈ M. This says that
unit : M → D(M) is a homomorphism of monoids, which can also
be expressed via commutation of the diagram:

M × M
+
��

unit×unit // D(M) ×D(M)
+
��

M unit // D(M)

2 Check also that flat : D(D(M)) → D(M) is a monoid homomor-
phism. This means that for Ω,Θ ∈ D(D(M)) one has:

flat(Ω + Θ) = flat(Ω) + flat(Θ) and flat
(
1
∣∣∣1|0⟩〉) = 1|0⟩.

The sum + on the on the right-hand-side of the (first) equation is
the one in D(M), from the beginning of this exercise. The sum +
on the left-hand-side is the one in D(D(M)), using that D(M) is a
commutative monoid — and thusD(D(M)) too.

3 Check that the functor D : CMon → CMon in (2.46) is also a
monad.

2.8 Divergence between distributions

In many situations it is useful to know how unequal / different / apart prob-
ability distributions are. This can be used for instance in learning, where one
can try to bring a distribution closer to a target via iterative adaptations. Such
comparison of distributions can be defined via a metric / distance function,
like ‘total variation’, see Section 4.5 later on. At this stage we describe a dif-
ferent comparison, called divergence, or more fully Kullback-Leibler diver-
gence, written as DKL . It is a not a distance function since it is not symmetric:
DKL (ω, ρ) , DKL (ρ, ω), in general. But it does satisfy DKL (ω, ρ) = 0 iff ω = ρ,
and other useful properties.

In the sequel we shall make frequent use of the Kullback-Leibler divergence
DKL . This section collects the definition and some basic facts. It assumes rudi-
mentary familiarity with the logarithm function log: R>0 → R. The crucial
property is log(x) = y iff x = 2y, for log = log2. Sometimes it is more conve-
nient to use the natural logarithm ln = loge, with Euler’s number e = 2.718 . . .

168



2.8. Divergence between distributions 1692.8. Divergence between distributions 1692.8. Divergence between distributions 169

as base. These logarithms with different bases are related via a constant, as
logb(x) = ln(x)

ln(b) . A crucial property is that the logarithm sends multiplications
to sums, see Exercise 1.4.2.

Definition 2.8.1. Let ω, ρ be two distributions/states on the same set X with
supp(ω) ⊆ supp(ρ). The Kullback-Leibler divergence, or KL-divergence, or
simply divergence, of ω from ρ is:

DKL (ω, ρ) B
∑
x∈X

ω(x) · log
(
ω(x)
ρ(x)

)
. (2.47)

The convention is that r · log(r) = 0 when r = 0.

The inclusion supp(ω) ⊆ supp(ρ) is equivalent to: ρ(x) = 0 implies ω(x) =
0. This requirement immediately implies that divergence is not symmetric. But
even when ω and ρ do have the same support, the divergences DKL (ω, ρ) and
DKL (ρ, ω) are different, in general, see Exercise 2.8.1 below for an easy illus-
tration. To emphasise the difference, some people write DKL (ρ ∥ω) instead of
DKL (ρ, ω).

Whenever we write an expression DKL (ω, ρ) we will implicitly assume an
inclusion supp(ω) ⊆ supp(ρ).

We start with some easy properties of divergence.

Lemma 2.8.2. Let ω, ρ ∈ D(X) and ω′, ρ′ ∈ D(Y) be distributions.

1 Zero-divergence is the same as equality:

DKL (ω, ρ) = 0 ⇐⇒ ω = ρ.

2 Divergence of tensor products is a sum of divergences:

DKL
(
ω ⊗ ω′, ρ ⊗ ρ′

)
= DKL

(
ω, ρ

)
+ DKL

(
ω′, ρ′

)
.

Proof. 1 The direction (⇐) is easy, since log(1) = 0. For (⇒), let 0 = DKL (ω, ρ) =∑
x ω(x)·log

(
ω(x)/ρ(x)

)
. This means that ifω(x) , 0, one has log

(
ω(x)/ρ(x)

)
= 0,

and thus ω(x)/ρ(x) = 1 and ω(x) = ρ(x). In particular:

1 =
∑

x∈supp(ω)

ω(x) =
∑

x∈supp(ω)

ρ(x). (∗)

By assumption we have supp(ω) ⊆ supp(ρ). Write supp(ρ) as disjoint union
supp(ω) ∪ U for some U ⊆ supp(ρ). It suffices to show U = ∅. We have:

1 =
∑

x∈supp(ρ)

ρ(x) =
∑

x∈supp(ω)

ρ(x) +
∑
x∈U

ρ(x) = 1 +
∑
x∈U

ρ(x).

Hence U = ∅.
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2 By unwrapping the relevant definitions and using that log sends multiplica-
tions to sums:

DKL
(
ω ⊗ ω′, ρ ⊗ ρ′

)
=

∑
x∈X, y∈Y

(ω ⊗ ω′)(x, y) · log
(

(ω ⊗ ω′)(x, y)
(ρ ⊗ ρ′)(x, y)

)
=

∑
x∈X, y∈Y

ω(x) · ω′(y) · log
(
ω(x)
ρ(x)

·
ω′(y)
ρ′(y)

)
=

∑
x∈X, y∈Y

ω(x) · ω′(y) ·
(
log

(
ω(x)
ρ(x)

)
+ log

(
ω′(y)
ρ′(y)

))
=

∑
x∈X, y∈Y

ω(x) · ω′(y) · log
(
ω(x)
ρ(x)

)
+

∑
x∈X, y∈Y

ω(x) · ω′(y) · log
(
ω′(y)
ρ′(y)

)
=

∑
x∈X

ω(x) · log
(
ω(x)
ρ(x)

)
+

∑
y∈Y

ω′(y) · log
(
ω′(y)
ρ′(y)

)
= DKL

(
ω, ρ

)
+ DKL

(
ω′, ρ′

)
.

A joint distribution ω is typically ‘entwined’, that is, it is different from the
product ω

[
1, 0

]
⊗ω

[
0, 1

]
of its marginals, see Example 2.3.9 (2). The Kullback-

Leibler divergence DKL
(
ω, ω

[
1, 0

]
⊗ ω

[
0, 1

])
between the two allows us to

assign a number to this entwinedness. This divergence is called the mutual
information of the joint distribution. It can become arbitrarily large, see Exer-
cise 2.8.6.

In order to prove further properties about divergence we need a powerful
classical result called Jensen’s inequality about functions acting on convex
combinations of non-negative reals. We shall use Jensen’s inequality here, in
this section, but also later on in learning.

Lemma 2.8.3 (Jensen’s inequality). Let f : R>0 → R be a function whose
second derivative is negative: f ′′ < 0. Then for all a1, . . . , an ∈ R>0 and
r1, . . . , rn ∈ [0, 1] with

∑
i ri = 1 there is an inequality:

f
(∑

i
ri · ai

)
≥

∑
i
ri · f (ai). (2.48)

The inequality is strict, except in trivial cases.
The inequality holds in particular for logarithms, when f = log, or f = ln.

The proof is standard but is included, for convenience.

Proof. We shall provide a proof for n = 2. The inequality is easily extended
to n > 2, by induction. So let a, b ∈ R>0 be given, with r ∈ [0, 1]. We need to
prove f (ra + (1 − r)b) ≥ r f (a) + (1 − r) f (b). The result is trivial if a = b or
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r = 0 or r = 1. So let, without loss of generality, a < b and r ∈ (0, 1). Write
c B ra+ (1− r)b = b− r(b− a), so that a < c < b. By the mean value theorem
we can find a < u < c and c < v < b with:

f (c) − f (a)
c − a

= f ′(u) and
f (b) − f (c)

b − c
= f ′(v)

Since f ′′ < 0 we have that f ′ is strictly decreasing, so f ′(u) > f ′(v) because
u > v. We can write:

c − a = (r − 1)a + (1 − r)b = (1 − r)(b − a) and b − c = r(b − a).

From f ′(u) > f ′(v) we deduce inequalities:

f (c) − f (a)
(1 − r)(b − a)

>
f (b) − f (c)

r(b − a)
i.e. r( f (c) − f (a)) > (1 − r)( f (b) − f (c).

By reorganising the latter inequality we get f (c) > r f (a) + (1 − r) f (b), as
required.

We can now say a bit more about divergence. For instance, that it is non-
negative, as one expects.

Proposition 2.8.4. Let ω, ρ ∈ D(X) be states on the same space X.

1 DKL (ω, ρ) ≥ 0.

2 State transformation is DKL -non-expansive: for a channel c : X → Y and
states ω, ρ ∈ D(X) one has:

DKL
(
c =≪ω, c =≪ρ

)
≤ DKL

(
ω, ρ

)
.

The first item shows that Kullback-Leibler divergence is non-negative. The
divergence is not bounded: it can become arbitrarily large, see Exercise 2.8.5
below.

Proof. 1 Via Jensen’s inequality, we deduce for the minus of divergence:

−DKL (ω, ρ) =
∑
x∈X

ω(x) · log
(
ρ(x)
ω(x)

)
≤ log

∑
x∈X

ω(x) ·
ρ(x)
ω(x)

 = log

∑
x∈X

ρ(x)

 = log(1) = 0.
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2 Again Via Jensen’s inequality:

DKL
(
c =≪ω, c =≪ρ

)
=

∑
y∈Y

(c =≪ω)(y) · log
(

(c =≪ω)(y)
(c =≪ρ)(y)

)
=

∑
x∈X, y∈Y

ω(x) · c(x)(y) · log
(

(c =≪ω)(y)
(c =≪ρ)(y)

)
≤

∑
x∈X

ω(x) · log

∑
y∈Y

c(x)(y) ·
(c =≪ω)(y)
(c =≪ρ)(y)

 .
Hence it suffices to prove:

∑
x∈X

ω(x) · log

∑
y∈Y

c(x)(y) ·
(c =≪ω)(y)
(c =≪ρ)(y)

 ≤ DKL
(
ω, ρ

)
=

∑
x∈X

ω(x) · log
(
ω(x)
ρ(x)

)
.

This inequality ≤ follows from another application of Jensen’s inequality:

∑
x∈X

ω(x) · log

∑
y∈Y

c(x)(y) ·
(c =≪ω)(y)
(c =≪ρ)(y)

 − ∑
x∈X

ω(x) · log
(
ω(x)
ρ(x)

)

=
∑
x∈X

ω(x) ·

log

∑
y∈Y

c(x)(y) ·
(c =≪ω)(y)
(c =≪ρ)(y)

 − log
(
ω(x)
ρ(x)

)
=

∑
x∈X

ω(x) · log

∑
y∈Y

c(x)(y) ·
(c =≪ω)(y)
(c =≪ρ)(y)

·
ρ(x)
ω(x)


≤ log

 ∑
x∈X, y∈Y

ω(x) · c(x)(y) ·
(c =≪ω)(y)
(c =≪ρ)(y)

·
ρ(x)
ω(x)


= log

∑
y∈Y

∑
x∈X

c(x)(y) · ρ(x)

 · (c =≪ω)(y)
(c =≪ρ)(y)


= log

∑
y∈Y

(c =≪ω)(y)


= log

(
1
)
= 0.

Exercises

2.8.1 Take ω = 1
4 |a⟩ +

3
4 |b⟩ and ρ = 1

2 |a⟩ +
1
2 |b⟩. Check that:

1 DKL (ω, ρ) = 3
4 · log(3) − 1 ≈ 0.19.

2 DKL (ρ, ω) = 1 − 1
2 · log(3) ≈ 0.21.
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2.8.2 Check that for y ∈ supp(ρ) one has:

DKL
(
1|y⟩, ρ

)
= − log

(
ρ(y)

)
.

2.8.3 1 Show that the function DKL
(
ω,−

)
yields an inequality on convex

sums:
DKL

(
ω, r1 · ρ1 + · · · + rn · ρn

)
≤ r1 · DKL

(
ω, ρ1

)
+ · · · + rn · DKL

(
ω, ρn

)
.

2 Prove the following “log sum inequality” from [31, Thm. 2.7.1]:
for finite collections ai, bi ∈ R>0,(∑

i
ai

)
· log

(∑
i ai∑
i bi

)
≤

∑
i
ai · log

(
ai

bi

)
.

Hint: Use Jensen’s inequality with f (x) = −x · log(x), for x ∈ R>0,
in Lemma 2.8.3.

3 Use this log sum inequality to show that DKL also yields an in-
equality on (the same) convex sums in both arguments (as in [31,
Thm. 2.7.2]):

DKL
(
r1 · ω1 + · · · + rn · ωn, r1 · ρ1 + · · · + rn · ρn

)
≤ r1 · DKL

(
ω1, ρ1

)
+ · · · + rn · DKL

(
ωn, ρn

)
.

2.8.4 Recall the entwined distributionω = 1
8 |u, a⟩+

1
4 |u, b⟩+

3
8 |v, a⟩+

1
4 |v, b⟩

from Example 2.3.9 (2). Compute the mutual information and show
that it satisfies:

DKL
(
ω, ω

[
1, 0

]
⊗ ω

[
0, 1

])
≈ 0.05.

2.8.5 This exercise demonstrates that Kullback-Leibler divergence is un-
bounded: it can become arbitrarily large. Consider the following two
distributions on the set {0, 1, . . . , 2n−1} with 2n elements, for n ≥ 1.

ω = 1
2

∣∣∣0〉
+ 1

2

∣∣∣1〉
ρn =

1
2n

∣∣∣0〉
+ · · · + 1

2n

∣∣∣2n−1
〉
.

Check that DKL
(
ω, ρn

)
= n−1.

2.8.6 In a similar way one can show that mutual information is unbounded
(with multiple products). Let υ = flip( 1

2 ) = 1
2 |0⟩ +

1
2 |1⟩ ∈ D(2) and

let ρn ∈ D
(
2n), for n ≥ 1, be defined by:

ρn =
1
2

∣∣∣ 0, . . . , 0︸  ︷︷  ︸
n times

〉
+ 1

2

∣∣∣ 1, . . . , 1︸  ︷︷  ︸
n times

〉
.

1 Show that each i-th marginal D(πi)(ρn) = ρn
[
0, . . . , 0, 1, 0, . . . , 0

]
is equal to υ.
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2 Deduce from Exercise 2.3.3 that:

υn = υ ⊗ · · · ⊗ υ = unif2n = 1
2n

∣∣∣0, . . . , 0〉
+ · · · + 1

2n

∣∣∣1, . . . , 1〉
.

3 Conclude, like in the previous exercise, that the n-fold mutual in-
formation DKL

(
ρn, υ

n) is equal to n−1.

2.8.7 Use Jensen’s inequality to prove what is known as the inequality of
arithmetic and geometric means: for ri, ai ∈ R≥0 with

∑
i ri = 1,∑

i
ri · ai ≥

∏
i

ari
i .

2.9 Exchangeability for positions and elements

When we have a list of items in XK , there are two ways to shuffle them: (1) we
can keep the elements unchanged, but change their positions, and (2) we can
change the elements in the list to other elements (also from X). In cryptog-
raphy these two methods are called transposition and substitution. They can
be combined. This section collects some basic results about transposition and
substitution that set the scene for later. It is shown that transposition and sub-
stitution are closely related to multisets and quotients, via the accumulation
and matching maps acc : XK →M[K](X) and mat : XK → SP(K) that we saw
before. The story has a probabilistic flavour via the probabilistic inverses acc∼1

and mat∼1. They turn out to be equalisers in the category of channels.

Definition 2.9.1. Let x⃗ = (x0, . . . , xK−1) ∈ XK be a list of length K, with
elements from an arbitrary set X.

1 A transposition is a bijective endofunction t : K �
→ K on the set of indices

K = {0, . . . ,K−1}. It gives rise to a bijection t B tK : XK �
→ XK that reorders

the elements in the list x⃗ as:

t
(
x⃗
)
= (xt(0), . . . , xt(K−1)).

The underlining of t in t suggests it action on the indices. The result t
(
x⃗
)

is
also called a transposition (of x⃗, via t).

2 A substitution is a bijective endofunction s : X �
→ X on the set of elements

in the list. It induces a bijection s⋆ : XK �
→ XK given by:

s⋆
(
x⃗
)
= L(s)

(
x⃗
)
= (s(x0), . . . , s(xK−1).

The notation s⋆ emphasises an analogy with the Kleene star — also used for
lists, as A⋆ = L(A). Indeed, this substitution operation s⋆ uses the functori-
ality of the list operation L. The result s⋆

(
x⃗
)

will also be called a substitu-
tion.

174



2.9. Exchangeability for positions and elements 1752.9. Exchangeability for positions and elements 1752.9. Exchangeability for positions and elements 175

3 A function f : XK → Y is called:

• stable under transposition when f
(
t(x⃗)

)
= f (x⃗), for all transpositions

t : K �
→ K and sequences x⃗ ∈ XK ; this is equivalent to: f

(
t1(x⃗)

)
= f

(
t2(x⃗)

)
,

for all transpositions t1, t2, since the identity is a transposition itself;
• stable under substitution when f satisfies f

(
s⋆(x⃗)

)
= f (x⃗), for all sub-

stitutions s : X �
→ X and sequences x⃗ ∈ XK ; this is again equivalent to

f
(
s⋆1 (x⃗)

)
= f

(
s⋆2 (x⃗)

)
, for all substitutions s1, s2.

4 A joint distribution ω ∈ D(XK) is called transposition-exhangeable (resp.
substitution-exchangeable) if, considered as a function ω : XK → [0, 1], it is
stable under transposition (resp. substitution).

We call a channel c : Y → XK transposition- / substitution-exchangeable
if each distribution c(y) is transposition- / substitution-exchangeable.

For a finite set X, any uniform distribution on XK is both transposition and
substitution-exchangeble. We shall see more interesting examples later. The
accumulation function acc : XK → N[K](X) from (1.35) is the archetypical
function that is stable under transposition; similarly, the matching function
mat : XK → SP(X) from (1.21) is archetypically stable under substitution.
Indeed, transposing the elements does not change the accumulated multiset,
which only considers numbers of occurrences, not positions. Matching on the
other hand only registers the positions where elements are equal (match), and
not what these elements are. Hence the associated set partition does not change
if we replace these elements by others — bijectively.

In order to express what ‘archetypical’ means we briefly move to a categor-
ical perspective and borrow the notion of (co)equaliser.

Definition 2.9.2. Let A be an object in an arbitrary category, with parallel
endomaps f1, . . . , fn : A→ A, for n ≥ 2.

1 An equaliser of these parallel maps fi is a map e : E → A in the category
satisfying the following two properties.

• fi ◦ e = f j ◦ e, for all i, j ∈ {1, . . . , n};
• if g : B → A satisfies fi ◦ g = f j ◦ g for i, j, then there is a unique map

h : B → E with e ◦ h = g. This is expressed in the following diagram,
where the dashed map expresses uniqueness.

E e // A
f1

**

fn

44
... A

B

g

AA

h

OO

(2.49)
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2 Dually, a coequaliser of these parallel maps fi is a morphism c : A → C
with:

• c ◦ fi = c ◦ f j for all i, j;
• if g : A → B satisfies g ◦ fi = g ◦ f j for all i, j, then there is a unique

h : C → B with h ◦ c = g.

A
f1

**

fn

44
... A c //

g
��

C

h

��

B

(2.50)

The second bullets, both in item (1) and (2), describe what is called a uni-
versal property. The maps e and c do not only (co)equalise the maps fi, in the
first bullets, but do so in a ‘maximal’ or ‘minimal’ manner. The unique map,
written as h in both situations, is often called a ‘mediating’ map.

In the category of sets the above equaliser is an inclusion E ↪→ A, where
E = {a ∈ A | ∀i, j. fi(a) = f j(a)}. The coequaliser A → C is more difficult to
describe and is best understood as the quotient (or collaps) of A that forces all
elements fi(a) to be equal, for each a ∈ A, see Exercise 2.9.2.

The next result give some key examples in the current context. In short, it
says that accumulation is the coequaliser of transpositions and that matching
is the coequaliser of substitutions. This is the case in the category Sets of sets
and functions.

Proposition 2.9.3.

1 The accumulation function acc : XK → N[K](X) is the coequaliser of all
functions t : XK → XK induced by the K! transpositions t : K �

→ K, in:

XK ++
33transpositions t XK acc // N[K](X) (2.51)

2 When the set X has at least K elements, the match function mat : XK →

SP(K) is the coequaliser of the functions s⋆ : XK → XK obtained from all
the |X |! substitutions s : X �

→ X, in:

XK ++
33substitutions s⋆ XK mat // SP(K) (2.52)

Proof. 1 If ℓ′ is a transposition of ℓ ∈ XK , then acc(ℓ′) = acc(ℓ). Hence
acc is stable under transposition. Let function g : XK → Y be stable under
transposition as well. For a multiset φ =

∑
1≤i≤L ni| xi ⟩ ∈ N[K](X), one can

choose a list of elements, say x⃗ = ⟨x1, . . . , x1, . . . , xL, . . . xL⟩ ∈ XK , where
xi ∈ X occurs ni many times. Then acc(x⃗) = φ, by construction. We can
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now define h(φ) B g(x⃗). Since g is stable under transposition, any list that
accumulates to φ gives the same outcome. Clearly, h ◦ acc = g. Moreover,
h is unique with this property.

2 Let ℓ′ be a substitution of ℓ ∈ XK . If elements at positions i, j in ℓ are equal,
then the elements at positions i, j in ℓ′ are also equal. Thus mat(ℓ) = mat(ℓ′),
making the match function stable under substitution. Next, let g : XK → Y
be stable under substitution. Given a set partition P ∈ SP(K), say with |P | =
n ≤ K blocks, we can choose pairwise different elements x1, . . . , xn ∈ X
and put them in such a way in a list x⃗ ∈ XK that mat(x⃗) = P. Then we
define h(P) B g(x⃗). This definition does not depend on the choice of the
list x⃗, as long as it matches to P, since g is stable under substitution. Thus,
h ◦ mat = g. Clearly, h is the unique function satisfying this equation.

Recall that for accumulation we have identified a probabilistic inverse chan-
nel acc∼1 = arr , called arrangement, see (2.27). Also for matching there is a
probabilistic inverse mat∼1, see Exercise 2.4.12. We have not given this inverse
a separate name. In general, f◦· f ∼1 = id holds for probabilistic inverses f ∼1, see
Definition 2.4.6. As a result, f ∼1 ◦· f is a split idempotent with respect to chan-
nel composition ◦· , that is, in the category Chan = Chan(D) of probabilistic
channels. We make explicit what this idempotent does, for accumulation and
for matching. This gives alternative descriptions of exchangeability for joint
distributions.

Lemma 2.9.4. Fix a set X and a number K.

1 Abbreviate transp B acc∼1 ◦· acc : XK → XK . This is the transposition idem-
potent sending a list x⃗ ∈ XK to all its transpositions:

transp(x⃗) B
∑

t : K
�
→K

1
K!

∣∣∣ t(x⃗)
〉
=

∑
t : K

�
→K

1
K!

∣∣∣ xt(0), . . . , xt(K−1)
〉
. (2.53)

2 Now assume that X is finite; write subst B mat∼1 ◦· mat : XK → XK . Then:

subst(x⃗) B
∑

s : X
�
→X

1
|X |!

∣∣∣ s⋆(x⃗)
〉
=

∑
s : X

�
→X

1
|X |!

∣∣∣ s(x0), . . . , s(xK−1)
〉
. (2.54)

3 Let ω ∈ D(XK) be a joint distribution. The following points are equivalent:

(a) ω is transposition-exchangeble, see Definition 2.9.1 (4);
(b) D(t)(ω) = ω, for all t : K �

→ K;
(c) transp =≪ω = ω.

4 Similarly, the next three points are equivalent, for ω ∈ D(XK), when X is
finite:
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(a) ω is substitution-exchangeble, see Definition 2.9.1 (4);
(b) D(s⋆)(ω) = ω, for all s : X �

→ X;
(c) subst =≪ω = ω.

Proof. 1 We have:

transp(x⃗) =
(
acc∼1 ◦· acc

)
(x⃗) =

∑
y⃗∈acc−1(acc(x⃗))

1
(acc(x⃗) )

∣∣∣ y⃗〉
=

∑
y⃗ is a permutation of x⃗

1
K!

∣∣∣ y⃗〉
=

∑
t : K

�
→K

1
K!

∣∣∣ xt(0), . . . , xt(K−1)
〉
.

2 Similarly.
3 The equation D

(
t
)
(ω)(x⃗) = ω

(
t−1(x⃗)

)
gives the equivalence (a) ⇔ (b) in

item (3). Further, the pushforward transp =≪ω in (c) boils down to(
transp =≪ω

)
(⃗y) =

∑
x⃗∈XK

transp(x⃗)(⃗y) · ω(x⃗) =
∑

t : K
�
→K

1
K!
· ω

(
t−1 (⃗y)

)
=

∑
t : K

�
→K

1
K!
· D

(
t
)
(ω)(⃗y).

Clearly, the latter equals ω(⃗y) if (b) holds. This gives (b) ⇒ (c). For the
reverse, take an arbitrary transposition r : K �

→ K. Then:

D(r)(ω)(x⃗) = ω
(
r−1(x⃗)

) (c)
=

(
transp =≪ω

)(
r−1(x⃗)

)
=

∑
t : K

�
→K

1
K!
· D

(
t
)
(ω)

(
r−1(x⃗)

)
=

∑
t : K

�
→K

1
K!
· D

(
r
)(
D(t)(ω)

)
(x⃗)

=
∑

t : K
�
→K

1
K!
· D

(
r ◦ t

)
(ω)(x⃗)

=
∑

t : K
�
→K

1
K!
· D

(
t
)
(ω)(x⃗)

=
(
transp =≪ω

)
(x⃗)

(c)
= ω(x⃗).

4 By the same reasoning.

The situation gets more interesting if we move to the category Chan =
Chan(D) of probabilistic channels. We are now going to instantiate the notion
of (co)equaliser from Definition 2.9.2 in Chan, where arrows are channels.
The coequalisers that we saw in Sets turn out to be coequalisers in Chan as
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well. The probabilistic inverses of acc and mat turn out to be equalisers in
Chan. This is a useful observations since it allows us to transform exchange-
able distributions on sequences into distributions on multisets or set partitions.
This forms the basis of the description of a famous result of De Finetti in terms
of multisets, see Proposition 3.2.10.

Proposition 2.9.5.

1 When we view the maps in Diagrams (2.51) and (2.52) as deterministic
channels, via ‹−›, then accumulation and matching are still coequalisers
of all transposition / substitution maps, but now in the category Chan.

2 The probabilistic inverse accumulation channel acc∼1 = arr is the equaliser
of all transpositions (as deterministic channels), in:

N[K](X) ◦
acc∼1 // XK

◦
++

◦

33transpositions t XK (2.55)

3 If a set X has at least K elements, then the probabilistic inverse match chan-
nel mat∼1 is the equaliser of all substitutions (as deterministic channels),
in:

SP(K) ◦
mat∼1 // XK

◦
++

◦

33substitutions s⋆ XK (2.56)

Proof. 1 The proofs of Proposition 2.9.3 also work when the map g is a prob-
abilistic function, instead of an ordinary function.

(The abstract argument that category theorists like in this situation is: the
functor Sets→ Chan is a left adjoint and thus preserves colimits, including
coequalisers.)

2 For a transposition t : K �
→ K we have, for an arbitrary multiset φ ∈ N[K](X),(

t ◦· acc∼1
)
(φ) = D(t)

(
acc∼1(φ)

)
(2.27)
=

∑
x⃗∈acc−1(φ)

1
(φ )

∣∣∣ t(x⃗)
〉

since acc∼1 = arr

=
∑

x⃗∈acc−1(φ)

1
(φ )

∣∣∣ x⃗〉
= acc∼1(φ).

Next, let g : Y → XK be a channel with t ◦· g = g for each t : K �
→ K.

This means D(t)
(
g(y)

)
= g(y), for each t, and thus transp =≪g(y) = g(y) by

Lemma 2.9.4 (3), so that transp◦· g = g. We take h = acc◦· g : Y → N[K](X).
Then:

acc∼1 ◦· h = acc∼1 ◦· acc ◦· g = transp ◦· g = g.

If also k : Y → N[K](X) satisfies acc∼1 ◦· k = g, then k = h since:

h = acc ◦· g = acc ◦· acc∼1 ◦· k = id ◦· k = k.
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3 Along the same lines, with mat in place of acc.

In the above coequaliser and equaliser diagrams we have been using all
transpositions and substitutions, as deterministic channels. We can reduce to
only two channels, where one of them is the identity.

Theorem 2.9.6. Consider the category Chan of probabilistic channels.

1 Accumulation and its probabilistic inverse are coequaliser and equaliser of
the transposition-idempotent transp and the identity:

N[K](X) ◦
acc∼1

= arr
// XK

◦
transp

))

◦
id

55 XK ◦
acc // N[K](X) (2.57)

Explicitly:

• For a channel f : Y → XK with transp ◦· f = f , the unique mediating
channel f : Y → N[K](X) with arr ◦· f = f is f B acc ◦· f .

• For a channel g : XK → Y with g ◦· transp = g, the unique mediating
channel g : N[K](X)→ Y with g ◦· acc = g is g B g ◦· arr .

2 Matching and its probabilistic inverse are coequaliser and equaliser of the
substitution-idempotent subst and the identity:

SP(K) ◦
mat∼1 // XK

◦
subst

))

◦
id

55 XK ◦
mat // SP(K) (2.58)

For this we assume that the set X has at least K elements. In this case:

• For f : Y → XK with subst ◦· f = f , one has f B mat ◦· f uniquely
satisfying mat∼1 ◦· f = f ;

• And for g : XK → Y with subst ◦· g = g, the unique mediating map g with
g ◦· mat = g is g B g ◦· mat∼1.

Proof. The two statements can be proven with what we have described earlier
in this section. However, both results follow via very general abstract reason-
ing, in the lemma below.

These results are instances of a more general, purely categorical fact about
split idempotents.

Lemma 2.9.7. Let f : A → A be a split idempotent in an arbitrary category.
This means that f can be written as f = s ◦ r where r ◦ s = id . Then:

1 s is the equaliser of f , id : A ⇒ A;
2 r is their coequaliser.
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In this situation f is called a split idempotent, with (monic) section s and (epic)
retraction r, in a situation:

B // s // A
f=s◦r

**

id

44 A r // // B (2.59)

It may be clear that the two items in the above theorem are both an instance
of this general result, interpreted in the category Chan, for the split idempo-
tents transp = acc∼1 ◦· acc and subst = mat∼1 ◦· mat .

Proof. Let r : A→ B and s : B→ A be the retraction and section maps, where
f = s ◦ r and r ◦ s = id .

1 First, we show that the section is an equaliser: f ◦ s = s ◦ r ◦ s = s = id ◦
s. Moreover, if f ◦ g = g = id ◦ g : C → A, then there is g B r ◦ g : C → B
satisfying:

• s ◦ g = s ◦ r ◦ g = f ◦ g = g.
• if also s ◦ h = g, then h = r ◦ s ◦ h = r ◦ g = g.

2 We need to show that the retraction r is a coequaliser: r ◦ f = r ◦ s ◦ r =
r = r ◦ id . If g ◦ f = g = g ◦ id : A → C, then g B= g ◦ s : B → C
satisfies:

• g ◦ r = g ◦ s ◦ r = g ◦ f = g.
• if also h ◦ r = g, then h = h ◦ r ◦ s = g ◦ s = g.

So far this section has concentrated on accumulation and matching, and on
their special roles for transposition and substitution. The accumulation and
matching maps acc and mat form a commuting diamond at the top of the tri-
angular prism (1.48), together with the muliplicity count and size count maps
mc and sc, see Definition 1.9.2. The above account in terms of (co)equalisers
can be extended to multiplicity and size count. We concentrate on the essen-
tials.

Theorem 2.9.8. Fix a finite set X and a number K ≥ 1.

1 In the category Chan of probabilistic channels, the multiplicity count func-
tion mc : N[K](X) → MP(K) is a coequaliser and its probabilistic inverse
mc∼1 is an equaliser:

MP(K) ◦
mc∼1// N[K](X)

◦ ,,

◦
22substitutions N[K](X) ◦

mc // MP(K) (2.60)

These substitutions are of the formM(s) : N[K](X) �→ N[K](X), for s : X �
→
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X. The probabilistic inverse mc∼1 : MP(K) → N[K](X) takes the following
form, via Lemma 1.9.6.

mc∼1(α) B
∑

φ∈mc−1(α)

1(
|X |
α

) ∣∣∣φ〉
=

∑
φ∈mc−1(α)

α · (N−∥α∥)!
N!

∣∣∣φ〉
. (2.61)

2 Similarly, the size count function sc : SP(K)→ MP(K) forms a coequaliser,
and its probabilistic inverse sc∼1 an equaliser, in the diagram of channels:

MP(K) ◦
sc∼1 // SP(K)

◦ ,,

◦
22transpositions SP(K) ◦

sc // MP(K) (2.62)

These transpositions in the middle are of the formP(P(t)) : SP(K) �→ SP(K),
for t : {1, . . . ,K} �→ {1, . . . ,K}, see Exercise 1.5.4. The probabilistic inverse
sc∼1 : MP(K)→ SP(K) is of the following form.

sc∼1(α) B
∑

P∈sc−1(α)

α

(α)p

∣∣∣P〉
. (2.63)

This is justified by Lemma 1.9.7.

The multiple substitution and transposition maps in (2.60) and (2.62) may
be replaced by just two maps, like in (2.59), one of which is the identity.

The equaliser in (2.62) is used implicitly for what Pitman [151, 152] calls
an exchangeable partition probability function (EPPF) of a distribution σ ∈

D
(
SP(K)

)
on set partitions. When such a distribution σ is exchangeable, the

EPPF arises via the equaliser sc∼1 in:

MP(K) ◦
sc∼1 // SP(K)

◦
,,

◦
22transpositions SP(K)

1

◦
σ

;;

EPPF

OO

Thus, the EPPF is the distribution on multiset partitions uniquely correspond-
ing to a (transposition) exchangeable distribution on set partitions.

We now have for each of the four basic maps — accumulation, matching,
multiplicity count and size count — a probabilistic inverse. There is a bit more
to say about their interaction.

Proposition 2.9.9.

1 The following two rectangles commute.

N[K](X) ◦
acc∼1 //

◦mc
��

XK

◦mat
��

SP(K) ◦
mat∼1 //

◦sc
��

XK

◦ acc
��

MP(K) ◦
sc∼1 // SP(K) MP(K) ◦

mc∼1 // N[K](X)
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For the diagram on the right we have to assume |X | ≥ K.

2 The probabilistic inverses commute:

MP(K) ◦
sc∼1 //

◦mc∼1
��

SP(K)
◦mat∼1
��

N[K](X) ◦
acc∼1 // XK

Proof. 1 We use Lemma 1.9.8 for both rectangles. First, for φ ∈ N[K](X),

(
sc∼1 ◦· mc

)
(φ)

(2.63)
=

∑
P∈sc−1(mc(φ))

mc(φ)
(mc(φ))p

∣∣∣P〉
(1.49)
=

∑
P∈sc−1(mc(φ))

∑
x⃗∈mat−1(P)∩acc−1(φ)

1
mc(φ)

·
mc(φ)

(φ )

∣∣∣P〉
=

∑
x⃗∈acc−1(φ)

1
(φ )

∣∣∣mat(x⃗)
〉

=
(
mat ◦· acc∼1

)
(φ).

Similary, when N = |X | ≥ K,

(
mc∼1 ◦· sc

)
(P)

(2.61)
=

∑
φ∈mc−1(sc(P))

sc(P) · (N − ∥sc(P)∥)!
N!

∣∣∣φ〉
=

∑
φ∈mc−1(sc(P))

∑
x⃗∈mat−1(P)∩acc−1(φ)

1
sc(P)

·
sc(P) · (N − |P |)!

N!

∣∣∣φ〉
=

∑
x⃗∈mat−1(P)

(N − |P |)!
N!

∣∣∣acc(x⃗)
〉

=
(
acc ◦· mat∼1

)
(P).
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2 By unpacking the relevant definitions, for α ∈ MP(K),(
acc∼1 ◦· mc∼1

)
(α) =

∑
φ∈mc−1(α)

∑
x⃗∈acc−1(φ)

α · (N − ∥α∥)!
N!

·
1

(φ )

∣∣∣ x⃗〉
(1.49)
=

∑
φ∈mc−1(α)

∑
x⃗∈acc−1(φ)

α · (N − ∥α∥)!
N!

·
1

(α)p

∣∣∣ x⃗〉
=

∑
x⃗∈acc−1(mc−1(α))

(N − ∥α∥)!
N!

·
α

(α)p

∣∣∣ x⃗〉
=

∑
x⃗∈mat−1(sc−1(α))

(N − ∥α∥)!
N!

·
α

(α)p

∣∣∣ x⃗〉
=

∑
P∈sc−1(α)

∑
x⃗∈mat−1(P)

(N − |P |)!
N!

·
α

(α)p

∣∣∣ x⃗〉
=

(
mat∼1 ◦· sc∼1

)
(α).

Exercises

2.9.1 We have seen that the match function is stable under substitution.
Prove the following slichtly more general statement. Let X,Y be iso-
morphic sets, say via the isomorphism f : X �

→ Y . Show that for a list
ℓ ∈ XK ,

mat(ℓ) = mat
(
f K(ℓ)

)
.

2.9.2 This exercises sketches how coequalisers can be obtained in the cat-
egory Sets. Let f , g : A → B two arbitrary functions. Define the rela-
tion R ⊆ B × B as:

R B
{
( f (a), g(a))

∣∣∣ a ∈ A
}
.

Now let R ⊇ R be the least equivalenct relation containing R. Show
that the quotient map q : B ↠ B/R is a coequaliser of f , g.

2.9.3 Recall the uniform projection channel unpr[K] : XK → X from Exer-
cise 2.4.7. Check that it can be used to give an axiomatic definition of
the frequentist learning map, as in [82], via the coequaliser property
of accumulation:

XK ++
33transpositions t XK acc //

unpr[K]
##

N[K](X)

Flrn
��

D(X)

2.9.4 Fix a set X and a number K ≥ 1.
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1 Show that the composite D(acc) ◦
⊗

: D(X)K → D
(
N[K](X)

)
is

stable under transposition.
2 Deduce that there is a map from multisets over distributions to dis-

tributions over multisets, in:

D(X)K ,,
22transpositions t D(X)K acc //

D(acc)◦
⊗

&&

N[K]
(
D(X)

)
��

D
(
N[K](X)

)
In the next chapter, Sections 3.6 – 3.8 are devoted to this map.

2.9.5 Show that the transposition idempotent transp = arr ◦· acc commutes
with (big) tensors, as in the following diagram of channels.

D(X)K ◦
transp

//

◦
⊗
��

D(X)K

◦
⊗
��

XK ◦
transp

// XK

2.9.6 Use Proposition 2.9.9 to show that the following diagram of split
idempotents commutes.

XK

◦
subst
''

XK
◦

transp 77

◦
subst ''

XK

XK
◦
transp

77

2.9.7 Show also that the transposition idempotent transp interacts with zip
as in the following diagram, in which zip occurs as deterministic
channel.

N[K](X) × N[K](Y) ◦
arr⊗arr //

◦
arr⊗arr ,,

XK × YK ◦
zip

// (X × Y)K

XK × YK ◦
zip

// (X × Y)K
◦

transp

FF

Informally, this says that transposing a zip of already transposed in-
puts does not add anything.

2.9.8 Recall the triangular prism diagram (1.48) and define the equality
count map ec : XK → MP(K) as:

ec B mc ◦ acc = sc ◦ mat .

Develop a theory for ec, as we have done for acc and mat in this
section, involving both transposition and substitution.
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3

Drawing from an urn

Drawing from an urn, filled with thoroughly shuffled balls of different colours,
is a basic model of probability, see e.g. [103, 150, 159, 126] and many other
references. In this book such an urn is identified with a multiset over the set of
colours. The resulting probabilities arise ‘by counting’, see the pricture in (0.1).
The frequentist learning operation gives the probability distribution Flrn(υ)
associated with an urn υ and determines the probability of drawing a ball of
colour x, see Remark 2.2.1. This probability is the ratio Flrn(υ)(x) = υ(x)

∥υ∥
of

the number of balls υ(x) of colour x and the total number of balls ∥υ∥ in the urn
(also called the size of the urn/multiset). In the previous chapter, in Section 2.6,
we have briefly seen the three basic modes of drawing balls from an urn:

• multinomial, that is, with replacement, or draw-and-replace;
• hypergeometric, that is, without replacement, or draw-and-delete;
• Pólya, that is draw-and-duplicate.

We have seen that all these modes give rise to probabilistic channels.
In this chapter we continue our investigations of drawing from urns, es-

pecially from this channel-based perspective. We shall see that several basic
properties of drawing are expressed properly in the calculus of channels, in-
volving especially sequential and parallel composition. For instance, applying
frequentist learning to the multisets that are obtained from multinomial draws,
returns the original distribution if we take the probabilities of these draws into
account. We shall express this as a pushforward Flrn =≪ mn[K](ω) = ω, see
Theorem 3.3.3, or equivalently as a commuting diagram of channels, in the
style of category theory. Indeed, as we proceed in this chapter, the level of cat-
egorical sophistication increases. Hence, at first reading, the later Sections 3.6
– 3.9 may be skipped.

Multisets play a basic role in this chapter, both as urns and as draws from
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such urns. Hence we start in Section 3.1 with a closer look at multisets, in par-
ticular at a probabilistic ‘multizip’ operation for combining two multisets of
the same size. This multizip interacts nicely with frequentist learning. It can be
described in different ways, via accumulation and arrangement, and via cou-
plings of natural multisets. At the end of the chapter, in a categorical setting,
we recognise multizip as a monoidal transformation. In Section 3.2 we make a
cautious start, namely by considering draws of single balls. It makes sense to
consider them first, and to see how they are related to other operations such as
frequentist learning and multizip, before we consider draws of arbitrary size.
The single draws are in particular relevant in what we call draw-delete cones,
which correspond to consistent sequences of (transposition) exchangeable dis-
tributions.

In Sections 3.3 – 3.5 we describe many of the basic properties of multino-
mial, hypergeometric and Pólya distributions. Here our channel-perspective is
fully exploited, for instance in properties like: hg[K] ◦· mn[K+L] = mn[K].
This says that if you first take K+L-size multinomial draws, then take K-sized
hypergeometric draws, using these multinomial draws as urns, then you may
as well take multinomial K-sized draws in the first place. The channel compo-
sition ◦· in this equation ensures that all probabilities in this statement interact
in the appropriate manner.

The subsequent three sections 3.6 – 3.8 deal with a non-trival operation that
turns multisets of distributions into distributions of multisets. Categorically,
this is a so-called distributive law. It embodies a fundamental relationship be-
tween multisets and distributions and allows us to express various basic facts.
We spend ample time introducing this ‘parallel multinomial’ law: Section 3.6
contains no less than four different definitions — all equivalent. Subsequently,
various properties are demonstrated of this parallel multinomial law, including
commutation with hypergeometric channels, with frequentist learning and with
multizip. This parallel multinomial law is a distributive law of monads, of N
over D, giving a composite monad DN . Similarly, there is a distributive law
of lists over distributions, giving a monad DL. The final section of this chap-
ter uses such distributions over multisets/lists in discrete Poisson processes, as
infinite mixtures of iid and multinomial distributions, where the sizes involved
are determined by a Poisson rate parameter.

This chapter demonstrates that the formalism of category theory helps to
navigate the intricacies of drawing from an urn — and of other probabilistic
operations in other chapters too. More boldly, one can say that drawing from
urns is one of the most convincing applications of category theory, where its
language is crucial for expressing the most elementary properties — many of
which are missing in the literature.
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In the beginning of Chapter 1 we have seen a table describing elementary
properties of lists, multisets and subsets. At the end of this chapter we can
extend this table in the following manner.

lists subsets multisets

order matters + - -
multiplicity matters + - +

parallel products ⊗ exist - + +

distributive law withD exists + - +

3.1 Zipping multisets

Multisets play an important role in drawing from an urn. The draws themselves
are described as multisets, but also the urns, in the hypergeometric and Pólya
cases. This first section is preparatory and looks at a zip operation for multi-
sets, as a way of probabilistically combining two multisets of the same size.
This operation is called multizip and is written as mzip. It is of a fundamental
nature.

For two (natural) multisets φ ∈ N[K](X) and ψ ∈ N[L](Y) we can form their
tensor product φ ⊗ ψ ∈ N[K ·L](X × Y). The fact that it has size K ·L follows
from Lemma 2.3.2 (1). For sequences there is the familiar zip combination map
XK × YK → (X × Y)K that does maintain size, see Exercise 1.3.7. Interestingly,
there is also a zip-like operation for natural multisets of the same size, with
outcomes of this same size. This multizip operation mzip makes systematic use
of accumulation acc and its probabilistic inverse arrangement arr = acc∼1. The
multizip was first described in [80]. As will be shown, it can also be formulated
in terms of couplings.

The idea is the following. In order to combine two natural multisets φ ∈
N[K](X) and ψ ∈ N[K](Y) of the same size K, we first look at all lists x⃗ ∈ XK

and y⃗ ∈ YK that accumulate to φ and ψ, that is, with acc(x⃗) = φ and acc(⃗y) = ψ.
We then zip the two lists x⃗ ∈ XK and y⃗ ∈ YK into a single list zip(x⃗, y⃗) ∈
(X × Y)K . Finally we apply accumulation acc : (X × Y)K → M[K](X × Y),
giving a combined multiset mzip(φ, ψ) ∈ M[K](X × Y), still of size K. Dia-
grammatically we may describe mzip thus as the following composite.

N[K](X) × N[K](Y) arr⊗arr // D
(
XK × YK)
� D(zip)
��

D
(
(X × Y)K)

D(acc)
// D

(
N[K](X × Y)

) (3.1)
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Definition 3.1.1. For sets X,Y and a number K we define the multizip channel
mzip[K] : N[K](X) × N[K](Y)→ N[K](X × Y) as the composite:

mzip[K] B acc ◦· zip ◦· (arr ⊗ arr). (3.2)

This means that mzip[K] makes the following rectangle commute.

N[K](X) × N[K](Y)
◦arr⊗arr
��

◦
mzip[K]

// N[K](X × Y)

XK × YK ◦
zip

// (X × Y)K

◦ acc
OO

Explicitly, for φ ∈ N[K](X) and ψ ∈ N[K](Y),

mzip[K](φ, ψ) B
∑

x⃗∈acc−1(φ)

∑
y⃗∈acc−1(ψ)

1
(φ ) · (ψ )

∣∣∣∣ acc
(
zip(x⃗, y⃗)

)〉
. (3.3)

We drop the parameter K in mzip[K] when it is clear from the context.

An illustration may help to see what happens here.

Example 3.1.2. Let’s use two set X = {a, b} and Y = {0, 1} with two multisets
of size three:

φ = 1|a⟩ + 2|b⟩ and ψ = 2|0⟩ + 1|1⟩.

Then:

(φ ) =
(

3
1,2

)
= 3 (ψ ) =

(
3

2,1

)
= 3.

The sequences in X3 and Y3 that accumulate to φ and ψ are:
a, b, b
b, a, b
b, b, a

and


0, 0, 1
0, 1, 0
1, 0, 0.

Zipping them together gives the following nine sequences in (X × Y)3.

(a, 0), (b, 0), (b, 1) (b, 0), (a, 0), (b, 1) (b, 0), (b, 0), (a, 1)
(a, 0), (b, 1), (b, 0) (b, 0), (a, 1), (b, 0) (b, 0), (b, 1), (a, 0)
(a, 1), (b, 0), (b, 0) (b, 1), (a, 0), (b, 0) (b, 1), (b, 0), (a, 0).

By applying the accumulation function acc to each of these we get multisets:

1|a, 0⟩+1|b, 0⟩+1|b, 1⟩ 1|b, 0⟩+1|a, 0⟩+1|b, 1⟩ 2|b, 0⟩+1|a, 1⟩
1|a, 0⟩+1|b, 1⟩+1|b, 0⟩ 2|b, 0⟩+1|a, 1⟩ 1|b, 0⟩+1|b, 1⟩+1|a, 0⟩

1|a, 1⟩+2|b, 0⟩ 1|b, 1⟩+1|a, 0⟩+1|b, 0⟩ 1|b, 1⟩+1|b, 0⟩+1|a, 0⟩.
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We see that are only two different multisets involved. Counting them and mul-
tiplying with 1

(φ )·(ψ ) =
1
9 gives:

mzip[3]
(
1|a⟩ + 2|b⟩, 2|0⟩ + 1|1⟩

)
= 1

3

∣∣∣∣ 1|a, 1⟩ + 2|b, 0⟩
〉
+ 2

3

∣∣∣∣ 1|a, 0⟩ + 1|b, 0⟩ + 1|b, 1⟩
〉
.

This shows that calculating mzip is laborious. But it is quite mechanical and
easy to implement.

The next result contains some burocracy on the mzip operation showing that
it satisfies several reasonable properties.

Proposition 3.1.3. Consider mzip : N[K](X) × N[K](Y) → N[K](X × Y),
either in in diagrammatic form (3.1) or in its equational formulation (3.3).

1 The mzip map is natural in X and Y: for functions f : X → U and g : Y → V
the following diagram commutes.

N[K](X) × N[K](Y)
mzip

//

N( f )×N(g)
��

D
(
N[K](X × Y)

)
D(N( f×g))
��

N[K](U) × N[K](V)
mzip

// D
(
N[K](U × V)

)
2 For φ ∈ N[K](X) and y ∈ Y,

mzip(φ,K|y⟩) = 1
∣∣∣φ ⊗ 1|y⟩

〉
.

And similarly in symmetric form.
3 Multizip commutes with projections in the following sense.

N[K](X)
unit
��

N[K](X) × N[K](Y)
mzip
��

π1oo
π2 // N[K](Y)

unit
��

D
(
N[K](X)

)
D

(
N[K](X × Y)

)D(N(π1))
oo

D(N(π2))
// D

(
N[K](Y)

)
This means that ⟨N(π1),N(π2)⟩◦·mzip = id , and thus that in the other order
mzip ◦· ⟨N(π1),N(π2)⟩ : N[K](X × Y)→ N[K](X × Y) is a split idempotent
channel.

4 Arrangement arr relates zip and mzip as in:

N[K](X) × N[K](Y) ◦
arr⊗arr //

◦mzip
��

XX × YK

◦ zip
��

N[K](X × Y) ◦
arr // (X × Y)K
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5 Multizip is associative, as given by:

N[K](X) × N[K](Y) × N[K](Z)
◦mzip⊗id
��

◦
id⊗mzip

// N[K](X) × N[K](Y × Y)
◦mzip
��

N[K](X × Y) × N[K](Z) ◦
mzip

// N[K](X × Y × Z)

Here we take associativity of × for granted.

Proof. 1 Easy, via the diagrammatic formulation (3.1), using naturality of arr
(Exercise 2.4.11), of zip (Exercise 1.11.4), and of acc (Exercise 1.7.12).

2 Since:

mzip(φ,K|y⟩) =
∑

x⃗∈acc−1(φ)

1
(φ )

∣∣∣∣ acc
(
zip(x⃗, ⟨y, . . . , y⟩)

)〉
=

∑
x⃗∈acc−1(φ)

1
(φ )

∣∣∣∣ acc(−−→xi, y)
〉

=
∑

x⃗∈acc−1(φ)

1
(φ )

∣∣∣∣ acc(x⃗) ⊗ 1|y⟩
〉

=
∑

x⃗∈acc−1(φ)

1
(φ )

∣∣∣∣ φ ⊗ 1|y⟩
〉
= 1

∣∣∣∣ φ ⊗ 1|y⟩
〉
.

3 By naturality of acc and zip:

D(N(π1))
(
mzip(φ, ψ)

)
=

∑
x⃗∈acc−1(φ)

∑
y⃗∈acc−1(ψ)

1
(φ ) · (ψ )

∣∣∣∣N(π1)
(
acc(zip(x⃗, y⃗))

)〉
=

∑
x⃗∈acc−1(φ)

∑
y⃗∈acc−1(ψ)

1
(φ ) · (ψ )

∣∣∣∣ acc
(
(π1)K(zip(x⃗, y⃗))

)〉
=

∑
x⃗∈acc−1(φ)

∑
y⃗∈acc−1(ψ)

1
(φ ) · (ψ )

∣∣∣∣ acc(x⃗)
〉
=

∑
x⃗∈acc−1(φ)

1
(φ )

∣∣∣φ〉
= 1

∣∣∣φ〉
.

4 Directly from Exercise 2.9.7.

5 Consider the following diagram chase, obtained by unpacking the (diagram-
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matic) definition of mzip on the right-hand side.

N[K](X)×N[K](Y)×N[K](Z)
arr⊗arr⊗arr

◦**

◦mzip⊗id

��

◦
id⊗mzip

// N[K](X)×N[K](Y×Z)
◦ arr⊗arr
��

◦mzip

oo

XK×YK×ZK ◦
id⊗zip

//

◦zip⊗id
��

XK×(Y×Z)K

◦ zip
��

N[K](X)×N[K](Y×Z) ◦
arr⊗arr //

◦mzip
��

(X×Y)K×ZK ◦
zip
// (X×Y×Z)K

◦ acc
��

N[K](X×Y×Z) ◦

◦
arr

22

N[K](X×Y×Z)

We can see that the outer diagram commutes by going through the internal
subdiagrams. In the middle we use associativity of the (ordinary) zip func-
tion, formulated in terms of (deterministic) channels. Three of the (other)
internal subdiagrams commute by item (4). The acc-arr triangle at the bot-
tom commutes by (2.28).

The following result deserves a separate status. It tells that what we learn
from a multiset zip is the same as what we learn from a parallel product (of
multisets).

Theorem 3.1.4. Multiset zip and frequentist learning interact well, namely as:

Flrn =≪mzip(φ, ψ) = Flrn
(
φ ⊗ ψ

)
= Flrn(φ) ⊗ Flrn(ψ).

The second equation is known from Lemma 2.3.2 (5) but is added for complete-
ness. In diagrammatic form the first equation reads:

N[K](X) × N[K](Y)
⊗
��

◦
mzip

// N[K](X × Y)
◦ Flrn
��

N[K2](X × Y) ◦
Flrn // X × Y

Proof. Let multisets φ ∈ N[K](X) and ψ ∈ N[K](Y) be given and let a ∈ X
and b ∈ Y be arbitrary elements. We need to show that the probability:(

Flrn =≪mzip(φ, ψ)
)
(a, b) =

∑
x⃗∈acc−1(φ)

∑
y⃗∈acc−1(ψ)

acc
(
zip(x⃗, y⃗)

)
(a, b)

K · (φ ) · (ψ )

is the same as the probability:

Flrn(φ ⊗ ψ)(a, b) =
φ(a) · ψ(a)

K · K
.

We reason informally, as follows. For arbitrary x⃗ ∈ acc−1(φ) and y⃗ ∈ acc−1(ψ)
we need to find the fraction of occurrences (a, b) in zip(x⃗, y⃗). The fraction of

192



3.1. Zipping multisets 1933.1. Zipping multisets 1933.1. Zipping multisets 193

occurrences of a in x⃗ is φ(a)
K = Flrn(φ)(a), and the fraction of occurrences of b

in y⃗ is ψ(b)
K = Flrn(ψ)(b). Hence the fraction of occurrences of (a, b) in zip(x⃗, y⃗)

is Flrn(φ)(a) · Flrn(ψ)(b) = Flrn(φ ⊗ ψ)(a, b).

We continue with an alternative way to describe multizip1. It uses the con-
cept of a coupling for natural multisets. We have described couplings of distri-
butions σ, τ in Definition 2.3.8 (3) as a joint distribution that marginalises to σ
and to τ. We first give a general formulation of coupling with respect a functor
F. We shall use it below with F = N[K]. In the probabilistic case one uses
F = D.

Definition 3.1.5. Let F : Sets→ Sets be a functor. A coupling of two elements
a ∈ F(X) and b ∈ F(Y) is an element c ∈ F(X × Y) with F(π1)(c) = a and
F(π2)(c) = b.

Let’s introduce the decouple map dcpl as:

dcpl B
(
F(X × Y)

⟨ F(π1), F(π2) ⟩
// F(X) × F(Y)

)
. (3.4)

A coupling of (a, b) is then an element c with dcpl(c) = (a, b), that is, with
c ∈ dcpl−1(a, b).

A mentioned we use this general definition with F = N[K], so that the
decouple map in (3.4) is the pair of marginalisation functions. In Proposi-
tion 3.1.3 (3) we have seen that mzip(φ, ψ) is a distribution of couplings of
φ, ψ. In Proposition 3.1.7 it will be shown that mzip(φ, ψ) is a distribution of
all such couplings, with probabilities that can be described in terms of multiset
coefficients.

The next result uses the zip isomorphism zip : XK × YK �
−→ (X × Y)K from

Exercise 1.3.7. As shown there, its inverse is the tuple ⟨(π1)K , (π2)K⟩ : (X ×
Y)K �
−→ XK × YK .

Lemma 3.1.6. Consider the setting of Definition 3.1.5.

1 There is a commuting triangle of the form:

XK × YK

acc×acc (( ((

zip

�
// (X × Y)K acc // // N[K](X × Y)

dcpluu
N[K](X) × N[K](Y)

(3.5)

As a result, the decouple function dcpl : N[K](X×Y)→ N[K](X)×N[K](Y)
is surjective.

1 Developed together with Dario Stein.
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2 There is the following equality of subsets of N[K](X × Y).

dcpl−1(φ, ψ) =
{
acc

(
zip(x⃗, y⃗)

) ∣∣∣ x⃗ ∈ acc−1(φ), y⃗ ∈ acc−1(ψ)
}
.

In particular, the subset dcpl−1(φ, ψ) ⊆ N[K](X × Y) is finite.

3 Further: ∑
χ∈dcpl−1(φ,ψ)

(χ ) = (φ ) · (ψ ).

Proof. 1 Via the naturality of acc, see Exercise 1.7.12: for x⃗ ∈ acc−1(φ) and
y⃗ ∈ acc−1(ψ),

dcpl
(
acc

(
zip(x⃗, y⃗)

)) (3.4)
=

(
N(π1)

(
acc

(
zip(x⃗, y⃗)

))
, N(π2)

(
acc

(
zip(x⃗, y⃗)

)) )
=

(
acc

(
(π1)K(

zip(x⃗, y⃗)
))
, acc

(
(π2)K(

zip(x⃗, y⃗)
)) )

=
(

acc
(
π1(x⃗, y⃗)

)
, acc

(
π2(x⃗, y⃗)

) )
=

(
acc(x⃗), acc(⃗y)

)
=

(
φ, ψ

)
.

This allows us to show that dcpl : N[K](X × Y) → N[K](X) × N[K](Y)
is a surjective function: let a pair (φ, ψ) ∈ N[K](X) × N[K](Y) be given.
Using the surjectivity of accumulation we can find x⃗ ∈ XK and y⃗ ∈ YK

with acc(x⃗) = φ and acc(⃗y) = ψ. The above argument shows that χ B
acc

(
zip(x⃗, y⃗)

)
∈ N[K](X × Y) satisfies dcpl(χ) =

(
acc(x⃗), acc(⃗y)

)
=

(
φ, ψ

)
.

2 The previous point gives the inclusion (⊇). For (⊆), let χ ∈ dcpl−1(φ, ψ) be
given. There is a sequence z⃗ ∈ (X ×Y)K with acc(⃗z) = χ. Write z⃗ = zip(x⃗, y⃗),
for x⃗ = (π1)K (⃗z) and y⃗ = (π2)K (⃗z). We claim that acc(x⃗) = φ and acc(⃗y) = ψ.
We elaborate only the first equation, since the second one is obtained in the
same way. By assumption, χ is coupling of φ, ψ, so:

φ = N(π1)(χ) = N(π1)
(
acc(zip(x⃗, y⃗))

)
= acc(x⃗).

The last equation is obtained as in the previous point.
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3 By: ∑
χ∈dcpl−1(φ,ψ)

(χ )

=
∑

χ∈dcpl−1(φ,ψ)

∣∣∣∣acc−1(χ)
∣∣∣∣ by Proposition 1.7.2

=
∣∣∣∣ ⋃
χ∈dcpl−1(φ,ψ)

acc−1(χ)
∣∣∣∣ since

⋃
is a disjoint union

=
∣∣∣∣ (dcpl ◦ acc

)−1(φ, ψ)
∣∣∣∣

=
∣∣∣∣ (dcpl ◦ acc ◦ zip

)−1)(φ, ψ)
∣∣∣∣ since zip is an isomorphism

(3.5)
=

∣∣∣∣ (acc × acc
)−1(φ, ψ)

∣∣∣∣
=

∣∣∣∣ (acc)−1(φ) × (acc)−1(ψ)
∣∣∣∣

=
∣∣∣∣ (acc)−1(φ)

∣∣∣∣ · ∣∣∣∣ (acc)−1(ψ)
∣∣∣∣

= (φ ) · (ψ ) by Proposition 1.7.2 again.

With the results in this lemma we obtain the promised alternative formula-
tion of multizip in terms of couplings.

Proposition 3.1.7. We can also describe multizip as:

mzip(φ, ψ) =
∑

χ∈dcpl−1(φ,ψ)

(χ )
(φ ) · (ψ )

∣∣∣χ〉
. (3.6)

On the right-hand-side there is a proper distribution by Lemma 3.1.6 (3).

Proof. By the following reasoning, starting with Proposition 1.7.2.∑
χ∈dcpl−1(φ,ψ)

(χ )
(φ ) · (ψ )

∣∣∣χ〉
=

∑
z⃗∈(X×Y)K

1
(φ ) · (ψ )

∣∣∣acc(⃗z)
〉

=
∑
x⃗∈XK

∑
y⃗∈YK

1
(φ ) · (ψ )

∣∣∣acc(zip(x⃗, y⃗))
〉

= mzip(φ, ψ).

Once we have seen the definition of mzip, via ‘deconstruction’ of multisets
into lists, a zip operation on lists, and ‘reconstruction’ to a multiset result, we
can try to apply this approach more widely. For instance, instead of using a
zip on lists we can simply concatenate (++) the lists — assuming they contain
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elements from the same set. This yields, like in (3.1), a composite channel:

N[K](X) × N[L](X) arr⊗arr // D
(
XK × XL)
� D(++)
��

D
(
XK+L)

D(acc)
// D

(
N[K+L](X)

)
It is easy to see that this yields addition of multisets, as a deterministic channel.

In Section 2.9 we have seen formal similarities between accumulation acc
and matching mat . We can try the analogue of mzip for matchting. It is not so
interesting since it yields a deterministic function.

Lemma 3.1.8. Let X,Y be finite sets with |X | ≥ K and |Y | ≥ K, for some
number K ∈ N. The composite channel SP(K) × SP(K)→ SP(K) in:

SP(K) × SP(L) ◦
mat∼1⊗mat∼1 // XK × YK ◦

�

zip
// (X × Y)K ◦

mat // SP(K)

is deterministic; it sends set partitions P,Q ∈ SP(K) to their ‘intersection’:

P & Q B
{

B ∩C
∣∣∣∣ B ∈ P, C ∈ Q, B ∩C , ∅

}
.

Proof. Let D ∈ mat
(
zip(x⃗, y⃗)

)
be a block, for sequences x⃗ ∈ mat−1(P) and

y⃗ ∈ mat−1(Q), say D = {i1, . . . , in} for n ≥ 2. Then zip(x⃗, y⃗)i j = zip(x⃗, y⃗)ik for
each 1 ≤ j, k ≤ n, and thus xi j = xik and yi j = yik . This means that D = B ∩ C,
for blocks B ∈ P and C ∈ Q. The same argument can be used to show that
the non-empty intersection of block B ∩ C, for B ∈ P, C ∈ Q, must be in
mat

(
zip(x⃗, y⃗)

)
. The argument does not depend on the choice over x⃗ or y⃗, and

thus gives a deterministic channel.

We conclude with several useful observations about accumulation in two
dimensions.

Lemma 3.1.9. Fix a number K ∈ N and a set X.

1 We can mix K-ary and 2-ary accumulation in the following way.

XK × XK

zip �

��

acc[K]×acc[K]
// N[K](X) × N[K](X) +

((

N[2K](X)

(X × X)K acc[2]K
// N[2](X)K

+

66
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2 When we generalise from 2 to L ≥ 2 we get:

(
XK)L

zipL �

��

acc[K]L
// N[K](X)L +

''

N[L·K](X)(
XL)K acc[L]K

// N[L](X)K
+

77

Proof. 1 Commutation of the diagram is ‘obvious’, so we provide only an
exemplary proof. The two paths in the diagram yield the same outcomes in:(

+ ◦ (acc[K] × acc[K])
)(

[a, b, c, a, c], [b, b, a, a, c]
)

=
(
2|a⟩ + 1|b⟩ + 2|c⟩

)
+

(
2|a⟩ + 2|b⟩ + 1|c⟩

)
= 4|a⟩ + 3|b⟩ + 3|c⟩.(
+ ◦ acc[2]K ◦ zip

)(
[a, b, c, a, c], [b, b, a, a, c]

)
=

(
+ ◦ acc[2]K)(

[(a, b), (b, b), (c, a), (a, a), (c, c)]
)

= +
(
[1|a⟩ + 1|b⟩, 2|b⟩, 1|a⟩ + 1|c⟩, 2|a⟩, 2|c⟩]

)
= 4|a⟩ + 3|b⟩ + 3|c⟩.

2 Similarly.

We now transfer these results to multizip.

Proposition 3.1.10. In binary form one has:

N[K](X) × N[K](X)

mzip

��

+ // N[2K](X) unit

((

D
(
N[2K](X)

)
D

(
N[K](X × X)

) D(N[K](acc[2]))
// D

(
N[K]

(
N[2](X)

))
D(flat)

66

More generally, we have for L ≥ 2,

N[K](X)L

mzipL

��

+ // N[L·K](X) unit

((

D
(
N[L·K](X)

)
D

(
N[K](XL)

)D(N[K](acc[L]))
// D

(
N[K]

(
N[L](X)

))
D(flat)

66

The map mzipL is the L-ary multizip, obtained via:

mzip2 B mzip and mzipL+1 B mzip ◦· (mzipL ⊗ id )

Via the associativity of Proposition 3.1.3 (5) the actual arrangement of these
multiple multizips does not matter.
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Proof. We only do the binary case, via an equational proof:

D(flat) ◦ D(N[K](acc[2])) ◦ mzip
(3.1)
= D(flat) ◦ D(N[K](acc[2])) ◦ D(acc[K]) ◦ D(zip) ◦ (arr ⊗ arr)
= D(flat) ◦ D(acc[K]) ◦ D(acc[2]K) ◦ D(zip) ◦ (arr ⊗ arr)

by naturality of acc[K] : XK → N[K](X)
= D(+) ◦ D(acc[2]K) ◦ D(zip) ◦ (arr ⊗ arr) by Exercise 1.8.3
= D(+) ◦ D(acc[K] × acc[K]) ◦ (arr ⊗ arr) by Lemma 3.1.9 (1)
= D(+) ◦

(
(D(acc[K]) ◦ arr) ⊗ (D(acc[K]) ◦ arr)

)
(2.28)
= D(+) ◦ (unit ⊗ unit)
= D(+) ◦ unit
= unit ◦ +.

Exercises

3.1.1 Show that:

mzip[4]
(
1|a⟩ + 2|b⟩ + 1|c⟩, 3|0⟩ + 1|1⟩

)
= 1

4

∣∣∣1|a, 1⟩ + 2|b, 0⟩ + 1|c, 0⟩
〉

+ 1
2

∣∣∣1|a, 0⟩ + 1|b, 0⟩ + 1|b, 1⟩ + 1|c, 0⟩
〉

+ 1
4

∣∣∣1|a, 0⟩ + 2|b, 0⟩ + 1|c, 1⟩
〉
.

3.1.2 Show in the context of the previous exercise that:

Flrn =≪mzip[4]
(
1|a⟩ + 2|b⟩ + 1|c⟩, 3|0⟩ + 1|1⟩

)
= 3

16 |a, 0⟩ +
1
16 |a, 1⟩ +

3
8 |b, 0⟩ +

1
8 |b, 1⟩ +

3
16 |c, 0⟩ +

1
16 |c, 1⟩.

Compute also: Flrn
(
1|a⟩ + 2|b⟩ + 1|c⟩

)
⊗ Flrn

(
3|0⟩ + 1|1⟩

)
, and re-

member Theorem 3.1.4.
3.1.3 Consider Definition 3.1.5 for the K-fold product functor F = (−)K .

Check that every pair of sequences x⃗ ∈ XK and y⃗ ∈ YK has precisely
one coupling, namely zip(x⃗, y⃗) ∈ (X × Y)K .

3.1.4 Consider the two multisets φ = 2|a⟩ + 2|b⟩ ∈ N[4]
(
{a, b}

)
and ψ =

2|0⟩ + 1|1⟩ + 1|2⟩ ∈ N[4]
(
{0, 1, 2}

)
. Write down all four couplings

τ ∈ N[4]
(
{a, b} × {0, 1, 2}

)
of φ and ψ.

3.1.5 Let τ ∈ N[K](X × Y) be a coupling of multisets φ ∈ N[K](X) and
ψ ∈ N[K](Y). Show that Flrn(τ) ∈ D(X × Y) is then a coupling
of distributions Flrn(φ) ∈ D(X) and Flrn(ψ) ∈ D(Y), see Defini-
tion 2.3.8 (3).
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3.1.6 1 Check that mzip does not commute with diagonals, in the sense
that the following triangle does not commute.

N[K](X) ∆ //

‹N[K](∆)› --

N[K](X) × N[K](X)
mzip
��

,

D
(
N[K](X × X)

)
Hint: Consider for instance the multiset 1|a⟩ + 1|b⟩.

2 Check that mzip and zip do not commute with accumulation, as in:

XK × YK acc × acc //

zip �
��

N[K](X) × N[K](Y)

mzip
��

,

(X × Y)K ‹acc› // D
(
N[K](X × Y)

)
Hint: Take sequences [a, b, b], [0, 0, 1] and re-use Example 3.1.2.

3.1.7 Compute the intersection of the two set partitions of 10 below.{
{1, 2, 3, 4, 5, 9, 10}, {6, 7, 8}

} {
{1, 6}, {2, 3, 10}, {4, 8, 9}, {5}, {7}

}
.

3.2 Single draws

In Section 2.6 we have encountered distributions on draws form an urn, where
both the draws and the urns were represented as multisets. As part of a more
systematic perspective on draws we look in this section at draws of a single
ball from an urn (as a multiset). One can then remove the ball (i.e. not return
it to the urn) or add another ball of the same colour to the urn. We call these
operations draw-delete DD and draw-add DA , respectively. We will describe
them as channels. They resemble hypergeometric and Pólya draws, but there
are subtle differences. These hypergeometric and Pólya channels are operations
from urns to draws. The draw-delete and draw-add maps are channels from
urns to urns.

We start with draw-delete and first consider two operations for probabilisti-
cally deleting an element, via projection from a sequence, or via drawing from
a multiset. They turn out to be closely related, via accumulation and arrange-
ment.

Definition 3.2.1. Fix a set X and a number K ∈ N.

1 The projection-delete channel PD : XK+1 → XK is defined as:

PD(x1, . . . , xK+1) B
∑

1≤i≤K+1

1
K+1

∣∣∣ x1, . . . , xi−1, xi+1, . . . , xK+1
〉
. (3.7)
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It forms a uniform distribution over the sequences of length K obtained by
separately removing each of the single elements of the original sequence of
length K+1.

2 The draw-delete channel DD : N[K+1](X) → N[K](X) is defined on a
multiset ψ ∈ N[K+1](X) as:

DD(ψ) B
∑

x∈supp(ψ)

ψ(x)
K+1

∣∣∣∣ ψ − 1| x⟩
〉

=
∑

x∈supp(ψ)

Flrn(ψ)(x)
∣∣∣∣ ψ − 1| x⟩

〉
.

(3.8)

The two channels are closely related.

Lemma 3.2.2. The projection-delete and draw-delete channels commute with
both accumulation and arrangement, as expressed by the diagrams below.

XK

◦acc
��

XK+1

◦ acc
��

◦
PDoo XK XK+1◦

PDoo

N[K](X) N[K+1](X)◦
DDoo N[K](X)

◦arr
OO

N[K+1](X)

◦ arr
OO

◦
DDoo

As a result, projection-delete commutes with the transposition channel transp =
arr ◦· acc from (2.53), in:

transp ◦· PD = PD ◦· transp.

Proof. For x⃗ = (x1, . . . , xK+1) ∈ XK+1 with acc(x⃗) = ψ we have:

(
acc ◦· PD

)
(x⃗) =

∑
1≤i≤K+1

1
K+1

∣∣∣∣ acc(x1, . . . , xi−1, xi+1, . . . , xK+1)
〉

=
∑

1≤i≤K+1

1
K+1

∣∣∣∣ ψ − 1| xi ⟩
〉

=
∑

y∈supp(φ)

ψ(y)
K+1

∣∣∣∣ ψ − 1|y⟩
〉
= DD(ψ) =

(
DD ◦· acc

)
(x⃗).
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Similarly, for ψ ∈ N[K + 1](X),(
arr ◦· DD)(ψ) =

∑
x⃗∈XK

∑
y∈supp(ψ)

arr
(
ψ − 1|y⟩

)
(x⃗) ·

ψ(y)
K+1

∣∣∣ x⃗〉
=

∑
y∈supp(ψ)

∑
x⃗∈acc−1(ψ−1| y ⟩)

1
(ψ − 1|y⟩ )

·
ψ(y)
K+1

∣∣∣ x⃗〉
=

∑
y∈supp(ψ)

∑
x⃗∈acc−1(ψ−1| y ⟩)

(ψ(y)−1)! ·
∏

z,y ψ(z)!
K!

·
ψ(y)
K+1

∣∣∣ x⃗〉
=

∑
y∈supp(ψ)

∑
x⃗∈acc−1(ψ−1| y ⟩)

ψ

(K+1)!

∣∣∣ x⃗〉
=

∑
z⃗∈acc−1(ψ)

∑
1≤i≤K

1
(ψ )
·

1
K+1

∣∣∣z1, . . . , zi−1, zi+1, . . . , zK
〉

=
∑
x⃗∈XK

∑
z⃗∈XK+1

arr(ψ)(⃗z) · PD (⃗z)(x⃗)
∣∣∣ x⃗〉

=
(
PD ◦· arr

)
(ψ).

We now use commutation of these two rectangles in:

transp ◦· PD = arr ◦· acc ◦· PD = arr ◦· DD ◦· acc
= PD ◦· arr ◦· acc = PD ◦· transp.

We turn to draw-add and follow the same pattern, with separate definitions
for sequences and for multisets. Projection-addition is now more subtle: for a
sequence (x1, . . . , xK) we can consecutively add each element xi. A separate
question is where to insert this xi in the sequence. There are K+1 places, so we
include them all. An illustration is given after the definition.

Definition 3.2.3. Let X be a set and let K ≥ 1.

1 The projection-add channel PA : XK → XK+1 is:

PA(x1, . . . , xK)

B
∑

1≤i≤K

∑
1≤ j≤K+1

1
K(K+1)

∣∣∣ x1, . . . , x j−1, xi, x j, . . . , xK
〉
. (3.9)

2 The draw-add channel DA : N[K](X)→ N[K+1](X) is defined on a multiset
φ ∈ N[K](X) as:

DA(φ) B
∑

x∈supp(φ)

φ(x)
K

∣∣∣∣ φ + 1| x⟩
〉

=
∑

x∈supp(φ)

Flrn(φ)(x)
∣∣∣∣ φ + 1| x⟩

〉
.

(3.10)
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For instance,

PA(a, b, c) = 1
6

∣∣∣a, a, b, c〉
+ 1

12

∣∣∣a, b, a, c〉
+ 1

6

∣∣∣a, b, b, c〉
+ 1

12

∣∣∣a, b, c, a〉
+ 1

12

∣∣∣a, b, c, b〉
+ 1

6

∣∣∣a, b, c, c〉
+ 1

12

∣∣∣a, c, b, c〉
+ 1

12

∣∣∣b, a, b, c〉
+ 1

12

∣∣∣c, a, b, c〉
.

Lemma 3.2.4. The projection-add channel commutes with transposition:

transp ◦· PA = PA ◦· transp.

In addition, both projection- and draw-add maps commute with accumulation
and aggregation:

XK

◦acc
��

◦
PA // XK+1

◦ acc
��

XK ◦
PA // XK+1

N[K](X) ◦
DA // N[K+1](X) N[K](X)

◦arr
OO

◦
DA // N[K+1](X)

◦ arr
OO

Proof. The equation transp ◦· PA = PA ◦· transp clearly holds: a permutation of
a sequence x1, . . . , x j−1, xi, x j, . . . , xK in (3.9) can be obtained from a project-
add to a permutation of the original sequence x1, . . . , xK .

For commutation with accumulation, let x⃗ ∈ XK ,(
acc ◦· PA

)
(x⃗) =

∑
1≤i≤K

∑
1≤ j≤K+1

1
K(K+1)

∣∣∣∣ acc(x1, . . . , x j−1, xi, x j, . . . , xK)
〉

=
∑

1≤i≤K

1
K

∣∣∣∣ acc(x1, . . . , xK) + 1| xi ⟩
〉

=
∑

y∈supp(acc(x⃗))

acc(x⃗)(y)
K

∣∣∣∣ acc(x⃗) + 1|y⟩
〉

=
(
DA ◦· acc

)
(x⃗).

For commutation with arrangement we use that acc is surjective, so that f = g
follows from f ◦ acc = g ◦ acc. Using this we are done with:(

PA ◦· arr
)
◦ acc = PA ◦· transp = transp ◦· PA

= arr ◦· acc ◦· PA
= arr ◦· DA ◦· acc as just shown
=

(
arr ◦· DA

)
◦ acc.

So far we have carefully spelled out the relation between projection oper-
ations on sequences and draw operations on multisets, via accumulation and
arrangement. In the sequel we shall mostly work with the two draw operations
DD and DA acting on multisets.
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Remark 3.2.5. The delete and add channels are not each other’s inverses, in a
situation:

N[K](X)
◦

DA

22
N[K+1](X)

◦
DD

rr

For instance:

DD
(
3|a⟩ + 1|b⟩

)
= 3

4

∣∣∣2|a⟩ + 1|b⟩
〉
+ 1

4

∣∣∣3|a⟩〉
DA

(
2|a⟩ + 1|b⟩

)
= 2

3

∣∣∣3|a⟩ + 1|b⟩
〉
+ 1

3

∣∣∣2|a⟩ + 2|b⟩
〉
.

In a next step we see that neither DA ◦· DD nor DD ◦· DA is the identity.(
DA ◦· DD

)(
3|a⟩ + 1|b⟩

)
= DA =≪

(
3
4

∣∣∣2|a⟩ + 1|b⟩
〉
+ 1

4

∣∣∣3|a⟩〉)
= 3

4 ·
(

2
3

∣∣∣3|a⟩ + 1|b⟩
〉
+ 1

3

∣∣∣2|a⟩ + 2|b⟩
〉)
+ 1

4 · 1
∣∣∣4|a⟩〉

= 1
2

∣∣∣3|a⟩ + 1|b⟩
〉
+ 1

4

∣∣∣2|a⟩ + 2|b⟩
〉
+ 1

4

∣∣∣4|a⟩〉(
DD ◦· DA

)(
2|a⟩ + 1|b⟩

)
= DD =≪

(
2
3

∣∣∣3|a⟩ + 1|b⟩
〉
+ 1

3

∣∣∣2|a⟩ + 2|b⟩
〉)

= 2
3 ·

(
3
4

∣∣∣2|a⟩ + 1|b⟩
〉
+ 1

4

∣∣∣3|a⟩〉) + 1
3 ·

(
1
2

∣∣∣1|a⟩ + 2|b⟩
〉
+ 1

2

∣∣∣2|a⟩ + 1|b⟩
〉)

= 1
2

∣∣∣2|a⟩ + 1|b⟩
〉
+ 1

6

∣∣∣3|a⟩〉 + 1
6

∣∣∣1|a⟩ + 2|b⟩
〉
+ 1

6

∣∣∣2|a⟩ + 1|b⟩
〉
.

Since the drawing of a single ball from an urn takes the multiplicities into
account, the urns after DD and DA have the same frequentist distribution as
before, but only if we interpret ‘after’ as channel composition ◦· . This is the
content of the following basic result.

Theorem 3.2.6. One has both:

Flrn ◦· DD = Flrn and Flrn ◦· DA = Flrn.

Equivalently, the following two triangles of channels commute.

N[K](X)

◦
Flrn ++

N[K+1](X)

◦
Flrnrr

◦
DDoo N[K](X) ◦

DA //

◦
Flrn ++

N[K+1](X)

◦
FlrnrrX X

Proof. For the proof of commutation of draw-delete and frequentist learning
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we take ψ ∈ M[K+1](X) and y ∈ X. Then:(
Flrn ◦· DD

)
(ψ)(y) =

∑
φ∈N[K](X)

DD(ψ)(φ) · Flrn(φ)(y)

(3.8)
=

∑
x∈supp(ψ)

ψ(x)
K+1

· Flrn
(
ψ − 1| x⟩

)
(y)

=
ψ(y)
K+1

·
ψ(y)−1

K
+

∑
x,y

ψ(x)
K+1

·
ψ(y)

K

=
ψ(y)

K(K+1)
·

ψ(y) − 1 +
∑
x,y

ψ(x)


=

ψ(y)
K(K+1)

·

∑
x

ψ(x)

 − 1


=

ψ(y)
K(K+1)

·
(
(K+1) − 1

)
=

ψ(y)
K+1

= Flrn(ψ)(y).

Similarly, for φ ∈ N[K](X), where K > 0, and y ∈ X,

(
Flrn ◦· DA

)
(φ)(y)

(3.10)
=

∑
x∈supp(φ)

φ(x)
K
· Flrn

(
φ + 1| x⟩

)
(y)

=
φ(y)
K
·
φ(y)+1
K+1

+
∑
x,y

φ(x)
K
·
φ(y)
K+1

=
φ(y)

K(K+1)
·

φ(y) + 1 +
∑
x,y

φ(x)


=

φ(y)
K(K+1)

· (K + 1) =
φ(y)
K
= Flrn(φ)(y).

When we iterate draw-and-delete and draw-and-add, as channels, we obtain
distributions that strongly remind us of the hypergeometric and Pólya distribu-
tion. The iterations below describe not what is drawn from the urn — as in the
hypergeometric and Pólya cases — but what is left in the urn after such draws.
The full picture appears in Propositions 3.4.3 and 3.5.3. The iteration of draws
leads to subtraction and addition of the draws φ from and to the urn.

Theorem 3.2.7. Iterating K ∈ N times the draw-and-delete and draw-and-add
channels yields channels:

N[L](X)
◦

DA K

22
N[L+K](X)

◦
DDK

rr
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On υ ∈ N[L+K](X) and ψ ∈ N[L](X) they satisfy:

DDK(υ) =
∑
φ≤Kυ

(
υ
φ

)
(

L+K
K

) ∣∣∣υ − φ〉
DA K(ψ) =

∑
φ≤Kψ

((
ψ
φ

))
((

L
K

)) ∣∣∣ψ + φ〉
. (3.11)

The probabilities in these expressions add up to one by Lemma 1.8.2 and
Proposition 1.8.6.

Proof. We use induction on K ∈ N. In both cases the only option for a draw
φ in N[0](X) is the empty multiset 0, so that the sums in (3.11) are equal to
1|υ⟩ and 1|ψ⟩, and thus equal to the zero-th iteration DD0(υ) B 1|υ⟩ and
DA0(ψ) B 1|ψ⟩.

For the induction steps we make extensive use of the equations in Exer-
cise 1.8.12. In those cases we shall put ‘E’ above the equation. We start with
the induction step for draw-delete. For υ ∈ N[L+K+1](X),

DDK+1(υ) = DDK =≪DD(υ)

= DDK =≪

 ∑
x∈supp(υ)

υ(x)
L + K + 1

∣∣∣υ − 1| x⟩
〉

=
∑

φ∈N[K](X)

∑
x∈supp(υ)

υ(x)
L + K + 1

· DDK(υ − 1| x⟩)(φ)
∣∣∣φ〉

(IH)
=

∑
x∈supp(υ)

∑
φ≤Kυ−1| x ⟩

υ(x)
L + K + 1

·

(
υ−1| x ⟩
φ

)
(

L+K
K

) ∣∣∣∣ (υ − 1| x⟩) − φ
〉

(E)
=

∑
x∈supp(υ)

∑
φ≤Kυ−1| x ⟩

φ(x) + 1
K + 1

·

(
υ

φ+1| x ⟩

)
(

L+K+1
K+1

) ∣∣∣∣ υ − (φ + 1| x⟩)
〉

=
∑

φ≤K+1υ

∑
x∈supp(υ)

φ(x)
K + 1

·

(
υ
φ

)
(

L+K+1
K+1

) ∣∣∣υ − φ〉
=

∑
φ≤K+1υ

(
υ
φ

)
(

L+K+1
K+1

) ∣∣∣υ − φ〉
, since ∥φ∥ = K + 1.

We reason basically in the same way for draw-add, and now also use Exer-

205



206 Chapter 3. Drawing from an urn206 Chapter 3. Drawing from an urn206 Chapter 3. Drawing from an urn

cise 1.8.11. For ψ ∈ N[L](X),

DA K+1(ψ) = DA K =≪

 ∑
x∈supp(ψ)

ψ(x)
L

∣∣∣ψ + 1| x⟩
〉

(IH)
=

∑
x∈supp(ψ)

∑
φ≤Kψ+1| x ⟩

ψ(x)
L
·

((
ψ+1| x ⟩

φ

))
((

L+1
K

)) ∣∣∣∣ (ψ + 1| x⟩) + φ
〉

(E)
=

∑
x∈supp(ψ)

∑
φ≤Kψ+1| x ⟩

φ(x) + 1
K + 1

·

((
ψ

φ+1| x ⟩

))
((

L
K+1

)) ∣∣∣∣ ψ + (φ + 1| x⟩)
〉

=
∑

φ≤K+1ψ

∑
x∈supp(ψ)

φ(x)
K + 1

·

((
ψ
φ

))
((

L
K+1

)) ∣∣∣ψ + φ〉
=

∑
φ≤K+1ψ

∑
x∈supp(ψ)

((
ψ
φ

))
((

L
K+1

)) ∣∣∣ψ + φ〉
.

The draw-delete map interacts neatly with the multizip channel from the
previous section. This fails for draw-add, see Exercise 3.2.7.

Lemma 3.2.8. For sets X,Y and a number K, the following diagram com-
mutes.

N[K+1](X) × N[K+1](Y)
◦mzip
��

◦
DD⊗DD // N[K](X) × N[K](Y)

◦mzip
��

N[K+1](X × Y) ◦
DD // N[K](X × Y)

(3.12)

Proof. We use the formulation of mzip from Proposition 3.1.7 in terms of
couplings. We will uses the following equation, for multisets φ ∈ N[K+1](X),
ψ ∈ N[K+1](Y).{

χ ∈ dcpl−1
(
φ − 1| x⟩, ψ − 1|y⟩

) ∣∣∣∣ x ∈ supp(φ), y ∈ supp(ψ)
}

=
{
ρ − 1| x, y⟩

∣∣∣∣ ρ ∈ dcpl−1(φ, ψ), (x, y) ∈ supp(ρ)
}
.

(∗)

For the inclusion (⊆) we observe that if χ ∈ dcpl−1(φ − 1| x⟩, ψ − 1|y⟩
)
, then

M(π1)(χ) = φ − 1| x⟩ andM(π2)(χ) = ψ − 1|y⟩. We take ρ B χ + 1| x, y⟩, so
that (x, y) ∈ supp(ρ) obviously holds. Moreover,

M(π1)(ρ) = M(π1)
(
χ + 1| x, y⟩

)
= M(π1)

(
χ
)
+M(π1)

(
1| x, y⟩

)
by Lemma 1.6.3 (3)

= φ − 1| x⟩ + 1| x⟩
= φ.

206



3.2. Single draws 2073.2. Single draws 2073.2. Single draws 207

Similarly,M(π2)(ρ) = ψ, so that ρ ∈ dcpl−1(φ, ψ). For the inclusion (⊇), let ρ ∈
dcpl−1(φ, ψ) have (x, y) ∈ supp(ρ). Then, clearly, x ∈ supp(φ) and y ∈ supp(ψ).
Moreover, it is easy to see that χ B ρ − 1| x, y⟩ has φ − 1| x⟩ and ψ − 1|y⟩ as
marginals.

In order to prove commutation of the rectangle (3.12), let φ ∈ N[K+1](X),
ψ ∈ N[K+1](Y).

mzip =≪ (DD(φ) ⊗ DD(ψ))

=
∑

x∈supp(φ)

∑
y∈supp(ψ)

φ(x) · ψ(y)
(K+1)2 ·mzip

(
φ−1| x⟩, ψ−1|y⟩

)
(3.6)
=

∑
x∈supp(φ)

∑
y∈supp(ψ)

∑
χ∈dcpl−1(φ−1| x ⟩,ψ−1| y ⟩)

φ(x) · ψ(y) · (χ )
(K+1)2 · (φ−1| x⟩ ) · (ψ−1|y⟩ )

∣∣∣χ〉
(∗)
=

∑
ρ∈dcpl−1(φ,ψ)

∑
(x,y)∈supp(ρ)

(ρ−1| x, y⟩ )
(φ ) · (ψ )

∣∣∣ρ − 1| x, y⟩
〉

=
∑

ρ∈dcpl−1(φ,ψ)

∑
(x,y)∈supp(ρ)

ρ(x, y)
K+1

·
(ρ )

(φ ) · (ψ )

∣∣∣ρ − 1| x, y⟩
〉

=
∑

ρ∈M[K+1](X×Y)

∑
χ∈M[K](X×Y)

DD(ρ)(χ) ·mzip(φ, ψ)(ρ)
∣∣∣χ〉

= DD =≪mzip(φ, ψ).

The draw-delete and draw-add channels both form an infinite chain. We are
especially interested in the draw-delete chain, of the form:

1 � N[0](X) N[1](X)◦
DDoo N[2](X)◦

DDoo N[3](X)◦
DDoo · · ·◦

DDoo

A collection of distributions
(
σK ∈ D

(
N[K](X)

))
K∈N

will be called a draw-
delete cone, or simply a DD-cone, if DD =≪ σK+1 = σK for each K. Such
cones play an important role in De Finetti’s work on exchangeability, see [41]
and e.g. [91, 169]. We shall see a small part of this below, but first we show
that multinomial and Pólya distributions form draw-delete cones. Hypergeo-
metric distributions do not give rise to such cones since a hypergeometric urn
becomes empty after a certain number of draws so that draws of arbitrary sizes
are impossible.

As an aside, the name ‘cone’ as used here comes from the category-theoretic
concept of a limit. It is not related to a ‘cone’ as module over R≥0, as used in
Lemma 1.6.3 (2).

Proposition 3.2.9. Multinomial and Pólya distributions form draw-delete cones:
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for an arbitrary set X and for all K ∈ N, the following two triangles commute.

N[K](X) N[K+1](X)◦
DDoo N[K](X) N[K+1](X)◦

DDoo

D(X)
◦

mn[K]

ZZ

◦
mn[K+1]

BB

N∗(X)
◦

pl[K]

[[

◦
pl[K+1]

AA

Proof. For the triangle on the left, let ω ∈ D(X) be an arbitrary distribution.(
DD ◦· mn[K+1]

)
(ω)

=
∑

φ∈N[K](X)

∑
ψ∈N[K+1](X)

mn[K+1](ω)(ψ) · DD[K](ψ)(φ)
∣∣∣φ〉

=
∑

φ∈N[K](X)

∑
x∈X

mn[K+1](ω)
(
φ + 1| x⟩

)
·
φ(x)+1

K+1

∣∣∣φ〉
=

∑
φ∈N[K](X)

∑
x∈X

(K+1)!∏
y (φ + 1| x⟩)(y)!

·
∏

y
ω(y)(φ+1| x ⟩)(y) ·

φ(x)+1
K+1

∣∣∣φ〉
=

∑
φ∈N[K](X)

∑
x∈X

K!∏
y φ(y)!

· ω(x) ·
∏

y
ω(y)φ(y)

∣∣∣φ〉
=

∑
φ∈N[K](X)

∑
x∈X

ω(x)

 · (φ ) ·
∏

y
ω(y)φ(y)

∣∣∣φ〉
= mn[K](ω).

In the proof below, of commutation of the above triangle on the right, the
marked equation

(∗)
= indicates the use of Exercises 1.8.11 and 1.8.12. For urn

υ ∈ N[L](X) of size L > 0, and for φ ∈ N[K](X),(
DD ◦· pl[K+1]

)
(ψ)

=
∑

φ∈N[K](X)

∑
χ∈N[K+1](supp(ψ))

DD(χ)(φ) · pl[K+1](ψ)(χ)
∣∣∣φ〉

=
∑

φ∈N[K](supp(ψ))

∑
x∈supp(ψ)

φ(x)+1
K+1

· pl[K+1](ψ)
(
φ + 1| x⟩

) ∣∣∣φ〉
=

∑
φ∈N[K](supp(ψ))

∑
x∈supp(ψ)

φ(x)+1
K+1

·

((
ψ

φ+1| x ⟩

))
((

L
K+1

)) ∣∣∣φ〉
(∗)
=

∑
φ∈N[K](supp(ψ))

∑
x∈supp(ψ)

ψ(x)+φ(x)
L+K

·

((
ψ
φ

))
((

L
K

)) ∣∣∣φ〉
= pl[K](ψ).

In the literature (transposition-)exchangeable distributions play an important
role, notably in relation to De Finetti’s result, see [41, 99, 14]. The result below
justifies why such (chains of) exchangeable distributions on sequences can be
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replaced by chains of distributions on multisets. Thus, by using distributions
on multisets we sidestep the whole issue of (transposition-)exchangeability.

Proposition 3.2.10. Let X be an arbitrary set. There is a bijective correspon-
dence between:

transposition-exchangeable
(
τK ∈ D

(
XK))

K∈N
withD(π)(τK+1) = τK

==================================================================

draw-delete cones
(
σK ∈ D

(
N[K](X)

))
K∈N

Here, π : XK+1 → XK is the function that projects away the last element.

Proof. (⇓) Let τK ∈ D
(
XK)

, for K ∈ N, be a collection of transposition-
exchangeable distributions such that τK+1 marginalises to τK , for each K ∈
N, that is,D(π)

(
τK+1

)
= τK . We first show that:

PD =≪τK+1 = τK . (∗)

Indeed, by using the assumptions about the τ′s we get, for each sequence
x⃗ = (x1, . . . , xK) ∈ XK ,(

PD =≪τK+1
)(

x⃗
) (3.7)
=

∑
y∈X

∑
1≤i≤K+1

1
K+1

· τK+1
(
x1, . . . , xi−1, y, xi, . . . , xK

)
=

∑
y∈X

∑
1≤i≤K+1

1
K+1

· τK+1
(
x1, . . . , xK , y

)
=

∑
y∈X

τK+1
(
x1, . . . , xK , y

)
= D(π)(τK+1)

(
x1, . . . , xK

)
= τK

(
x⃗
)

The transposition-exchangeability of τK means that transp =≪ τK = τK =

id =≪τK by Lemma 2.9.4 (3). When we view τK as a channel 1 → XK , we
can apply the equaliser property of arrangement in Proposition 2.9.5 (2). It
gives us a unique map 1→ N[K](X), that is a distribution τK ∈ D

(
N[K](X)

)
,

with arr =≪τK = τK . Then:

D(acc)(τK) = acc =≪
(
arr =≪τK

)
=

(
acc ◦· arr

)
=≪τK

(2.28)
= τK . (∗∗)

We can now show that these τK form a draw-delete cone:

DD =≪τK+1
(∗∗)
=

(
DD ◦· acc

)
=≪τK+1

=
(
acc ◦· PD

)
=≪τK+1 by Lemma 3.2.2

= acc =≪
(
PD =≪τK+1

)
(∗)
= acc =≪τK = D(acc)(τK)

(∗∗)
= τK .
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(⇑) Now assume we have a draw-delete cone σK ∈ D
(
N[K](X)

)
, for K ∈

N. We define σK B arr =≪ σK ∈ D
(
XK)

. This σK is exchangeable by
Lemma 2.9.4 (3):

transp =≪σK =
(
arr ◦· acc ◦· arr

)
=≪σK = arr =≪σK = σK .

Moreover, Exercise 3.2.3 gives us:

D(π)
(
σK+1

)
=

(
π ◦· arr

)
=≪σK+1 =

(
arr ◦· DD

)
=≪σK+1 = arr =≪σK = σK .

Thus, these distributions σK satisfy the properties above the double lines in
the above proposition.

What remains to be shown is that these transformations (⇓) and (⇑) are each
other’s inverses. First,

τK = arr =≪τK = τK , by definition of τK .

Next σK is by definition the unique distribution with arr =≪σK = σK . But also,
again by definition, arr =≪σK = σK . Hence σK = σK .

Exercises

3.2.1 Check that we could have introduced DD via the coequaliser property
of accumulation (from Proposition 2.9.3 (1)) as:

XK+1 acc // //

PD **

N[K+1](X)

DD
��

D(XK)
D(acc)

++

D
(
N[K](X)

)
3.2.2 Calculate yourself an instance of the commutation of project- and

draw-add with arrangement in Lemma 3.2.4, in the diagram on the
right: take the multiset φ = 1|a⟩ + 2|b⟩ and show that:

PA =≪arr(φ) = 1
18

∣∣∣a, a, b, b〉
+ 1

18

∣∣∣a, b, a, b〉
+ 1

18

∣∣∣a, b, b, a〉
+ 1

6

∣∣∣a, b, b, b〉
+ 1

18

∣∣∣b, a, a, b〉
+ 1

18

∣∣∣b, a, b, a〉
+ 1

6

∣∣∣b, a, b, b〉
+ 1

18

∣∣∣b, b, a, a〉
+ 1

6

∣∣∣b, b, a, b〉
+ 1

6

∣∣∣b, b, b, a〉
= arr =≪DA(φ).

3.2.3 Write π : XK+1 → XK for the (standard, non-probabilistic) projection
function that throws away the last element.
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1 Show that the following diagram of channels commutes.

N[K](X)
◦arr
��

N[K+1](X)
◦ arr
��

◦
DDoo

XK XX+1◦
πoo

2 Check that accumulation does not commute with draw-and-delete,
as in:

N[K](X) N[K+1](X)◦
DDoo

,

XK

◦acc
OO

XX+1

◦ acc
OO

◦
π

oo

3.2.4 Show that the draw-and-delete and draw-and-add maps DD and DA
are natural, from N[K+1] to D ◦ N[K], and from N[K] to D ◦
N[K+1].

3.2.5 Recall the uniform distributions unifN[K](X) ∈ D
(
N[K](X)

)
from Ex-

ercise 2.4.3, where the set X is finite.

1 Prove that these uniform distributions form a draw-delete cone, that
is, satisfy:

DD =≪unifN[K+1](X) = unifN[K](X).

One can calculate this by expanding the definitions, or by combin-
ing Proposition 3.2.9 with Exercise 2.6.3.

2 Check that the draw-add maps do not preserve uniform distribu-
tions. Show for instance that for X = {a, b},

DA =≪unifN[3](X) =
1
4

∣∣∣4|a⟩〉 + 1
6

∣∣∣3|a⟩ + 1|b⟩
〉
+ 1

6

∣∣∣2|a⟩ + 2|b⟩
〉

+ 1
6

∣∣∣1|a⟩ + 3|b⟩
〉
+ 1

4

∣∣∣4|b⟩〉.
3.2.6 Check that multinomial channels do not commute with DA : take for

instance ω = 1
3 |a⟩ +

2
3 |b⟩ and show first that:

mn[2](ω) = 1
9

∣∣∣2|a⟩〉 + 4
9

∣∣∣1|a⟩ + 1|b⟩
〉
+ 4

9

∣∣∣2|b⟩〉
mn[3](ω) = 1

27

∣∣∣3|a⟩〉 + 2
9

∣∣∣2|a⟩ + 1|b⟩
〉
+ 4

9

∣∣∣1|a⟩ + 2|b⟩
〉
+ 8

27

∣∣∣3|b⟩〉.
Now show that DA =≪mn[2](ω) differs from the last distribution.

(Pólya channels do commute with DA , see Exercise 3.4.1.)
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3.2.7 Draw-add DA does not commute with mzip, like DD in Lemma 3.2.8.
Take for instance φ = 1|a⟩+1|b⟩ and ψ = 1|0⟩+1|0⟩ and check that:

DA =≪mzip(φ, ψ)

= 1
4

∣∣∣∣ 2|a, 1⟩ + 1|b, 0⟩
〉
+ 1

4

∣∣∣∣ 1|a, 1⟩ + 2|b, 0⟩
〉

+ 1
4

∣∣∣∣ 2|a, 0⟩ + 1|b, 1⟩
〉
+ 1

4

∣∣∣∣ 1|a, 0⟩ + 2|b, 1⟩
〉

mzip =≪
(
DA(φ) ⊗ DA(ψ)

)
= 1

6

∣∣∣∣ 1|a, 0⟩ + 1|a, 1⟩ + 1|b, 0⟩
〉
+ 1

12

∣∣∣∣ 2|a, 1⟩ + 1|b, 0⟩
〉

+ 1
12

∣∣∣∣ 1|a, 1⟩ + 2|b, 0⟩
〉
+ 1

12

∣∣∣∣ 2|a, 0⟩ + 1|b, 1⟩
〉

+ 1
6

∣∣∣∣ 1|a, 0⟩ + 1|a, 1⟩ + 1|b, 1⟩
〉
+ 1

6

∣∣∣∣ 1|a, 0⟩ + 1|b, 0⟩ + 1|b, 1⟩
〉

+ 1
6

∣∣∣∣ 1|a, 1⟩ + 1|b, 0⟩ + 1|b, 1⟩
〉
+ 1

12

∣∣∣∣ 1|a, 0⟩ + 2|b, 1⟩
〉
.

3.2.8 Let X be a finite set, say with n elements, of the form X = {x1, . . . , xn}.
Define for K ≥ 1,

σK B
∑

1≤i≤n

1
n

∣∣∣K| xi ⟩
〉
∈ D

(
N[K](X)

)
.

Thus:
σ1 =

1
n

∣∣∣1| x1 ⟩
〉
+ · · · + 1

n

∣∣∣1| xn ⟩
〉

σ2 =
1
n

∣∣∣2| x1 ⟩
〉
+ · · · + 1

n

∣∣∣2| xn ⟩
〉
, etc.

Show that these σK form a cone, both for draw-delete and for draw-
add:

DD =≪σK+1 = σK and DA =≪σK = σK+1.

Thus, the whole sequence
(
σK

)
K∈N>0

can be generated from σ1 =

unifN[1](X) by repeated application of DA .
3.2.9 Let X be a finite set and K ∈ N be an arbitrary number. Show that for

σ ∈ D
(
N[K+1](X)

)
and φ ∈ N[K](X) one has:(

DD =≪σ
)
(φ)

(φ )
=

∑
x∈X

σ
(
φ+1| x⟩

)
(φ+1| x⟩ )

∣∣∣∣ φ + 1| x⟩
〉
.

3.2.10 Show that the probabilistic projection channel PD makes the follow-
ing diagram commute.

D(X)K+1 ◦

⊗
//

◦PD
��

XK+1

◦ PD
��

D(X)K ◦

⊗
// XK
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3.2.11 Recall the uniform projection channel unpr[K] : XK → X from Exer-
cise 2.4.7. Prove that the following rectangles commute.

XK

◦
unpr[K] ,,

XK+1◦
PDoo

◦
unpr[K+1]rr

XK ◦
PA //

◦
unpr[K] ,,

XK+1

◦
unpr[K+1]rrX X

3.2.12 We define a draw-store-delete channel DSD of the form:

N[K+1](X) DSD // D
(
X × N[K](X)

)
as:

DSD(ψ) B
∑

x∈supp(ψ)

ψ(x)
∥ψ∥

∣∣∣∣ x, ψ − 1| x⟩
〉
.

Thus, frequentist learning is the first marginal of DSD and draw-
delete is the second.

We also define a multiset-cons function mcons : X × N[K](X) →
N[K+1](X) as mcons(x, φ) = φ + 1| x⟩.

1 Check that mcons ◦· DSD = id , so that DSD ◦· mcons is split idem-
potent in Chan.

2 Prove the equality below, expressed in terms of string diagrams.

=

mn[K]

mcons

mn[K+1]

DSD

(3.13)

We shall see an extended version in Theorem 3.4.4.

3.2.13 Check that the following diagram does not commute.

N[K+1](X) × N[L+1](X)
◦+
��

◦
DD⊗DD // N[K](X) × N[L](X)

◦+
��

,

N[K+L+2](X) ◦
DD◦·DD

// N[K+L](X)
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3.3 The multinomial channel

We have introduced multinomial distributions earlier, in Definition 2.6.6, and
since then we have seen them a few times. In this section we take a system-
atic look at their properties. We standardly describe multinomial distributions
in ‘multivariate’ form, for multiple colours. The binomial distribution is then
a special ‘bivariate’ case, for two colours only, see Example 2.1.2 (2). We
sometimes allow ourselves the short hands ‘multinomials’ and ‘binomials’ for
‘multinomial distributions’ and ‘binomial distributions’.

First we recall that the multinomial channel has the form:

D(X)
mn[K]

// D
(
N[K](X)

)
written as D(X) ◦

mn[K]
// N[K](X).

The number K ∈ N represents the number of balls that are drawn, with-
out replacement, from a distribution ω ∈ D(X) that represents an abstract
urn. The resulting distribution mn[K](ω) assigns probabilities to K-ball draws
φ ∈ N[K](X). There is no bound on K, since the multinomial drawing mode
involves returning drawn balls to the urn, so that the urn does not become
empty.

For many elementary properties of multionomial distributions it is essential
that we use the channel form mn[K] : D(X) → N[K](X) with associated se-
quential and parallel composition ◦· and ⊗ for channels. This will become clear
in the diagrams below, with circles on the shafts of arrows.

For convenience we repeat essential formulations of the multinomial distri-
bution, for a distribution ω ∈ D(X).

mn[K](ω)
(2.40)
=

∑
φ∈N[K](X)

(φ ) ·
∏
x∈X

ω(x)φ(x)
∣∣∣φ〉 (2.41)

= D(acc)
(
iid [K](ω)

)
= D(acc)

(
ωK

)
= D(acc)

(
ω ⊗ · · · ⊗ ω︸        ︷︷        ︸

K times

)
.

Thus, the probability assigned to a draw / multiset φ ∈ N[K](X) is the sum
over all probabilities ωK(x⃗) =

∏
i ω(xi) for sequence x⃗ ∈ XK that accumulate

to φ, that is, with acc(x⃗) = φ. Recall, from Proposition 1.7.2, that there are (φ )
many such sequences x⃗ with acc(x⃗) = φ, where (φ ) = ∥φ∥!

φ
= K!∏

x φ(x)! .
We start with a result from [88] (in this form) that captures a basic rela-

tionship between distributions and multisets in a situation that we shall later
characterise as: accumulation is a ‘sufficient statistic’ for iid, see Section 7.6.
One can recognise this result in [15, §2.2], where it is mentioned that a partic-
ular sum — amounting to accumulation — is sufficient as statistic for iid.

In the first point below we emphasise the crucial property of accumulation
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that is used. This property occurs in more general form in Proposition 7.6.5
later on. It is formulated in terms of kernel relations ker( f ), for a function f ,
where ker( f ) = {(x, x′) | f (x) = f (x′)}.

Theorem 3.3.1. Fix a set X and a number K ∈ N.

1 For any distribution ω ∈ D(X), one has ker
(
acc

)
⊆ ker

(
iid [K](ω)

)
. More

explicitly, for all sequences x⃗, y⃗ ∈ XK ,

acc(x⃗) = acc(⃗y) =⇒ ωK(x⃗) = ωK (⃗y).

2 The accumulation function acc : XK → N[K](X) and its probabilistic ‘ar-
rangement’ inverse arr = acc∼1 : N[K](X) → XK from (2.27) satisfy the
equation between the following two string diagrams.

iid [K]

acc

mn[K]

arr

= (3.14)

By discarding the wires on the left on both sides we get as consequence the
equation:

iid [K] = arr ◦· mn[K]. (3.15)

Proof. We choose an arbitrary distribution ω ∈ D(X).

1 Let x⃗, y⃗ ∈ XK be given with acc(x⃗) = φ = acc(⃗y). This means that the se-
quences x⃗ and y⃗ contain the same elements, with the same multiplicities, but
possibly in different order. These orders are irrelevant for multiplications.
Thus, as also noted at the end of the proof of Theorem 2.6.7,

ωK(x⃗) =
∏

i
ω(xi) =

∏
z∈X

ω(z)φ(z) =
∏

i
ω(yi) = ωK (⃗y).

2 We need to prove an equation (3.14) between tuple channels, see Defini-
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tion 2.4.4 (3). We use Proposition 1.7.2 and Theorem 2.6.7:

⟨acc, id ⟩ =≪iid [K](ω) =
∑

φ∈N[K](X)

∑
x⃗∈XK

⟨acc⟩(x⃗)(φ) · iid [K](ω)(x⃗)
∣∣∣φ, x⃗〉

=
∑

φ∈N[K](X)

∑
x⃗∈acc−1(φ)

ωK(x⃗)
∣∣∣φ, x⃗〉

=
∑

φ∈N[K](X)

∑
x⃗∈acc−1(φ)

∑
y⃗∈acc−1(φ)

ωK (⃗y)
|acc−1(φ) |

∣∣∣φ, x⃗〉
=

∑
φ∈N[K](X)

∑
x⃗∈acc−1(φ)

D(acc)(ωK)(φ)
(φ )

∣∣∣φ, x⃗〉
=

∑
φ∈N[K](X)

∑
x⃗∈XK

arr(φ)(x⃗) ·mn[K](ω)(φ)
∣∣∣φ, x⃗〉

= ⟨id , arr⟩ =≪mn[K](ω).

A basic fact is that frequentist learning after a multinomial is the identity.
We will soon expand on this, but first we need an auxiliary result.

Lemma 3.3.2. Fix a distribution ω ∈ D(X) and a number K. For each y ∈ X,∑
φ∈N[K](X)

mn[K](ω)(φ) · φ(y) = K · ω(y).

Proof. The equation holds for K = 0, since then φ(y) = 0. Hence we may
assume K > 0. Then:∑

φ∈N[K](X)

mn[K](ω)(φ) · φ(y)

=
∑

φ∈N[K](X), φ(y),0

φ(y) ·
K!∏

x φ(x)!
·
∏

x
ω(x)φ(x)

=
∑

φ∈N[K](X), φ(y),0

K ·
(K−1)!∏

x(φ−1|y⟩)(x)!
· ω(y) ·

∏
x

ω(x)(φ−1| y ⟩)(x)

= K · ω(y) ·
∑

φ∈N[K−1](X)

(φ ) ·
∏

x
ω(x)φ(x)

= K · ω(y) ·
∑

φ∈N[K−1](X)

mn[K−1](ω)(φ)

= K · ω(y).

Theorem 3.3.3. Frequentist learning from a multinomial gives the original
distribution:

Flrn =≪mn[K](ω) = ω. (3.16)
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This means that the following diagram of channels commutes.

D(X) ◦
mn[K]

//

◦
sam //

N[K](X)
◦ Flrn
��

X

(3.17)

The channel sam : D(X) → X is the identity function D(X) → D(X), consid-
ered as channel; it is called the sample channel.

In Subsection 2.2.1 we have described sampling from a distribution ω ∈

D(X) in programming. For a parameter K, it produces a multiset φ ∈ N[K](X)
such that Flrn(φ) is close toω. Operationally, such sampling involves a random
number generator and (mostly) produces different φ’s in different runs. Hence
such sampling is a randomised algorithm, not a mathematical function.

The multinomial distribution mn[K](ω) is the mathematical counterpart of
such sampling. It does not produce a single sample, but all samples of a par-
ticular size K, with corresponding probabilities, say written as mn[K](ω) =∑

i ri|φi ⟩. The above theorem says that frequentist learning of all these samples,
while taking the probabilities ri into account, yields the original distribution ω,
that is:

Flrn =≪mn[K](ω) =
∑

i
ri · Flrn(φi) = ω.

We read this as a correctness result for multinomial sampling. We shall come
accross similar results, see especially Theorem 5.5.4.

Proof. By Lemma 3.3.2:(
Flrn ◦· mn[K]

)
(ω)(y) =

∑
φ∈N[K](X)

mn[K](ω)(φ) · Flrn(φ)(y)

=
∑

φ∈N[K](X)

mn[K](ω)(φ) ·
φ(y)
K

= K · ω(y) ·
1
K

= ω(y).

An alternative proof is suggested in Exercise 3.3.5.

We turn to the multizip channel mzip, from Section 3.1, in relation to multi-
nomial distributions. Our main result involves the decouple function dcpl =
⟨N(π1),N(π2)⟩ : N[K](X × Y) → N[K](X) × N[K](Y), consisting of a pair
of marginalisations for multisets, see (3.4). We have already seen, in Proposi-
tion 3.1.3 (3), that it forms a split idempotent with multizip (in Chan). It is in
fact a ‘sufficient statistic’ as expressed below.
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Theorem 3.3.4. Decouple and multizip are related to multinomial distribu-
tions via the following equation between string diagrams.

=

⊗

mn[K]

dcpl

mn[K] mn[K]

mzip

(3.18)

Proof. We take distributions ω ∈ D(X) and ρ ∈ D(Y) as inputs on the two
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incoming wires at the bottom, on both sides of the equation in (3.18).

⟨dcpl , id ⟩ =≪mn[K]
(
ω ⊗ ρ

)
=

∑
φ∈N[K](X)

∑
ψ∈N[K](Y)

∑
χ∈N[K](X×Y)

‹dcpl›(χ)(φ, ψ) ·mn[K]
(
ω ⊗ ρ

)
(χ)

∣∣∣∣ φ, ψ, χ〉
=

∑
φ∈N[K](X)

∑
ψ∈N[K](Y)

∑
χ∈dcpl−1(φ,ψ)

(χ ) ·
∏

x∈X, y∈Y

(
(ω ⊗ ρ)(x, y)

)χ(x,y)
∣∣∣∣ φ, ψ, χ〉

=
∑

φ∈N[K](X)

∑
ψ∈N[K](Y)

∑
χ∈dcpl−1(φ,ψ)

(χ ) ·
∏

x∈X, y∈Y

ω(x)χ(x,y) ·
∏

x∈X, y∈Y

ρ(y)χ(x,y)
∣∣∣∣ φ, ψ, χ〉

=
∑

φ∈N[K](X)

∑
ψ∈N[K](Y)

∑
χ∈dcpl−1(φ,ψ)

(χ ) ·
∏
x∈X

ω(x)
∑

y∈Y χ(x,y) ·
∏
y∈Y

ρ(y)
∑

x∈X χ(x,y)
∣∣∣∣ φ, ψ, χ〉

=
∑

φ∈N[K](X)

∑
ψ∈N[K](Y)

∑
χ∈dcpl−1(φ,ψ)

(χ ) ·
∏
x∈X

ω(x)φ(x) ·
∏
y∈Y

ρ(y)ψ(y)
∣∣∣∣ φ, ψ, χ〉

=
∑

φ∈N[K](X)

∑
ψ∈N[K](Y)

∑
χ∈dcpl−1(φ,ψ)

(χ )
(φ ) · (ψ )

·mn[K](ω)(φ) ·mn[K](ρ)(ψ)
∣∣∣∣ φ, ψ, χ〉

=
∑

φ∈N[K](X)

∑
ψ∈N[K](Y)

∑
χ∈N[K](X×Y)

mzip(φ, ψ)(χ) ·
(
mn[K](ω) ⊗mn[K](ρ)

)
(φ, ψ)

∣∣∣∣ φ, ψ, χ〉
= ⟨id ,mzip⟩ =≪

(
mn[K](ω) ⊗mn[K](ρ)

)
.

This completes the proof.

Equation in (3.18) contains a lot of information. When we discard (that is,
marginalise out) the wires at the top-left, on both sides of the equation in (3.18),
we get the result below. It demonstrates that the multinomial channel interacts
nicely with multizip and tensors (of distributions). Later in Theorey 3.7.12 a
categorical interpretation will be given: multinomial is a monoidal transforma-
tion.

Corollary 3.3.5. Multinomial channels commute with tensor and multizip:

mzip =≪
(
mn[K](ω) ⊗mn[K](ρ)

)
= mn[K](ω ⊗ ρ). (3.19)
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Diagrammatically this amounts to:

D(X) ×D(Y)
⊗
��

◦
mn[K]⊗mn[K]

// N[K](X) × N[K](Y)
◦mzip
��

D(X × Y) ◦
mn[K]

// N[K](X × Y)

Proof. As mentioned, Equation (3.19) follows directly from (3.18), via mar-
ginalisation on the left. Alternatively, one can prove the equation directly via
(categorical) diagram-chasing: commutation of the outer diagram below fol-
lows from the commuting subparts of the diagram, which arise by unfolding
the definition of mzip in (3.1), below on the right.

D(X) ×D(Y)

⊗

��

◦
iid⊗iid //

◦
mn[K]⊗mn[K]

// N[K](X) × N[K](Y)
◦ arr⊗arr
��

◦mzip

oo

XK × YK

◦ zip
��

(X × Y)K

◦ acc
��

D(X × Y) ◦
mn[K]

//

◦
iid //

N[K](X × Y)

The three subdiagrams commute by (3.15), twice, and by Lemma 2.3.5 (3).

Next we look at multinomials and flattening of multisets and distributions.
We first obtain an ‘average’ or ‘mean’ result for multinomials (see also Defi-
nition 4.1.3). We can describe it via a flatten map flat : M

(
M(X)

)
→ M(X),

using inclusions D(X) ↪→ M(X) and N[K](X) ↪→ M(X). This is another
consequence of Lemma 3.3.2.

Proposition 3.3.6. Fix a distribution ω ∈ D(X) and a number K. Each natural
multiset φ ∈ N[K](X) can be regarded as an element of the set of all multisets
M(X). Similarly, ω can be understood as an element of M(X). With these
inclusions in mind one has:

flat
(
mn[K](ω)

)
=

∑
φ∈N[K](X)

mn[K](ω)(φ) · φ = K · ω ∈ M(X).

The first equation expands the definition of ‘flat’. The second equation is the
relevant new fact.
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Proof. Since:

∑
φ∈N[K](X)

mn[K](ω)(φ) · φ =
∑
x∈X

 ∑
φ∈N[K](X)

mn[K](ω)(φ) · φ(x)

 ∣∣∣ x〉
=

∑
x∈X

K · ω(x)
∣∣∣ x〉

by Lemma 3.3.2

= K ·
∑
x∈X

ω(x)
∣∣∣ x〉

= K · ω.

Since a multinomial mn[K](ω) is a distribution we can use it as an ab-
stract urn, not containing single balls, but containing multisets of balls (draws).
Hence we can draw from mn[K](ω) as well, giving a distribution on draws of
draws. The first item belows shows that this can also be done with a single
multinomial. The second item does not have such a clear explanation; it will
be useful later on.

Theorem 3.3.7.

1 Multinomial channels compose, with a bit of help of the (fixed-size) flatten
operation for multisets, as in:

D(X)
mn[K]

//

mn[L·K] ..

D
(
M[K](X)

) mn[L]
// D

(
M[L]

(
M[K](X)

))
D(flat)
��

D
(
M[L·K](X)

)

2 The following diagram commutes:

D
(
N[K](X)

) mn[L]
//

D(Flrn) &&

D
(
M[L]

(
M[K](X)

)) D(flat)
// D

(
M[L·K](X)

)
D(Flrn)ww

D
(
D(X)

)
flat ++

D
(
D(X)

)
flattt

D(X)
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Proof. 1 We use the following diagram chase:

D(X)
iid [K]

//

iid [K·L]

**

D(XK)
D(acc)

//

iid [L]
��

D(N[K](X))
iid [L]
��

D
(
(XK)L)

D(flatL)
��

D(accL)
// D

(
N[K](X)L)

D(acc)
��

D(XK·L)

D(acc) ,,

D
(
N[L](N[K](X))

)
D(flatN )
��

D
(
N[K · L](X)

)
The triangle on the left commutes by Exercise 2.3.10. The rectangle on the
upper-right commutes by naturality of iid [L], see Lemma 2.3.5 (1). The
lower-right subdiagram commutes because acc : L ⇒ N is a map of mon-
ads, see Exercise 1.11.7.

2 For ω ∈ D
(
N[K](X)

)
and x ∈ X we have:(

flat ◦ D(Flrn) ◦ D(flat) ◦ mn[L]
)
(ω)(x)

=
(
(Flrn ◦ flat) =≪mn[L](ω)

)
(x)

=
∑

Ψ∈N[L](N[K](X))

Flrn
(
flat(Ψ)

)
(x) ·mn[L](ω)(Ψ)

=
∑

Ψ∈N[L](N[K](X))

∑
φ∈N[K](X)

Ψ(φ) · φ(x)
L · K

·mn[L](ω)(Ψ)

=
∑

φ∈N[K](X)

φ(x)
L · K

·
∑

Ψ∈N[L](N[K](X))

Ψ(φ) ·mn[L](ω)(Ψ)

=
∑

φ∈N[K](X)

φ(x)
L · K

· L · ω(φ) by Lemma 3.3.2

=
∑

φ∈N[K](X)

Flrn(φ)(x) · ω(φ)

=
(
Flrn =≪ω

)
(x)

=
(
flat ◦ D(Flrn)

)
(ω)(x).

The relation between multinomial and Poisson distributions is worth making
explicit. We shall do so in the next theorem in a string diagrammatic manner.
The essentials are (re)formulated in terms of updating and disintegration, see
Example 7.3.2 (2).

The formulation below involves some bookkeeping, especially to turn a se-
quence of numbers into frequencies (i.e. multiplicities) of a multiset. We write

222



3.3. The multinomial channel 2233.3. The multinomial channel 2233.3. The multinomial channel 223

this operation as Freq, both for arbitrary and for natural multisets, of the form:(
R≥0

)m Freq

�
//M(m) Nm Freq

�
// N(m)

r⃗ � //
∑

0≤i<m

ri| i⟩ n⃗ � //
∑

0≤i<m

ni| i⟩ (3.20)

We have seen these isomorphisms in Exercise 1.6.5.

Theorem 3.3.8. Poisson and multinomial channels are related as expressed
by the following equation between channels of type

(
R>0)m → N × N(m).

=

pois pois

· · ·

sum Freq

Freq

· · ·

size

Flrn
pois

mn[−](−)

(3.21)

The ‘bookkeeping’ in this result happens especially on the right-hand-side,
where the first three channels (Freq, size and Flrn) are essentially only reorder-
ing the input, see also Lemma 2.2.3.

By marginalising out the wires on the right in (3.21) one obtains that Poisson
distributions commute with sums, as we have seen in Proposition 2.7.6.

Proof. Let λ1, . . . , λm ∈ R>0 be given, for which we abbreviate λ B
∑

i λi ∈

R>0. We start reasoning from the left-hand-side in (3.21).∑
n⃗∈Nm

∏
0≤i<m

pois[λi](ni)
∣∣∣∣ sum(n⃗),Freq(n⃗)

〉
=

∑
K∈N

∑
φ∈N[K](m)

∏
0≤i<m

e−λi ·
λ
φ(i)
i

φ(i)!

∣∣∣∣ K, φ
〉

=
∑
K∈N

∑
φ∈N[K](m)

e−λ ·
∏

0≤i<m λ
φ(i)
i

φ

∣∣∣∣ K, φ
〉

=
∑
K∈N

∑
φ∈N[K](m)

e−λ ·
λK

K!
·

K!
φ
·

∏
0≤i<m

(
λi

λ

)φ(i) ∣∣∣∣ K, φ
〉

=
∑
K∈N

∑
φ∈N[K](m)

pois[λ](K) ·mn[K]
(∑

i
λi
λ
| i⟩

)
(φ)

∣∣∣∣ K, φ
〉
.

The latter expression is the right-hand-side of (3.21).
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Since mn[K](ω) is a distribution, the sum over all draws
∑
φ mn[K](ω)(φ)

equals one. But what if we restrict this sum to draws φ of certain colours only,
that is, with supp(φ) ⊆ S , for a proper subset S ⊆ supp(ω)? And what if we
then let the size of these draws K go to infinity? The result below describes
what happens: the sum of the probabilities of such restricted draws goes to
zero, as the size goes to infinity. It turns out that the same behaviour exists in
the hypergeometric and Pólya cases, see Proposition 3.5.6.

Proposition 3.3.9. Let ω ∈ D(X) be given with a proper, non-empty subset
S ⊆ supp(ω), so S , ∅ and S , supp(ω). For K ∈ N, write:

MK B
∑

φ∈M[K](S )

mn[K](ω)(φ).

Then MK > MK+1 and lim
K→∞

MK = 0.

Proof. Write r B
∑

x∈S ω(x) in:

MK =
∑

φ∈M[K](S )

mn[K](ω)(φ) =
∑

φ∈M[K](S )

(φ ) ·
∏
x∈S

ω(x)φ(x) (1.40)
= rK .

Since 0 < r < 1 we get MK = rK > rK+1 = MK+1 and lim
K→∞

MK = lim
K→∞

rK = 0.

We like to conclude with a result with a learning flavour. Suppose we have
a single draw φ ∈ N[K](X) and we ask ourselves the question: which dis-
tribution ω ∈ D(X) makes this draw most likely, that is, for which ω is the
probability mn[K](ω)(φ) maximal?

Possibly not entirely unsurprising, the answer is ω = Flrn(φ), the frequen-
tist learning of φ. The proof requires some basic analysis, in particular La-
grange’s multiplier method, see e.g. [15, §2.2]. The result below is standard,
see e.g. [115, Ex. 17.5], but sometimes formulated differently.

Proposition 3.3.10. Let a natural multiset φ ∈ N[K](X) be given, with size
K > 0. The distribution ω ∈ D(X) that gives the highest multinomial probabil-
ity mn[K](ω)(φ) is Flrn(φ). That is:

Flrn(φ) ∈ argmax
ω∈D(X)

mn[K](ω)(φ).

Proof. We seek the maximum of the function ω 7→ mn[K](ω) by taking the
derivative with respect to ω. It turns out to be convenient to look at the maxi-
mum of the natural logarithm ln of the multinomial. This gives the same out-
come, since the logarithm is monotone. It reduces all products in the definition
of the multinomial distribution to sums, see Exercise 1.4.2.
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Let’s write φ =
∑

i ki| xi ⟩, with support supp(φ) = {x1, . . . , xn}. We look at
distributions ω ∈ D({x1, . . . , xn}), which we identify with numbers v1, . . . , vn ∈

R≥0 with
∑

i vi = 1. Lagrange’s method takes care of this condition.
We thus seek the maximum of the log-validity function:

h(⃗v) B ln
(
mn[K]

(∑
i vi| xi ⟩

)
(φ)

)
= ln

(
(φ )

)
+ ln

(∏
i vki

i

)
= ln

(
(φ )

)
+

∑
i ki · ln

(
vi
)
.

The Lagrange multiplier method for finding the maximum prescribes that
we take an additional parameter λ in a new function:

H(⃗v, λ) B h(⃗v) − λ ·
(
(
∑

i vi) − 1
)

= ln
(
(φ )

)
+

∑
i ki · ln

(
vi
)
− λ ·

(
(
∑

i vi) − 1
)
.

The partial derivatives of H are:

∂H
∂vi

(⃗v, λ) =
ki

vi
− λ

∂H
∂λ

(⃗v, λ) = 1 −
∑

i vi.

Setting all of these to 0 and solving gives the required maximum:

1 =
∑

i vi =
∑

i
ki

λ
=

∑
i ki

λ
=
∥φ∥

λ
.

Hence λ = ∥φ∥ and thus:

vi =
ki

λ
=

ki

∥φ∥

(2.5)
= Flrn(φ)(xi).

There is another optimisation result that we introduce at this stage, which
has a different flavor. Suppose we have a distribution σ ∈ D

(
N[K](X)

)
and we

like to find the distribution ω ∈ D(X) that is diverges minimally from σ. If σ
is already a multinomial distribution, say σ = mn[K](ρ), then we can find ρ as
Flrn =≪σ, via Theorem 3.3.3. The result below, from [94], shows that the least
divergent distribution is obtained also in this way. Such kind of approximations
are the topic of the area of ‘variational inference’, see e.g. [125, 137].

Proposition 3.3.11. Letσ ∈ D
(
N[K](X)

)
be given. The distributionω ∈ D(X)

with minimal Kullback-Leibler divergence DKL
(
σ, mn[K](ω)

)
is Flrn =≪σ ∈

D(X), that is:

Flrn =≪σ ∈ argmin
ω∈D(X)

DKL
(
σ, mn[K](ω)

)
.

Proof. We first note that Flrn =≪σ ∈ D(X) is given by:(
Flrn =≪σ

)
(x) =

∑
φ∈M[K](X)

Flrn(φ)(x) · σ(x) =
∑

φ∈M[K](X)

φ(x) · σ(x)
K

. (∗)
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Then, for an arbitrary ω ∈ D(X), we unravel the divergence in the following
manner, where Const is an irrelevant constant that depends only on σ, not on
ω.

DKL
(
σ, mn[K](ω)

)
(2.47)
=

∑
φ∈M[K](X)

σ(φ) · ln
(

σ(φ)
mn[K](ω)(φ)

)
(2.40)
=

∑
φ∈M[K](X)

σ(φ) · ln
(
σ(φ)

)
− σ(φ) · ln

(
(φ )

)
− σ(φ) ·

∑
x∈X

φ(x) · ln
(
ω(x)

)
= Const −

∑
x∈X

 ∑
φ∈M[K](X)

σ(φ) · φ(x)

 · ln (
ω(x)

)
(∗)
= Const − K ·

∑
x∈X

(
Flrn =≪σ

)
(x) · ln

(
ω(x)

)
= Const − K · ln

∏
x∈X

ω(x)(Flrn =≪σ)(x)

 .
Thus, in order to minimise the original divergence DKL

(
σ,mn[K](ω)

)
we have

to maximise the latter log-expression ln
(
· · ·

)
. This is precisely what happens

in the above (proof of) Proposition 3.3.10. The log expression is maximal for
ω = Flrn =≪σ.

Exercises

3.3.1 Let’s throw a fair dice 12 times. What is the probability that each
number appears twice? Show that it is 12!

726 .
3.3.2 Use Theorem 3.3.3 and Proposition 2.8.4 (2) to prove that for distri-

butions ω1, ω2 ∈ D(X) and K ∈ N,

DKL
(
ω1, ω2

)
≤ DKL

(
mn[K](ω1), mn[K](ω2)

)
.

3.3.3 Use Exercise 1.8.6 to show that for φ ∈ N[K](X) and ψ ∈ N[L](X)
one has:

mn[K+L](ω)(φ + ψ) =

(
K+L

K

)(
φ+ψ
φ

) ·mn[K](ω)(φ) ·mn[L](ω)(ψ),

and if φ, ψ have disjoint support, then:

mn[K+L](ω)(φ + ψ) =
(
K+L

K

)
·mn[K](ω)(φ) ·mn[L](ω)(ψ).

3.3.4 Let X be finite set. A family of distributions σK ∈ D
(
N[K](X)

)
is

called multinomial when:
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•
∑

x∈X σ1
(
1| x⟩

)
= 1;

• σK
(
K| x⟩

)
= σ1

(
1| x⟩

)K , for x ∈ X and K ∈ N;
• for multisets φ ∈ N[K](X) and ψ ∈ N[L](X) with disjoint support,

σK+L(φ + ψ) =
(

K+L
K

)
· σK(φ) · σL(ψ).

1 Verify that for each state ω ∈ D(X), the multinomial distributions
mn[K](ω), for K ∈ N, form a multinomial family.

2 In the other direction, let σK ∈ D
(
N[K](X)

)
form a multinomial

family. Show that σK = mn[K](ω) for a distribution ω ∈ D(X).

3.3.5 Give an alternative proof of the equation Flrn =≪ mn[K](ω) = ω in
Theorem 3.3.3 via Theorem 2.6.7 and Exercise 2.4.7.

3.3.6 Let X be a set with a subset A ⊆ X. Consider the sum-evaluation
function sumA, defined as sumA( f ) =

∑
x∈A f (x). We use it as map

with the following two types.

D(X)
sumA // [0, 1] N[K](X)

sumA // {0, 1, . . . ,K}

Show that the following diagram commutes.

D(X)
sumA //

mn[K]
��

[0, 1]
bn[K]
��

D
(
N[K](X)

) D(sumA)
// D

(
{0, 1, . . . ,K}

)
3.3.7 The aim of this exercise is to prove recurrence relations for multino-

mials: for each ω ∈ D(X) and φ ∈ N[K](X) with K > 0 one has:

mn[K](ω)(φ) =
∑

x∈supp(φ)

ω(x) ·mn[K−1](ω)
(
φ − 1| x⟩

)
.

Here are two possible avenues:

1 use the recurrence relations (1.38) for multiset coefficients (φ );
2 show first:

ω(x) ·mn[K−1](ω)
(
φ − 1| x⟩

)
= Flrn(φ)(x) ·mn[K](ω)

(
φ
)
.

Follow-up both avenues.
3.3.8 Prove the following items, in the style of Lemma 3.3.2, for a distribu-

tion ω ∈ D(X) and a number K > 1.

1 For two elements y , z in X,∑
φ∈N[K](X)

mn[K](ω)(φ) · φ(y) · φ(z) = K · (K−1) · ω(y) · ω(z).
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2 For a single element y ∈ X,∑
φ∈N[K](X)

mn[K](ω)(φ) · φ(y) · (φ(y) − 1) = K · (K−1) · ω(y)2.

3 Again, for a single element y ∈ X,∑
φ∈N[K](X)

mn[K](ω)(φ) · φ(y)2 = K · (K−1) · ω(y)2 + K · ω(y).

Hint: Write a2 = a · (a − 1) + a and then use the previous item and
Lemma 3.3.2.

3.3.9 1 Generalise Proposition 2.7.4 (2) from binomials to multinomials:
multinomials are closed under convolution. For K, L ∈ N,

D(X) ∆ //

◦
mn[K+L] //

D(X) ×D(X) ◦
mn[K]⊗mn[L]

// N[K](X) × N[L](X)
◦+
��

N[K+L](X)

One can use Exercise 1.7.12 and Lemma 2.7.5 for a proof. One can
also wait for Theorem 3.4.4, since this closure under convolution
is a consequence.

2 Generalise these convolutions to K-ary form and conclude that K-
sized draws can be reduced to parallel single draws, as in:

D(X) ∆ //

◦
mn[K] //

D(X)K ◦
mn[1]K

// N[1](X)K

◦+
��

N[K](X)

Notice that this is essentially Theorem 2.6.7, via the isomorphism
N[1](X) � X.

3.3.10 Show that for a natural multiset φ of size K one has:

flat
(
mn[K]

(
Flrn(φ)

))
= φ.

3.3.11 Check that the following diagram does not commute, in general:

D2(X)

flat
��

D(mn[K])
// D

(
N[K](X)

)
flat
��

D(X)
mn[K]

// D
(
N[K](X)

)
Take for instance as distribution of distributions 3

4

∣∣∣ 1
3 |a⟩ +

2
3 |b⟩

〉
+

1
3

∣∣∣1|a⟩〉, with K = 2.
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3.3.12 Check that multinomial channels do not commute with tensors, as in:

D(X) ×D(Y)

⊗
��

◦
mn[K]⊗mn[L]

//M[K](X) ×M[L](Y)
◦ ⊗
��

,

D(X × Y) ◦
mn[K·L]

//M[K ·L](X × Y)

3.4 The hypergeometric channel

A multinomial distribution assigns probabilities to draws, with replacement.
Two variations can be distinguished without replacement, namely the ‘draw-
and-delete’ (or -1) hypergeometric mode where a drawn ball is actually re-
moved from the urn, and the ‘draw-and-duplicate’ (or +1) Pólya mode where
the drawn ball is returned to the urn together with an additional ball of the same
colour. This section describes the main properties of these ‘-1’ draws, building
on the earlier description of hypergeometric distributions in Definition 2.6.1.

Since drawn balls are removed in the hypergeometric mode, the urn in ques-
tion contains fewer balls with each draw. The urn is thus not a distribution, like
in the multinomial case, but a multiset, say of size L ∈ N>0 that changes as a
result of draws. Draws are described as multisets of size K, with the restriction
K ≤ L in hypergeometric mode since one cannot ‘overdraw’. The hypergeo-
metric channel thus takes the form:

N[L](X) ◦
hg[K]

// N[K](X) (3.22)

We recall the definition with draws of size K ≤ L from an urn υ ∈ N[L](X) of
size L.

hg[K]
(
υ
) (2.34)
=

∑
φ≤Kυ

(
υ
φ

)
(

L
K

) ∣∣∣φ〉
=

∑
φ≤Kψ

∏
x

(
υ(x)
φ(x)

)
(

L
K

) ∣∣∣φ〉
.

Recall that we write φ ≤K υ for: ∥φ∥ = K and φ ≤ υ, see Definition 1.7.1 (2).
An alternative description in terms of sequences of draws is given in Theo-
rem 2.6.2.

A subtle point in the formulation of the hypergeometric distribution is that
the draws φ should be multisets over the support supp(υ) of the urn υ. Indeed,
only balls with colours that occur in the urn can be drawn. This is handled
implicitly via the requirement φ ≤K υ. It ensures an inclusion of supports
supp(φ) ⊆ supp(υ).

A basic fact about hypergeometric channels is that they can be described as
iterations of single draws, that is, as iterations of the draw-and-delete channels
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DD from Definition 3.2.1 (2). As we shall see soon afterwards, this fact has
many consequences.

Theorem 3.4.1. For L,K ∈ N, the hypergeometric channel hg[K] : N[K+
L](X)→ N[K](X) equals L consecutive draw-and-delete’s DDL in:

N[K+L](X) ◦
hg[K]

//

◦DD &&

N[K](X)

N[K+L−1](X)

◦
DD ◦· ··· ◦· DD︸     ︷︷     ︸

L−2 times

::
N[K+1](X)

◦
DD

@@

(3.23)

This result is remarkable. It says that if you have an urn with K + L balls,
then the distribution of draws of size K appears when you consecutively draw-
and-delete L balls. A full picture involving both the draw and the remaining
urn will be described in Proposition 3.4.3 below.

The diagram (3.23) involves iterations DDL = DD ◦· · · · ◦· DD as channels,
given explicitly by:

DD0 = unit DDn+1 = DD ◦· DDn = DDn ◦· DD.

Proof. Write υ ∈ N[K+L](X) for the urn. The proof proceeds by induction
on the number of iterations L, starting with L = 0. Then φ ≤K υ means φ = υ.
Hence:

hg[K]
(
υ
)
=

∑
φ≤Kυ

(
υ
φ

)
(

K+0
K

) ∣∣∣φ〉
=

(
υ
υ

)(
K
K

) ∣∣∣υ〉 = 1
∣∣∣υ〉 = unit(υ) = DD0(υ).
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For the induction step we use υ ∈ N[K+(L+1)](X) in:

DDL+1(υ) =
∑
φ≤Kυ

(
DD =≪DDL(υ)

)
(φ)

∣∣∣φ〉
=

∑
φ≤Kυ

∑
ψ∈N[K+1](X)

DDL(υ)(ψ) · DD(ψ)(φ)
∣∣∣φ〉

=
∑
y∈X

∑
φ∈N[K](X)

DDL(υ)
(
φ + 1|y⟩

)
·
φ(y) + 1
K + 1

∣∣∣φ〉
(IH)
=

∑
y∈X

∑
φ∈N[K](X), φ+1| y ⟩≤υ

(
υ

φ+1| y ⟩

)
(

K+L+1
K+1

) · φ(y) + 1
K + 1

∣∣∣φ〉
=

∑
φ≤Kυ

∑
y, φ(y)<υ(y)

(υ(y) − φ(y)) ·
(
υ
φ

)
(L + 1) ·

(
K+L+1

K

) ∣∣∣φ〉
by Exercise 1.8.12

=
∑
φ≤Kυ

((K + L + 1) − K) ·
(
υ
φ

)
(L + 1) ·

(
K+L+1

K

) ∣∣∣φ〉
=

∑
φ≤Kυ

(
υ
φ

)
(

K+L+1
K

) ∣∣∣φ〉
= hg[K](υ).

From this result we can deduce many additional facts about hypergeometric
distributions.

Corollary 3.4.2.

1 Hypergeometric channels (3.22) are natural in X.
2 Frequentist learning form hypergeometric draws is like learning from the

urn: for L ≥ K,

N[L](X) ◦
hg[K]

//

◦
Flrn --

N[K](X)

◦
FlrnqqX

3 For L ≥ K one has:

N[L](X)

◦
hg[K] **

N[L+1](X)◦
DDoo

◦
hg[K]tt

N[K](X)

4 Also, for L ≥ K+1,

N[K](X) N[K+1](X)◦
DDoo

N[L](X)
◦

hg[K]

__

◦
hg[K+1]

==
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5 Hypergeometric channels compose, as in:

N[K+L+M](X) ◦
hg[K]

//

◦
hg[K+L] ,,

N[K](X)

N[K+L](X)
◦

hg[K]

<<

6 Hypergeometric and multinomial channels commute, as in:

N[K+L](X) ◦
hg[K]

// N[K](X)

D(X)
◦

mn[K+L]

``

◦
mn[K]

@@

7 Hypergeometric channels commute with multizip: for L ≥ K,

N[L](X) × N[L](Y)
◦mzip
��

◦
hg[K]⊗hg[K]

// N[K](X) × N[K](Y)
◦mzip
��

N[L](X × Y) ◦
hg[K]

// N[K](X × Y)

Proof. 1 By naturality of draw-and-delete, see Exercise 3.2.4.
2 By Theorem 3.2.6.
3 By Theorem 3.4.1.
4 Idem.
5 Similarly, since DDL+M = DDL ◦· DD M .
6 By Proposition 3.2.9.
7 By Lemma 3.2.8.

In Proposition 3.2.9 we have seen that multinomial and Pólya channels form
draw-delete cones, via commutation with draw-delete for every number K,
where K is the size of the draws. Item (4) of the above result describes a sim-
ilar commutation with draw-delete, but this time not for every K, but only for
K+1 ≤ L, where L is the size of the urn. Hence hypergeometric channels do
not form draw-delete cones.

Aside: although physically impossible, mathematically one can ‘overdraw’,
that is, draw more balls than are present in an urn. In [93] this is elaborated
in terms of ‘signed’ distributions, in which probabilities may be negative. The
resulting ‘signed’ hypergeometric channel does form a draw-delete cone.

In Exercise 3.2.12 we have seen the draw-store-delete channel, of the form
DSD : M[K+1](X) → X ×M[K](X). We can extend it to the hypergeometric
case, for which we introduce the ad hoc name hypergeometric-store, abbrevi-
ated as hgs[K] : N[K+L](X)→ N[K](X)×N[L](X). It keeps track both of the
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draw and the remaining urn:

hgs[K](υ) B
∑
φ≤Kυ

(
υ
φ

)
(

K+L
K

) ∣∣∣∣ φ, υ − φ〉
. (3.24)

We consider the two marginals.

Proposition 3.4.3. The two marginals of the above hypergeometric-store chan-
nel (3.24) are iterated draw-delete’s in:

N[K+L](X)

◦ hgs[K]
��

◦
hg[K] =DDL

yy

◦
DDK

%%

N[K](X) N[K](X) × N[L](X)◦
π1

oo ◦
π2
// N[L](X)

Proof. The triangle on the left commutes by Theorem 3.4.1:

π1 =≪hgs[K](υ)
(3.24)
= D(π1)

∑
φ≤Kυ

(
υ
φ

)
(

K+L
K

) ∣∣∣∣ φ, υ − φ〉
=

∑
φ≤Kυ

(
υ
φ

)
(

K+L
K

) ∣∣∣φ〉
= hg[K](υ) = DDL(υ).

For the triangle on the right we use Theorem 3.2.7:

π2 =≪hgs[K](υ)
(3.24)
= D(π2)

∑
φ≤Kυ

(
υ
φ

)
(

K+L
K

) ∣∣∣∣ φ, υ − φ〉
=

∑
φ≤Kυ

(
υ
φ

)
(

K+L
K

) ∣∣∣υ − φ〉 (3.11)
= DDK(υ).

Theorem 3.4.4. The sum of multisets function and the hypergeometric-store
channel are related in the following way:

=

mn[L]

sum

mn[K+L]

hgs[K]

mn[K]

(3.25)

The string diagram equation that we have seen earlier in Exercise 3.2.12 for
draw-store-delete is a special case of this theorem, for K = 1. A consequence
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of (3.25), obtained by marginalising out the outputs on the right, is the closure
of multinomials under convolution, that we saw earlier in Exercise 3.3.9.

Proof. For a distribution ω ∈ D(X) one has:

⟨sum, id ⟩ =≪
(
mn[K](ω) ⊗mn[L](ω)

)
=

∑
φ∈N[K](X)

∑
ψ∈N[L](X)

mn[K](ω)(φ) ·mn[L](ω)(ψ)
∣∣∣∣ φ + ψ, φ, ψ〉

=
∑

φ∈N[K](X)

∑
ψ∈N[L](X)

(φ ) ·
∏

x

ω(x)φ(x) · (ψ ) ·
∏

x

ω(x)ψ(x)
∣∣∣∣ φ + ψ, φ, ψ〉

=
∑

ψ∈N[L](X)

∑
φ∈N[K](X)

(φ ) · (ψ ) ·
∏

x

ω(x)(φ+ψ)(x)
∣∣∣∣ φ + ψ, φ, ψ〉

=
∑

υ∈N[K+L](X)

∑
φ≤Kυ

(φ ) · (υ − φ )
(υ )

· (υ ) ·
∏

x

ω(x)υ(x)
∣∣∣∣ υ, φ, υ − φ〉

=
∑

υ∈N[K+L](X)

∑
φ≤Kυ

K! · L! · υ
φ · (υ−φ) · (K+L)!

·mn[K+L](ω)(υ)
∣∣∣∣ υ, φ, υ − φ〉

=
∑

υ∈N[K+L](X)

∑
φ≤Kυ

(
υ
φ

)
(

K+L
K

) ·mn[K+L](ω)(υ)
∣∣∣∣ υ, φ, υ − φ〉

= ⟨id , hgs[K]⟩ =≪mn[K+L](ω).

There is the following analogue of Lemma 3.3.2.

Lemma 3.4.5. Let υ ∈ N(X) be a non-empty urn of size L = ∥υ∥ > 0.

1 For a fixed element y ∈ X,

∑
φ≤Kυ

hg[K](υ)(φ) · φ(y) = K · Flrn(υ)(y), (3.26)

2 For L ≥ K ≥ 1,

flat
(
hg[K](υ)

)
=

∑
φ≤Kυ

hg[K](υ)(φ) · φ =
K
L
· υ = K · Flrn(υ).

Proof. 1 We use Exercises 1.8.11 and 1.8.12 in the marked equation
(∗)
= below.
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Let K ≤ L in:∑
φ≤Kυ

hg[K](υ)(φ) · φ(y) =
∑
φ≤Kυ

(
υ
φ

)
· φ(y)(
L
K

)
(∗)
=

∑
φ≤Kυ

υ(y) ·
(
υ−1| y ⟩
φ−1| y ⟩

)
L
K ·

(
L−1
K−1

)
= K ·

υ(y)
L
·

∑
φ≤K−1υ−1| y ⟩

(
υ−1| y ⟩
φ

)
(

L−1
K−1

)
= K · Flrn(υ)(y).

2 We use the previous point in:∑
φ≤Kυ

hg[K](υ)(φ) · φ =
∑
x∈X

 ∑
φ≤Kυ

hg[K](υ)(φ) · φ(x)

 ∣∣∣ x〉
(3.26)
=

∑
x∈X

K · Flrn(υ)(x)
∣∣∣ x〉

= K · Flrn(υ).

Exercises

3.4.1 Draw-delete DD commutes with hypergeometric and Pólya distribu-
tions, see Corollary 3.4.2 (4) and Proposition 3.2.9. The aim of this
exercise is to check that draw-add DA does not commute with hyper-
geometric, nor with Pólya, distributions, for instance by checking that
for φ = 3|a⟩ + 1|b⟩,

hg[2](φ) = 1
2

∣∣∣2|a⟩〉 + 1
2

∣∣∣1|a⟩ + 1|b⟩
〉

hg[3](φ) = 1
4

∣∣∣3|a⟩〉 + 3
4

∣∣∣2|a⟩ + 1|b⟩
〉

DA =≪hg[2](φ) = 1
2

∣∣∣3|a⟩〉 + 1
4

∣∣∣2|a⟩ + 1|b⟩
〉
+ 1

4

∣∣∣1|a⟩ + 2|b⟩
〉
,

And:

pl[2](φ)
= 3

5

∣∣∣2|a⟩〉 + 3
10

∣∣∣1|a⟩ + 1|b⟩
〉
+ 1

10

∣∣∣2|b⟩〉
pl[3](φ)
= 1

2

∣∣∣3|a⟩〉 + 3
10

∣∣∣2|a⟩ + 1|b⟩
〉
+ 3

20

∣∣∣1|a⟩ + 2|b⟩
〉
+ 1

20

∣∣∣3|b⟩〉
DA =≪pl[2](φ)
= 3

5

∣∣∣3|a⟩〉 + 3
20

∣∣∣2|a⟩ + 1|b⟩
〉
+ 3

20

∣∣∣1|a⟩ + 2|b⟩
〉
+ 1

10

∣∣∣3|b⟩〉
3.4.2 1 Give a direct proof of Theorem 3.4.1 for L = 1.
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2 Elaborate also the case K = 1 in Theorem 3.4.1 and show that in
that case DDL(ψ) = Flrn(ψ), at least when we identify the (isomor-
phic) sets N[1](X) and X.

3.4.3 Let unifL ∈ D
(
N[L](X)

)
be the uniform distribution on multisets of

size L, from Exercise 3.2.5, where X is a finite set. Show that hg[K] =≪

unifL = unifK , for K ≤ L.
3.4.4 Prove in analogy with Exercise 3.3.8, for an urn υ ∈ N[L](X) and

elements y, z ∈ X, the following points.

1 When y , z and K ≤ L,∑
φ∈N[K](X)

hg[K](υ)(φ) · φ(y) · φ(z)

= K · (K−1) · Flrn(υ)(y) ·
υ(z)
L−1

.

2 When K ≤ L, ∑
φ∈N[K](X)

hg[K](υ)(φ) · φ(y)2

= K · Flrn(υ)(y) ·
(K−1) · υ(y) + (L−K)

L−1
.

3.4.5 Use Theorem 3.4.1 to prove the following two recurrence relations
for hypgeometric distributions.

hg[K](υ) =
∑

x∈supp(υ)

Flrn(υ)(x) · hg[K−1]
(
υ−1| x⟩

)
hg[K](υ)(φ) =

∑
x

φ(x) + 1
K + 1

· hg[K−1](υ)
(
φ+1| x⟩

)
3.4.6 Fix numbers N,M ∈ N and write υ = N |0⟩ + M|1⟩ for an urn with N

balls of colour 0 and M of colour 1. Let n ≤ N. Show that:∑
0≤m≤M

hg[n+m](υ)
(
n|0⟩ + m|1⟩

)
=

N + M + 1
N + 1

.

Hint: Use Exercise 1.8.9. Notice that the right-hand side does not
depend on n.

3.5 The Pólya channel

This section takes a closer look at Pólya distributions, from Definition 2.6.3.
They resemble the hypergeometric ones, but there are essential differences.
Hypergeometric distributions are based on the draw-and-delete mode whereas
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Pólya uses draw-and-duplicate: a drawn ball is returned to the urn, together
with an extra ball of the same colour. Such an additional ball has a strengthen-
ing effect that can capture situations with a cluster dynamics [67, 119, 16].

The Pólya distribution for draws of size K can be described as a channel of
the form:

N∗(X) ◦
pl[K]

// N[K](X) (3.27)

The domain is the setN∗(X) of non-empty multisets, over the set of colours X.
In its definition Pólya uses multichoose

((
−

−

))
, instead of ordinary binomial

coefficients
(
−

−

)
used for hypergeometric distributions. Its draw sizes may ex-

ceed the size of the urn, in the sense that more balls may be drawn then are
actually in the urn, since the urn grows in size with the draw of each single
ball. There still is an obvious restriction, namely that only colours that exist in
the urn can occur in draws. Indeed, in the formulation below the draws φ are
multisets over the support of the urn υ.

pl[K]
(
υ
) (2.36)
=

∑
φ∈N[K](supp(υ))

((
υ
φ

))
((

L
K

)) ∣∣∣φ〉
=

∑
φ∈N[K](supp(υ))

∏
x∈supp(υ)

((
υ(x)
φ(x)

))
((

L
K

)) ∣∣∣φ〉
.

Theorem 2.6.4 describes these Pólya distributions in terms of sequences of
draws.

These urns to which one applies the draw-and-duplicate form of drawing are
sometimes called Pólya urns, see e.g. [126]. Later on in Section ??, within a
continuous setting, Pólya distributions appear as multinomials over Dirichlet.
Therefore, the name Dirchlet-multinomial is also used. Here it is reserved for
the generalisation to non-natural multisets in Remark 2.6.5.

We start with an analogue of Lemma 3.4.5.

Lemma 3.5.1. Fix a non-empty urn υ ∈ N(X).

1 For an arbitrary element y ∈ X,∑
φ∈M[K](supp(υ))

pl[K](υ)(φ) · φ(y) = K · Flrn(υ)(y). (3.28)

2 For K ≥ 1,

flat
(
pl[K](υ)

)
=

∑
φ∈N[K](supp(υ))

pl[K](υ)(φ) · φ =
K
L
· υ = K · Flrn(υ).
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Proof. 1 We use Exercises 1.8.11 and 1.8.12 in the marked equation
(∗)
= in:

∑
φ∈M[K](supp(υ))

pl[K](υ)(φ) · φ(y) =
∑

φ∈M[K](supp(υ))

((
υ
φ

))
· φ(y)((
L
K

))
(∗)
=

∑
φ∈M[K](supp(υ))

υ(y) ·
(
υ+1| y ⟩
φ−1| y ⟩

)
L
K ·

(
L+1
K−1

)
= K ·

υ(y)
L
·

∑
φ∈M[K−1](supp(υ+1| y ⟩))

(
υ+1| y ⟩
φ

)
(

L+1
K−1

)
= K · Flrn(υ)(y).

2 We proceed as follows.∑
φ∈N[K](supp(υ))

pl[K](υ)(φ) · φ

=
∑
x∈X

 ∑
φ∈N[K](supp(υ))

pl[K](υ)(φ) · φ(x)

 ∣∣∣ x〉
(3.28)
=

∑
x∈X

K · Flrn(υ)(x)
∣∣∣ x〉
= K · Flrn(υ).

In the previous section we have seen that hypergeometric channels are in fact
iterated draw-and-delete’s, see Theorem 3.4.1. One may expect that Pólya draw
channels arise analogously as repeted draw-and-add’s. This is not the case. But
we do have the following Pólya analogues of Theorem 3.4.2 (2) and (3).

Proposition 3.5.2. Let K > 0.

1 Pólya functions pl[K] : N∗(X)→ D
(
N[K](X)

)
are natural in X.

2 Frequentist learning and Pólya satisfy the following equation:

N∗(X) ◦
pl[K]

//

◦
Flrn ((

N[K](X)

◦
FlrnuuX

3 The hypergeometric channel preserves Pólya distributions:

N[K](X) N[K+L](X)◦
hg[K]

oo

N∗(X)
◦

pl[K]

]]

◦
pl[K+L]

??
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4 Doing a draw-and-add before Pólya has no effect: for L > 0,

N[L](X) ◦
DA //

◦
pl[K] **

N[L+1](X)

◦
pl[K]tt

N[K](X)

Proof. 1 Easy.
2 For a multiset/urn υ ∈ N(X) with ∥υ∥ = L > 0, and for x ∈ X,(

Flrn ◦· pl[K]
)
(υ)(x) =

∑
φ∈N[K](supp(υ))

Flrn(φ)(x) · pl[K](υ)(φ)

=
1
K
·

∑
φ∈N[K](supp(υ))

φ(x) · pl[K](υ)(φ)

(3.28)
= Flrn(υ)(x).

3 The hypergeometric channel hg[K] : N[K+L](X)→ N[K](X) is an iteration
of L draw-delete’s, see Theorem 3.4.1. These draw-delete’s preserve Pólya,
see Proposition 3.2.9.

4 We use Exercises 1.8.11 and 1.8.12 in the marked equation
(∗)
= below. For

urn υ ∈ N[L](X) and draw φ ∈ N[K](supp(υ)),(
pl[K] ◦· DA

)
(υ)(φ) =

∑
x∈supp(υ)

υ(x)
L
· pl[K]

(
υ + 1| x⟩

)
(φ)

=
∑

x∈supp(υ)

υ(x)
L
·

((
υ+1| x ⟩
φ

))
((

L+1
K

))
(∗)
=

∑
x∈supp(υ)

υ(x) + φ(x)
L + K

·

((
υ
φ

))
((

L
K

))
=

((
υ
φ

))
((

L
K

))
= pl[K](υ)(φ).

In (3.24) we have seen the hypergeometric-store channel that records both
the draw and the remaining urn. There is a similar Pólya-store channel of the
form pls : N[L](X)→ N[K](X) × N[K+L](X), defined as:

pls[K](υ) B
∑
φ≤Kυ

((
υ
φ

))
((

K+L
K

)) ∣∣∣∣ φ, υ + φ〉
. (3.29)

In the hypergeometric case both the marginals of the ‘store’ channel are itera-
tions of draw-delete’s, see Proposition 3.4.3. In the Pólya case only the second
marginal is an iteration, of draw-add’s.
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Proposition 3.5.3. The two marginals of the Pólya-store channel (3.29) are
iterated draw-delete’s in:

N[L](X)

◦ pls[K]
��

◦
pl[K]

yy

◦
DA K

%%

N[K](X) N[K](X) × N[L+K](X)◦
π1
oo ◦

π2
// N[L+K](X)

Proof. Commutation of the triangle on the left holds trivially. Commutation
on the right follows from Theorem 3.2.7.

3.5.1 Large urns and large draws

In the remainder of this section we look several aspects of both hypergeometric
and Pólya distributions in ‘limiting’ situations, when either urns or draws are
very large. This results are interesting in themselves, but will also be useful
later on in this book.

When urns and draws differ considerably in size, both hypergeometric and
Pólya distributions look like multinomials. We formulate these facts in a slightly
informal style. It is intuitively clear that when an urn from which we draw in
hypergeometric mode is very large and the draw inolves only a small number
of balls, the withdrawals do not really affect the urn. Hence in this case the
hypergeometric distribution behaves like a multinomial distribution, where the
urn (as distribution) is obtained via frequentist learning.

Proposition 3.5.4.

1 (See e.g. [100, §3.7]) Small hypergeometric draws from large urns look like
multinomials: when the urn υ is very large, in comparison to the draw φ ≤K

υ we get:

hg[K](υ)(φ) ≈ mn[K]
(
Flrn(υ)

)
(φ).

2 Large Pólya draws from small urns look like multinomials: when the draw
φ is very large, in comparison to the urn υ,

pl[K](υ)(φ) ≈
1

KN−1 ·mn[L−N]
(
Flrn(φ)

)(
υ−1

)
,

where 1 =
∑

x∈supp(υ)

1| x⟩ and L = ∥υ∥ with N = |supp(υ) |.

Proof. We use in both cases, essentially like in Lemma 1.2.2, that when the
number n is much bigger than m, then:

n!
(n − m)!

≈
(n − m)! · nm

(n − m)!
= nm.
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1 We assume that the urn υ is very large, in comparison to the draw φ ≤K υ.
Then:

hg[K](υ)(φ) =

(
υ
φ

)
(

L
K

) = K!∏
x φ(x)!

·
(L−K)!

L!
·
∏

x

υ(x)!
(υ(x)−φ(x))!

≈ (φ ) ·
1

LK ·
∏

x
υ(x)φ(x)

= (φ ) ·
∏

x

(
υ(x)

L

)φ(x)

= (φ ) ·
∏

x
Flrn(υ)(x)φ(x) = mn[K]

(
Flrn(υ)

)
(φ).

2 Let the support supp(υ) of the urn υ have N elements. In the Pólya case we
assume that the draws φ satisfy supp(φ) ⊆ supp(υ). When the urn υ of size
L is very small with respect to the draw φ of size K, we get:

pl[K](υ)(φ) =

((
υ
φ

))
((

L
K

)) = K!
(K+L−1)!

·
(L−1)!
(υ−1)

·

∏
x (υ(x)+φ(x)−1)!∏

x φ(x)!

≈
1

KL−1 · (υ−1 ) ·
∏

x
φ(x)υ(x)−1

=
KL−N

KL−1 · (υ−1 ) ·
∏

x

(
φ(x)

K

)υ(x)−1

=
1

KN−1 ·mn[L−N]
(
Flrn(φ)

)(
υ−1

)
.

There is another point of analogy with multinomial distributions that we
wish to elaborate, namely the (limit) behaviour when balls are drawn of spe-
cific colours only, see Proposition 3.3.9. In the hypergeometric case it does
not make sense to look at limit behaviour since after a certain number of steps
the urn is empty. But in the Pólya case one can continue drawing indefinitely,
making not trivial what happens in the limit. We use the following auxiliary
result2.

Lemma 3.5.5. Let 0 < N < M be given. Define for n ∈ N,

an B
∏
i<n

N + i
M + i

.

Then: lim
n→∞

an = 0.

Proof. We switch to the (natural) logarithm ln and prove the equivalent state-
ment lim

n→∞
ln(an) = −∞. We use that the logarithm turns products into sums,

2 With thanks to Bas and Bram Westerbaan for help.
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see Exercise 1.4.2, and that the derivative of ln(x) is 1
x . Then:

ln
(
an

)
=

∑
i<n

ln
( N + i

M + i

)
=

∑
i<n

ln
(
N + i

)
− ln

(
M + i

)
= −

∑
i<n

∫ M+1

N+1

1
x

dx

(∗)
≤ −

∑
i<n

(M + i) − (N + i)
M + i

= (N − M) ·
∑
i<n

1
M + i

.

It is well known that the harmonic series
∑

n>0
1
n is infinite. Since M > N the

above sequence ln(an) thus goes to −∞.
The validity of the marked inequality ≤ follows from an inspection of the

graph of the function 1
x : the integral from N + i to M + i is the surface under 1

x
between the points N + i < M + i. Since 1

x is a decreasing function, this surface
is bigger than the rectangle with height 1

M+i and length (M + i) − (N + i).

Proposition 3.5.6. Consider an urn υ ∈ N[L](X) with a proper non-empty
subset S ⊆ supp(υ).

1 Write for K ≤ L,

HK B
∑

φ∈N[K](S ), φ≤υ

hg[K](υ)(φ).

Then HK > HK+1; this stops at K = L, when the urn is empty.
2 Now write, for arbitrary K ∈ N,

PK B
∑

φ∈N[K](S )

pl[K](υ)(φ).

Then PK > PK+1 and lim
K→∞

PK = 0.

Proof. We write LS B
∑

x∈S υ(x) is for the number of balls in the urn whose
colour is in S .

1 By separating S and its complement ¬S we can write, via Vandermonde’s
formula from Lemma 1.8.2,

HK =
∑

φ∈N[K](S ), φ≤υ

(∏
x∈S

(
υ(x)
φ(x)

))
·
(∏

x<S

(
υ(x)

0

))
(

L
K

) =

(
LS
K

)(
L
K

) = LS !
L!
·

(L−K)!
(LS −K)!

.
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Using a similar description for HK+1 we get:

HK > HK+1 ⇐⇒
LS !
L!
·

(L−K)!
(LS −K)!

>
LS !
L!
·

(L−(K+1))!
(LS −(K+1))!

⇐⇒
L−K

LS −K
> 1.

The latter holds because L > LS , since S is a proper subset of supp(υ).
2 In the Pólya case we get, as before, but now via the Vandermonde formula

for multichoose, see Proposition 1.8.6,

PK =

((
LS
K

))((
L
K

)) = (L−1)!
(LS −1)!

·
(LS+K−1)!
(K+L−1)!

.

We define:

aK B
PK+1

PK
=

(L−1)!
(LS −1)!

·
(LS+(K+1)−1)!
(L+(K+1)−1)!

·
(LS −1)!
(L−1)!

·
(K+L−1)!

(LS+K−1)!

=
LS+K
K+L

< 1, since LS < L.

Thus PK+1 = aK · PK < PK and also:

PK = aK−1 · PK−1 = aK−1 · aK−2 · PK−2 = · · · = aK−1 · aK−2 · . . . · a0 · P0.

Our goal is to prove lim
K→∞

PK = 0. This follows from lim
K→∞

∏
i<K ai = 0, which

we obtain from Lemma 3.5.5.

Exercises

3.5.1 Recall Exercises 3.3.8 and 3.4.4, and show for an urn υ ∈ N[L](X)
and elements y, z ∈ X, the following two points.

1 When y , z, ∑
φ∈N[K](X)

pl[K](υ)(φ) · φ(y) · φ(z)

= K · (K−1) · Flrn(υ)(y) ·
υ(z)
L+1

.

2 Prove also: ∑
φ∈N[K](X)

pl[K](υ)(φ) · φ(y)2

= K · Flrn(υ)(y) ·
(K−1) · υ(y) + (L+K)

L+1
.
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3.5.2 This exercise elaborates that draws from an urn excluding one partic-
ular colour can be expressed in binary form. This works for all three
modes of drawing: multinomial, hypergeometric, and Pólya.

Let X be a set with at least two elements, and let x ∈ X be an arbi-
trary but fixed element. We write x⊥ for an element not in X. Assume
k ≤ K.

1 For ω ∈ D(X) with x ∈ supp(ω), use the Multinomial Theo-
rem (1.40) to show that:∑

φ∈N[K−k](X−x)

mn[K](ω)
(
k| x⟩ + φ

)
= mn[K]

(
ω(x)| x⟩ + (1 − ω(x))| x⊥ ⟩

)(
k| x⟩ + (K − k)| x⊥ ⟩

)
= bn[K]

(
ω(x)

)
(k).

2 Prove, via Vandermonde’s formula, that for be an urn υ of size
L ≥ K one has:∑

φ≤K−kυ−υ(x)| x ⟩

hg[K](υ)
(
k| x⟩ + φ

)
= hg[K]

(
υ(x)| x⟩ + (L − υ(x))| x⊥ ⟩

)(
k| x⟩ + (K − k)| x⊥ ⟩

)
.

3 Show again for an urn υ,∑
φ∈N[K−k](supp(υ)−x)

pl[K](υ)
(
k| x⟩ + φ

)
= pl[K]

(
υ(x)| x⟩ + (L − υ(x))| x⊥ ⟩

)(
k| x⟩ + (K − k)| x⊥ ⟩

)
.

3.6 The parallel multinomial law: four definitions

We have already seen the close connection between multisets and distributions.
This section focuses on a very special ‘distributivity’ relation between them.
It shows how a (natural) multiset of distributions can be transformed into a
distribution over multisets. This is a rather complicated operation, but it is a
fundamental one. It can be described via a tensor product ⊗ of multinomials,
and will therefore be called the parallel multinomial law, abbreviated as pml .

This law pml is an instance of what is called a distributive law in category
theory. It has popped up, without an explicit description, in [111, 35] and also
in [38], for continuous probability, to describe ‘point processes’ as distribu-
tions over multisets (and lists), see also Section 3.9. The explicit descriptions
of the law that we use below come from [80]. This law satisfies several ele-
mentary properties that combine basic elements of probability theory.
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The parallel multinomial law pml that we are after has the following type.
For a number K ∈ N and a set X it is a function:

N[K]
(
D(X)

) pml[K]
// D

(
N[K](X)

)
. (3.30)

The dependence of pml on K (and X) is often left implicit. Notice that pml
can also be written as channel N[K]

(
D(X)

)
→ N[K](X). We shall frequently

encounter it in this form in commuting diagrams.
This map pml turns a K-element multiset of distributions over X into a dis-

tribution over K-element multisets over X. It is not immediately clear how to
do this. It turns out that there are several ways to describe pml . This section
is solely devoted to defining this law, in four different manners — yielding
each time the same result. The subsequent section collects basic properties of
pml . The fact that we have multiple equivalent formulations of the same law
allows us to switch freely and use whichever formulation is most convenient
in a particular situation.

First definition
Since the law (3.30) is rather complicated, we start with an example.

Example 3.6.1. Let X = {a, b} be a sample space with two distributions ω, ρ ∈
D(X), given by:

ω = 1
3 |a⟩ +

2
3 |b⟩ and ρ = 3

4 |a⟩ +
1
4 |b⟩. (3.31)

We will define pml on the multiset of distributions 2|ω⟩ + 1|ρ⟩ of size K = 3.
The result should be a distribution on multisets of size K = 3 over X. There
are four such multisets, namely:

3|a⟩ 2|a⟩ + 1|b⟩ 1|a⟩ + 2|b⟩ 3|b⟩.

The goal is to assign a probability to each of them. The map pml does this in
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the following way.

pml
(
2|ω⟩ + 1|ρ⟩

)
= ω(a) · ω(a) · ρ(a)

∣∣∣∣ 3|a⟩
〉

+
(
ω(a) · ω(a) · ρ(b) + ω(a) · ω(b) · ρ(a) + ω(b) · ω(a) · ρ(a)

) ∣∣∣∣ 2|a⟩ + 1|b⟩
〉

+
(
ω(a) · ω(b) · ρ(b) + ω(b) · ω(a) · ρ(b) + ω(b) · ω(b) · ρ(a)

) ∣∣∣∣ 1|a⟩ + 2|b⟩
〉

+ω(b) · ω(b) · ρ(b)
∣∣∣∣ 3|b⟩

〉
= 1

3 ·
1
3 ·

3
4

∣∣∣∣ 3|a⟩
〉
+

(
1
3 ·

1
3 ·

1
4 +

1
3 ·

2
3 ·

3
4 +

2
3 ·

1
3 ·

3
4

) ∣∣∣∣ 2|a⟩ + 1|b⟩
〉

+
(

1
3 ·

2
3 ·

1
4 +

2
3 ·

1
3 ·

1
4 +

2
3 ·

2
3 ·

3
4

) ∣∣∣∣ 1|a⟩ + 2|b⟩
〉
+ 2

3 ·
2
3 ·

1
4

∣∣∣∣ 3|b⟩
〉

= 1
12

∣∣∣∣ 3|a⟩
〉
+ 13

36

∣∣∣∣ 2|a⟩ + 1|b⟩
〉
+ 4

9

∣∣∣∣ 1|a⟩ + 2|b⟩
〉
+ 1

9

∣∣∣∣ 3|b⟩
〉
.

There is a pattern. Let’s try to formulate the law pml from (3.30) in general,
for arbitrary K and X. It is defined on a natural multiset

∑
i ni|ωi ⟩ with multi-

plicities ni ∈ N satisfying
∑

i ni = K, and with distributions ωi ∈ D(X). The
number pml

(∑
i ni|ωi ⟩

)
(φ) describes the probability of the K-sized multiset φ

over X, by using for each element occurring in φ the probability of that element
in the corresponding distribution in

∑
i ni|ωi ⟩.

In order to make this description precise we assume that the indices i are
somehow ordered, say as i1, . . . , im and use this ordering to form a product
state: ⊗

i ω
ni
i = ωi1 ⊗ · · · ⊗ ωi1︸           ︷︷           ︸

ni1 times

⊗ · · · ⊗ ωim ⊗ · · · ⊗ ωim︸            ︷︷            ︸
nim times

∈ D
(
XK)

.

Now we formulate the first definition:

pml
(∑

i ni|ωi ⟩
)
B

∑
x⃗∈XK

(⊗
i ω

ni
i

)
(x⃗)

∣∣∣acc(x⃗)
〉

=
∑

φ∈N[K](X)

 ∑
x⃗∈acc−1(φ)

(⊗
i ω

ni
i

)
(x⃗)

 ∣∣∣φ〉
.

(3.32)

Second definition
There is an alternative formulation of the parallel multinomial law, using con-
volution sums of parallel multinomial distributions via ⊗. This formulation is
the basis for the phrase ‘parallel multinomial’.

pml
(∑

i ni|ωi ⟩
)
B D

(
+
)(⊗

i mn[ni](ωi)
)

=
∑

i, φi∈N[ni](X)

(∏
i mn[ni](ωi)(φi)

) ∣∣∣∣ ∑
i φi

〉
.

(3.33)
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The sum + that we use here as type:

N[ni1 ](X) × · · · × N[nim ](X) + // N[ni1 + · · · + nim︸           ︷︷           ︸
K

](X).

Thus, this sum has type
∏

iN[ni](X)→ N[
∑

i ni](X).
This definition (3.33) may be seen as a convolution sum of multinomials, in

the style of Definition 2.7.1. This is justified via inclusionsN[ni](X) ↪→ N(X)
into the commutative monoid of multisets on X. This perspective is exploited
further in the fourth definition below.

Proposition 3.6.2. The definitions of the law pml in (3.32) and (3.33) are
equivalent.

Proof. Because:

pml
(∑

i ni|ωi ⟩
)

(3.32)
=

∑
x⃗∈XK

(⊗
ωni

i

)
(x⃗)

∣∣∣∣ acc(x⃗)
〉

=
∑

i, x⃗i∈Xni

(∏
i ω

ni
i (x⃗i)

) ∣∣∣∣ ∑
i acc(x⃗i)

〉
see Exercise 1.7.12

=
∑

i, φi∈N[ni](X)

(∏
i
∑

x⃗i∈acc(φi) ω
ni
i (x⃗i)

) ∣∣∣∣ ∑
i φi

〉
=

∑
i, φi∈N[ni](X)

(∏
iD(acc)(ωni

i )(φi)
) ∣∣∣∣ ∑

i φi

〉
=

∑
i, φi∈N[ni](X)

(∏
i
(
acc ◦· iid [ni]

)
(ωi)(φi)

) ∣∣∣∣ ∑
i φi

〉
(2.41)
=

∑
i, φi∈N[ni](X)

(∏
i mn[ni](ωi)(φi)

) ∣∣∣∣ ∑
i φi

〉
.

Example 3.6.3. We continue Example 3.6.1 but now we describe the applica-
tion of the parallel multinomial law pml in terms of multinomials, as in (3.33).
We use the same multiset 2|ω⟩ + 1|ρ⟩ of distributions ω, ρ from (3.31). The
calculation of pml on this multiset, according to the second definition (3.33),
is a bit more complicated than in Example 3.6.1 according to the first defini-
tion, since we have to evaluate the multinomial expressions. But of course the
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outcome is the same.

pml
(
2|ω⟩ + 1|ρ⟩

)
=

∑
φ∈N[2](X), ψ∈N[1](X)

mn[2](ω)(φ) ·mn[1](ρ)(ψ)
∣∣∣∣ φ + ψ〉

= mn[2](ω)(2|a⟩) ·mn[1](ρ)(1|a⟩)
∣∣∣∣ 3|a⟩

〉
+

(
mn[2](ω)(2|a⟩) ·mn[1](ρ)(1|b⟩)

+mn[2](ω)(1|a⟩ + 1|b⟩) ·mn[1](ρ)(1|a⟩)
) ∣∣∣∣ 2|a⟩ + 1|b⟩

〉
+

(
mn[2](ω)(1|a⟩ + 1|b⟩) ·mn[1](ρ)(1|b⟩)

+mn[2](ω)(2|b⟩) ·mn[1](ρ)(1|a⟩)
) ∣∣∣∣ 1|a⟩ + 2|b⟩

〉
+mn[2](ω)(2|b⟩) ·mn[1](ρ)(1|b⟩)

∣∣∣∣ 3|b⟩
〉

=
(

2
2,0

)
· ω(a)2 ·

(
1

1,0

)
· ρ(a)

∣∣∣∣ 3|a⟩
〉

+
((

2
2,0

)
· ω(a)2 ·

(
1

1,0

)
· ρ(b) +

(
2

1,1

)
· ω(a) · ω(b) ·

(
1

1,0

)
· ρ(a)

) ∣∣∣∣ 2|a⟩ + 1|b⟩
〉

+
((

2
1,1

)
· ω(a) · ω(b) ·

(
1

1,0

)
· ρ(b) +

(
2

2,0

)
· ω(b)2 ·

(
1

1,0

)
· ρ(a)

) ∣∣∣∣ 1|a⟩ + 2|b⟩
〉

+
(

2
2,0

)
· ω(b)2 ·

(
1

1,0

)
· ρ(b)

∣∣∣∣ 3|b⟩
〉

=
( 1

3
)2
· 3

4

∣∣∣∣ 3|a⟩
〉
+

(( 1
3
)2
· 1

4 + 2 · 1
3 ·

2
3 ·

3
4

) ∣∣∣∣ 2|a⟩ + 1|b⟩
〉

+
(
2 · 1

3 ·
2
3 ·

1
4 +

( 2
3
)2
· 3

4

) ∣∣∣∣ 1|a⟩ + 2|b⟩
〉
+

( 2
3
)2
· 1

4

∣∣∣∣ 3|b⟩
〉

= 1
12

∣∣∣∣ 3|a⟩
〉
+ 13

36

∣∣∣∣ 2|a⟩ + 1|b⟩
〉
+ 4

9

∣∣∣∣ 1|a⟩ + 2|b⟩
〉
+ 1

9

∣∣∣∣ 3|b⟩
〉
.

Indeed, this is what has been calculated in Example 3.6.1.

Third definition
Our third definition of pml is more abstract than the previous ones. It uses the
coequaliser property of accumulation, see Proposition 2.9.3 (1). It determines
pml as the unique (dashed) map in:

D(X)K ,,
22transpositions t D(X)K

⊗ %%

acc // N[K]
(
D(X)

)
pml

��

D(XK)

D(acc) ''

D
(
N[K](X)

)
(3.34)

We have already seen this situation in Exercise 2.9.4, where we did not intro-
duce a name yet for the map that we now call pml .

Proposition 3.6.4. The definitions of pml in (3.32), (3.33) and (3.34) are all
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equivalent. The latest definition (3.34) yields as new formulation pml = acc ◦·⊗
◦·arr . To be precise:

pml[K] =
(
N[K]

(
D(X)

)
◦

arr[K]
// D(X)K ◦

⊗
[K]
// XK ◦

acc[K]
// N[K](X)

)
. (3.35)

Proof. By the uniqueness property in the triangle (3.34) it suffices to prove
that pml as described in the first (3.32) or second (3.33) formulation makes
this triangle commute. For this we use the first version. We rely again on the
fact that accumulation is stable under transposition. Assume we have ω⃗ =

(ω1, . . . , ωK) ∈ D(X)K with acc(ω⃗) =
∑

i∈S ni|ωi ⟩, for S ⊆ {1, . . . ,K}. Then:(
pml ◦ acc

)
(ω⃗) = pml

(∑
i∈S ni|ωi ⟩

)
(3.32)
=

∑
x⃗∈XK

(⊗
i ω

ni
i
)
(x⃗)

∣∣∣acc(x⃗)
〉

=
∑
x⃗∈XK

(
ω1 ⊗ · · · ⊗ ωK

)
(x⃗)

∣∣∣acc(x⃗)
〉

= D(acc)
(⊗

(ω⃗)
)
.

Implicitly, for well-definedness of the first definition 3.32 of pml we already
used that the precise ordering of states in the tensor

⊗
(ω⃗) is irrelevant in the

formulation of pml .
The formulation in Equation (3.35) follows from Theorem 2.9.6 (1).

This third diagrammatic formulation (3.34) of the parallel multinomial law
is not very useful for actual calculations, like in Examples 3.6.1 and 3.6.3. But
it is useful for proving properties about pml , via the uniqueness part of the
third definition. This will be illustrated in Exercise 3.6.3 below.

In contrast, formulation (3.35) is very useful. It follows a common pattern,
also used for instance in multizip (3.1): first turn a multiset into sequences, ap-
ply a function (like zip, or tensor), and then accumulate the resulting sequences
back into multisets.

In [118] the coequaliser property (3.34) is used in a slightly different way,
namely not for D but for M, that is for multisets with multiplicities in R≥0.
This yields mapsN[K]

(
M(X)

)
→M

(
N[K](X)

)
, which are shown to (1) form

a distributive law NM ⇒ MN of monads, and (2) restrict to ND ⇒ DN .
This is a variation to obtain pml . We postpone its role as distributive law of
monads to Section 3.8.

Fourth definition
For our fourth and last definition we have to piece together some earlier obser-
vations.
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1 Recall from Proposition 2.7.2 that if M is a commutative monoid, then so is
the setD(M) of distributions on M, with convolution sum:

ω + ρ = D(+)(ω ⊗ ρ) =
∑

x1,x2∈M

(ω ⊗ ρ)(x1, x2)
∣∣∣ x1 + x2

〉
.

2 Recall from Proposition 1.6.6 that such commutative monoid structure cor-
responds to an N-algebra sum : N(D(M))→ D(M), given by:

sum
(∑

i ni|ωi ⟩
)
=

∑
i

ni · ωi

=
∑

x⃗∈MK

(⊗
i ω

ni
i
)
(x⃗)

∣∣∣ ∑ x⃗
〉

where K =
∑

i ni.
(3.36)

3 For an arbitrary set X, the set N(X) of natural multisets on X is a com-
mutative monoid, see Lemma 1.6.3. Applying the previous two items with
M = N(X) yields an N-algebra:

N
(
DN(X)

) sum // DN(X) (3.37)

It interacts with N’s unit and flatten operations as described in Proposi-
tion 1.6.6.

We can now formulate the fourth definition:

pml B
(
ND(X)

ND(unitN )
// NDN(X) sum // DN(X)

)
. (3.38)

Proposition 3.6.5. The definition of pml in (3.38) restricts toN[K](D(X))→
D

(
N[K](X)

)
, for each K ∈ N. This restriction is the same pml as defined

in (3.32), (3.33) and (3.34).

Proof. We elaborate formulation (3.38), on a K-sized multiset
∑

i ni|ωi ⟩.

pml
(∑

i ni|ωi ⟩
) (3.38)
= sum

(∑
i ni

∣∣∣D(unit)(ωi)
〉)

(3.36)
=

∑
φ⃗∈N(X)K

(⊗
iD(unit)(ωi)ni

)
(φ⃗)

∣∣∣∣ ∑
φ⃗

〉
=

∑
x1,...,xK∈X

(⊗
i ω

ni
i

)
(x1, . . . , xK)

∣∣∣∣ 1| x1 ⟩ + · · · + 1| xK ⟩
〉

=
∑
x⃗∈XK

(⊗
i ω

ni
i

)
(x⃗)

∣∣∣∣ acc(x⃗)
〉

The last line coincides with the first formulation (3.32) of pml .
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Exercises

3.6.1 Check that the multinomial channel can be obtained via the parallel
multinomial law, in two different ways.

1 Use the first or second formulation, (3.32) or (3.33), of pml to com-
pute that for a distribution ω ∈ D(X) and number K ∈ N one has:

mn[K](ω) = pml
(
K|ω⟩

)
,

that is:

D(X)
mn[K]

//

K·unit **

D
(
N[K](X)

)
N[K]

(
D(X)

) pml

;;

2 Prove the same thing via the third formulation (3.34) of pml , and
via Theorem 2.6.7.

3.6.2 Apply the multiset flatten map flat : M(M(X))→M(X) in the setting
of Example 3.6.1 to show that:

flat
(
2|ω⟩ + 1|ρ⟩

)
= 17

12 |a⟩ +
19
12 |b⟩ = flat

(
pml

(
2|ω⟩ + 1|ρ⟩

))
.

(The general formulation appears later on in Proposition 3.7.3.)
3.6.3 We claim pml is natural: for each function f : X → Y the following

diagram commutes.

N[K]
(
D(X)

) pml
//

N[K](D( f ))
��

D
(
N[K](X)

)
D(N[K]( f ))
��

N[K]
(
D(Y)

) pml
// D

(
N[K](Y)

)
.

1 Prove this claim. The easiest way is via the formulation of pml
in (3.35).

2 Give an alternative proof using the uniqueness part of the third for-
mulation (3.34), as suggested in the diagram:

D(X)K

D( f )K ))

acc // N[K]
(
D(X)

)



��

D(Y)K

⊗ ))

D(YK)
D(acc) **

D
(
N[K](Y)

)
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3.6.4 Generalise Exercise 3.3.9 from multinomials to parallel multinomials,
as in the following diagram.

N[K]
(
D(X)

)
× N[L]

(
D(X)

)
◦+
��

◦
pml⊗pml

// N[K](X) × N[L](X)
◦+
��

N[K+L]
(
D(X)

)
◦

pml
// N[K+L](X)

3.7 The parallel multinomial law: basic properties

This section continues the investigation of the parallel multinomial law pml ,
introduced in the previous section, in various forms. This section focuses on
some key properties of this law, including its interaction with frequentist learn-
ing, multizip and hypergeometric distributions. These properties are expressed
in the language of category theory.

As we have seen, actual calculations with the parallel multinomial law pml
quickly grow out of hand. So we might worry that proving properties also be-
comes tedious. But abstraction will help us. Since there is a characterisation of
pml with a uniqueness property, in its third formulation (3.34), we can reason
with the associated uniqueness proof principle. In most general form it says
that f = g follows from f ◦ acc = g ◦ acc, where acc is the acculation map.
This uses the coequaliser property of accumulation, see Proposition 2.9.3 (1).

The next result enriches what we already now.

Proposition 3.7.1. The parallel multinomial law pml is the unique channel
making both rectangles below commute.

D(X)K

◦
⊗
��

◦
acc // N[K]

(
D(X)

)
◦pml
��

◦
arr // D(X)K

◦
⊗
��

XK ◦
acc // N[K](X) ◦

arr // XK

Recall from Lemma 2.9.4 that we write transp = arr ◦· acc for the transposition
idempotent that occurs twice as the horizontal composite in this diagram.

Proof. The rectangle on the left is the third formulation of pml in (3.34) and
thus provides uniqueness. Commutation of the rectangle of the right follows
from a uniqueness argument, using that the outer rectangle commutes by Ex-
ercise 2.9.5⊗

◦· arr ◦· acc = arr ◦· acc ◦·
⊗

by Exercise 2.9.5
= arr ◦· pml ◦· acc by (3.34).
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This result shows that pml is squeezed between
⊗

, both on the left and on
the right. We have seen in Exercise 2.3.11 that

⊗
is a distributive law. We

shall prove the same about pml below.
But first we show how pml interacts with frequentist learning.

Theorem 3.7.2. The distributive law pml commutes with frequentist learning,
in the sense that for Ψ ∈ N[K]

(
D(X)

)
,

Flrn =≪pml(Ψ) = flat
(
Flrn(Ψ)

)
.

Equivalently, in diagrammatic form:

N[K]
(
D(X)

)
◦

pml
//

◦Flrn
��

N[K](X)
◦ Flrn
��

D(X) ◦
sam // X

The channel sam : D(X) → X at the bottom is the identity function D(X) →
D(X), used as sample operation.

Proof. We use the formulation pml = acc ◦·
⊗
◦·arr from (3.35) in the follow-

ing diagram, using the uniform projection channel unpr .

N[K]
(
D(X)

)
◦

arr //

Flrn --

D(X)K ◦

⊗
//

◦unpr
��

XK ◦
acc //

◦unpr
&&

N[K](X)
◦ Flrn
��

D(X) ◦
sam

// X

The subdiagrams commute by Exercise 2.4.7.

We include a result that generalises Exercise 3.6.2. It is a discrete version
of [38, Lem. 13]. The proof below uses the ‘mean’ of multinomials, from
Proposition 3.3.6.

Proposition 3.7.3. Consider inclusions D(X) ↪→ M(X) and N[K](X) ↪→

M(X), together with the multiset flatten map flat : M(M(X)) → M(X). Via
these inclusions, one has, for Ψ ∈ N[K](D(X)),

flat
(
pml(Ψ)

)
= flat(Ψ).
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Proof. For Ψ = n1|ω1 ⟩ + · · · + nk |ωk ⟩ ∈ N[K](D(X)),

flat
(
pml(Ψ)

)
= flat

 ∑
φ1∈N[n1](X), ..., φk∈N[nk](X)

(∏
i mn[ni](ω)(φi)

) ∣∣∣ ∑i φi
〉

=
∑

φ1∈N[n1](X), ..., φk∈N[nk](X)

(∏
i mn[ni](ω)(φi)

)
·
(∑

i φi

)
=

∑
φ1∈N[n1](X), ..., φk∈N[nk](X)

(∏
i mn[ni](ω)(φi)

)
· φ1

+ · · · +
∑

φ1∈N[n1](X), ..., φk∈N[nk](X)

(∏
i mn[ni](ω)(φi)

)
· φk

=
∑

φ1∈N[n1](X)

mn[n1](ω1)(φ1) · φ1 + · · · +
∑

φk∈N[nk](X)

mn[nk](ωk)(φk) · φk

= n1 · ω1 + · · · + nk · ωk by Proposition 3.3.6

= flat(Ψ).

The parallel multinomial law pml contains multinomial distributions. But it
also interacts with the multinomial channel, as described next.

Theorem 3.7.4.

1 The parallel multinomial law pml commutes with multinomials in the fol-
lowing manner.

D
(
D(X)

)
◦

mn[K]
//

flat
��

M[K]
(
D(X)

)
◦ pml
��

D(X) ◦
mn[K]

//M[K](X)

2 There is a second form of exchange between pml and multinomials:

DN[K](X)
mn[L]

// DN[L]N[K](X) D(flat)

%%

N[K]D(X)

pml 11

N(mn[L]) ++

DN[L·K](X)

N[K]DN[L](X)
pml
// DN[K]N[L](X) D(flat)

99

Proof. 1 We use that mn[K] = acc ◦· iid [K], see Theorem 2.6.7, in:

D
(
D(X)

)
◦

iid //

flat
��

D(X)K

◦
⊗
��

◦
acc //M[K]

(
D(X)

)
◦ pml
��

D(X) ◦
iid // XK ◦

acc //M[K](X)

The rectangle on the left commutes by Exercise 2.4.8, and the one on the
right by Proposition 3.7.1.
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2 We show that precomposing both legs in the diagram with the accumula-
tion map acc : D(X)K → M[K]D(X) yields an equality. This suffices by
Proposition 2.9.3 (1).

D(flat) ◦ mn[L] ◦ pml ◦ acc
(3.38)
= D(flat) ◦ mn[L] ◦ D(acc) ◦

⊗
= D(flat) ◦ DN(acc) ◦ mn[L] ◦

⊗
by naturality of mn[L]

= D(flat) ◦ DN(acc) ◦ (mzipK ◦· (mn[L] ⊗ · · · ⊗mn[L]))
by a generalisation of Corollary 3.3.5

= D(flat) ◦ DN(acc) ◦ flat ◦ D(mzipK) ◦
⊗
◦ mn[L]K

= flat ◦ D2(flat) ◦ D2N(acc) ◦ D(mzipK) ◦
⊗
◦ mn[L]K

= flat ◦ D(unit) ◦ D(+) ◦
⊗
◦ mn[L]K by Proposition 3.1.10

= D(+) ◦
⊗
◦ mn[L]K

= D(flat) ◦ D(acc) ◦
⊗
◦ mn[L]K by Exercise 1.8.3

(3.38)
= D(flat) ◦ pml ◦ acc ◦ mn[L]K

= D(flat) ◦ pml ◦ N(mn[L]) ◦ acc by naturality of acc.

We turn to pml and hypergeometric channels, which, as we have seen in
Theorem 3.4.1, are composites of draw-and-delete maps. We know from Propo-
sition 3.2.9 that multinomial channels commute with draw-and-delete. The
same holds for the parallel multinomial law.

Proposition 3.7.5. The following diagram commutes.

N[K]
(
D(X)

)
◦pml
��

N[K+1]
(
D(X)

)
◦ pml
��

◦
DDoo

N[K](X) N[K+1](X)◦
DDoo

Proof. We use the probabilistic projection channel PD : XK+1 → XK from
Definition 3.2.1 and its interaction with

⊗
in Exercise 3.2.10.

DD ◦· pml
(3.35)
= DD ◦· acc ◦·

⊗
◦· arr

= acc ◦· PD ◦·
⊗
◦· arr by Lemma 3.2.2

= acc ◦·
⊗
◦· PD ◦· arr by Exercise 3.2.10

= pml ◦· acc ◦· PD ◦· arr by (3.34)
= pml ◦· DD ◦· acc ◦· arr by Lemma 3.2.2
= pml ◦· DD by (2.28).

Corollary 3.7.6. The parallel multinomial law commutes with the hypergeo-
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metric channel: for L ≥ K one has:

N[L]
(
D(X)

)
◦pml
��

◦
hg[K]

// N[K]
(
D(X)

)
◦ pml
��

N[L](X) ◦
hg[K]

// N[K](X)

Proof. Theorem 3.4.1 shows that the hypergeometric distribution can be ex-
pressed via iterated draw-and-deletes. Hence the result follows from (iterated
application of) Proposition 3.7.5.

We continue to show that the parallel multinomial law pml commutes with
the unit and flatten operations of the distribution monad. This shows that pml
is an instance of what is called a distributive law in category theory. Such laws
are important in combining different forms of computation. A notorious result,
noted around 2000 by Gordon Plotkin, is that the powerset monad P does not
distribute over the probability distributions monadD. Plotkin never published
this important no-go result himself. Instead, it appeared in [177, 178] (with full
credits). This negative result is interpreted as: there is no semantically solid
way to combine non-deterministic and probabilistic computation. The fact that
a distributive law for multisets and distributions does exist shows that multiset-
computations and probability can be combined. Indeed, in Corollary 3.7.8 we
shall see that the K-sized multiset functor N[K] can be ‘extended’ to the cate-
gory of probabilistic channels.

But first we have to show that pml is a distributive law. We have already
seen in Exercise 3.6.3 that it is natural.

Proposition 3.7.7. The parallel multinomial law pml is a distributive law of
the K-sized multiset functor N[K] over the distribution monadD. This means
that pml commutes with the unit and flatten operations of D, as expressed by
the following two diagrams.

N[K](X)
N(unit)

��

unit

##

N[K]
(
D(X)

) pml
// D

(
N[K](X)

)
N[K]

(
D2(X)

)
N(flat)

��

pml
// D

(
N[K]

(
D(X)

)) D(pml)
// D2(N[K](X)

)
flat
��

N[K]
(
D(X)

) pml
// D

(
N[K](X)

)
Proof. In Exercise 2.3.11 we have seen that the big tensor

⊗
: D(X)K →

D(XK) is a distributive law. These properties will be used to show that pml is
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a distributive law too. We exploit the uniqueness property of the third formu-
lation 3.34.

pml ◦ N(unit) ◦ acc
= pml ◦ acc ◦ unit K by naturality of acc, see Exercise 1.7.12
= D(acc) ◦

⊗
◦ unit K by (3.34)

= D(acc) ◦ unit via the first diagram in Exercise 2.3.11
= unit ◦ acc by naturality of unit .

Simarly for the flatten-diagram:

flat ◦ D(pml) ◦ pml ◦ acc
= flat ◦ D(pml) ◦ D(acc) ◦

⊗
by (3.34)

= flat ◦ D(D(acc)) ◦ D(
⊗

) ◦
⊗

again by (3.34)
= D(acc) ◦ flat ◦ D(

⊗
) ◦

⊗
by naturality of flat

= D(acc) ◦
⊗
◦ flat K via Exercise 2.3.11

= pml ◦ acc ◦ flat K once again by (3.34)
= pml ◦ N(flat) ◦ acc by naturality of acc.

This result says that pml is a so-called Kℓ-law, of the functor N[K] over
the monad D. In general such a Kℓ-law corresponds to an extension of the
functor to the Kleisli category Chan = Chan(D) of channels for the monad,
see [75, 90] for details.

Corollary 3.7.8. The K-fold product (−)K : Sets→ Sets and the K-sized mul-
tiset functorN[K] : Sets→ Sets extend to functors (−)K : Chan→ Chan and
N[K] : Chan→ Chan, in commuting diagrams:

Chan
(−)K

// Chan Chan
N[K]

// Chan

Sets

OO

(−)K
// Sets

OO

Sets

OO

N[K]
// Sets

OO
(3.39)

Both versions of (−)K and of N[K] coincide on objects. On a channel / mor-
phism c : X → Y the extended functor (−)K : Chan→ Chan is defined as:

cK B
(
XK c×···×c // D(Y) × · · · × D(Y)

⊗
// D(YK)

)
. (3.40)

The extension N[K] : Chan → Chan on a channel c : X → Y be described in
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two (equivalent) ways as:

N[K](c) B


N[K]

(
D(Y)

)
◦
pml

%%

N[K](X)
◦

arr ++

N(c) 11

N[K](Y)

XK ◦
cK

// YK ◦
acc

<<

 (3.41)

The fact that we use the same notation N[K] for two different functors
may be confusing, but usually the context will tell which one is meant. When
confusion is likely, we may drop the parameter K for the multiset functor
N : Sets → Sets, as in the above diagram (3.41). The same confusion may
arise for cK , since it may mean c × · · · × c and c ⊗ · · · ⊗ c. Some authors write
c⊗K for the latter parallel product.

Proof. The fact that products extend to channels has already occurred, for
instance in (2.26) and Exercise 2.4.8 (3). Commutation of the above rectangle
on the left in (3.39) is trivial on sets/objects. Now let g be a function, that is, a
morphism in Sets. The upgoing functors in (3.39) sends g to the deterministic
channel ‹g› = unit ◦ g. We have:

‹g›K (3.40)
=

⊗
◦

(
(unit ◦ g) × · · · × (unit ◦ g)

)
=

⊗
◦

(
unit × · · · × unit

)
◦

(
g × · · · × g

)
=

(
unit ⊗ · · · ⊗ unit

)
◦

(
g × · · · × g

)
(2.26)
= unit ◦

(
g × · · · × g

)
= ‹gK›.

The functor N[K] : Chan → Chan is defined on objects/sets as X 7→

N[K](X). A morphism c : X → Y in Chan is sent to the channel N[K](X) →
N[K](Y), obtained in (3.41). We check that these two formulations coincide,
via the formulation of pml in Equation (3.35) and naturality of arrangement:

pml ◦ N(c) =
(
acc ◦·

⊗
◦· arr

)
◦ N(c)

= D(acc) ◦ flat ◦ D(
⊗

) ◦ arr ◦ N(c)
= D(acc) ◦ flat ◦ D(

⊗
) ◦ D(c × · · · × c) ◦ arr

= D(acc) ◦ flat ◦ D(c ⊗ · · · ⊗ c) ◦ arr
= acc ◦· cK ◦· arr .

This extensionN[K] preseves identities and composition by Proposition 3.7.7.
The rectangle on the right in (3.39) commutes too, via Proposition 3.7.7:

N[K](‹g›) = pml ◦ N(unit ◦ g) = pml ◦ N(unit) ◦ N(g)
= unit ◦ N(g) = ‹N(g)›.
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Next we show that parallel multinomials and multizip commute. This is a
non-trivial technical result, which plays a crucial role in the subsequent result.

Lemma 3.7.9. The following diagram commutes.

N[K]
(
D(X)

)
× N[K]

(
D(Y)

)
◦

pml⊗pml
//

◦mzip
��

N[K](X) × N[K](Y)

◦mzip

��

N[K]
(
D(X) ×D(Y)

)
◦N(⊗)
��

N[K]
(
D(X × Y)

)
◦

pml
// N[K](X × Y)

Proof. The result follows from a big diagram chase in which the mzip opera-
tions on the left and on the right are expanded, according to (3.1).

N[K]
(
D(X)

)
× N[K]

(
D(Y)

)
◦

pml⊗pml
//

arr⊗arr
��

◦mzip

//

N[K](X) × N[K](Y)
◦ arr⊗arr
��

◦mzip

oo

D(X)K ×D(Y)K ◦

⊗
⊗

⊗
//

◦zip
��

XK × YK

◦ zip
��(

D(X) ×D(Y)
)K

◦
⊗K
//

◦acc
��

D(X × Y)K ◦

⊗
//

acc

vv

(X × Y)K

◦ acc

��

N[K]
(
D(X) ×D(Y)

)
◦N(⊗)
��

N[K]
(
D(X × Y)

)
◦

pml
// N[K](X × Y)

The upper rectangle commutes by Proposition 3.7.1 and the middle on by
Lemma 2.3.5 (2). The lower-left subdiagram commutes by naturality of acc
and the lower-right one via the third definition of pml in (3.34).

Theorem 3.7.10. The extended functorN[K] : Chan→ Chan commutes with
multizip: for channels f : X → U and g : Y → V one has:

mzip ◦·
(
N[K]( f ) ⊗ N[K](g)

)
= N[K]

(
f ⊗ g

)
◦· mzip. (3.42)

Diagrammatically this amounts to:

N[K](X) × N[K](Y)
◦N[K]( f )⊗N[K](g)
��

◦
mzip

// N[K](X × Y)
◦N[K]( f⊗g)
��

N[K](U) × N[K](V) ◦
mzip

// N[K](U × V)

In combination with the unit and associativity of Proposition 3.1.3 (2) and (5)
this means that the extended functor N[K] : Chan → Chan is a monoidal
functor, via mzip.

259



260 Chapter 3. Drawing from an urn260 Chapter 3. Drawing from an urn260 Chapter 3. Drawing from an urn

Proof. This result is rather subtle, since f , g are used as channels. So when we
write N[K]( f ) we mean application of the extended functor N[K] : Chan →
Chan, as in 3.41, producing another channel. We shall write the multiset func-
tor N : Sets→ Sets without parameter K.

The left-hand side of the equation (3.42) thus expands as in the first equation
below.

mzip ◦·
(
N[K]( f ) ⊗ N[K](g)

)
= mzip ◦· (pml ⊗ pml) ◦

(
N( f ) × N(g)

)
= pml ◦· N(⊗) ◦· mzip ◦

(
N( f ) × N(g)

)
by Lemma 3.7.9

= pml ◦· N(⊗) ◦· N( f × g) ◦· mzip by Proposition 3.1.3 (1)
= pml ◦· N( f ⊗ g) ◦· mzip
= N[K]

(
f ⊗ g

)
◦· mzip.

For this result we really need the multizip operation mzip. One may think
that one can use tensors ⊗ instead, but the tensor-version of Lemma 3.7.9 does
not hold, see Exercise 3.7.8 below.

Earlier we have seen that accumulation, arrangement, and draw-delete are
natural with respect to functions. We can now show that they are, more gener-
ally, natural with respect to channels. This takes the following form.

Lemma 3.7.11. Arrangement and accumulation, and draw-delete are natural
transformation in the situations:

Chan

N[K]www�arr $$(−)K
//

N[K]

www�acc
;;Chan Chan

N[K+1]
**

N[K]

44

www�DD Chan

Proposition 3.1.3 (4) and Lemma 3.2.8 say that these arr and DD are monoidal,
as natural transformations.

Proof. Let c : X → Y be a channel. Then:

arr ◦· N[K](c) = flat ◦ D(arr) ◦ pml ◦ N(c)
= flat ◦ D(

⊗
) ◦ arr ◦ N(c) by Proposition 3.7.1

= flat ◦ D(
⊗

) ◦ D(c × · · · × c) ◦ arr by naturality of arr
= flat ◦ D(c ⊗ · · · ⊗ c) ◦ arr
= cK ◦· arr .

For accumulation the required equality acc ◦· cK = N[K](c) ◦· acc can be
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obtained via a diagram chase:

XK acc //

c×···×c
��

cK

//

N[K](X)
N(c)
��

N[K](c)

oo

D(Y)K acc //⊗
��

N[K]D(Y)
pml
��

D(YK)
D(acc)

// DN[K](Y)

The upper part is ordinary naturality of acc and the lower is the third formula-
tion (3.34) of pml .

For naturality of draw-delete we use the equation DD ◦· pml = pml ◦· DD
from Proposition 3.7.5, together with naturality of DD in:

DD ◦· N[K+1](c) = flat ◦ D(DD) ◦ pml ◦ N(c)
= flat ◦ D(pml) ◦ DD ◦ N(c)
= flat ◦ D(pml) ◦ D

(
N(c)

)
◦ DD

= flat ◦ D
(
N[K](c)

)
◦ DD

= N[K](c) ◦· DD.

Not only acc, arr and DD are natural with respect to channels, but also
multinomial and hypergeometric maps. For the multinomial case we need to
use the extension of the distribution functor D : Sets → Sets to a functor
D : Chan → Chan. We have already seen this (general) construction in Exer-
cise 1.11.8. We recall that D(X) = D(X) and D(c) = c =≪ (−) : D(X) → D(Y)
for a channel c : X → Y . This extension D is monoidal by a promotion of
the usual tensor ⊗ : D(X) × D(Y) → D(X × Y) to a deterministic channel
‹⊗› : D(X) ×D(Y)→ D(X × Y).

Theorem 3.7.12. The multinomial and hypergeometric channels are natural
with respect to extended functors:

Chan
Dwww�mn[K]

++

N[K]

33 Chan Chan

N[L]
++

N[K]

33

www�hg[K] Chan

where L ≥ K. These natural transformations are monoidal since they commute
with mzip.

Concretely, this naturality of multinomial and hypergeometric channels means
that for a channel c : X → Y one has:

N[K](c) =≪mn[K](ω) = mn[K]
(
c =≪ω)

N[K](c) =≪hg[K](υ) = hg[K] =≪N[L](c)(υ),
(3.43)
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for urns ω ∈ D(X) and υ ∈ N[L](X).

Proof. We can write the multinomial channel as mn[K] = acc ◦· iid [K], see
Theorem 2.6.7. Lemma 3.7.11 tells that accumulation is a natural transforma-
tion acc : (−)K ⇒ N[K] between extended functors. Similarly, iid [K] forms
a natural transformation D ⇒ (−)K by Exercise 2.4.8 (4). The composition
mn[K] is monoidal by Corollary 3.3.5.

The hypergeometric hg[K] channel is an iteration of draw-delete’s, see The-
orem 3.4.1. It is thus natural with respect to channels, since draw-delete is, see
Lemma 3.7.11. By the same argument this hypergeometric natural transforma-
tion is monoidal, see Lemma 3.2.8.

The Pólya channel from Section 3.5 does not fit in this picture since it is not
natural w.r.t. channels. Intuitively, this can be explained from the fact that Pólya
involves copying, and copying does not commute with channels, as we have
seen early on in Exercises 2.5.1. Pólya channels are natural w.r.t. functions,
see Proposition 3.5.2 (1), and indeed, functions do commute with copying, see
Exercise 2.5.2.

3.7.1 Sampling of pushforward

We recall from Subsection 2.2.1 the programming language notation x ← ω

for sampling an arbitrary element x ∈ supp(ω) from the (support of the) dis-
tribution ω ∈ D(X), in accordance with the probabilities of ω. The sampling
mechanism works ‘correctly’ if we accumulate a sufficiently long list of sam-
pled elements to a multiset, then the resulting distribution obtained via frequen-
tist learning approximates ω. As we have argued, the multinomial distribution
is the mathematical counterpart of such sampling, and the correctness is ex-
pressed via the following diagram, repeated from Theorem 3.3.3:

D(X) ◦
mn[K]

//

◦
sam //

N[K](X)
◦ Flrn
��

X

(3.44)

In this situation we sample K elements from the distribution ω, where the
each multiset of K elements comes with its own multinomial probability. In
the above composition Flrn ◦· mn[K], these probabilities are taken into ac-
count. Recall that the sample channel sam : D(X)→ X is the identity function
id : D(X)→ D(X). This works for any number K.

In (2.24) we have seen a two-step sampling x ← ω, y ← c(x), for a distri-
bution ω ∈ D(X) and a channel c : X → Y . We suggested that the resulting
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elements y from samples of the pushforward distribution c =≪ω on Y . We now
ask ourselves: is there a corresponding form of correctness?

We can use a multinomial distribution mn[K](ω) to sample K-sized multi-
sets φ ∈ N[K](X) from ω. Then for each element x in φ we like to apply the
channel c, giving a distribution c(x) ∈ D(Y). Then we can sample again from
c(x), say L-many elements, where both K and L are arbitrary numbers. In this
set-up we use two constructions:

• the pointwise multinomial mn[L](c) B mn[L] ◦ c : X → D
(
N[L](Y)

)
, as

already mentioned in Definition 2.6.6;

• the extension of the multiomial functor to channels, as in:N[K](c) B pml ◦
N(c) : N[K](X)→ D

(
N[K](Y)

)
, from Corollary 3.7.8.

We combine these points in the following composite:

D(X) ◦
mn[K]
// N[K](X) ◦

N[K](mn[L](c))
// N[L]

(
N[K](Y)

)
◦

flatN // N[L · K](Y) (3.45)

It first samples from a distribution ω ∈ D(X), then applies mn[L](c) inside the
resulting samples, and then flattens the multisets of multisets to multisets. The
correctness claim for sequential sampling is that frequentist learning of this
map (3.45) is pushforward along the channel c. That is the context of the next
result.

Proposition 3.7.13. Sequential sampling is correct, in the sense that the fol-
lowing diagram commutes.

D(X) ◦
mn[K]

//

◦sam
��

N[K](X) ◦
N[K](mn[L](c))

// N[K]
(
N[L](X)

)
◦

flatN // N[K · L](Y)
◦ Flrn
��

X ◦
c // Y

Proof. We break the above rectangle up in three subdiagrams:

N[K]
(
N[L](X)

)
◦

flatN

''

D(X) ◦
mn[K]

//

◦sam

��

N[K](X)

◦
N[K](mn[L](c)) 11

◦
Flrn

vv

◦
mn[L](N[K](c))

--

N[K · L](Y)

◦ Flrn

��

N[L]
(
N[K](X)

) ◦
flatN

77

X ◦
c // Y

The triangle on the left is (3.44). The diamond at the top commutes by Theo-
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rem 3.7.4:

flatN ◦· N[K]
(
mn[L](c)

)
= D

(
flatN

)
◦ pml ◦ N

(
mn[L] ◦ c

)
= D

(
flatN

)
◦ mn[L] ◦ pml ◦ N(c)

= D
(
flatN

)
◦ mn[L]

(
N[K](c)

)
= flatN ◦· mn[L]

(
N[K](c)

)
.

Next, the rectangle at the bottom commutes:

Flrn ◦· flatN ◦· mn[L]
(
N[K](c)

)
= flat ◦ D(Flrn) ◦ D

(
flatN

)
◦ mn[L] ◦ pml ◦ N(c)

= flat ◦ D(Flrn) ◦ pml ◦ N(c) by Theorem 3.3.7 (2)
= flat ◦ Flrn ◦ N(c) by Theorem 3.7.2
= flat ◦ D(c) ◦ Flrn by naturality
= c ◦· Flrn.

There is also ‘anchestral’ sampling of joint states τ ∈ D(X×Y) for which we
have a graph representation τ = ⟨id , c⟩ =≪ω. In general, such a graph form can
be obtained via ‘disintegration’, see Section 7.2, but here we assume it given.
This anchestral sampling works as follows.

x← ω
y← c(x)
return (x,y)

(3.46)

Proposition 3.7.14. Ancestral sampling is correct, in the sense that the fol-
lowing diagram commutes.

D(X) ◦
mn[K]

//

◦sam
��

N[K](X) ◦

N[K](mzip◦· ⟨mn[L](id ),mn[L](c)⟩)
// N[K]

(
N[L](X × Y)

)
◦

flatN// N[K · L](X × Y)
◦ Flrn
��

X ◦
⟨id ,c⟩

// X × Y

Proof. This follows from Proposition 3.7.13 once we show that the following
diagram commutes:

X ◦
⟨mn[L](id ),mn[L](c)⟩

//

◦
mn[L](⟨id ,c⟩) ..

N[L](X) × N[L](Y)
◦mzip
��

N[L](X × Y)
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This requires an application of Corollary 3.3.5 in:

X
⟨id ,c⟩

//

⟨id ,c⟩ ,,

D(X) ×D(Y) ◦
mn[L]⊗mn[L]

//

⊗
��

N[L](X) × N[L](Y)
◦mzip
��

D(X × Y) ◦
mn[L]

// N[L](X × Y)

Exercises

3.7.1 Consider the two distributions ω, ρ in (3.31) and check yourself the
following equation, which is an instance of Theorem 3.7.2.

Flrn =≪pml
(
2|ω⟩ + 1|ρ⟩

)
= 17

36 |a⟩ +
19
36 |b⟩.

=
(
flat ◦ Flrn

)
(2|ω⟩ + 1|ρ⟩).

3.7.2 Check that the following diagram does not commute.

N[K]
(
D(X)

)
pml

��

N[K]2(X)

N(Flrn) 22

Flrn ,,
D

(
N[K](X)

)
Consider for instance the multiset of multisets 2

∣∣∣1|a⟩+2|b⟩
〉
+1

∣∣∣3|a⟩〉.
3.7.3 Check that the construction of Corollary 3.7.8 indeed yields a func-

tor N[K] : Chan → Chan, i.e. that identities and composition are
preserved.

3.7.4 Consider the channel c : {1, 2, 3} → {a, b} given by:

c(1) = 1
6 |a⟩ +

5
6 |b⟩ c(2) = 2

3 |a⟩ +
1
3 |b⟩ c(3) = 1

2 |a⟩ +
1
2 |b⟩.

Show that the channelN[K](c) : N[6]
(
{1, 2, 3}

)
→ N[6]

(
{a, b}

)
satis-

fies:

N[K](c)
(
1|1⟩ + 2|2⟩ + 3|3⟩

)
= 1

108

∣∣∣6|a⟩〉 + 1
12

∣∣∣5|a⟩ + 1|b⟩
〉
+ 35

144

∣∣∣4|a⟩ + 2|b⟩
〉
+ 1

3

∣∣∣3|a⟩ + 3|b⟩
〉

+ 17
72

∣∣∣2|a⟩ + 4|b⟩
〉
+ 1

12

∣∣∣1|a⟩ + 5|b⟩
〉
+ 5

432

∣∣∣6|b⟩〉.
3.7.5 Consider a distribution ω ∈ D(X) as a channel 1 → X. Recall the

extension of the functors (−)K and N[K] to the category of channels,
see Corollary 3.7.8 and show that:(

1 ◦
ω // X

)K
= 1 ◦

ωK
// XK N[K]

(
1 ◦

ω // X
)
= 1 ◦

mn[K](ω)
// N[K](X)
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3.7.6 Show that frequentist learning is a natural transformation in:

Chan

N[K+1]
**

id

44

www�Flrn Chan

3.7.7 Show that the extended functors N[K] : Chan → Chan commute
with sums of multisets: for a channel f : X → Y ,

N[K](X) × N[L](Y)
◦N[K]( f )⊗N[L]( f )
��

◦
+ // N[K+L](X)

◦N[K+L]( f )
��

N[K](Y) × N[L](Y) ◦
+ // N[K+L](Y)

3.7.8 The parallel multinomial law pml does not commute with tensors (of
multisets and distributions), as in the following diagram.

N[K]
(
D(X)

)
× N[L]

(
D(Y)

)
◦

pml⊗pml
//

◦⊗
��

N[K](X) × N[K](Y)

◦ ⊗

��

N[K ·L]
(
D(X) ×D(Y)

)
◦N[K·L](⊗)
��

,

N[K ·L]
(
D(X × Y)

)
◦

pml
// N[K ·L](X × Y)

Take for instance X = {a, b}, Y = {0, 1} with K = 2, L = 1 with

distributions:

ω = 3
4 |a⟩ +

1
4 |b⟩

ρ = 2
3 |0⟩ +

1
3 |1⟩

and multisets:

 φ = 2|ω⟩
ψ = 1|ρ⟩

1 Calculate:(
⊗ ◦· (pml ⊗ pml)

)
(φ, ψ)

= 3
8

∣∣∣2|a, 0⟩〉 + 1
4

∣∣∣1|a, 0⟩ + 1|b, 0⟩
〉
+ 1

24

∣∣∣2|b, 0⟩〉
+ 3

16

∣∣∣2|a, 1⟩〉 + 1
8

∣∣∣1|a, 1⟩ + 1|b, 1⟩
〉
+ 1

48

∣∣∣2|b, 1⟩〉.
2 And also:(

pml ◦· M[K ·L](⊗) ◦· ⊗
)
(φ, ψ)

= 1
4

∣∣∣2|a, 0⟩〉 + 1
16

∣∣∣2|a, 1⟩〉 + 1
36

∣∣∣2|b, 0⟩〉 + 1
144

∣∣∣2|b, 1⟩〉
+ 1

4

∣∣∣1|a, 0⟩ + 1|a, 1⟩
〉
+ 1

6

∣∣∣1|a, 0⟩ + 1|b, 0⟩
〉

+ 1
12

∣∣∣1|a, 0⟩ + 1|b, 1⟩
〉
+ 1

12

∣∣∣1|a, 1⟩ + 1|b, 0⟩
〉

+ 1
24

∣∣∣1|a, 1⟩ + 1|b, 1⟩
〉
+ 1

36

∣∣∣1|b, 0⟩ + 1|b, 1⟩
〉
.
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3.7.9 Let Ω ∈ D2(X) be a distribution of distributions. Argue that the fol-
lowing two program fragments yield the same outcome.

x← flat(Ω)
return x

ω← Ω
x← ω
return x

Hint: Recall from Exercise 2.4.4 that flat(Ω) = sam =≪Ω.

3.8 Parallel multinomials as law of monads

There is one thing we still wish to do in relation to the parallel multinomial
law. We have described it as a map pml[K] : N[K]

(
D(X)

)
→ D

(
N[K](X)

)
in

a restricted manner, namely restricted to multisets of size K. The same holds
for the tensor map

⊗
[K] : D(X)K → D

(
XK)

. What if we drop this size re-
striction?

The fourth formulation (3.38) already describes pml as a map ND(X) →
DN(X), without size restrictions. It forms a natural transformation ND ⇒
DN by Exercise 3.6.3. There is also such a formulation for the tensor

⊗
[K].

Definition 3.8.1. For a set X we define the parallel states map pst : L
(
D(X)

)
→

D
(
L(X)

)
as:

pst
(
[ω1, . . . , ωK]

)
B

∑
x⃗∈L(X), ∥x⃗∥=K

∏
1≤i≤K

ωi(xi)
∣∣∣ x⃗〉

=
∑
x⃗∈XK

⊗
[K]

(
ω⃗
)(

x⃗
) ∣∣∣ x⃗〉

=
⊗

[K]
(
ω⃗
)
.

= ω1 ⊗ · · · ⊗ ωK .

(3.47)

By Lemma 2.3.5 (1) this yields a natural transformation pst : LD ⇒ DL.

We collect some basic results. As usual with multiple functor applications
F(G(X)) we often spare on parentheses and simply write FG(X) for F(G(X)).

Proposition 3.8.2. Let X be an arbitrary set.

1 Parallel multinomial and parallel states commute with accumulation in:

LD(X)
acc
��

pst
// DL(X)

D(acc)
��

ND(X)
pml

// DN(X)
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2 The parallel states law pst commutes in the following way with the unit and
flatten operations of the list monad L.

D(X)
unit
��

D(unit)

��

L2D(X)
flat
��

L(pml)
// LDL(X)

pml
// DL2(X)

D(flat)
��

LD(X)
pml
// DL(X) LD(X)

pml
// DL(X)

3 The parallel multinomial law pml : ND(X) → DN(X) commutes in the
following way with the unit and flatten operations of the (natural) multiset
monad N .

D(X)
unit
��

D(unit)

��

N2D(X)
flat
��

N(pml)
// NDN(X)

pml
// DN2(X)

D(flat)
��

ND(X)
pml
// DN(X) ND(X)

pml
// DN(X)

4 The parallel multinomial law pml : ND(X)→ DN(X) is a map of monoids.

The analogous property for pst : LD(X)→ DL(X) also holds, but should
be formulated slightly differently, since L(X) is not a commutative monoid,
so Proposition 2.7.2 does not apply. For lists ℓ1, ℓ2 ∈ LD(X) one does have:

pst
(
ℓ1 ++ ℓ2

)
= D(++)

(
pst(ℓ1) ⊗ pst(ℓ2)

)
.

Proof. 1 For a list ω⃗ ∈ LD(X), say of length K ∈ N, with acc(ω⃗) =
∑

i ni|ωi ⟩,
we have:(

D(acc) ◦ pst
)
(ω⃗) =

∑
x⃗∈XK

∏
1≤i≤K

ωi(xi)
∣∣∣acc(x⃗)

〉
=

∑
x⃗∈XK

(⊗
i ω

ni
i

)
(x⃗)

∣∣∣acc(x⃗)
〉

(3.32)
= pml

(∑
i ni|ωi ⟩

)
=

(
pml ◦ acc

)
(x⃗).

2 The equation for the units is easy. For ω ∈ D(X) we have:

(
pst ◦ unit

)
(ω) = pst

(
[ω]

)
=

∑
x∈X

ω(x)
∣∣∣ [x]

〉
= D(unit)(ω).

Let lists of distributions L1, . . . , LK ∈ LD(X) be given with ∥Li∥ = Ni. We
write L B flat([L1, . . . , LK]) = L1 ++ · · · ++ LK , see Exercise 1.4.5, so that
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∥L∥ =
∑

i Ni. Then:(
D(flat) ◦ pst ◦ L(pst)

)
(L⃗)

=
(
D(flat) ◦ pst

)(
[pst(L1), . . . , pst(LK)]

)
=

∑
ℓ1∈XN1 , ..., ℓK∈XNK

(
pst(L1) ⊗ · · · ⊗ pst(LK)

)
(ℓ1, . . . , ℓK)

∣∣∣flat([ℓ1, . . . , ℓK])
〉

=
∑

ℓ1∈XN1 , ..., ℓK∈XNK

∏
1≤i≤K

pst(Li)(ℓi)
∣∣∣ℓ1 ++ · · · ++ ℓK

〉
=

∑
ℓ1∈XN1 , ..., ℓK∈XNK

∏
1≤i≤K

∏
1≤ j≤Ni

Li j(ℓi j)
∣∣∣ℓ1 ++ · · · ++ ℓK

〉
=

∑
ℓ∈XN1+···+NK

∏
1≤k≤

∑
i Ni

Lk(ℓk)
∣∣∣ℓ〉

= pst(L) = pst
(
flat([L1, . . . , LK])

)
=

(
pst ◦ flat

)
(L⃗).

3 First, for ω ∈ D(X) we have, by Exercise 3.6.1,(
pml ◦ unit

)
(ω) = pml(1|ω⟩) = mn[1](ω) =

∑
x∈X

ω(x)
∣∣∣1| x⟩〉

= D(unit)(ω).

For flatten we have to do a bit more work. We recall from (3.36), for a
commutative monoid M, the N-algebra sum : N(D(M))→ D(M) given by
convolution. We also recall that by Proposition 1.6.6 the following two dia-
grams commute, where f : M1 → M2 is a map of (commutative) monoids.

N2D(M)
N(sum)

//

flat
��

ND(M)
sum
��

ND(M1)
sum
��

ND( f )
// ND(M2)

sum
��

ND(M) sum // D(M) D(M1)
D( f )

// D(M2)

(3.48)

We use the fourth formulation (3.38) namely pml = sum ◦ ND(unit).
Then:

D(flat) ◦ pml ◦ N(pml)
= D(flat) ◦ sum ◦ ND(unit) ◦ N(pml) by (3.38)
= sum ◦ ND(flat) ◦ ND(unit) ◦ N(pml) by (3.48), on the right
= sum ◦ N(pml) by a flatten-unit law
= sum ◦ N(sum ◦ ND(unit)) by (3.38) again
= sum ◦ flat ◦ NND(unit) by (3.48), on the left
= sum ◦ ND(unit) ◦ flat by naturality
= pml ◦ flat once again by (3.38).

269



270 Chapter 3. Drawing from an urn270 Chapter 3. Drawing from an urn270 Chapter 3. Drawing from an urn

4 In order to show that the parallel multinomial law pml : ND(X)→ DN(X)
is a map of monoids it suffices by Proposition 1.6.6 to show that the dia-
gram (1.31) commutes. This is the outer rectangle in:

N2D(X)
flat
��

N2D(unit)
//

N(pml)

��

N2DN(X)
N(sum)

//

flat
��

NDN(X)
sum
��

ND(X)
ND(unit)

//

pml

OO
NDN(X) sum // DN(X)

The rectangle on the left commutes by naturality of flat ; the one on the right
is an instance of the rectangle on the left in (3.48).

For the parallel state map pst , let ω⃗, ρ⃗ ∈ LD(X) be lists of state, say with
∥ω⃗∥ = K and ∥ρ⃗∥ = L. Then:

D(++)
(
pst(ω⃗) ⊗ pst(ρ⃗)

)
= D(++)

(⊗
[K](ω⃗) ⊗

⊗
[L](ρ⃗)

)
=

∑
x⃗∈XK

∑
y⃗∈XL

⊗
[K](ω⃗)(x⃗) ·

⊗
[L](ρ⃗)(⃗y)

∣∣∣ x⃗ ++ y⃗
〉

=
∑

z⃗∈XK+L

⊗
[K+L]

(
ω⃗ ++ ρ⃗

)
(⃗z)

∣∣∣ z⃗〉
=

⊗
[K+L]

(
ω⃗ ++ ρ⃗

)
= pst

(
ω⃗ ++ ρ⃗

)
.

Theorem 3.8.3. The two composite functors

Sets DL
// Sets Sets DN // Sets

are both monads. Their unit and flatten maps are given as follows, via pst and
pml .

• ForDL,

unitDL B


D(X) D(unit)

((

X

unit 22

unit
--

DL(X)
L(X) L(unit)

66



flatDL B


DL2(X) D(flat)

((

DLDL(X)
D(pst)

// D2L2(X)

flat 11

D2(flat)
--

DL(X)

D2L(X) flat

66
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• ForDN ,

unitDN B


D(X) D(unit)

((

X

unit 22

unit
,,

DN(X)
N(X) N(unit)

66



flatDN B


DN2(X) D(flat)

))

DNDN(X)
D(pml)

// D2N2(X)

flat 11

D2(flat)
--

DN(X)

D2N(X) flat

55


Proof. This is a standard result in category theory, originally by Beck, see
e.g. [13, 10, 75]. The two diamonds in the above descriptions of unit and flatten
commute by naturality. The monad laws for DL and DN hold by items (2)
and (3) in Proposition 3.8.2.

In the remainder of this section we concentrate on the monadDN : Sets→
Sets. The aim is to show that there is a map of monads DN ⇒ M, where
M : Sets → Sets is the multiset monad, with non-negative numbers as multi-
plicities — and not just natural numbers, as for natural multisets, in N . This
map of monads is introduced in [38], under the name ‘intensity’. Therefor we
shall write it as intsy : DN ⇒M.

There are obvious inclusions D(X) ↪→ M(X) and N(X) ↪→ M(X) that we
used before. We now need to formalise the situation and so we shall use explicit
names for these inclusions, as natural transformations, namely:

D
σ +3M N

τ +3M.

These σ and τ are maps of monads. They are used implicitly for instance in
the equation flat

(
pml(Ψ)

)
= flat(Ψ) in Proposition 3.7.3. As a commuting

diagram, it looks as follows.

ND

pml
��

N(σ)
// NM

τ //MM flat
&&
M

DN
σ //MN

M(τ)
//MM flat

88
(3.49)

Theorem 3.8.4 (From [38]). The intensity natural transformation intsy : DN ⇒
M has components:

intsy B


MN(X) M(τ)

))

DN(X)

σ 11

D(τ)
--

MM(X) flat //M(X)
DM(X) σ

55

 (3.50)
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intsy ◦ flatDN
(3.50)
= flatM ◦ σ ◦ D(τ) ◦ D(flatN ) ◦ flatD ◦ D(pml)
= flatM ◦ σ ◦ D(flatM) ◦ DM(τ) ◦ D(τ) ◦ flatD ◦ D(pml)
= flatM ◦ M(flatM) ◦ M2(τ) ◦ M(τ) ◦ σ ◦ flatD ◦ D(pml)
= flatM ◦ flatM ◦ M2(τ) ◦ M(τ) ◦ flatM ◦ σ ◦ D(σ) ◦ D(pml)
= flatM ◦ flatM ◦ flatM ◦ M3(τ) ◦ M2(τ) ◦ σ ◦ D(σ) ◦ D(pml)
= flatM ◦ flatM ◦ M(flatM) ◦ M3(τ) ◦ σ ◦ DM(τ) ◦ D(σ) ◦ D(pml)
= flatM ◦ flatM ◦ M2(τ) ◦ M(flatM) ◦ σ ◦ DM(τ) ◦ D(σ) ◦ D(pml)
= flatM ◦ flatM ◦ σ ◦ DM(τ) ◦ D(flatM) ◦ DM(τ) ◦ D(σ) ◦ D(pml)

(3.49)
= flatM ◦ M(flatM) ◦ σ ◦ DM(τ) ◦ D(flatM) ◦ D(τ) ◦ DN(σ)
= flatM ◦ σ ◦ D(flatM) ◦ D(flatM) ◦ DM2(τ) ◦ D(τ) ◦ DN(σ)
= flatM ◦ σ ◦ D(flatM) ◦ DM(flatM) ◦ DM2(τ) ◦ D(τ) ◦ DN(σ)
= flatM ◦ M(flatM) ◦ σ ◦ DM(flatM) ◦ DM2(τ) ◦ D(τ) ◦ DN(σ)
= flatM ◦ flatM ◦ σ ◦ D(τ) ◦ DN(flatM) ◦ DNM(τ) ◦ DN(σ)

(3.50)
= flatM ◦ intsy ◦ DN(intsy).

Figure 3.1 Equational proof that the intensity natural transformation intsy
from (3.50) commutes with flattens, as part of the proof of Theorem 3.8.4.

This intensity intsy is a map of monads. It thus induces a functor Chan(DN)→
Chan(M) between the associated categories of channels.

This definition 3.50 looks impressive, but for practical purposes we can just
write intsy(Ψ) = flat(Ψ), leaving inclusions σ, τ implicit. However, in the
proof below we will be very precise and make these inclusions explicit.

Proof. Commutation of intensity with units is easy. For clarity we write unitM

for the unit of the monadM and unitDN for the unit ofDN , see Theorem 3.8.3.
Then:

intsy ◦ unitDN
(3.50)
= flatM ◦ M(τ) ◦ σ ◦ D(unitN ) ◦ unitD

= flatM ◦ M(τ) ◦ M(unitN ) ◦ σ ◦ unitD

= flatM ◦ M(unitM) ◦ unitM since τ, σ are maps of monads
= unitM.

Commutation with flatten maps is more laborious and involves a long calcu-
lation. Figure 3.1 provides all required equational steps, using the standard
equations for (maps of) monads.

There is more to say about this situation.

Proposition 3.8.5. For each set X, the intensity map is a homomorphism of
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monoids, so that we can rephrase Diagram (3.49) as a triangle of monoid
homomorphisms:

(
ND(X),+, 0

) pml
//

--

(
DN(X),+, 0

)
intsy
��(

M(X),+, 0
)
.

Proof. We use the convolution monoid structure onDN(X), defined in Propo-
sition 2.7.2, in the form of a map sum : NDN(X) → DN(X), as above. The
zero element in DN(X) is 1|0⟩, where 0 ∈ N(X) is the empty multiset. It
satisfies, for x ∈ X,

intsy
(
1|0⟩

)
(x) = flat

(
1|0⟩

)
(x) = 1 · 0(x) = 0.

Hence intsy
(
1|0⟩

)
= 0.

For distributions ω, ρ ∈ DN(X) we have intsy(ω + ρ) = intsy(ω) + intsy(ρ)
since for each x ∈ X,

intsy(ω + ρ)(x) = flat(ω + ρ)(x) =
∑

φ∈N(X)

(ω + ρ)(φ) · φ(x)

(2.44)
=

∑
φ∈N(X)

D(+)
(
ω ⊗ ρ

)
(φ) · φ(x)

=
∑

ψ, χ∈N(X)

ω(ψ) · ρ(χ) · (ψ + χ)(x)

=
∑

ψ, χ∈N(X)

ω(ψ) · ρ(χ) · (ψ(x) + χ(x))

=
∑

ψ∈N(X)

ω(ψ) ·

 ∑
χ∈N(X)

ρ(χ)

 · ψ(x) +
∑

χ∈N(X)

 ∑
ψ∈N(X)

ω(ψ)

 · ρ(χ) · χ(x)

= flat(ω)(x) + flat(ρ)(x)

=
(
intsy(ω) + intsy(ρ)

)
(x).

Exercises

3.8.1 Check that the intensity natural transformation intsy : DN ⇒M de-
fined in (3.50) restricts toDN[K]⇒M[K], for each K ∈ N.

3.8.2 Check that the ‘mean’ results for multinomial, hypergeometric and
Pólya distributions from Proposition 3.3.6 and from Lemmas 3.4.5 (2)
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and 3.5.1 (2) can be reformulated in terms of intensity as:

intsy
(
mn[K](ω)

)
= K · ω

intsy
(
hg[K](ψ)

)
= K · Flrn(ψ)

intsy
(
pl[K](ψ)

)
= K · Flrn(ψ).

3.8.3 In Corollary 3.7.8 we have seen the extended functorN[K] : Chan→
Chan. The flatten operation flat : NN ⇒ N for (natural) multisets,
from Subsection 1.6.2, restricts to N[K]N[L] ⇒ N[K · L], mak-
ing N[K] : Sets → Sets into what is called a graded monad, see
e.g. [134, 59]. Also the extended functor N[K] : Chan → Chan is
such a graded monad, essentially by Proposition 3.8.2.

The aim of this exercise is to show that these (extended) flattens do
not commute with multizip. This means that the following diagram of
channels does not commute.

N[K]N[L](X) × N[K]N[L](Y)
◦mzip
��

◦
flat⊗flat // N[K · L](X) × N[K · L](Y)

◦mzip

��

N[K]
(
N[L](X) × N[L](Y)

)
◦N[K](mzip)
��

,

N[K]N[L](X × Y) ◦
flat // N[K · L](X × Y)

Elaborating a counterexample is quite initimidating, so we proceed
step by step. We take as spaces:

X = {a, b} and Y = {0, 1}.

We use K = 2 and L = 3 for the multisets of multisets:

Φ = 1
∣∣∣2|a⟩ + 1|b⟩

〉
+ 1

∣∣∣1|a⟩ + 2|b⟩
〉
∈ N[2]N[3](X)

Ψ = 1
∣∣∣2|0⟩ + 1|1⟩

〉
+ 1

∣∣∣3|1⟩〉 ∈ N[2]N[3](Y).

1 Check that going east-south in the above diagram yields:

mzip
(
flat(Φ),flat(Ψ)

)
= mzip

(
3|a⟩ + 3|b⟩, 2|0⟩ + 4|1⟩

)
= 1

5

∣∣∣3|a, 1⟩ + 2|b, 0⟩ + 1|b, 1⟩
〉

+ 3
5

∣∣∣1|a, 0⟩ + 2|a, 1⟩ + 1|b, 0⟩ + 2|b, 1⟩
〉

+ 1
5

∣∣∣2|a, 0⟩ + 1|a, 1⟩ + 3|b, 1⟩
〉
.

2 The other path, south-east, will be done in several steps. Write Φ =
1|φ1 ⟩ + 1|φ2 ⟩ and Ψ = 1|ψ1 ⟩ + 1|ψ2 ⟩ where: φ1 = 2|a⟩ + 1|b⟩

φ2 = 1|a⟩ + 2|b⟩

 ψ1 = 2|0⟩ + 1|1⟩
ψ2 = 3|1⟩.
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Show then that:

mzip(Φ,Ψ) = 1
2

∣∣∣1|φ1, ψ1 ⟩ + 1|φ2, ψ2 ⟩
〉
+ 1

2

∣∣∣1|φ1, ψ2 ⟩ + 1|φ2, ψ1 ⟩
〉
.

3 Show next:

mzip(φ1, ψ1) = 2
3

∣∣∣1|a, 0⟩ + 1|a, 1⟩ + 1|b, 0⟩
〉
+ 1

3

∣∣∣2|a, 0⟩ + 1|b, 1⟩
〉

mzip(φ1, ψ2) = 1
∣∣∣2|a, 1⟩ + 1|b, 1⟩

〉
mzip(φ2, ψ1) = 1

3

∣∣∣1|a, 1⟩ + 2|b, 0⟩
〉
+ 2

3

∣∣∣1|a, 0⟩ + 1|b, 0⟩ + 1|b, 1⟩
〉

mzip(φ2, ψ2) = 1
∣∣∣1|a, 1⟩ + 2|b, 1⟩

〉
.

4 Show now that:

pml
(
1|mzip(φ1, ψ1)⟩ + 1|mzip(φ2, ψ2)⟩

)
= 2

3

∣∣∣1|1|a, 0⟩ + 1|a, 1⟩ + 1|b, 0⟩⟩ + 1|1|a, 1⟩ + 2|b, 1⟩⟩
〉

+ 1
3

∣∣∣1|2|a, 0⟩ + 1|b, 1⟩⟩ + 1|1|a, 1⟩ + 2|b, 1⟩⟩
〉

pml
(
1|mzip(φ1, ψ2)⟩ + 1|mzip(φ2, ψ1)⟩

)
= 1

3 |1|1|a, 1⟩ + 2|b, 0⟩⟩ + 1|2|a, 1⟩ + 1|b, 1⟩⟩⟩+
+ 2

3 |1|1|a, 0⟩ + 1|b, 0⟩ + 1|b, 1⟩⟩ + 1|2|a, 1⟩ + 1|b, 1⟩⟩⟩.

5 Finally, check that the south-east past yields:(
flat ◦· N[2](mzip) ◦· mzip

)
(Φ,Ψ)

= 2
3

∣∣∣1|a, 0⟩ + 2|a, 1⟩ + 1|b, 0⟩ + 2|b, 1⟩
〉

+ 1
6

∣∣∣2|a, 0⟩ + 3|b, 1⟩ + 1|a, 1⟩
〉

+ 1
6

∣∣∣3|a, 1⟩ + 2|b, 0⟩ + 1|b, 1⟩
〉
.

This differs from what we get in the first item, via the east-south
route.

3.9 Discrete Poisson point processes

In the previous section we have seen the composite monads DL and DN . As
illustration of how these monads can be used, we introduce (discrete) Poisson
process as infinite mixtures of K-sized iid and K-sized multinomial distribu-
tions, where the numbers K have a Poisson distribution. This gives a composite
distribution on (natural) multisets of arbitrary size. We actually stretch things
a bit, because we are not usingDL andDN but the infinite versionD∞L and
D∞N . This does not change things fundamentally.
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Definition 3.9.1. For an arbitrary set X and an intensity parameter λ > 0 we
define the Poisson-iid and Poisson-multinomial maps:

D(X)
Piid [λ]

// D∞
(
L(X)

)
. D(X)

Pmn[λ]
// D∞

(
N(X)

)
.

On a distribution ω ∈ D(X) they are given as follows.

1 The Poisson-idd is:

Piid [λ](ω) B
∑

ℓ∈L(supp(ω))

e−λ ·
λ∥ℓ∥

∥ℓ∥!
·

∏
1≤i≤∥ℓ∥

ω(ℓi)
∣∣∣ℓ〉

=
∑
K∈N

∑
x⃗∈XK

e−λ ·
λK

K!
·

∏
1≤i≤K

ω(xi)
∣∣∣ x⃗〉

=
∑
K∈N

∑
x⃗∈XK

pois[λ](K) · iid [K](ω)(x⃗)
∣∣∣ x⃗〉

= iid [−](ω) =≪pois[λ].

(3.51)

The latter formulation describes the Poisson-iid as an infinite Poisson-mixture
of iid distributions. Thus, it is clear that it indeed forms a probability distri-
bution, with probabilities adding up to one.

2 Similarly, the Poisson-multinomial is:

Pmn[λ](ω) B
∑

φ∈N(supp(ω))

e−λ ·
λ∥φ∥

φ
·
∏
x∈X

ω(x)φ(x)
∣∣∣φ〉

=
∑
K∈N

∑
φ∈N[K](X)

e−λ ·
λK

K!
· (φ ) ·

∏
x∈X

ω(x)φ(x)
∣∣∣φ〉

=
∑
K∈N

∑
φ∈N[K](X)

pois[λ](K) ·mn[K](ω)(φ)
∣∣∣φ〉

= mn[−](ω) =≪pois[λ].

(3.52)

Example 3.9.2. We consider a hospital emergency department where patients
arrive with a rate of 5 per hour. We have a simplified situation where only
four types of diseases show up, labeled as a, b, c, d; they are collected in a set
X = {a, b, c, d}. The probabilities of the diseases that appear are given by a
distribution ω ∈ D(X), of the form:

ω = 1
6 |a⟩ +

1
8 |b⟩ +

3
8 |c⟩ +

1
3 |d ⟩.

The Poisson point process distribution Pmn[5](ω) ∈ D∞
(
N({a, b, c, d})

)
now

gives for each multiset of diseases the arrival probability. We elaborate this
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distribution for the first few sizes.

Pmn[5](ω)

= pois[5](0) ·mn[0](ω) + pois[5](1) ·mn[1](ω) + pois[5](2) ·mn[2](ω) + · · ·

= e−5
(

50

0! ·mn[0](ω) + 51

1! ·mn[1](ω) + 52

2! ·mn[2](ω) + · · ·
)

= e−5
(
1
∣∣∣0〉
+ 5

6

∣∣∣1|a⟩〉 + 5
8

∣∣∣1|b⟩〉 + 15
8

∣∣∣1|c⟩〉 + 5
3

∣∣∣1|d ⟩〉+
25
72

∣∣∣2|a⟩〉 + 25
48

∣∣∣1|a⟩ + 1|b⟩
〉
+ 25

128

∣∣∣2|b⟩〉 + 25
16

∣∣∣1|a⟩ + 1|c⟩
〉
+

75
64

∣∣∣1|b⟩ + 1|c⟩
〉
+ 225

128

∣∣∣2|c⟩〉 + 25
18

∣∣∣1|a⟩ + 1|d ⟩
〉
+ 25

24

∣∣∣1|b⟩ + 1|d ⟩
〉
+

25
8

∣∣∣1|c⟩ + 1|d ⟩
〉
+ 25

18

∣∣∣2|d ⟩〉 + · · · )
= 0.00674

∣∣∣0〉
+ 0.00561

∣∣∣1|a⟩〉 + 0.00421
∣∣∣1|b⟩〉 + 0.0126

∣∣∣1|c⟩〉+
0.0112

∣∣∣1|d ⟩〉 + 0.00234
∣∣∣2|a⟩〉 + 0.00351

∣∣∣1|a⟩ + 1|b⟩
〉
+ 0.00132

∣∣∣2|b⟩〉+
0.0105

∣∣∣1|a⟩ + 1|c⟩
〉
+ 0.0079

∣∣∣1|b⟩ + 1|c⟩
〉
+ 0.0118

∣∣∣2|c⟩〉+
0.00936

∣∣∣1|a⟩ + 1|d ⟩
〉
+ 0.00702

∣∣∣1|b⟩ + 1|d ⟩
〉
+ 0.0211

∣∣∣1|c⟩ + 1|d ⟩
〉
+

0.00936
∣∣∣2|d ⟩〉 + · · ·

The next result collects some basic properties.

Lemma 3.9.3. Consider the Poisson-iid and Poisson-multinomial maps Piid [λ] : D(X)→
D∞

(
L(X)

)
and Pmn[λ] : D(X) → D∞

(
N(X)

)
introduced in Definition 3.9.1

satisfy the following properties

1 The are both natural in X;
2 Using the two size functions size : L(X)→ N and size : N(X)→ N satisfy:

D(size)
(
Piid [λ](ω)

)
= pois[λ] = D(size)

(
Pmn[λ](ω)

)
.

Equivalently, as string diagrams:

Piid [λ] Pmn[λ]

= =

size size
pois[λ]

3 Pushforward with uniform projection and frequentist learning yields the
original distribution:

unpr =≪Piid [λ](ω) = ω = Flrn =≪Pmn[λ](ω).

4 intsy
(
Pmn[λ](ω)

)
= λ·ω, where intsy is the intensity natural transformation

from (3.50).

277



278 Chapter 3. Drawing from an urn278 Chapter 3. Drawing from an urn278 Chapter 3. Drawing from an urn

Proof. 1 We do the multinomial case and use that multinomials mn[K] : D(X)→
D

(
N[K](X)

)
are natural in X. Thus, for a function f : X → Y ,

(
Pmn[λ] ◦ D( f )

)
(ω)

=
∑
K∈N

∑
ψ∈N[K](Y)

pois[λ](K) ·mn[K]
(
D( f )(ω)

)
(ψ)

∣∣∣ψ〉
=

∑
K∈N

∑
ψ∈N[K](Y)

pois[λ](K) · DN( f )
(
mn[K](ω)

)
(ψ)

∣∣∣ψ〉
=

∑
K∈N

∑
ψ∈N[K](Y)

pois[λ](K) ·

 ∑
φ∈N( f )−1(ψ)

mn[K](ω)(φ)

 ∣∣∣ψ〉
=

∑
K∈N

∑
φ∈N[K](X)

pois[λ](K) ·mn[K](ω)(φ)
∣∣∣N( f )(φ)

〉
=

(
D∞N( f ) ◦ Pmn[λ]

)
(ω).

2 We now do the iid case:

D(size)
(
Piid [λ](ω)

)
=

∑
K∈N

∑
x⃗∈XK

pois[λ](K) · iid [K](ω)(x⃗)
∣∣∣size(x⃗)

〉
=

∑
K∈N

pois[λ](K) ·

∑
x⃗∈XK

iid [K](ω)(x⃗)

 ∣∣∣K 〉
= pois[λ].

3 For the multinomial case we use the equation Flrn =≪mn[K](ω) = ω from
Theorem 3.3.3. For x ∈ X,

(
Flrn =≪Pmn[λ](ω)

)
(x)

=
∑
K∈N

∑
φ∈N[K](X)

pois[λ](K) ·mn[K](ω)(φ) · Flrn(φ)(x)

=
∑
K∈N

pois[λ](K) ·
∑

φ∈N[K](X)

mn[K](ω)(φ) · Flrn(φ)(x)

=
∑
K∈N

pois[λ](K) ·
(
Flrn =≪mn[K](ω)

)
(x)

=
∑
K∈N

pois[λ](K) · ω(x) = ω(x).

For the iid case we similarly use unpr =≪iid [K](ω) = ω, see Exercise 2.4.7.
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4 For x ∈ X we get:

intsy
(
Pmn[λ](ω)

)
(x) = flat

(
Pmn[λ](ω)

)
(x)

=
∑
K∈N

∑
φ∈N[K](X)

pois[λ](K) ·mn[K](ω)(φ) · φ(x)

=
∑
K∈N

pois[λ](K) ·
∑

φ∈N[K](X)

mn[K](ω)(φ) · φ(x)

=
∑
K∈N

pois[λ](K) · K · ω(x) by Lemma 3.3.2

= ω(x) ·
∑
K≥1

e−λ ·
λK

(K−1)!

= λ · ω(x) ·
∑
K≥0

e−λ ·
λK

K!

= λ · ω(x).

Next we use concatenation of lists and sums of natural multisets in a con-
volution result for Poisson-iid/multinomial distributions. It builds on closure
under convolution for iid and for multinomials, see Lemma 2.7.5 and Exer-
cise 3.3.9 (or Theorem 3.4.4, using marginalisation).

Proposition 3.9.4. Poisson-iid and Poisson-multinomial distributions are closed
under convolution, as expressed by the following two diagrams.

D(X) ∆ //

Piid [λ1+λ2] ..

D(X) ×D(X)
Piid [λ1]⊗Piid [λ2]

// D
(
L(X) × L(X)

)
D(+)
��

D
(
L(X)

)

D(X) ∆ //

Pmn[λ1+λ2] ..

D(X) ×D(X)
Pmn[λ1]⊗Pmn[λ2]

// D
(
N(X) × N(X)

)
D(+)
��

D
(
N(X)

)
Proof. We do the multinomial case and use closure of multinomials under
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convolution and reason as in the proof of Proposition 2.7.6.

D(+)
(
Pmn[λ1](ω) ⊗ Pmn[λ2](ω)

)
=

∑
K1,K2∈N

∑
φ1∈N[K1](X)

∑
φ2∈N[K2](X)

e−λ1 ·
λK1

1

K1!
· e−λ2 ·

λK2
2

K2!

·mn[K1](ω)(φ1) ·mn[K2](ω)(φ2)
∣∣∣φ1 + φ2

〉
=

∑
L∈N

∑
K≤L

e−(λ1+λ2) ·
λK

1

K!
·

λL−K
2

(L − K)!

·
∑

φ∈N[K](X)

∑
ψ∈N[L−K](X)

mn[K](ω)(φ) ·mn[L−K](ω)(ψ)
∣∣∣φ + ψ〉

=
∑
L∈N

e−(λ1+λ2)

L!
·

∑
K≤L

(
L
K

)
· λK

1 · λ
L−K
2

 · D(+)
(
mn[K](ω) ⊗mn[L−K](ω)

)
=

∑
L∈N

e−(λ1+λ2)

L!
· (λ1 + λ2)L ·mn[L](ω)

= Pmn[λ1 + λ2](ω).

For the next result we shall now use the Poisson-iid / multinomial and the
iid / multinomial maps as binary functions:

R>0 ×D(X)
Piid [−](−)

// D∞
(
L(X)

)
N ×D(X)

iid [−](−)
// D∞

(
L(X)

)
R>0 ×D(X)

Pmn[−](−)
// D∞

(
N(X)

)
N ×D(X)

mn[−](−)
// D∞

(
N(X)

)
Theorem 3.9.5. The two equations below between string diagrams hold.

Piid [−](−) pois[−]

=

size iid [−](−)

Pmn[−](−) pois[−]

=

size mn[−](−)

By marginalising out the left part we obtain a string-diagrammatic description
of the Poisson-iid / multinomial channels. Marginalising out the right parts
gives the equations in Lemma 3.9.3 (2).
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Proof. For λ ∈ R>0 and ω ∈ D(X),

⟨size, id ⟩ =≪Piid [λ](ω) =
∑
K∈N

∑
x⃗∈XK

pois[λ](K) · iid [K](ω)(x⃗)
∣∣∣∣ K, x⃗

〉
= ⟨id , iid [−](ω)⟩ =≪pois[λ].

⟨size, id ⟩ =≪Pmn[λ](ω) =
∑
K∈N

∑
φ∈N[K](X)

pois[λ](K) ·mn[K](ω)(φ)
∣∣∣∣ K, φ

〉
= ⟨id ,mn[−](ω)⟩ =≪pois[λ].

Recall from Theorem 3.3.1 (2) the diagrammatic relationship between iid
and multinomial via accumulation and arrangement. This also works for the
Poisson versions.

Theorem 3.9.6. Poisson-iid and Poisson-multinomial channels are related as
follows.

Piid [−](−)

acc arr

=

Pmn[−](−)

Proof. We reason essentially as in the proof of Theorem 3.3.1.

⟨id , arr⟩ =≪Pmn[λ](ω)

=
∑
K∈N

∑
φ∈N[K](X)

∑
x⃗∈XK

arr(φ)(x⃗) · Pmn[λ](ω)(x⃗)
∣∣∣φ, x⃗〉

=
∑
K∈N

∑
φ∈N[K](X)

∑
x⃗∈acc−1(φ)

1
(φ )
· pois[λ](K) ·mn[K](ω)(φ)

∣∣∣φ, x⃗〉
=

∑
K∈N

∑
φ∈N[K](X)

∑
x⃗∈acc−1(φ)

1
(φ )
· pois[λ](K) · (φ ) ·

∏
y∈X

ω(y)φ(y)
∣∣∣φ, x⃗〉

=
∑
K∈N

∑
φ∈N[K](X)

∑
x⃗∈acc−1(φ)

pois[λ](K) ·
∏

1≤i≤K

ω(xi)
∣∣∣φ, x⃗〉

=
∑
K∈N

∑
φ∈N[K](X)

∑
x⃗∈XK

‹acc›(x⃗)(φ) · pois[λ](K) · iid [K](ω)(x⃗)
∣∣∣φ, x⃗〉

= ⟨acc, id ⟩ =≪Piid [λ](ω).

We finish a characterisation of Poisson-multinomial distributions in terms
of elementary properties — in the style of the characterisation of multinomial
distributions in Exercise 3.3.4. The analogous characterisation for Poisson-iid
is left as an exercise below.

Definition 3.9.7. Let X be a finite set with a distribution Ω ∈ D∞
(
N(X)

)
. We
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call this Ω a counting distribution of multisets if it satisfies the following four
requirements.

(a) 0 < Ω(0) < 1, where 0 ∈ N(X) is the empty multiset;

(b)
∑
x∈X

Ω
(
1| x⟩

)
= −Ω(0) · ln

(
Ω(0)

)
;

(c) Ω
(
n| x⟩

)
=
Ω(1| x⟩)n

n! ·Ω(0)n−1 , for each x ∈ X and n > 1;

(d) Ω
(
φ + ψ

)
=
Ω(φ) ·Ω(ψ)
Ω(0)

, for multisets φ, ψ ∈ N(X) with disjoint support:

supp(φ) ∩ supp(ψ) = ∅.

Theorem 3.9.8. Let X be a finite set.

1 For a distribution ω ∈ D(X) and a rate λ > 0, the Poisson-multinomial
Pmn[λ](ω) ∈ D∞

(
N(X)

)
is a counting distribution of multisets: it satisfies

requirements (a) – (d) in Definition 3.9.7.
2 If Ω ∈ D∞

(
N(X)

)
is a counting distribution of multisets, then it is of the

form Ω = Pmn[λ](ω) for a unique rate λ > 0 and distribution ω ∈ D(X).

Proof. 1 Let λ ∈ R>0 andω ∈ D(X) be given and abbreviateΩ B Pmn[λ](ω) ∈
D∞

(
N(X)

)
. We check the four requirements in Definition 3.9.7.

(a) The empty multiset 0 ∈ N(X) satisfies:

Ω(0) = Pmn[λ](ω)(0)
(3.52)
= eλ ·

λ0

0!
·
∏
x∈X

ω(x)0 = e−λ.

Since λ > 0, where have 0 < e−λ < 1, as required.
(b) For an element x ∈ X, the singleton multiset 1| x⟩ ∈ N(X) satisfies:

Ω
(
1| x⟩

)
= Pmn[λ](ω)

(
1| x⟩

) (3.52)
= eλ ·

λ1

1!
· ω(x)1 = e−λ · λ · ω(x).

Thus:∑
x∈X

Ω
(
1| x⟩

)
= e−λ · λ ·

∑
x∈X

ω(x) = e−λ · λ = −Ω(0) · ln
(
Ω(0)

)
.

(c) Similarly, for n > 1,

Ω
(
n| x⟩

)
= Pmn[λ](ω)

(
n| x⟩

) (3.52)
= e−λ ·

λn

n!
· ω(x)n

= e−λ ·
Ω(1| x⟩)n

n! · (e−λ)n =
Ω(1| x⟩)n

n! ·Ω(0)n−1 .
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(d) Let φ ∈ N[K](X) and ψ ∈ N[L](X) have disjoint support. By Exer-
cise 3.3.3:

Ω(φ + ψ) = pois[λ](K+L) ·mn[K+L](φ + ψ)

= e−λ ·
λK+L

(K+L)!
·

(
K+L

K

)
·mn[K](ω)(φ) ·mn[L](ω)(ψ)

=
1

e−λ
· e−λ ·

λK

K!
·mn[K](ω)(φ) · e−λ ·

λL

L!
·mn[L](ω)(ψ)

=
Pmn[λ](ω)(φ) · Pmn[λ](ω)(ψ)

e−λ
=
Ω(φ) ·Ω(ψ)
Ω(0)

.

2 In the other direction, let Ω ∈ D∞
(
N(X)

)
be a counting distribution of mul-

tisets, so that requirements (a) – (d) hold. Using 0 < Ω(0) < 1 from (a), we
can take λ B − ln

(
Ω(0)

)
∈ R>0. We then define a distribution ω ∈ D(X), by

setting for x ∈ X,

ω(x) B
Ω(1| x⟩)

−Ω(0) · ln(Ω(0))
=
Ω(1| x⟩)
λ · e−λ

.

This yields a distribution by (b):∑
x∈X

ω(x) =
∑
x∈X

Ω(1| x⟩)
−Ω(0) · ln(Ω(0))

=

∑
x∈X Ω(1| x⟩)

−Ω(0) · ln(Ω(0))
(b)
= 1.

Now, for a multiset φ ∈ N(X),

Ω(φ) = Ω
(∑

x∈X φ(x)| x⟩
) (d)
= Ω(0) ·

∏
x∈X

Ω(φ(x)| x⟩)
Ω(0)

(c)
= e−λ ·

∏
x∈X

Ω(1| x⟩)φ(x)

φ(x)! ·Ω(0)φ(x)

= e−λ ·
1∏

x∈X φ(x)!
·
∏
x∈X

λφ(x) · ω(x)φ(x)

= e−λ ·
1
φ
· λ

∑
x∈X φ(x) ·

∏
x∈X

ω(x)φ(x)

(3.52)
= Pmn[λ](ω)(φ).

Exercises

3.9.1 Check that the point process map Pmn[λ] : D ⇒ D∞N is not a map
of monads, e.g. because units are not preserved.

3.9.2 Let X be a finite set. Call Ω ∈ D∞
(
L(X)

)
a counting distribution of

lists if:

(a) 0 < Ω([]) < 1, where [] ∈ L(X) is the empty list;
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(b)
∑
x∈X

Ω
(
[x]

)
= −Ω([]) · ln

(
Ω([])

)
;

(c) Ω
(
ℓ1 ++ ℓ2

)
=
Ω(ℓ1) ·Ω(ℓ2)

Ω([]) ·
(
∥ℓ1∥+∥ℓ2∥

∥ℓ1∥

) .

Show that these three points characterise Poisson-iid distributions.
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4

Observables and validity

So far we have seen (discrete probability) distributions as formal convex sums∑
i ri| xi ⟩ inD(X) and (probabilistic) channels X → Y , as functions X → D(Y),

describing probabilistic states and computations. This section develops the
tools to reason about such distributions and channels, via what are called ob-
servables. They are functions from a set / sample space X to (a subset of) the
real numbers R that associate some ‘observable’ numerical information with
an element x ∈ X. The following table gives an overview of terminology and
types, where X is a set (used as sample space).

name type

observable / utility function X → R

factor / potential function X → R≥0

(fuzzy) predicate / (soft / uncertain) evidence X → [0, 1]

sharp predicate / event X → {0, 1}

(4.1)

We shall use the term of ‘observable’ as generic expression for all the entries in
this table. A function X → R is thus the most general type of observable, and
a sharp predicate X → {0, 1} is the most specific one. Predicates are the most
appropriate observable for probabilistic logical reasoning. Often attention is
restricted to subsets U ⊆ X as predicates (or events [158]), but here, in this
book, the fuzzy versions X → [0, 1] are the default. Such fuzzy predicates may
also be called belief functions — or effects, in a quantum setting. A technical
reason for using fuzzy, [0, 1]-valued predicates instead of sharp, {0, 1}-valued
ones, is that these fuzzy predicates are closed under predicate transformation
≫= , and the sharp predicates are not, see below for details.
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The commonly used notion of random variable can now be described as a
pair, consisting of an observable together with a state (distribution), both on
the same sample space. Often, this state is left implicit; it may be obvious
in a particular context what it is. But leaving the state implicit may also be
confusing, for instance when we deal with two random variables and we need
to make explicit wether they involve different states, or share a state. Like
elsewhere in this book, we like to be explicit about the state(s) that we are
using.

This chapter starts with the definition of what can be seen as probabilistic
truth ω |= p, namely the validity of an observable p in a state ω. It is the
expected value of p in ω. We shall see that many basic concepts can be defined
in terms of validity, including mean, average, entropy, distance, (co)variance.
The algebraic, logical and categorical structure of the various observables in
Table 4.1 will be investigated in Section 4.2.

In the previous chapter we have seen that a state ω on the domain X of a
channel c : X → Y can be transformed into a state c =≪ ω on the channel’s
codomain Y . Analogous to such state transformation =≪ there is also observ-
able transformation ≫= , acting in the opposite direction: for an observable q on
the codomain Y of a channel c : X → Y , there is a transformed observable
c ≫= q on the domain X. When ≫= is applied to predicates, it is called predicate
transformation. It is a basic operation in programming logics. These transfor-
mations in different directions are an aspect of the duality between states and
predicates. These two transformations correspond to Schrödinger’s (forward)
Heisenberg’s (backward) approach in quantum foundations, see [78]. At the
end of this chapter, in Section 4.5, validity is used to give (dual) formulations
of distances between states and between predicates. Via this distance func-
tion we can make important properties precise, like: each distribution can be
approximated, with arbitrary precision, via frequentist learning of natural mul-
tisets. Technically, the ‘rational’ distributions of the form Flrn(φ), for natural
multisets φ, form a dense subset of the (complete metric) space of all distribu-
tions.

As an aside: in this book we use ‘distribution’ and ‘state’ synonymously.
In the current logical context there is a slight preference to use ‘state’ be-
cause the expressions predicate transformation and state transformation are
well-established for reasoning about computations.
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4.1 Validity

This section introduces the basic facts and terminology for observables, as
described in Table 4.1 and defines their validity in a state / distribution. Recall
that we write YX for the set of functions from X to Y . We will use notations:

• Obs(X) B RX for the set of observables on a set X;
• Fact(X) B (R≥0)X for the set of factors on X;
• Pred (X) B [0, 1]X for the set of predicates on X;
• SPred (X) B {0, 1}X for the set of sharp predicates (events) on X.

There are inclusions:

SPred (X) ⊆ Pred (X) ⊆ Fact(X) ⊆ Obs(X).

The first set SPred (X) = {0, 1}X of sharp predicates can be identified with
the powerset P(X) of subsets of X, see below. We first define some special
observables.

Definition 4.1.1. Let X be an arbitrary set.

1 For a subset U ⊆ X we write 1U : X → {0, 1} for the characteristic function
of U, defined as:

1U(x) B

1 for x ∈ U

0 otherwise.

This function 1U : X → [0, 1] is the (sharp) predicate associated with the
subset U ⊆ X. The mapping U 7→ 1U forms the isomorphism P(X) �

→

{0, 1}X that we just mentioned.
2 We use special notation for two extreme cases U = X and U = ∅, giving the

truth predicate 1 : X → [0, 1] and the falsity predicate 0 : X → [0, 1] on X.
Explicitly:

1 B 1X and 0 B 1∅ so that 1(x) = 1 and 0(x) = 0,

for all x ∈ X.
3 For a singleton subset {x}we simply write 1x for 1{x}. Such functions 1x : X →

[0, 1] are also called point predicates, where the element x ∈ X is seen as a
point.

Recall that a state of the form unit(x) = 1| x⟩ is called a point state or a
point distribution.
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4 There is a (sharp) equality predicate Eq : X × X → [0, 1] defined in the
obvious way as:

Eq(x, x′) B

1 if x = x′

0 otherwise.

5 If the set X can be mapped into R in an obvious manner, we write this
inclusion function as incl X : X ↪→ R and may consider it as an observable
on X. This applies for instance if X = n = {0, 1, . . . , n − 1}.

We now come to the basic definition of validity.

Definition 4.1.2. Let X be a set with an observable p : X → R on X.

1 For a distribution / state ω =
∑

i ri| xi ⟩ on X we define its validity ω |= p as:

ω |= p B
∑

i
ri · p(xi) =

∑
x∈X

ω(x) · p(x). (4.2)

2 If X is a finite set, with size |X | ∈ N, one can define the average avg(p) of
the observable p as its validity in the uniform state unifX on X, i.e.,

avg(p) B unifX |= p =
∑
x∈X

p(x)
|X |

.

Notice that validity ω |= p involves a finite sum, since a distribution ω ∈

D(X) has by definition a finite support. The sample space X may well be in-
finite. Validity is often called expected value and written as E[p], where the
state ω is left implicit. The notation ω |= p makes the state explicit, which is
important in situations where we change the state, for instance via state trans-
formation.

The validity ω |= p is non-negative (is in R≥0) if p is a factor and lies in
the unit interval [0, 1] if p is a predicate (whether sharp or not). The fact that
the multiplicities ri in a distribution ω =

∑
i ri| xi ⟩ add up to one means that

the validity ω |= 1 of truth is one. Notice that for a point predicate one has
ω |= 1x = ω(x) and similarly, for a point state, 1| x⟩ |= p = p(x).

For a fixed state ω ∈ D(X) we can view ω |= (−) as a function Pred (X) →
[0, 1] that assigns a likelihood to a belief function (predicate). This is at the
heart of the Bayesian interpretation of probability, see Section 6.8 for more
details.

As an aside, we typically do not write brackets in equations like (ω |= p) =
a, but use the convention that |= has higher precedence than =, so that the
equation can simply be written as ω |= p = a. Similarly, one can have validity
c =≪ω |= p in a transformed state, which should be read as (c =≪ω) |= p.
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Definition 4.1.3. In the presence of a map incl X : X ↪→ R, one can define the
mean mean(ω), also known as average, of a distribution ω on X as the validity
of incl X , considered as an observable:

mean(ω) B ω |= incl X =
∑
x∈X

ω(x) · x.

We will use the same definition of mean when ω is a multiset instead of a
distribution.

The definition of mean may be used in situations when the set X is a cone,
equipped with scalar multiplication and addition. We shall do so occasionally.

Example 4.1.4.

1 Let flip( 3
10 ) = 3

10 |1⟩+
7
10 |0⟩ be a biased coin. Suppose there is a game where

you can throw the coin and win€100 if head (1) comes up, but you lose€50
if the outcome is tail (0). Is it a good idea to play the game?

The possible gain can be formalised as an observable v : {0, 1} → R with
v(0) = −50 and v(1) = 100. We get an anwer to the above question by
computing the validity:

flip( 3
10 ) |= v =

∑
x∈{0,1}

flip( 3
10 )(x) · v(x)

= flip( 3
10 )(0) · v(0) + flip( 3

10 )(1) · v(1)

= 7
10 · −50 + 3

10 · 100 = −35 + 30 = −5.

Hence it is wiser not to play.
2 We write pips for the set {1, 2, 3, 4, 5, 6}, considered as a subset of R, via the

map incl : pips ↪→ R, which is used as an observable. As state we use the
(uniform) fair dice dice = unifpips =

1
6 |1⟩+

1
6 |2⟩+

1
6 |3⟩+

1
6 |4⟩+

1
6 |5⟩+

1
6 |6⟩.

The average is the validity dice |= incl is 21
6 =

7
2 . It is the expected outcome

for throwing a dice.
3 Suppose that we claim that in a throw of a (fair) dice the outcome is even.

How likely is this claim? We formalise it as a (sharp) predicate e : pips →
[0, 1] with e(1) = e(3) = e(5) = 0 and e(2) = e(4) = e(6) = 1. Then, as
expected:

dice |= e =
∑

x∈pips

dice(x) · e(x)

= 1
6 · 0 +

1
6 · 1 +

1
6 · 0 +

1
6 · 1 +

1
6 · 0 +

1
6 · 1 =

1
2 .

We now consider a non-sharp ‘evenish’ predicate p : pips → [0, 1]. It ex-
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presses that the even pips are more likely than the odd ones, where the pre-
cise likelihoods are determined by:

p(1) = 1
10 p(2) = 9

10 p(3) = 3
10

p(4) = 8
10 p(5) = 2

10 p(6) = 7
10 .

This new evenish claim p happens to be equally probable as the even claim
e, since:

dice |= p = 1
6 ·

1
10 +

1
6 ·

9
10 +

1
6 ·

8
10 +

1
6 ·

8
10 +

1
6 ·

2
10 +

1
6 ·

7
10

= 1+9+3+8+2+7
60 = 30

60 =
1
2 .

4 Recall the binomial distribution bn[K](r) on the set {0, 1, . . . ,K} from Ex-
ample 2.1.2 (2), for r ∈ [0, 1]. There is an inclusion function {0, 1, . . . ,K} ↪→
R that allows us to compute the mean of the binomial distribution.

We can treat the binomial distribution as a special instance of the multi-
nomial distribution, via the isomorphism {0, 1, . . . ,K} � N[K](2), and then
use Lemma 3.3.2. But one can also compute directly:

mean
(
bn[K](r)

)
=

∑
0≤i≤K

bn[K](r)(i) · i

=
∑

0≤i≤K

(
K
i

)
· ri · (1−r)K−i · i

=
∑

1≤i≤K

K!
(i−1)! · (K−i)!

· ri · (1−r)K−i

= K · r ·
∑

0≤ j≤K−1

(K−1)!
j! · ((K−1)− j)!

· r j · (1−r)(K−1)− j

= K · r ·
∑

0≤ j≤K−1

bn[K−1](r)( j)

= K · r.

In the two plots of binomial distributions bn[10]( 1
3 ) and bn[10]( 3

4 ) in Fig-
ure 2.2 (on page 93) one can see that the associated means 10

3 = 3.333 . . .
and 30

4 = 7.5 make sense.
Means for multivariate drawing will be considered in Section 4.4.

We include another, extended example with factors defined on joint distri-
butions.

Example 4.1.5. We look at the expected time that one has to wait for a bus,
in different scenarios. We consider a time frame of one hour, chopped up in 60
minutes, in a set H = {1, 2, . . . , 60}. The minute of an indivudual’s arrival at a
particular bus stop is given by a uniform distribution unifH =

∑
i∈H

1
60 | i⟩ on H.
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Figure 4.1 Bus arrival times, in minutes within one hour, of one bus at the top,
and two buses at the bottom. On the left the buses are punctual, but on the right the
arrival times of the buses are given by a distribution. Does that affect the expected
waiting time? See Example 4.1.5 for details.

1 We first look at the scenario of a single bus arriving at the bus stop, exactly
at the 45-th minute. We assume that the bus halts there for one minute, and
then leaves again, so when a passenger arrives at minute 45, the waiting time
is zero. If the passenger arrives at minute 44, the waiting time is 1, etc. For
arrivals after minute 45, there is no more bus — since we consider one hour
only — and the time waiting for the bus is considered to be 0. This is an
interpretation, for instance corresponding to the passenger’s choice to return
home and to not travel at all.

We consider the combination of the arrivals of the passenger and of the
bus via a joint distribution unifH⊗1|45⟩ on H×H. Explicitly, it is 1

60 |1, 45⟩+
· · · + 1

60 |60, 45⟩ ∈ D(H × H).

The bus waiting time is captured via factor p : H × H → N, given by:

p(i, b) B

b − i if i ≤ b

0 otherwise.

In the first case the passenger arrives at minute i ≤ b before the arrival
minute b of the bus. The waiting time is thus b−i minutes. Now we can com-
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pute the expected arrival time, via the sum formula of Proposition 1.2.6 (1).

unifH ⊗ 1|45⟩ |= p =
∑

(i, b)∈H×H

p(i, b)
60

=
∑

1≤i≤45

45 − i
60

=
∑

1≤i≤44

i
60
=

44 · 45
2 · 60

=
33
2
= 16.5.

Thus, the expected waiting time is 16.5 minutes. It is not 22.5, that is half
of 45, because we have defined the waiting time to be zero when there is no
more bus, that is, after 45 minutes.

2 The question that we are interested in is the following. What happens with
the expected waiting time when the bus does not arrive precisely at minute 45,
but around minute 45? We model the bus arrival time now via the distribu-
tion:

ν B 1
12 |43⟩ + 1

6 |44⟩ + 1
2 |45⟩ + 1

6 |46⟩ + 1
12 |47⟩.

The two distributions for the punctual bus and for the non-punctual bus are
in Figure 4.1, at the top.

Our new joint distribution is unifH ⊗ ν ∈ D(H ×H). What is the expected
waiting time now, as given by the validity of p now? It turns out be slightly
higher than for the punctual bus. It is computed as:

unifH ⊗ ν |= p

=
1

12

 ∑
1≤i≤43

43 − i
60

 + 1
6

 ∑
1≤i≤44

44 − i
60

 + 1
2

 ∑
1≤i≤45

45 − i
60


+

1
6

 ∑
1≤i≤46

46 − i
60

 + 1
12

 ∑
1≤i≤47

47 − i
60


=

42 · 43
12 · 2 · 60

+
43 · 44

6 · 2 · 60
+

44 · 45
2 · 2 · 60

+
45 · 46

6 · 2 · 60
+

46 · 47
12 · 2 · 60

=
1981
120

= 16.508333 · · ·

Why the difference? One may have thought that the differences in waiting
times cancel each other out. An intuitive explanation for the increase in ex-
pected waiting time is that the passenger is more likely to arrive in a period
in which is the bus is late, than in a period where the bus is early.

3 Now suppose there are two buses, both punctual, at the 15-th and 45-th
minute. We then use as joint distribution unifH⊗1|15⟩⊗1|45⟩ on H×H×H.
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The arrival time factor q : H × H × H → N now is:

q(i, b1, b2) B


b1 − i if i ≤ b1 and

(
b2 < i or b1 ≤ b2

)
b2 − i if i ≤ b2 and

(
b1 < i or b2 ≤ b1

)
0 otherwise.

The first clause describes the situation where the passenger arrives at mo-
ment i, before the arrival of bus 1 (given by b1), with bus 2 either already
passed (b2 < i) or arriving later than bus 1 (b1 ≤ b2). The second clause is
symmetric. We now get as expected waiting time:

unifH ⊗ 1|15⟩ ⊗ 1|45⟩ |= q =
∑

1≤i≤15

15 − i
60

+
∑

16≤i≤45

45 − i
60

=
14 · 15 + 29 · 30

2 · 60
= 9.

Clearly, with two buses the waiting is less.
4 What if the two buses are both not punctual, with distributions ν1 and ν2

around 15 and 45, see Figure 4.1, at the bottom, and:

ν1 B
1
12 |13⟩ + 1

6 |14⟩ + 1
2 |15⟩ + 1

6 |16⟩ + 1
12 |17⟩

ν2 B
1
12 |43⟩ + 1

6 |44⟩ + 1
2 |45⟩ + 1

6 |46⟩ + 1
12 |47⟩.

Again there is a (slightly) longer expected waiting time than with two punc-
tual buses:

unifH ⊗ ν1 ⊗ ν2 |= q =
361
40
= 9.025.

This concludes the bus illustration. Exercise 4.1.4 contains two follow-up
questions.

For the next result we recall from Proposition 2.7.2 that if M is a commuta-
tive monoid, so is the setD(M) of distributions on M. This is used below where
M is the additive monoid N of natural numbers. The result can be generalised
to any additive submonoid of the reals.

Lemma 4.1.6. The mean function, for distributions on natural numbers, is a
homomorphism of monoids of the form:(

D(N),+, 0
) mean //

(
R≥0,+, 0

)
.

Proof. Preservation of the zero element is easy, since:

mean
(
1|0⟩

)
= 1 · 0 = 0.
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Next, for ω, ρ ∈ D(N),

mean
(
ω + ρ

) (2.44)
=

∑
n∈N
D(+)

(
ω ⊗ ρ

)
(n) · n

=
∑

m,k∈N

(
ω ⊗ ρ

)
(m, k) · (m + k)

=
∑

m,k∈N
ω(m) · ρ(k) · (m + k)

=

 ∑
m,k∈N

ω(m) · ρ(k) · m

 +
 ∑

m,k∈N
ω(m) · ρ(k) · k


=

∑
m∈N

ω(m) ·

∑
k∈N

ρ(k)

 · m + ∑
k∈N

∑
m∈N

ω(m)

 · ρ(k) · k


=

∑
m∈N

ω(m) · m

 + ∑
k∈N

ρ(k) · k


= mean(ω) +mean(ρ).

Remark 4.1.7. What is the difference between a multiset and a factor, and
between a distribution and a predicate? A multiset on X is a function X → R≥0

with finite support, and thus a factor. In the same way a distribution on X is
a function X → [0, 1] with finite support, and thus a predicate on X. Hence,
there are inclusions:

M(X) ⊆ Fact(X) = (R≥0)X and D(X) ⊆ Pred (X) = [0, 1]X .

The first inclusion ⊆ may actually be seen as an equality = when the set X is
a finite set. A predicate p on a finite set however, need not be a state, since its
values p(x) need not add up to one. Such a predicate can be normalised, if it is
non-zero; then it is turned into a state.

We are however reluctant to identify states / distributions with certain predi-
cates, since they belong to different universes and have quite different algebraic
properties. For instance, distributions are convex sets, whereas predicates are
effect modules carrying a commutative monoid, see the next section. Keeping
states and predicates apart is a matter of mathematicaly hygiene1. We have
already seen state transformation =≪along a channel; it preserves the convex
structure. Later on in this chapter we shall also see predicate transformation
≫= along a channel, in opposite direction; this operation preserves the effect

module structure on predicates.
Apart from these mathematical differences, states and predicates play en-

tirely different roles and are understood in different ways: states play an ono-

1 Moreover, in continuous probability there are no inclusions of states in predicates.
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tologoical role and describe ‘states of affairs’; predicates are epistemological
in nature, and describe evidence (what we know).

Whenever we do make use of the above inclusions, we shall make this usage
explicit.

4.1.1 Random variables

So far we have avoided discussing the concept of ‘random variable’. It can be
a confusing notion for people who start studying probability theory. One often
encounters phrases like: let Y be a random variable with expectation E[Y].
How should this be understood? For clarity, we define a random variable to be
a pair, consisting of a distribution and an observable, with a shared underlying
space. For such a pair it makes sense to talk about expectation, namely as their
validity.

Consider a space Pet = {d, c, r, h} for d = dog, c = cat, r = rabbit and h =
hamster. We look at the cost (e.g. of food) of a pet per month, via an observable
q : Pet → R given by q(d) = q(c) = 50 and q(r) = q(h) = 10. Let us assume
that the distribution of pets in a certain neighbourhood is given by ω = 2

5 |D⟩+
1
4 |C ⟩ +

3
20 |R⟩ +

1
5 |H ⟩. We can describe the situation via three plots:

The pet distribution ω is on the left and the costs per pet is in the middle. The
plot on the right describes 7

20 |10⟩+ 13
20 |50⟩, which is the distribution of pet costs.

It is obtained via the functoriality ofD, as image distributionD(q)(ω) ∈ D(R).
In more traditional notation it is described as:

P[q = 10] = 7
20 P[q = 50] = 13

20 .

Sometimes, a random variable is described as such an (image) distribution on
the reals, with the underlying distribution ω and observable q left implicit. As
this example illustrates, there may be much more structure around. We prefer
to work directly with this structure — the distribution and observable — and
not with the derived image distribution on the reals.

Alternatively, a random variable is sometimes described via a tilde ∼, as: q ∼
ω, like in phrases such as: “let q ∼ pois[λ] with . . . ”. This means that q : N→
R is an observable, on the underlying space N of the Poisson distribution. It
thus describes a random variable as a pair of a state and an observable, with
the same underlying space. In the literature one should be aware of what is
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called in [113, §16] the “notational confusion between a random variable and
its distribution”.

Definition 4.1.8.

1 A random variable on a sample space (set) X consists of two parts:

• a distribution/state ω ∈ D(X);
• an observable R : X → R.

2 The probability mass function P[R = (−)] : R → [0, 1] associated with the
random variable (ω,R) is the image distribution on R given by:

P[R = (−)] B D(R)(ω) = R =≪ω, (4.3)

where R is understood as a deterministic channel in the last expression R =≪

ω, see Lemma 1.10.3 (4).
3 The expected value E[R] of a random variable (ω,R) is the validity of R in
ω, which can be expressed as mean of the image distribution:

ω |= R = mean
(
R =≪ω

)
= mean

(
D(R)(ω)

)
. (4.4)

The image distribution in (4.3) can be described in several (equivalent) ways:

P[R = r] = D(R)(ω)(r) =
(
R =≪ω

)
(r) = ω =≪R |= 1r

=
∑

x,R(x)=r

ω(x)

=
∑

x∈R−1(r)

ω(x)

= ω |= 1R−1(r).

In the second item of the above definition, Equation (4.4) holds since:

mean(R =≪ω) =
∑
r∈R

(R =≪ω)(r) · r see Definition 4.1.3

=
∑
r∈R
D(R)(ω)(r) · r

=
∑
r∈R

 ∑
x∈R−1(r)

ω(x)

 · r
=

∑
x∈X

ω(x) · R(x)

= ω |= R.

Example 4.1.9. We consider the expected value for the sum of two dices.
In this situation we have an observable S : pips × pips → R, on the sam-
ple space pips = {1, 2, 3, 4, 5, 6}, given by S (i, j) = i + j. It forms a random
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variable together with the product state dice ⊗ dice ∈ D(pips × pips). Recall,
dice = unif =

∑
i∈pips

1
6 | i⟩ is the uniform distribution unif on pips. First, the

distribution for the sum of the pips is the image distribution:

S =≪dice ⊗ dice = D(+)(dice ⊗ dice)

=
∑

2≤n≤12

 ∑
i, j, i+ j=n

(dice ⊗ dice)(i, j)

 ∣∣∣n〉
= 1

36 |2⟩ +
1

18 |3⟩ +
1
12 |4⟩ +

1
9 |5⟩ +

5
36 |6⟩ +

1
6 |7⟩

+ 5
36 |8⟩ +

1
9 |9⟩ +

1
12 |10⟩ + 1

18 |11⟩ + 1
36 |12⟩.

(4.5)

The expected value of the random variable (dice ⊗ dice, S ) is, according to
Definition 4.1.8 (3),

mean(S =≪dice ⊗ dice) = dice ⊗ dice |= S

=
∑

i, j∈pips

(dice ⊗ dice)(i, j) · S (i, j)

=
∑

i, j∈pips

1
6 ·

1
6 · (i + j)

=

∑
i, j∈pips i + j

36
=

252
36
= 7.

There is a more abstract way to look at this example, using Lemma 4.1.6.
We have used dice as a distribution on pips = {1, . . . , 6}, but we can also see it
as a distribution dice ∈ D(N) on the natural numbers. The sum of pips that we
are interested in can then be described via a sum of distributions dice + dice,
using the convolution + from Proposition 2.7.2. Then, by Lemma 4.1.6, we
also get:

mean
(
dice + dice

)
= mean(dice) +mean(dice) = 7

2 +
7
2 = 7.

We conclude with a result for which it is relevant to know in which state we
are evaluating an observable.

Lemma 4.1.10. Let M = (M,+, 0) be commutative monoid, so that the set
of distributions D(M) is also a commutative monoid by Proposition 2.7.2. Let
observable q : M → R be a map of (additive) monoids. The function “validity
of q” is then also a map of monoids in:

D(M)
(−)|=q

// R

Explicitly, this means, for ω, ρ ∈ D(M),

(ω + ρ) |= q = (ω |= q) + (ρ |= q) and 1|0⟩ |= q = 0.
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This result involves three different random variables, namely:(
ω + ρ, q

) (
ω, q

) (
ρ, q

)
.

Proof. By unravelling the definitions:

(ω + ρ) |= q =
∑
x∈M

D(+)(ω ⊗ ρ)(x) · q(x)

=
∑
x∈M

∑
y, z∈M, y+z=x

ω(y) · ρ(z) · q(x)

=
∑

y, z∈M

ω(y) · ρ(z) · q(y + z)

=
∑

y, z∈M

ω(y) · ρ(z) ·
(
q(y) + q(z)

)
=

∑
y∈M

ω(y) ·

∑
z∈M

ρ(z)

 · q(y) +
∑
z∈M

∑
y∈M

ω(y)

 · ρ(z) · q(z)

=
∑
y∈M

ω(y) · q(y) +
∑
z∈M

ρ(z) · q(z)

= (ω |= q) + (ρ |= q).

Similarly, 1|0⟩ |= q = q(0) = 0.

Exercises

4.1.1 Check that the average of the set n+1 = {0, 1, . . . , n}, considered as
random variable, is n

2 .
4.1.2 In Example 4.1.9 we have seen that dice ⊗ dice |= S = 7, for the

observable S : pips × pips → R given by S (x, y) = x + y.

1 Now define T : pips3 → R by T (x, y, z) = x + y + z. Prove that
dice ⊗ dice ⊗ dice |= T = 21

2 .
2 Can you generalise and show that summing on pipsn yields validity

7n
2 in state dicen?

4.1.3 The birthday paradox tells that with at least 23 people in a room there
is a more than 50% chance that at least to of them have the same
birthday. This is called a ‘paradox’, because the number 23 looks sur-
prisingly low.

Let us scale this down so that the problem becomes manageable.
Suppose there are three people, each with their birthday in the same
week.

1 Show that the probability that they all have different birthdays is
30
49 .
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2 Conclude that the probability that at least two of the three have the
same birthday is 19

49 .
3 Consider the set days B {1, 2, 3, 4, 5, 6, 7}. The set N[3](days) of

multisets of size three contains the possible combinations of the
three birthdays. Define the sharp predicate p : N[3](days)→ {0, 1}
by p(φ) = 1 iff (φ ) ≤ 3. Check that p holds in those cases where at
least two birthdays coincide — see also Exercise 1.7.9.

4 Show that the probability 19
49 of at least two coinciding birthdays

can also be obtained via validity, namely as:

mn[3](unifdays) |= p = 19
49 .

4.1.4 Consider the situation with one bus (per hour) in Example 4.1.5.

1 Compute the expected waiting time when the bus arrives at minute
60, that is, compute the validity unifH ⊗ 1|60⟩ |= p, for the waiting
time factor p from Example 4.1.5.

2 Now assume that not only the passenger arrives uniformly ran-
dom, but the bus too. Show that the resulting expected waiting time
unifH ⊗ unifH |= p equals 3599

360 , which is almost 10 minutues.
Hint: Use Proposition 1.2.6 (1) and (2).

4.1.5 Consider an arbitrary distribution ω ∈ D(X).

1 Check that for a function f : X → Y and an observable q ∈ Obs(Y),

f =≪ω |= q = ω |= q ◦ f

2 Observe that we get as special case, for an observable p : X → R,

mean(p =≪ω) = p =≪ω |= id = ω |= p,

where the identity function id : R→ R is used as observable.

4.1.6 Let ω, ρ ∈ D(X) be given distributions. Prove the following two equa-
tions, in the style of Lemma 4.1.6.

1 For observables p, q : X → R, and thus for random variables, (ω, p)
and (ρ, q), one has:

mean
(
D(p)(ω) +D(q)(ρ)

)
=

(
ω |= p

)
+

(
ρ |= q

)
In the notation of Definition 2 we can also write the left-hand side
as: mean

(
P[p = (−)] + P[q = (−)]

)
.

2 For channels c, d : X → R,

mean
(
(c =≪ω) + (d =≪ρ)

)
=

(
ω |= mean ◦ c

)
+

(
ρ |= mean ◦ d

)
.
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4.1.7 Let Ω ∈ D
(
D(X)

)
be a distribution of distributions, with an ob-

servable p : X → R. We turn p into a ‘validity of p’ observable
(−) |= p : D(X)→ R onD(X). Show that:

flat(Ω) |= p = Ω |=
(
(−) |= p

)
.

4.1.8 We have introduced the mean in Definition 4.1.3 for distributions
whose space is a subset of the reals. By definition, these distributions
have finite support. But the definition carries over to distributions with
infinite support, as described in Definition 2.1.5. Apply this to the
Poisson distribution pois[λ] ∈ D∞(N) and show that

mean
(
pois[λ]

)
= λ.

4.1.9 Consider the ‘mean’ operation from Definition 4.1.3 as a function
mean : D(R) → R. Show that it interacts in the following way with
the unit and flatten maps for the distribution monadD, see Section 2.1.

1 mean ◦ unit = id ;
2 mean ◦ flat = mean ◦ D(mean).
3 Let p : X → R be an observable, giving a function (−) |= p : D(X)→

R, sending ω ∈ D(X) to ω |= p in R. Show that the following dia-
gram commutes.

D(D(X))
flat
��

D((−)|=p)
// D(R)

mean
��

D(X)
(−)|=p

// R

4 Prove that the following diagram commutes.

D(R) ×D(R)
mean×mean

��

+ // D(R)
mean
��

10oo

R × R + // R 10oo

where the sumD(R)×D(R)→ D(R) at the top is the convolution
sum of distributions from Definition 2.7.1.

From the first two items we can conclude that mean is an (Eilenberg-
Moore) algebra of the distribution monad, see Subsection 1.11.4. The
third item says that (−) |= p : D(X)→ R is a homomorphism of alge-
bras. And the fourth point tells that mean is a map of (commutative)
monoids.
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4.1.10 The following result is a discrete formulation of what is called Fu-
bini’s theorem. For the more familiar continuous version, see Theo-
rem ??.

Let ω1 ∈ D(X1) and ω2 ∈ D(X2) be two distributions, with an
observable (relation) r : X1 × X2 → R. Prove that:

ω1 |= r1 = ω1 ⊗ ω2 |= r = ω2 |= r2,

where r1 : X1 → R and r2 : X2 → R are the observables defined by:

r1(x1) B ω2 |= r(x1,−) =
∑

x2
ω2(x2) · r(x1, x2)

r2(x2) B ω1 |= r(−, x2) =
∑

x1
ω1(x1) · r(x1, x2).

4.1.11 For a distribution ω ∈ D(X) write I(ω) : X → R≥0 for the information
content or surprise of the distribution ω, defined as factor:

I(ω)(x) B

− ln
(
ω(x)

)
if ω(x) , 0, i.e. if x ∈ supp(ω)

0 otherwise.

1 Check that Kullback-Leibler divergence, see Definition 2.8.1, can
be described as validity: for ω, ρ ∈ D(X) with supp(ω) ⊆ sup(ρ),

DKL (ω, ρ) = ω |= I(ρ) − I(ω).

2 The Shannon entropy H(ω) of ω and the cross entropy H(ω, ρ) of
ω, ρ, are defined as: validities:

H(ω) B ω |= I(ω) = −
∑

x ω(x) · ln
(
ω(x)

)
H(ω, ρ) B ω |= I(ρ) = −

∑
x ω(x) · ln

(
ρ(x)

)
Thus, Shannon entropy is ‘expected surprise’. Show that:

H(ω, ρ) = H(ω) + DKL (ω, ρ).

4.1.12 Consider the entropy function H from the previous exercise.

1 Show that H(ω) = 0 implies that ω ∈ D(X) is a point state ω =
1| x⟩, for a unique element x ∈ X.

2 Show that for σ ∈ D(X) and τ ∈ D(Y),

H
(
σ ⊗ τ

)
= H(σ) + H(τ).

3 Strengthen the previous item to non-entwinedness: for ω ∈ D(X ×
Y),

H(ω) = H(ω
[
1, 0

]
) + H(ω

[
0, 1

]
) ⇐⇒ ω = ω

[
1, 0

]
⊗ ω

[
0, 1

]
.

Hint: Use for finitely many numbers ri, si ∈ [0, 1], where
∑

i ri =

1 =
∑

i si, that
∑

i ri · ln(ri) =
∑

i ri · ln(si) implies ri = si for each i.
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4.1.13 Let ω ∈ D(X) be an arbitrary distribution on a finite set X. Use
Proposition 2.8.4 (1) to prove that uniform distributions have max-
imal Shannon entropy, that is, H(ω) ≤ H(unif), where unif ∈ D(X) is
the uniform distribution.

4.2 The structure of observables

This section describes the algebraic structures that the various types of observ-
ables — in Table (4.1) — have, without going too much into mathematical
details. We present the essentials and refer to the literature for details. We in-
clude the basic fact that mapping a set X to the set of observables on X is
functorial, in a suitable sense. This will give rise to the notion of weakening.
It plays the same (or dual) role for observables that marginalisation plays for
states.

It turns out that our four types of observables are all (commutative) monoids,
via multiplication / conjunction, but in different universes. The findings are
summarised in the following table.

name type monoid in

observable X → R ordered vector spaces

factor X → R≥0 ordered cones

predicate X → [0, 1] effect modules

sharp predicate X → {0, 1} join semilattices

(4.6)

The least well-known structures in this table are effect modules. They will thus
be described in greatest detail, in Subsection 4.2.3.

4.2.1 Observables

Observables are R-valued functions on a set which, in the literature, are often
written as capitals X,Y, . . .. Here, these letters are typically used for sets and
spaces. We shall use letters p, q, . . . for observables in general, and in particular
for predicates. In some settings one allows observables X → Rn to the n-
dimensional space of real numbers. Whenever needed, we shall use such maps
as n-ary tuples ⟨p1, . . . , pn⟩ : X → Rn of observables pi : X → R, see also
Section 1.3.
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Let us fix a set X, and consider the collection Obs(X) = RX of observables
on X. What structure does it have?

• Given two observables p, q ∈ Obs(X), we can add them pointwise, giving
p + q ∈ Obs(X) via (p + q)(x) = p(x) + q(x).

• Given an observable p ∈ Obs(X) and a scalar s ∈ R we can form a ‘re-
scaled’ observable s · p ∈ Obs(X) via (s · p)(x) = s · p(x). In this way we get
−p = (−1) · p and 0 = 0 · p for any observable p, where 0 = 1∅ ∈ Obs(X) is
the (always) zero observable from Definition 4.1.1 (2).

• For observables p, q ∈ RX we have a partial order p ≤ q defined by: p(x) ≤
q(x) for all x ∈ X.

Together these operations of sum + and scalar multiplication · make RX into a
vector space over the real numbers, since + and · satisfy the appropriate axioms
of vector spaces. Moreover, this is an ordered vector space by the third bullet.

One can restricts to bounded observables p : X → R for which there is a
bound B ∈ R>0 such that −B ≤ p(x) ≤ B for all x ∈ X. The collection of such
bounded observables forms an order unit space [4, 89, 138, 144].

The set of observables Obs(X) = RX also carries a commutative monoid
structure (1,&), where & is pointwise multiplication: (p & q)(x) = p(x) · q(x).
We prefer to write this operation as logical conjunction because that is what
it is when restricted to predicates. Besides, having yet another operation that
is written as dot · might be confusing. We will occasionally write pn for p &
· · · & p (n times).

4.2.2 Factors

We recall that a factor is a non-negative observables and that we write Fact(X) =
(R≥0)X for the set of factors on a set X. Updating a distribution makes sense for
factors, and for predicates in particular, but not for observables, see Chapter 6.
Here we concentrate on the mathematical structure of factors.

The set Fact(X) looks like a vector space, except that there are no negatives.
Using the order on observables introduced in the previous subsection, we can
write:

Fact(X) =
{
p ∈ Obs(X)

∣∣∣ p ≥ 0
}
.

Factors can be added pointwise, with identity element 0 ∈ Fact(X), like ran-
dom variables. But a factor p ∈ Fact(X) cannot be re-scaled with an ar-
bitrary real number, but only with a non-negative number s ∈ R≥0, giving
s · p ∈ Fact(X). These structures are often called cones. The cone Fact(X) is
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positive, since p+q = 0 implies p = q = 0. It is also cancellative: p+ r = q+ r
implies p = q.

The monoid (1,&) on Obs(X) restricts to Fact(X), since 1 ≥ 0 and if p, q ≥ 0
then also p & q ≥ 0.

4.2.3 Predicates

We first note that the set Pred (X) = [0, 1]X of predicates on a set X contains
falsity 0 and truth 1, which are always 0 (resp. 1). There are some noteworthy
differences between predicates on the one hand and observables and factors on
the other hand.

• Predicates are not closed under addition, since the sum of two numbers in
[0, 1] may ly outside [0, 1]. Thus, addition of predicates is a partial opera-
tion, and is then written as p > q. Thus: p > q is defined if p(x) + q(x) ≤ 1
for all x ∈ X, and in that case (p > q)(x) = p(x) + q(x).

This operation > is commutative and associative in a suitably partial
sense. Moreover, it has 0 as identity element: p > 0 = p = 0 > p. This
is structure (Pred (X), 0,>) is called a partial commutative monoid, see be-
low for details.

• There is a ‘negation’ of predicates, written as p⊥, and called orthosupple-
ment. It is defined as p⊥ = 1−p, that is, as p⊥(x) = 1−p(x). Then: p>p⊥ = 1
and p⊥⊥ = p.

• Predicates are closed under scalar multiplication s·p, but only if one restricts
the scalar s to be in the unit interval [0, 1]. Such scalar multiplication inter-
acts nicely with partial addition >, in the sense that s·(p>q) = (s·p)>(s·q).

The combination of these items means that the set Pred (X) carries the structure
of an effect module [73], see also [48]. These structures arose in mathemati-
cal physics [55] in order to axiomatise the structure of quantum predicates on
Hilbert spaces.

The effect module Pred (X) also carries a commutative monoid structure for
conjunction, namely (1,&). Indeed, when p, q ∈ Pred (X), then also p & q ∈
Pred (X). We have p & 0 = 0 and p & (q1 > q2) = (p & q1) > (p & q2).

Since these effect structures are not so familiar, we include more formal
descriptions.

Definition 4.2.1.

1 A partial commutative monoid (PCM) consists of a set M with a zero el-
ement 0 ∈ M and a partial binary operation > : M × M → M satisfying
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the three requirements below. They involve the notation x ⊥ y for: x > y is
defined; in that case x, y are called orthogonal.

• Commutativity: x ⊥ y implies y ⊥ x and x > y = y > x;
• Associativity: y ⊥ z and x ⊥ (y > z) implies x ⊥ y and (x > y) ⊥ z and

also x > (y > z) = (x > y) > z;
• Zero: 0 ⊥ x and 0 > x = x;

2 An effect algebra is a PCM (E, 0,>) with an orthosupplement. The latter is
a total unary ‘negation’ operation (−)⊥ : E → E satisfying:

• x⊥ ∈ E is the unique element in E with x > x⊥ = 1, where 1 = 0⊥;
• x ⊥ 1⇒ x = 0.

A homomorphism E → D of effect algebras is given by a function f : E →
D between the underlying sets satisfying f (1) = 1, and if x ⊥ x′ in E then
both f (x) ⊥ f (x′) in D and f (x > x′) = f (x) > f (x′). Effect algebras and
their homomorphisms form a category, denoted by EA.

3 An effect module is an effect algebra E with a scalar multiplication s · x, for
s ∈ [0, 1] and x ∈ E, forming an action:

1 · x = x (r · s) · x = r · (s · x),

and preserving sums (that exist) in both arguments:

0 · x = 0 (r + s) · x = r · x > s · x
s · 0 = 0 s · (x > y) = s · x > s · y.

We write EMod for the category of effect modules, where morphisms are
maps of effect algebras that preserve scalar multiplication (i.e. are ‘equivari-
ant’).

The following notion of ‘test’ comes from a quantum context and captures
‘compatible’ observations, see e.g. [40, 141]. It will be used occasionally later
on, for instance in Exercise 6.1.6.

Definition 4.2.2. A test or, more explicitly, an n-test on a set X is an n-tuple
of predicates p1, . . . , pn : X → [0, 1] satisfying p1 > · · ·> pn = 1.

This notion of test can be formulated in an arbitrary effect algebra. Here we
do it in Pred (X) only.

Each predicate p forms a 2-test p, p⊥. Exercise 4.2.13 asks to show that
an n-test of predicates on X corresponds to a channel X → n. In particular,
each predicate on X corresponds to a channel X → 2, see Exercise 4.3.6. The
probabilities ω(xi) ∈ [0, 1] of a distribution form a test on a singleton set 1.

The following easy observations give a normal form for predicates on a finite
set.
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Lemma 4.2.3. Consider a finite set X = {x1, . . . , xn}.

1 The point predicates 1x1 , . . . , 1xn form a test on X.
2 Each predicate p : X → [0, 1] has a normal form p =>i ri ·1xi , with scalars

ri = p(xi) ∈ [0, 1].

On a set X = {a, b, c} we can write a distribution and a predicate as:

1
3 |a⟩ +

1
6 |b⟩ +

1
2 |c⟩

2
3 · 1a > 5

6 · 1b > 1 · 1c.

Writing > looks a bit pedantic, so we often simply write + instead. Recall that
in a predicate the probabilities need not add up to one, see Remark 4.1.7.

A set of predicates p1, . . . , pn on the same space, can be turned into a test
via (pointwise) normalisation. Below we describe an alternative construction
called stick breaking. It has been described for numbers from the unit interval
in Theorem 2.2.6, but it applies to (pointwise) predicates as well. It may be
described even more generally, inside an arbitrary effect algebra with a com-
mutative monoid structure for conjunction.

Lemma 4.2.4. Let p1, . . . , pn be arbitrary predicates, all on the same set, for
n ≥ 1. We can turn them via “stick breaking” into an n+1-test q1, . . . , qn+1 via
definitions:

q1 B p1

qi+1 B p⊥1 & · · · & p⊥i & pi+1 for 0 < i < n
qn+1 B p⊥1 & · · · & p⊥n .

4.2.4 Sharp predicates

The structure of the set SPred (X) = {0, 1}X = 2X is most familiar to logicians:
it is a Boolean algebra. The join p ∨ q of p, q ∈ SPred (X) is the pointwise join
(p ∨ q)(x) = p(x) ∨ q(x), where the latter disjunction ∨ is the obvious one on
{0, 1}. One can see these disjunctions (0,∨) as forming an additive structure
with negation (−)⊥. The partial sum > restricts from Pred (X) to SPred (X).
For sharp predicates p, q the sum p > q is defined iff p, q are disjoint, as sub-
sets. Conjunction (1,&) forms an additional commutative monoid structure on
SPred (X).

Formally one can say that SPred (X) also has scalar multiplication, with
scalars from 2 = {0, 1}, in such a way that 0 · p = 0 and 1 · p = p.

Exercise 4.2.12 below contains several alternative characterisations of sharp-
ness for predicates.

The idea of a free structure as a ‘minimal extension’ has occurred earlier
e.g. from Proposition 1.4.3 or 1.6.5. It also applies in the context of predicates,
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where fuzzy predicates are a free extension of sharp predicates. This is a funda-
mental insight that can be formulated in terms of effect algebras and modules,
see [89, Prop. 33]. Later on in Subsection ?? we will see that such a free exten-
sion also exists in continuous probability and forms the essence of integration
(as validity).

Theorem 4.2.5.

1 For an arbitrary set X, the indicator function

SPred (X) � P(X)
1(−)

// Pred (X)

is a homomorphism of effect algebras.
2 Let X now be finite. This indicator map 1(−) makes Pred (X) into the free

effect module on P(X), as described below: for each effect module E with a
map of effect algebras f : P(X)→ E, there is a unique map of effect modules
f : Pred (X)→ E in:

SPred (X) � P(X)
1(−)

//

f
++

Pred (X)

f , homomorphism
��

E

Proof. 1 See Exercise 4.2.2.
2 We use that each predicate p ∈ Pred (X) can be written in normal form as

p =>x∈X p(x) · 1x, see Lemma 4.2.3 (2). So we define f as:

f (p) B >
x∈X

p(x) · f
(
{x}

)
.

Obviously, f (0) = 0. Also, since f preserves > and top,

f (1) = >
x∈X

1 · f ({x}) = f

⋃
x∈X

{x}

 = f (X) = 1.

If p ⊥ q, then p(x) + q(x) ≤ 1 for each x ∈ X. Hence:

f (p > q) = >
x∈X

(p > q)(x) · f ({x}) = >
x∈X

(p(x) + q(x)) · f ({x})

= >
x∈X

p(x) · f ({x}) > q(x) · f ({x})

= >
x∈X

p(x) · f ({x}) >>
x∈X

q(x) · f ({x})

= f (p) > f (q).
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Scalar multiplication is also preserved:

f (r · p) = >
x∈X

(r · p)(x) · f ({x}) = >
x∈X

r · (p(x) · f ({x}))

= r ·>
x∈X

p(x) · f ({x})

= r · f (p).

Finally, for uniqueness, let g : Pred (X)→ E be a map of effect modules with
g(1U) = f (U) for each U ∈ P(X). Then g = f since:

f (p) = >
x∈X

p(x) · f ({x}) = >
x∈X

p(x) · g(1x)

= g

>
x∈X

p(x) · 1x

 = g(p).

Now that we have seen observables, with factors and (sharp) predicates as
special cases, we see that all these subsets of observables share the same mul-
tiplicative structure (1,&) for conjunction, but that their additive structures
and scalar multiplications differ. The additive structure is preserved under tak-
ing validity — as made explicit below — but not the multiplicative structure
(1,&).

Lemma 4.2.6. Let ω ∈ D(X) be a distribution on a set X. Operations on
observables p, q on X satisfy, whenever defined,

1 ω |= 0 = 0;
2 ω |= (p + q) = (ω |= p) + (ω |= q);
3 ω |= p⊥ = 1 −

(
ω |= p

)
;

4 ω |= (s · p) = s · (ω |= p).

4.2.5 Parallel products and weakening

Earlier we have seen parallel products ⊗ of distributions and of channels. This
product ⊗ can be defined for observables too, and is then often called paral-
lel conjunction. The difference between parallel conjunction ⊗ and sequential
conjunction & is that ⊗ acts on observables on different sets X,Y and yields
an outcome on the product set X × Y , whereas & works for observables on the
same set Z, and produces a conjunction observable again on Z. These ⊗ and &
are inter-definable, via transformation ≫= of observables, see Section 4.3 — in
particular Exercise 4.3.8.

Definition 4.2.7.
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1 Let p be an observable on a set X, and q on Y . Then we define a new observ-
able p ⊗ q on X × Y by: (

p ⊗ q
)
(x, y) B p(x) · q(y).

2 Suppose we have an observable p on a set X and we like to use p on the
product X ×Y . This can be done by taking p⊗ 1 instead, where 1 is the truth
predicate. This p ⊗ 1 is called a weakening of p. It satisfies (p ⊗ 1)(x, y) =
p(x).

More generally, consider a product X1 × · · · × Xn. For an observable p on
the i-th set Xi, we weaken p to a predicate on the whole product X1×· · ·×Xn,
namely:

1 ⊗ · · · ⊗ 1︸      ︷︷      ︸
i−1 times

⊗ p ⊗ 1 ⊗ · · · ⊗ 1︸      ︷︷      ︸
n−i times

.

Weakening is a structural operation in logic which makes it possible to use
a predicate p(x) depending on a single variable x in a larger context where
one has for instance two variables x, y by ignoring the additional variable y.
Weakening is usually not an explicit operation, except in settings like linear
logic where one has to be careful about the use of resources. Here, we need
weakening as an explicit operation in order to avoid type mismatches between
observables and underlying sets.

Recall that marginalisation of states is an operation that moves a state to
a smaller underlying set by projecting away. Weakening can be seen as a
dual operation, moving an observable to a larger context. There is a close
relationship between marginalisation and weakening via validity: for a state
ω ∈ D(X1 × · · · × Xn) and an observable p on Xi we have:

ω |= 1 ⊗ · · · ⊗ 1 ⊗ p ⊗ 1 ⊗ · · · ⊗ 1 = D(πi)(ω) |= p
= ω

[
0, . . . , 0, 1, 0, . . . , 0

]
|= p,

(4.7)

where the 1 in the latter marginalisation mask is at position i. Soon we shall see
an alternative description of weakening in terms of predicate transformation.
The above equation then appears as a special case of a more general result,
namely of Proposition 4.3.3.

We illustrate how to solve a famous riddle via validity.

Example 4.2.8. The so-called Monty Hall problem is a famous riddle in prob-
ability theory, due to [164], see also e.g. [66, 174]:

Suppose you’re on a game show, and you’re given the choice of three doors: Behind one
door is a car; behind the others, goats. You pick a door, say No. 1, and the host, who
knows what’s behind the doors, opens another door, say No. 3, which has a goat. He
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then says to you, “Do you want to pick door No. 2?” Is it to your advantage to switch
your choice?

The first choice of you as participant can be described as the uniform distribu-
tion ω = 1

3 |1⟩ +
1
3 |2⟩ +

1
3 |3⟩ over the set of doors D = {1, 2, 3}. Let us assume,

without loss of generality, that the car is behind door 2. The win predicate
p : D → [0, 1] is then the point predicate p = 12. Obviously, at the start you
have one third chance ω |= p = 1

3 of winning.
We describe the act of opening the door by the host via the channel op : D→

D given by:

op(1) = 1|3⟩ op(2) = 1
2 |1⟩ +

1
2 |2⟩ op(3) = 1|1⟩.

The input to this channel is your choice of door. Since the host opens a door,
different from the one you chose, with a goat behind it, there is only one option
if your choice is door 1 or door 3. When you chose door 2, the host can open
either door 1 or door 2. We use a uniform distribution to cover both options.

At this stage we can form the joint ‘graph’ state τ B ⟨id , op⟩ =≪ω ∈ D
(
D ×

D
)
. It is:

τ = 1
3

∣∣∣1, 3〉
+ 1

6

∣∣∣2, 1〉
+ 1

6

∣∣∣2, 3〉
+ 1

3

∣∣∣3, 1〉
.

The first number inside the ket is your choice of door, and the second number
is for the door that the host opens. In order to now compute your chance of
winning, we have to weaken the predicate p on D to p ⊗ 1 on D × D. At this
stage your chance is still one third:

τ |= p ⊗ 1 = 1
6 +

1
6 =

1
3 .

Now suppose you change your choice. Such a change is deterministic, since
in each situation there is one other door that you can open. This result of your
decision to change transforms τ into τ′ below.

τ′ = 1
3

∣∣∣2, 3〉
+ 1

6

∣∣∣3, 1〉
+ 1

6

∣∣∣1, 3〉
+ 1

3

∣∣∣2, 1〉
.

Your chance of winning is now twice as big:

τ′ |= p ⊗ 1 = 1
3 +

1
3 =

2
3 .

This shows that it makes sense to change.
We have given a formal account of the situation. More informally, the host

knows where the car is, so his choice is not arbitrary. By opening a door with
a goat behind it, the host is giving you information that you can exploit to
improve your choice: two of your possible choices are wrong, but in those two
out three cases the host gives you information how to correct your choice.
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We mention some basic results about parallel products of observables. More
such ‘logical’ results can be found in the exercises.

Lemma 4.2.9. For states σ ∈ D(X), τ ∈ D(Y) and observables p ∈ Obs(X),
q ∈ Obs(Y) one has:(

σ ⊗ τ |= p ⊗ q
)
=

(
σ |= p

)
·
(
τ |= q

)
.

Proof. Easy:(
σ ⊗ τ |= p ⊗ q

)
=

∑
z∈X×Y

(σ ⊗ τ)(z) · (p ⊗ q)(z)

=
∑

x∈X,y∈Y

(σ ⊗ τ)(x, y) · (p ⊗ q)(x, y)

=
∑

x∈X,y∈Y

σ(x) · τ(y) · p(x) · q(y)

=

∑
x∈X

σ(x) · p(x)

 ·
∑

y∈Y

τ(y) · q(y)


=

(
σ |= p

)
·
(
τ |= q

)
.

Lemma 4.2.10.

1 For observables pi, qi ∈ Obs(Xi) one has:(
p1 ⊗ · · · ⊗ pn

)
&

(
q1 ⊗ · · · ⊗ qn

)
= (p1 & q1) ⊗ · · · ⊗ (pn & qn).

2 Parallel composition p ⊗ q of observables p ∈ Obs(X) and q ∈ Obs(Y) can
be defined in terms of weakening and conjunction, namely as:

p ⊗ q = (p ⊗ 1) & (1 ⊗ q).

Proof. 1 For elements xi ∈ Xi,((
p1 ⊗ · · · ⊗ pn

)
&

(
q1 ⊗ · · · ⊗ qn

))
(x1, . . . , xn)

=
(
p1 ⊗ · · · ⊗ pn

)
(x1, . . . , xn) ·

(
q1 ⊗ · · · ⊗ qn

)
(x1, . . . , xn)

=
(
p1(x1) · . . . · pn(xn)

)
·
(
q1(x1) · . . . · qn(xn)

)
=

(
p1(x1) · q1(x1)

)
· . . . ·

(
pn(xn) · qn(xn)

)
= (p1 & q1)(x1) · . . . · (pn & qn)(xn)
=

(
(p1 & q1) ⊗ · · · ⊗ (pn & qn)

)
(x1, . . . , xn).

2 Directly from the previous item:

(p ⊗ 1) & (1 ⊗ q) = (p & 1) ⊗ (1 & q) = p ⊗ q.

We conclude with some observations about proving equalities of states or
predicates via validity.
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Remark 4.2.11. For two states ω,ω′ ∈ D
(
X1 × · · · × Xn

)
we have:

ω = ω′ ⇐⇒ ω |= p1 ⊗ · · · ⊗ pn = ω′ |= p1 ⊗ · · · ⊗ pn

for all pi ∈ Pred (Xi).
(4.8)

The direction (⇒) is obvious. For (⇐) we use for an arbitrary xi ∈ Xi the
corresponding tuple point predicate satisfies 1(x1,...,xn) = 1x1 ⊗ · · · ⊗ 1xn . Hence:

ω(x1, . . . , xn) = ω |= 1(x1,...,xn) = ω |= 1x1 ⊗ · · · ⊗ 1xn

= ω′ |= 1x1 ⊗ · · · ⊗ 1xn

= ω′ |= 1(x1,...,xn) = ω′(x1, . . . , xn).

Similarly, for predicates p, p′ ∈ Pred
(
X1 × · · · × Xn

)
one has:

p = p′ ⇐⇒ ω1 ⊗ · · · ⊗ ωn |= p = ω1 ⊗ · · · ⊗ ωn |= p′,
for all ωi ∈ D(Xi).

(4.9)

Again, (⇒) is obvious and for (⇐) we use point states:

p(x1, . . . , xn) = 1| x1, . . . , xn ⟩ |= p = 1| x1 ⟩ ⊗ · · · ⊗ 1| xn ⟩ |= p
= 1| x1 ⟩ ⊗ · · · ⊗ 1| xn ⟩ |= p′

= 1| x1, . . . , xn ⟩ |= p′ = p′(x1, . . . , xn).

Thus, proofs of equality of states, or of predicates, can be performed via valid-
ity |=. This may be convenient in situations where certain properties of validity
can be used.

Here is a frequently occurring situation where these observations apply.

Lemma 4.2.12.

c

f

d

g

= ⇐⇒


c(x) |= ( f ≫= p) & q

= d(x) |= p & (g ≫= q)

for all inputs x and predicates p, q.

Algebraically (or categorically) oriented readers may recognise an adjoint-
ness in the formulation on the right-hand-side.

Proof. This follows from the equivalence (4.8) in Remark 4.2.11 using that,
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by Lemma 4.3.2 (7) and Proposition 4.3.3:

c(x) |= ( f ≫= p) & q = c(x) |= ⟨ f , id ⟩ ≫=
(
p ⊗ q

)
= ⟨ f , id ⟩ =≪c(x) |= p ⊗ q

d(x) |= p & (g ≫= q) = d(x) |= ⟨id , g⟩ ≫=
(
p ⊗ q

)
= ⟨id , g⟩ =≪d(x) |= p ⊗ q.

4.2.6 Functoriality

We like to conclude this section with some categorical observations. They are
not immediately relevant for the sequel and may be skipped. We shall be using
four (new) categories:

• Vect, with vector spaces (over the real numbers) as objects and linear maps
as morphisms between them (preserving addition and scalar multiplication);

• Cone, with cones as objects and also with linear maps as morphisms, but
this time preserving scalar multiplication with non-negative reals only;

• EMod, with effect modules as objects and homomorphisms of effect mod-
ules as maps between them (see Definition 4.2.1);

• BA, with Boolean algebras as objects and homomorphisms of Boolean al-
gebras (preserving finite joins and negations, and then also finite meets).

Recall from Subsection 1.11.1 that we write Cop for the opposite of category
C, with arrows reversed. This opposite is needed in the following result.

Proposition 4.2.13. Taking particular observables on a set is functorial: there
are functors:

1 Obs : Sets→ Vectop;
2 Fact : Sets→ Coneop;
3 Pred : Sets→ EModop;
4 SPred : Sets→ BAop.

On maps f : X → Y in Sets these functors are all defined by the ‘pre-compose
with f ’ operation q 7→ q ◦ f . They thus reverse the direction of morphisms,
which necessitates the use of opposite categories (−)op.

The above functors all preserve the partial order on observables and also
the commutative monoid structure (1,&), since they are defined pointwise.

Proof. We consider the first instance of observables in some detail. The other
cases are similar. For a set X we have have seen that Obs(X) = RX is a vector
space, and thus an object of the category Vect. Each function f : X → Y in Sets
gives rise to a function Obs( f ) : Obs(Y)→ Obs(X) in the opposite direction. It
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maps an observable q : Y → R on Y to the observable q ◦ f : X → R on X. It is
not hard to see that this function Obs( f ) = (−) ◦ f preserves the vector space
structure. For instance, it preserves sums, since they are defined pointwise. We
shall prove this in a precise, formal manner. First Obs( f )(0) is the function that
map x ∈ X to:

Obs( f )(0)(x) = (0 ◦ f )(x) = 0( f (x)) = 0.

Hence Obs( f )(0) maps everything to 0 and is thus equal to the zero function
itself: Obs( f )(0) = 0. Next, addition + is preserved since:

Obs( f )(p + q) = (p + q) ◦ f
=

[
x 7→ (p + q)( f (x))

]
=

[
x 7→ p( f (x)) + q( f (x))

]
=

[
x 7→ Obs( f )(p)(x) + Obs( f )(q)(x)

]
= Obs( f )(p) + Obs( f )(q).

We leave preservation of scalar multiplication to the reader and conclude that
Obs( f ) is a linear function, and thus a morphism Obs( f ) : Obs(Y) → Obs(X)
in Vect. Hence Obs( f ) is a morphism Obs(X) → Obs(Y) in the opposite cat-
egory Vectop. We still need to check that identity maps and composition are
preserved. We do the latter. For f : X → Y and g : Y → Z in Sets we have, for
r ∈ Obs(Z),

Obs(g ◦ f )(r) = r ◦ (g ◦ f ) = (r ◦ g) ◦ f
= Obs(g)(r) ◦ f
= Obs( f )

(
Obs(g)(r)

)
=

(
Obs( f ) ◦ Obs(g)

)
(r)

=
(
Obs(g) ◦op Obs( f )

)
(r).

This yields Obs(g ◦ f ) = Obs(g) ◦op Obs( f ), so that we get a functor of the
form Obs : Sets→ Vectop.

Notice that saying that we have a functor like Pred : Sets → EModop con-
tains remarkably much information, about the mathematical structure on ob-
jects Pred (X), about preservation of this structure by maps Pred ( f ), and about
preservation of identity maps and composition by Pred (−) on morphisms (see
also Exercise 4.3.10). This makes the language of category theory both power-
ful and efficient.

Exercises

4.2.1 Consider the following question:
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An urn contains 10 balls of which 4 are red and 6 are blue. A second urn
contains 16 red balls and an unknown number of blue balls. A single ball is
drawn from each urn. The probability that both balls are the same color is 11

25 .
Find the number of blue balls in the second urn.

1 Check that the givens can be expressed in terms of validity as:

11
25 = Flrn

(
4|R⟩+6|B⟩

)
⊗ Flrn

(
16|R⟩+x|B⟩

)
|= (1R⊗1R) > (1B⊗1B)

2 Prove, by solving the above equation, that there are 4 blue balls in
the second urn.

4.2.2 1 Check that (sharp) indicator predicates 1E : X → [0, 1], for subsets
E ⊆ X, satisfy:

• 1E∩D = 1E & 1D, and thus 1 ⊗ 1 = 1, 1 ⊗ 0 = 0 = 0 ⊗ 1;
• 1E∪D = 1E > 1D, if E,D are disjoint;
• (1E)⊥ = 1¬E , where ¬E = X \ E = {x ∈ X | x < E} is the

complement of E.

Formally, the function 1(−) : P(X) → Pred (X) = [0, 1]X is a homo-
morphism of effect algebras, see Theorem 4.2.5 (1).

2 Show that this indicator function is natural, in the sense that for
f : X → Y the following diagram commutes.

P(X)
1(−)

// Pred (X)

P(Y)
f −1
OO

1(−)
// Pred (Y)

(−)◦ f
OO

3 Now consider subsets E ⊆ X and D ⊆ Y of different sets X,Y
together with their tensor product subset E ⊗D ⊆ X ×Y . Show that
1E⊗D = 1E ⊗ 1D, with as special case 1(x,y) = 1x ⊗ 1y.

4.2.3 Find examples of predicates p, q on a set X and a distribution ω on X
such that ω |= p & q and (ω |= p) · (ω |= q) are different.

4.2.4 One may expect the following implication between inequalities of
validities:(

σ |= p) ≤
(
τ |= p

)
=⇒

(
σ |= p & q) ≤

(
τ |= p & q

)
.

However, it fails. This exercise elaborates a counterexample. Take
X = {a, b, c} with states:

σ = 19
100 |a⟩ +

47
100 |b⟩ +

17
50 |c⟩ τ = 1

5 |a⟩ +
9
20 |b⟩ +

7
20 |c⟩

with predicates:

p = 1 · 1a +
7

10 · 1b +
1
2 · 1c q = 1

10 · 1a +
1
2 · 1b +

1
5 · 1c.
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Now check consecutively that:

1 σ |= p = 689
1000 <

69
100 = τ |= p.

2 p & q = 1
10 · 1a +

7
20 · 1b +

1
10 · 1c.

3 σ |= p & q = 87
400 >

85
400 = τ |= p & q.

Find a counterexample yourself in which the predicate q is sharp.
4.2.5 Consider a state σ ∈ D(X), a factor p on X, and a predicate q on X

which is non-zero on the support of σ. Show that:(
σ |= p

q
)
≥ 1 =⇒

(
σ |= p

)
≥

(
σ |= q

)
,

where p
q (x) = p(x)

q(x) .
4.2.6 Prove that the following items are equivalent, for a state ω ∈ D(X)

and event E ⊆ X.

1 supp(ω) ⊆ E;
2 ω |= 1E = 1;
3 ω |= p & 1E = ω |= p for each p ∈ Obs(X).

4.2.7 Consider a distribution ω ∈ D(X), a channel c : X → Y and an ob-
servable q : Y → R. Show that:

c =≪ω |= q = ω |=
(
c(−) |= q

)
.

This is known as the ‘law of total expectation’ or also the ‘law of iter-
ated expectation’. An equivalent form using predicate transformation
appears in Proposition 4.3.3.

4.2.8 Let ω ∈ D(X) be an arbitrary distribution with two observables p, q ∈
Obs(X).

1 Show that there is an inequality:(
ω |= p & q

)2
≤

(
ω |= p2) · (ω |= q2).

Hint: Recall p2 = p & p. Handle the case (ω |= p2) = 0 separately.
Then define r ∈ Obs(X) as r B q − ω|=p&q

ω|=p2 · p and exploit that
(ω |= r2) ≥ 0 since r2 ≥ 0.

2 Deduce the inequality: (
ω |= p

)2
≤ ω |= p2.

4.2.9 Let p and q be two arbitrary predicates. Prove that the following use
of the partial sum operation > for predicates is justified, that is, yields
a well-defined new predicate.

(p ⊗ q) > (p⊥ ⊗ q⊥).
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4.2.10 Let p1, p2, p3 be predicates on the same set.

1 Show that:(
p⊥1 ⊗ p⊥2

)⊥
= (p1 ⊗ p2) > (p1 ⊗ p⊥2 ) > (p⊥1 ⊗ p2).

2 Show also that:(
p⊥1 ⊗ p⊥2 ⊗ p⊥3

)⊥
= (p1 ⊗ p2 ⊗ p3) > (p1 ⊗ p2 ⊗ p⊥3 )

> (p1 ⊗ p⊥2 ⊗ p3) > (p1 ⊗ p⊥2 ⊗ p⊥3 )
> (p⊥1 ⊗ p2 ⊗ p3) > (p⊥1 ⊗ p2 ⊗ p⊥3 )
> (p⊥1 ⊗ p⊥2 ⊗ p3).

3 Generalise to n.

4.2.11 For predicates p, q on the same set, define Reichenbach implication ⊃
as:

p ⊃ q B p⊥ > (p & q).

1 Check that:

p ⊃ q = (p & q⊥)⊥

from which it easily follows that:

p ⊃ 0 = p⊥ 1 ⊃ q = q p ⊃ 1 = 1 0 ⊃ q = 1.

2 Check also that:

p⊥ ≤ p ⊃ q q ≤ p ⊃ q.

3 Show that:

p1 ⊃ (p2 ⊃ q) = (p1 & p2) ⊃ q.

4 For subsets E,D of the same set,

1E ⊃ 1D = 1¬(E∩¬D) = 1¬E∪D.

The subset ¬(E ∩ ¬D) = ¬E ∪ D is the standard interpretation of
‘E implies D’ in Boolean logic (of subsets).

4.2.12 Let p be a predicate on a set X. Prove that the following statements
are equivalent.

1 p is sharp;
2 p & p = p;
3 p & p⊥ = 0;
4 q ≤ p and q ≤ p⊥ implies q = 0, for each q ∈ Pred (X).
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4.2.13 Show that an n-test p0, . . . , pn−1 on a set X, see Definition 4.2.2, can
be identified with a channel c : X → n, with pi = c ≫= 1i, for i ∈ n.

4.2.14 For a random variable (ω, p), show that the validity of the observable
p − (ω |= p) · 1 is zero, i.e.,

ω |=
(
p − (ω |= p) · 1

)
= 0.

Observables of this form are used later on to define (co)variance in
Section 5.1.

4.2.15 For a multiset φ ∈ M(X) on a set X and a factor p ∈ Fact(X) on the
same set, define the multiset φ • p ∈ M(X) as (φ • p)(x) = φ(x)·p(x).
Show that this gives a monoid action:

M(X) × Fact(X) • //M(X)

with respect to the multiplicative monoid structure (1,&) on factors.
4.2.16 Let E be an arbitrary effect algebra. Prove, from the axioms of an

effect algebra, that for elements e, e′, d, d′, f ∈ E the following prop-
erties hold (see [73] for details).

1 Orthosupplement is an involution: e⊥⊥ = e;
2 Cancellation holds of the form: e > d = e > d′ implies d = d′;
3 Zero-sum freeness holds: e > d = 0 implies e = d = 0;
4 Define an order ≤ on E via: e ≤ d iff e > f = d for some f ∈ E.

This is a partial order with 1 as top and 0 as bottom element;
5 e ≤ d implies d⊥ ≤ e⊥;
6 e > d is defined iff e ⊥ d iff e ≤ d⊥ iff d ≤ e⊥;
7 e ≤ d and d ⊥ f implies e ⊥ f and e > f ≤ d > f ;
8 if e ≤ e′ and d ≤ d′ and e′>d′ is defined, then also e>d is defined.

4.2.17 In an effect algebra E, as above, define for elements e, d ∈ E,

e ? d B
(
e⊥ > d⊥

)⊥ if e⊥ ⊥ d⊥

e ⊖ d B
(
e⊥ > d

)⊥
= e ? d⊥ if e ≥ d.

Show that:

1 (E,?, 1) is a partial commutative monoid;
2 e ≤ d iff e = d ? f for some f ;
3 e ⊖ 0 = e and 1 ⊖ e = e⊥ and e ⊖ e = 0;
4 e > d = f iff e = f ⊖ d; in particular, ( f ⊖ d) > d = f ;
5 e > d ≤ f iff e ≤ f ⊖ d;
6 e > d iff e ⊖ d > 0;
7 f ⊖ e = f ⊖ d implies e = d;
8 e ≤ d implies d ⊖ e ≤ d and d ⊖ (d ⊖ e) = e;
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9 the function e>(−) preserves all joins
∨

i di that exist in E: if e ⊥ di

for each i, then e ⊥
∨

i di and e > (
∨

i di) =
∨

i(e > di);
10 Similarly, e ? (−) preserves meets.
11 A homomorphism f : E → D of effect algebras E,D preserves

orthosupplement: f (e⊥) = f (e)⊥, and thus also f (0) = 0, f (e?d) =
f (e) ? f (d) and f (e ⊖ d) = f (e) ⊖ f (d).

4.2.18 Let E be an effect module. The aim of this exercise is to show that
subconvex sums exist in E, see [155, Lemma 2.1]. This means that
for arbitrary elements e1, . . . , en ∈ E and scalars r1, . . . , rn ∈ [0, 1]
with

∑
i ri ≤ 1 the sum r1 · e1 > · · ·> rn · en exists in E

1 Use induction on n ≥ 1, and check the base step.
2 For the induction step let e1, . . . , en+1 and r1, . . . , rn+1 ∈ [0, 1] with∑

i≤n+1 ri ≤ 1 be given. By induction hypothesis the sum >i≤n ri · ei

exists. Use Exercise 4.2.16 to check that the following chain of
inequalities holds and suffices to prove that the sum >i≤n+1 ri · ei

exists too.

rn+1 · en+1 ≤ rn+1 · 1 ≤
(
(
∑

i≤n ri) · 1
)⊥

=
(
>i≤n ri · 1

)⊥
≤

(
>i≤n ri · ei

)⊥
.

4.2.19 Consider validity as a function V : Pred (X) → Pred
(
D(X)

)
, given by

V(p)(ω) B ω |= p. Show that V is a map of effect modules.

4.3 Transformation of observables

One of the basic operations that we have seen so far is state transformation =≪.
It is used to transform a state / distribution ω on the domain X of a channel
c : X → Y into a state c =≪ω on the codomain Y of the channel. This section
introduces transformation of observables ≫= . It works in the opposite direction
of the channel: an observable q on the codomain Y is transformed into an ob-
servable c ≫= q on the domain X. Thus, state transformation works forwardly,
in the direction of the channel, whereas observable transformation ≫= works
backwardly, against the direction of the channel. This operation ≫= is often ap-
plied only to predicates — and is then called predicate transformation — but
here we apply it more generally to observables.

This section introduces observable transformation ≫= and lists its key math-
ematical properties. In the next chapter it will be used for probabilistic reason-
ing, especially in combination with updating.
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Definition 4.3.1. Let c : X → Y be a channel. An observable q ∈ Obs(Y) is
transformed into c ≫= q ∈ Obs(X) via the definition:(

c ≫= q
)
(x) B c(x) |= q =

∑
y∈Y

c(x)(y) · q(y). (4.10)

When q is a point predicate 1y, for an element y ∈ Y , we get:(
c ≫= 1y

)
(x) = c(x)(y) so that c ≫= 1y = c(−)(y) : X → [0, 1].

The resulting function Y → Pred (X), given by y 7→ c ≫= 1y, is sometimes
called the likelihood function.

There is a whole series of basic facts about ≫= .

Lemma 4.3.2.

1 The operation c ≫= (−) : Obs(Y) → Obs(X) of transforming observables
along a channel c : X → Y restricts, first to factors c ≫= (−) : Fact(Y) →
Fact(X), and then to fuzzy predicates c ≫= (−) : Pred (Y)→ Pred (X), but not
to sharp predicates.

2 Observable transformation c ≫= (−) is linear: it preserves sums (0,+) of
observables and scalar multiplication of observables.

3 Observable transformation preserves truth 1, but not conjunction &.
4 Observable transformation preserves the (pointwise) order on observables:

q1 ≤ q2 implies (c ≫= q1) ≤ (c ≫= q2).
5 Transformation along the unit channel is the identity: unit ≫= q = q.
6 Transformation along a composite channel is successive transformation:

(d ◦· c) ≫= q = c ≫= (d ≫= q).
7 Transformation along a tuple transforms parallel conjunction ⊗ into sequen-

tial conjunction &: ⟨c, d⟩ ≫= (p ⊗ q) = (c ≫= p) & (d ≫= q).
8 Transformation along parallel channels preserves parallel conjunctions:

(e ⊗ f ) ≫= (p ⊗ q) = (e ≫= p) ⊗ ( f ≫= q).
9 Transformation along a trivial, deterministic channel f is pre-composition:

f ≫= q = q ◦ f .

Proof. 1 If q ∈ Fact(Y) then q(y) ≥ 0 for all y. But then also (c ≫= q)(x) =∑
y c(x)(y) · q(y) ≥ 0, so that c ≫= q ∈ Fact(X). If in addition q ∈ Pred (Y), so

that q(y) ≤ 1 for all y, then also (c ≫= q)(x) =
∑

y c(x)(y) ·q(y) ≤
∑

y c(x)(y) =
1, since c(x) ∈ D(Y), so that c ≫= q ∈ Pred (X).

The fact that a transformation c ≫= p of a sharp predicate p need not be
sharp is demonstrated in Exercise 4.3.2.

2 Easy.
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3 (c ≫= 1)(x) =
∑

y c(x)(y) · 1(y) =
∑

y c(x)(y) · 1 = 1. The fact that & is not
preserved follows from Exercise 4.3.1.

4 Easy.
5 Recall that unit(x) = 1| x⟩, so that (unit ≫= q)(x) =

∑
y unit(x)(y)·q(y) = q(x).

6 For c : X → Y and d : Y → Z and q ∈ Obs(Z) we have:(
(d ◦· c) ≫= q

)
(x) =

∑
z∈Z

(d ◦· c)(x)(z) · q(z)

=
∑
z∈Z

∑
y∈Y

c(x)(y) · d(y)(z)

 · q(z)

=
∑
y∈Y

c(x)(y) ·

∑
z∈Z

d(y)(z) · q(z)


=

∑
y∈Y

c(x)(y) ·
(
d ≫= q

)
(y)

=
(
c ≫= (d ≫= q)

)
(x).

7 Let c : X → Y , d : X → Z, with p ∈ Pred (Y) and q ∈ Pred (Z). Then for
x ∈ X,(

⟨c, d⟩ ≫= (p ⊗ q)
)
(x) =

∑
y∈Y, z∈Z

⟨c, d⟩(x)(y, z) · (p ⊗ q)(y, z)

=
∑

y∈Y, z∈Z

c(x)(y) · d(x)(z) · p(y) · q(z)

=

∑
y∈Y

c(x)(y) · p(y)

 ·
∑

z∈Z

d(x)(z) · q(z)


= (c ≫= p)(x) · (d ≫= q)(x)
=

(
(c ≫= p) & (d ≫= q)

)
(x).

8 Similarly,(
(e ⊗ f ) ≫= (p ⊗ q)

)
(x, y) =

∑
u,v

(e ⊗ f )(x, y)(u, v) · (p ⊗ q)(u, v)

=
∑
u,v

e(x)(u) · f (y)(v) · p(u) · q(v)

=

∑
u

e(x)(u) · p(u)

 · ∑
v

f (y)(v) · q(v)


= (e ≫= p)(x) · ( f ≫= q)(y)
=

(
(e ≫= p)(x) ⊗ ( f ≫= q)

)
(x, y).

9 For a function f : X → Y , recall that we write ‹ f › B unit ◦ f : X → Y
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if we wish to make explicit that we use the function f as a ‘deterministic’
channel. Then:(

‹ f › ≫= q
)
(x) =

∑
y∈Y

unit( f (x))(y) · q(y) = q( f (x)) = (q ◦ f )(x).

There is the following fundamental relationship between transformations =≪,
≫= and validity |=.

Proposition 4.3.3. Let c : X → Y be a channel with a state ω ∈ D(X) on its
domain and an observable q ∈ Obs(Y) on its codomain. Then:

c =≪ω |= q = ω |= c ≫= q. (4.11)

This equation is essentially the law of total expectation, see Exercise 4.2.7.

Proof. The result follows simply by unpacking the relevant definitions:

c =≪ω |= q =
∑
y∈Y

(c =≪ω)(y) · q(y) =
∑
y∈Y

∑
x∈X

c(x)(y) · ω(x)

 · q(y)

=
∑
x∈X

ω(x) ·

∑
y∈Y

c(x)(y) · q(y)


=

∑
x∈X

ω(x) · (c ≫= q)(x)

= ω |= c ≫= q.

We have already seen several instances of this basic result.

• Earlier we mentioned that marginalisation (of states) and weakening (of ob-
servables) are dual to each other, see Equation (4.7). We can now see this as
an instance of (4.11), using a projection πi : X1 × · · · × Xn → Xi as (trivial)
channel, in:

πi =≪ω |= p = ω |= πi ≫= p (4.12)

The left-hand side of (4.12) uses the i-th marginal of state ω ∈ D(X1 × · · · ×

Xn), namelY:

πi =≪ω = ω
[
0, . . . , 0, 1, 0, . . . , 0

]
∈ D(Xi),

On the right-hand side of (4.12) the observable p ∈ Obs(Xi) is weakenend
to the following predicate.

πi ≫= p = 1 ⊗ · · · ⊗ 1 ⊗ p ⊗ 1 ⊗ · · · ⊗ 1 ∈ Pred
(
X1 × · · · × Xn

)
.
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• The first equation in Exercise 4.1.5 is also an instance of (4.11), namely for
a trivial channel f : X → Y given by a function f : X → Y , as in:

f =≪ω |= p
(4.11)
= ω |= f ≫= p
= ω |= q ◦ f by Lemma 4.3.2 (9).

Remark 4.3.4. In a programming context, where a channel c : X → Y is seen
as a program taking inputs from X to outputs in Y , one may call c ≫= q the
weakest precondition of q, commonly written as wp(c, q), see e.g. [47, 116,
131]. We briefly explain this view.

A precondition of q, w.r.t. channel c : X → Y , may be defined as an observ-
able p on the channel’s domain X for which:

ω |= p ≤ c =≪ω |= q, for all states ω.

Proposition 4.3.3 tells that c ≫= q is then a precondition of q. It is also the
weakest, since if p is a precondition of q, as described above, then in particular:

p(x) = unit(x) |= p
≤ c =≪unit(x) |= q = c(x) |= q = (c ≫= q)(x).

As a result, p ≤ c ≫= q.
Lemma 4.3.2 (6) expresses a familiar compositionality property in the the-

ory of weakest preconditions:

wp(d ◦· c, q) = (d ◦· c) ≫= q = c ≫= (d ≫= q) = wp(c,wp(d, q)).

We close this section with two topics that dig deeper into the nature of trans-
formations. First, we relate transformation of states and observables in terms
of matrix operations. Then we look closer at the categorical aspects of trans-
formation of observables.

Remark 4.3.5. Let c be a channel with finite sets as domain and codomain.
For convenience we write these as n = {0, . . . , n − 1} and m = {0, . . . ,m − 1},
so that the channel c has type n→ m. For each i ∈ n we have that c(i) ∈ D(m)
is given by an m-tuple of numbers in [0, 1] that add up to one. Thus we can
associate an m × n matrix Mc with the channel c, namely:

Mc =


c(1)(1) · · · c(n−1)(1)

...
...

c(1)(m−1) · · · c(n−1)(m−1)

 .
By construction, the columns of this matrix add up to one. Such matrices are
often called stochastic.

A state ω ∈ D(n) may be identified with a column vector Mω of length n, as
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on the left below. It is then easy to see that the matrix Mc =≪ω of the transformed
state, is obtained by matrix-column multiplication, as on the right:

Mω =


ω(0)
...

ω(n−1)

 so that Mc =≪ω = Mc · Mω.

Indeed,

(c =≪ω)( j) =
∑

i
c(i)( j) · ω(i) =

∑
i

(
Mc

)
ji ·

(
Mω

)
i =

(
Mc · Mω

)
j.

An observable q : m → R on m can be identified with a row vector Mq =(
q(0) · · · q(m−1)

)
. Transformation c ≫= q then corresponds to row-matrix mul-

tiplication:

Mc ≫= q = Mq · Mc.

Again, this is checked easily:

(c ≫= q)(i) =
∑

j
q( j) · c(i)( j) =

∑
j

(
Mq

)
j ·

(
Mc

)
j,i =

(
Mq · Mc

)
i.

We close this section by making the functoriality of observable transforma-
tion ≫= explicit, in the style of Proposition 4.2.13. The latter deals with func-
tions, but we now consider functoriality with respect to channels, using the
category Chan = Chan(D) of probabilistic channels. Notice that the case
of sharp predicates is omitted from Proposition 4.2.13, simply because sharp
predicates are not closed under predicate transformation (see Exercise 4.3.2).
Also, conjunction & is not preserved under transformation, see Exercise 4.3.1
below.

Proposition 4.3.6. Taking particular observables on a set is functorial, namely,
via functors:

1 Obs : Chan→ Vectop;
2 Fact : Chan→ Coneop;
3 Pred : Chan→ EModop;

On a channel c : X → Y, all these functors are given by transformation c ≫=

(−), acting in the opposite direction.

Proof. Essentially, all necessary ingredients are already in Lemma 4.3.2: trans-
formation restricts appropriately (item (1)), transformation preserves identies
(item (5)) and composition (item (6)), and the relevant structure (items (2)
and (3)).
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Exercises

4.3.1 Consider the channel f : {a, b, c} → {u, v} from Example 1.10.2, given
by:

f (a) = 1
2 |u⟩ +

1
2 |v⟩ f (b) = 1|u⟩ f (c) = 3

4 |u⟩ +
1
4 |v⟩.

Take as predicates p, q : {u, v} → [0, 1],

p(u) = 1
2 p(v) = 2

3 q(u) = 1
4 q(v) = 1

6 .

Alternatively, in the normal-form notation of Lemma 4.2.3 (2),

p = 1
2 · 1u +

2
3 · 1v q = 1

4 · 1u +
1
6 · 1v.

Compute:

• f ≫= p
• f ≫= q
• f ≫= (p > q)
• ( f ≫= p) > ( f ≫= q)
• f ≫= (p & q)
• ( f ≫= p) & ( f ≫= q)

This will show that predicate transformation ≫= does not preserve con-
junction &.

4.3.2 1 Still in the context of the previous exercise, consider the sharp
(point) predicate 1u on {u, v}. Show that the transformed predicate
f ≫= 1u on {a, b, c} is not sharp. This proves that sharp predicates
are not closed under predicate transformation.

2 Let h : X → Y be a function, considered as deterministic channel,
and let V ⊆ Y be an arbitrary subset (event). Check that:

h ≫= 1V = 1h−1(V).

Conclude that predicate transformation along deterministic chan-
nels does preserve sharpness.

4.3.3 In the setting of Exercise 2.1.11 let X be a finite set with N elements.
We have a function size B ∥ − ∥ : N(X) → N, and in the other direc-
tion a channel size† : N→ D

(
N(X)

)
given by:

size†(k) B
∑

φ∈N[k](X)

(φ )
Nk

∣∣∣φ〉
∈ D

(
N(X)

)
↪→ D∞(N(X)

)
.

This is well-defined by Exercise 1.7.7.

1 Show that size† =≪ pois[λ] = mpois[λ], see Examples 2.1.7 (1)
and (2).
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2 Show that for p ∈ Pred
(
N) and q ∈ Pred

(
N(X)

)
, there is an ad-

jointness equation:

pois[λ] |= p &
(
size† ≫= q

)
= mpois[λ] |=

(
size ≫= p

)
& q.

3 Draw the corresponding equation between string diagrams.

4.3.4 Let h : X → Y be an ordinary function. Recall from Lemma 4.3.2 (9)
that h ≫= q = q ◦ h, when h is considered as a deterministic chan-
nel. Show that transformation along such deterministic channels does
preserve conjunctions:

h ≫= (q1 & q2) = (h ≫= q1) & (h ≫= q2),

in contrast to the findings in Exercise 4.3.1 for arbitrary channels.
Conclude that weakening preserves conjunction: 1 ⊗ (p & q) =

(1 ⊗ p) & (1 ⊗ q).
4.3.5 Let predicate qi ∈ Pred (Y) form a test, see Definition 4.2.2, and let

c : X → Y be channel. Check that the transformed predicates c ≫= qi

form a test on X.
4.3.6 1 Check that a predicate p : X → [0, 1] can be identified with a chan-

nel p̂ B flip ◦ p : X → 2, see also Exercise 4.2.13. Describe this p̂
explicitly in terms of p.

2 Define a channel orth : 2→ 2 such that orth ◦· p̂ = p̂⊥.
3 Define also a channel conj : 2 × 2 → 2 such that conj ◦· ⟨ p̂, q̂⟩ =

p̂ & q.
4 Finally, define also a channel scal(r) : 2 → 2, for r ∈ [0, 1], so that

scal(r) ◦· p̂ = r̂ · p.
4.3.7 Recall that a state ω ∈ D(X) can be identified with a channel 1 → X

with a trivial domain, and also that a predicate p : X → [0, 1] can be
identified with a channel X → 2, see Exercise 4.3.6. Check that under
these identifications validity ω |= p can be identified with:

• state transformation p =≪ω;
• predicate transformation ω ≫= p;
• channel composition p ◦· ω.

4.3.8 This exercises shows how parallel conjunction ⊗ and sequential con-
junction & are inter-definable via predicate transformation ≫= , using
projection channels πi and copy channels ∆, that is, using weakening
and contraction.
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1 Let observables p1 on X1 and p2 on X2 be given. Show that on
X1 × X2,

p1 ⊗ p2 = (π1 ≫= p1) & (π2 ≫= p2) = (p1 ⊗ 1) & (1 ⊗ p2).

The last equation occurred already in Lemma 4.2.10 (2).

2 Let q1, q2 be observables on the same set Y . Prove that on Y ,

q1 & q2 = ∆ ≫= (q1 ⊗ q2).

4.3.9 Let c : X → Y be a channel, with observables p on Z and q on Y × Z.
Check that:

(c ⊗ id ) ≫=
(
(1 ⊗ p) & q

)
= (1 ⊗ p) &

(
(c ⊗ id ) ≫= q

)
.

(Recall that & is not preserved by ≫= , see Exercise 4.3.1.)

4.3.10 We take a closer look at the functor

Chan Pred // EModop

from Proposition 4.2.13. It sends a map c : X → Y in Chan to the
function Pred (c) : Pred (Y)→ Pred (X) via:

Pred (c)(q) B c ≫= q.

1 Check in detail that Pred (c) is a morphism of effect modules, see
Definition 4.2.1 (3).

2 Show that the functor Pred is faithful, in the sense that Pred (c) =
Pred (c′) implies c = c′, for channels c, c′ : X → Y .

3 Let Y be a finite set. Show that for each map h : Pred (Y)→ Pred (X)
in the category EMod there is a unique channel c : X → Y with
Pred (c) = h.

Hint: Write a predicate p as finite sum >y p(y) · 1y, i.e. as the nor-
mal form of Lemma 4.2.3 (2), and use the relevant preservation
property.

One says that the functor Pred is full and faithful when restricted
to the (sub)category with finite sets as objects. In the context of
programming (logics) this property is called healthiness, see [46,
47, 131], or [69] for an abstract account.
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4.4 Validity and drawing

In Chapter 3 we have studied various distributions associated with drawing
coloured balls from an urn, such as the multinomial, hypergeometric and Pólya
distributions. In this section we look at validity with respect to these draw
distributions. This involves means and sampling.

In Example 4.1.4 (4) we have seen the mean of a binomial distribution. A
multinomial mn[K](ω) is a distribution on the set N[K](X) of natural multi-
sets of size K, and not on (real) numbers. Hence the requirement for a mean,
see Definition 4.1.3, does not apply: the space is not a subset of the reals. Still,
we have described in Proposition 3.3.6 as a generalised mean for multinomi-
als. The trick is to include multisets in N[K](X) in the bigger set M(X) of
multisets, of arbitrary size, with (non-negative) real-valued multiplicities. The
latter setM(X) is a cone, see lemma 1.6.3 (2), and thus has enough structure
(addition and scalar multiplication) to compute means.

Proposition 4.4.1. We fix a set X and consider means inM(X).

1 For a distribution ω ∈ D(X),

mean
(
mn[K](ω)

)
B

∑
φ∈N[K](X)

mn[K](ω)(φ) · φ = K · ω ∈ M(X).

2 For a non-empty urn υ ∈ N[L](X) of size L ≥ K,

mean
(
hg[K](υ)

)
B

∑
φ∈≤Kυ

hg[K](υ)(φ) · φ = K · Flrn(υ) ∈ M(X).

3 For a non-empty urn υ ∈ N(X),

mean
(
pl[K](υ)

)
B

∑
φ∈N[K](supp(υ))

pl[K](υ)(φ) · φ = K · Flrn(υ) ∈ M(X).

4 For a distribution ω ∈ D(X) and a rate λ ∈ R>0,

mean
(
Pmn[λ](ω)

)
B

∑
φ∈N(X)

Pmn[λ](ω)(φ) · φ = λ · ω ∈ M(X).

The Poisson-iid distribution Piid [λ](ω) ∈ D∞
(
L(X)

)
does not have such a

mean since the set L(X) of lists is not a cone.

Proof. The first three items (1) – (3) follow from Proposition 3.3.6 together
with Lemmas 3.4.5 (2) and 3.5.1 (2). Hence we concentrate on the last item,
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involving the Poission multinomial.

mean
(
Pmn[λ](ω)

)
(x) =

∑
φ∈N(X)

Pmn[λ](ω)(φ) · φ(x)

(3.52)
=

∑
K∈N

∑
φ∈N[K](X)

pois[λ](K) ·mn[K](ω)(φ) · φ(x)

=
∑
K∈N

pois[λ](K) ·
∑

φ∈N[K](X)

mn[K](ω)(φ) · φ(x)

=
∑
K∈N

pois[λ](K) ·mean
(
mn[K](ω)

)
(x)

(1)
=

∑
K∈N

pois[λ](K) · K · ω(x)

= mean
(
pois[λ]

)
· ω(x)

= λ · ω(x), by Exercise 4.1.8.

One can also describe a ‘pointwise mean’ for multinomials via point-evaluation
observables. For a set X with an element x ∈ X we can define an observable:

M(X)
evx // R by evx(φ) B φ(x). (4.13)

Then we can compute the validity of this observable as:

mn[K](ω) |= evx
(4.2)
=

∑
φ∈N[K](X)

mn[K](ω)(φ) · evx(φ)

=
∑

φ∈N[K](X)

mn[K](ω)(φ) · φ(x)

= K · ω(x), by Lemma 3.3.2.

Hence we can alternatively write:

mean
(
mn[K](ω)

)
=

∑
x∈X

(
mn[K](ω) |= evx

) ∣∣∣ x〉
= K · ω.

The same can be done for the other draw distributions in Proposition 4.4.1.

Example 4.4.2. We recall a historical example, known as the paradox of the
Chevalier De Méré, from the 17th century. He argued informally that the fol-
lowing two outcomes have equal probability.

DM1 Throw a dice 4 times; you get at least one 6.
DM2 Throw a pair of dice 24 times; you get at least one double six, i.e. (6, 6).

However, when De Méré betted on (DM2) he mostly lost. Puzzled, he wrote
to Pascal, who showed that the probabilities differ.
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Let us write 1six : N(pips) → {0, 1} for the sharp predicate that sends a
multiset φ, over the dice space pips = {1, 2, 3, 4, 5, 6}, to 1 if φ(6) ≥ 1 and to
0 otherwise. It thus tells that the number 6 occurs at least once in the draw φ.
We can thus model the first option (DM1) as validity:

mn[4](dice) |= 1six. (DM1)

The second option (DM2) then becomes:

mn[24](dice ⊗ dice) |= 2six, (DM2)

where 2six : N(dice ×dice)→ {0, 1} is the obvious predicate with 2six(ψ) = 1
iff ψ(6, 6) ≥ 1.

Using a computer to calculate the validity (DM1) is relatively easy, giving
an outcome 671

1296 . It involves summing over
((

6
4

))
= 126 multisets, see Proposi-

tion 1.8.7. However, the sum in (DM1) is huge, involving
((

36
24

))
multisets — a

number in the order of 2 · 1016.
The common way to compute (DM1) and (DM2) is to switch to validity

over the distribution dice, and using orthosupplement (negations). Getting at
least one 6 in 4 throws is the orthosupplement of getting 4 times no 6. This can
be represented and computed as:

mn[4](dice) |= 1six = acc =≪iid [4](dice) |= 1six by Theorem 2.6.7
= iid [4](dice) |= acc ≫= 1six
= iid [4](dice) |=

(
acc ≫= 1six⊥

)⊥
= dice ⊗ dice ⊗ dice ⊗ dice |=

(
1⊥6 ⊗ 1⊥6 ⊗ 1⊥6 ⊗ 1⊥6

)⊥
= 1 −

(
dice |= 1⊥6

)4
by Lemmas 4.2.6 and 4.2.9

= 1 −
( 5

6
)4

= 671
1296

≈ 0.518.

Similarly one can compute (DM2) as:

mn[24](dice ⊗ dice) |= 2six =
(
dice ⊗ dice

)24
|=

(((
16 ⊗ 16

)⊥)24
)⊥

= 1 −
(
dice ⊗ dice |=

(
16 ⊗ 16

)⊥)24

= 1 −
( 35

36
)24

≈ 0.491.

Hence indeed, betting on (DM2) is a bad idea.

In this section we look at validities over distributions of draws from an urn,
like in (DM1) and (DM2). In the remainder we establish connections between
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such validities and validities over the urn, as distribution. This involves free
extensions of observables to multisets.

We notice that there are two (obvious) ways to extend an observable X → R
on a set X to natural multisets over X, since we can choose to use either the
additive structure or the multiplicative structure on R. Both these extensions
are based on Proposition 1.6.5.

Definition 4.4.3. Let p : X → R be an observable on a set X.

1 The additive extension p+ : N(X) → R of p on multisets over X is defined
as:

p+(φ) =
∑

x∈supp(φ)

φ(x) · p(x) =
∑
x∈X

φ(x) · p(x).

2 The multiplicative extension p• : N(X)→ R of p is:

p•(φ) =
∏

x∈supp(φ)

p(x)φ(x) =
∏
x∈X

p(x)φ(x).

By construction, these extensions are homomorphisms of monoids, so that: p+(0) = 0
p•(0) = 1.

and

 p+
(
φ + ψ

)
= p+(φ) + p+(ψ)

p•
(
φ + ψ

)
= p•(φ) · p•(ψ)

(4.14)

Once extended to multisets, we can investigate the validity of these exten-
sions in distributions obtained from drawing. We concentrate on the multino-
mial and Poisson multinomial cases first where the validity of both the additive
and the multiplicative extensions can be formulated in terms of the validity in
the underlying state (urn).

Proposition 4.4.4. Consider a random variable given by an observable p : X →
R and a state ω ∈ D(X).

1 For K ∈ N, the additive extension p+ of p forms new random variable, with
the multinomial distribution mn[K](ω) onN[K](X) as state. The associated
validity is:

mn[K](ω) |= p+ = K ·
(
ω |= p

)
.

2 The multiplicative extension gives:

mn[K](ω) |= p• =
(
ω |= p

)K
.

3 For λ ∈ R>0, the validity of the additive extension in a Poisson multinomial
is:

Pmn[λ](ω) |= p+ = λ ·
(
ω |= p

)
.
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4 The validity of the multiplicative extension can be expressed as:

Pmn[λ](ω) |= p• = e−λ·(ω|=p⊥).

Proof. 1 We use Lemma 3.3.2 in:

mn[K](ω) |= p+ =
∑

φ∈N[K](X)

mn[K](ω)(φ) · p+(φ)

=
∑

φ∈N[K](X)

mn[K](ω)(φ) ·

∑
x∈X

φ(x) · p(x)


=

∑
x∈X

p(x) ·
∑

φ∈N[K](X)

mn[K](ω)(φ) · φ(x)

=
∑
x∈X

p(x) · K · ω(x)

= K ·
(
ω |= p

)
.

2 By unfolding the multinomial distribution, see (2.40):

mn[K](ω) |= p• =
∑

φ∈N[K](X)

mn[K](ω)(φ) · p•(φ)

=
∑

φ∈N[K](X)

(φ ) ·
(∏

x
ω(x)φ(x)

)
·
(∏

x
p(x)φ(x)

)
=

∑
φ∈N[K](X)

(φ ) ·
∏

x

(
ω(x) · p(x)

)φ(x)

(1.39)
=

(∑
x ω(x) · p(x)

)K

=
(
ω |= p

)K
.

3 The validity of the additive extension p+ in a Poisson point process state is
computed as follows, using the first item for multinomials.

Pmn[λ](ω) |= p+ =
∑
K∈N

∑
φ∈N[K](X)

pois[λ](K) ·mn[K](ω)(φ) · p+(φ)

=
∑
K∈N

pois[λ](K) ·
(
mn[K](ω) |= p+

)
(1)
=

∑
K∈N

pois[λ](K) · K ·
(
ω |= p

)
= λ ·

(
ω |= p

)
by Exercise 4.1.8.
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4 In the multiplicative case we get:

Pmn[λ](ω) |= p• =
∑
K∈N

pois[λ](K) ·
(
mn[K](ω) |= p•

)
(2)
=

∑
K∈N

e−λ ·
λK

K!
·
(
ω |= p

)K

=
e−λ

e−λ·(ω|=p) ·
∑
K∈N

e−λ·(ω|=p) ·
(λ · (ω |= p))K

K!

= e−λ·(1−ω|=p)

= e−λ·(ω|=p⊥).

Remark 4.4.5. A validity ω |= p can be approximated via sampling. This may
be useful in situations where the distribution ω has very large support, so that
computing the sum

∑
x∈supp(ω) ω(x) · p(x) = ω |= p takes too many resources.

One can use the approach described in the code fragment below, where K > 0
is a parameter for the number of iterations. This is called importance sampling.

v := 0
repeat K times

x← ω
v := v + p(x)

return v/K

(4.15)

The justification for this approach is given by Proposition 4.4.4 (1). It takes
the probabilities of draws of multisets φ into accounts and computes p+(φ) =∑

x φ(x) · p(x) as in the above repeat loop. If we do this for all draws φ, divided
by K, with their multinomial probabilities, we get:∑

φ∈N[K](X)

mn[K](ω)(φ) ·
(∑

x φ(x) · p(x)
K

)
=

1
K
·
(
mn[K](ω) |= p+(φ)

)
= ω |= p.

For the hypergeometric and Pólya distributions we have results for the ad-
ditive extension. They resemble the formulation in Proposition 4.4.4 (1) for
multinomials.

Proposition 4.4.6. Consider an observable p and an urn υ.

hg[K](υ) |= p+ = K ·
(
Flrn(υ) |= p

)
= pl[K](υ) |= p+.

Proof. Both equations are obtained as for Proposition 4.4.4 (1), this time using
Lemmas 3.4.5 (1) and 3.5.1 (1).
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For the parallel multinomial law pml : M[K]
(
D(X)

)
→ D

(
M[K](X)

)
from

Section 3.6 there is a similar result, in the multiplicative case.

Proposition 4.4.7. For an observable p : X → R and for a multiset of distri-
butions

∑
i ni|ωi ⟩ ∈ M[K](D(X)),

pml
(∑

i ni|ωi ⟩
)
|= p• =

∏
i

(
ωi |= p

)ni .

Proof. We use the second formulation (3.33) of pml in:

pml
(∑

i ni|ωi ⟩
)
|= p• =

∑
i, φi∈N[ni](X)

(∏
i mn[ni](ωi)(φi)

)
· p•

(∑
i φi

)
=

∑
i, φi∈N[ni](X)

(∏
i mn[ni](ωi)(φi)

)
·
(∏

i p•(φi)
)

(4.14)
=

∑
i, φi∈N[ni](X)

∏
i mn[ni](ωi)(φi) · p•(φi)

=
∏

i

∑
φi∈N[ni](X)

mn[ni](ωi)(φi) · p•(φi)

=
∏

i
mn[ni](ωi) |= p•

=
∏

i

(
ωi |= p

)ni , by Proposition 4.4.4 (2).

For the following result we use the extension N[K] : Chan → Chan of the
(natural) multiset functor to the category of probabilistic channels, see Corol-
lary 3.7.8.

Corollary 4.4.8. Let c : X → Y be a channel, with a factor q : Y → R≥0 on its
codomain. Then we have an equality of predicates on N[K](X) of the form:

N[K](c) ≫= q• = c ≫= q•.

Proof. For φ ∈ N[K](X),(
N[K](c) ≫= q•

)
(φ)

(4.10)
= N[K](c)(φ) |= q•

(3.41)
= pml

(
N(c)(φ)

)
|= q•

= pml

∑
x∈X

φ(x)
∣∣∣c(x)

〉 |= q•

=
∑
x∈X

(
c(x) |= q

)φ(x) by Proposition 4.4.7

(4.10)
=

∑
x∈X

(
c ≫= q

)
(x)φ(x)

= c ≫= q•(φ).
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Exercises

4.4.1 Let p : X → R be an observable. Show that:

p+
(
acc(x1, . . . , xn)

)
= p(x1) + . . . + p(xn)

p•
(
acc(x1, . . . , xn)

)
= p(x1) · . . . · p(xn).

4.4.2 Show that the additive/multiplicative extension preserves the addi-
tive/multiplicative structure of observables:

p + q+ = p+ + q+ 0
+
= 0

and:

p & q
•
= p• & q• 1

•
= 1

4.4.3 Let E ⊆ X be a subset (event), corresponding to the sharp indicator
predicate 1E : X → [0, 1]. Check that for an arbitrary multiset φ ∈
N(X),

1E
•
(φ) = 1 ⇐⇒ supp(φ) ⊆ E.

Note that this also holds for 1E
•
(0) = 1, since a product over an empty

set equals one. Conclude that 1E
•

: N(X) → [0, 1] is also a sharp
predicate.

4.4.4 For a random variable p : X → R with state ω ∈ D(X) consider the
validity mn[−](ω) |= p+ as an observable N → R. Show that for a
distribution σ ∈ D(N) one has:

σ |=
(
mn[−](ω) |= p

)
= mean(σ) · (ω |= p).

4.4.5 For a random variable (ω, p) write
∑

(ω, p) : N → R for the summa-
tion observable defined by:∑

(ω, p)(n) B ω |= p + · · · + p (n times).

Show that for a distribution σ ∈ D(N) one has:

σ |=
∑

(ω, p) = mean(σ) · (ω |= p).

4.4.6 The following is often used as illustration of Wald’s identity. Roll a
dice, and let n ∈ pips = {1, . . . , 6} be the number that comes up; then
roll the dice n more times and record the sum of the resulting pips.
What is the expected sum?

1 Use Exercise 4.4.5 to show that the expected number if 49
4 .

2 Obtain this same outcome via Proposition 4.4.4 (1).
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4.4.7 Let p : X → R be an observable. In Definition 4.4.3 we have in-
troduced p+ and p• as extensions of p from X to multisets. We can
however also extend p to lists, using freeness, see Proposition 1.4.3.
In this exercise we write p+ : L(X)→ R and p• : L(X)→ R for these
extensions.

1 Describe p+
(
[x1, . . . , xK]

)
and p•

(
[x1, . . . , xK]

)
concretely.

2 Prove that:

iid [K](ω) |= p+ = K ·
(
ω |= p

)
iid [K](ω) |= p• =

(
ω |= p

)K
.

3 Show next that:

Piid [λ](ω) |= p+ = λ ·
(
ω |= p

)
Piid [λ](ω) |= p• = e−λ·(ω|=p⊥).

4.5 Validity-based distances

This section describes two standard distances, between states, and between
predicates. It shows that these distances can both be formulated in terms of
validity |=, in a dual form. Basic properties of these distances are included.
Earlier, in Section 2.8, we have have seen Kullback-Leibler divergence as a
measure of difference between states. But divergence does not form a metric
since it is not symmetric, see Remark 4.5.6 below for an illustration of the
difference.

The distances that we focus on in this section are defined as follows. The
distance d(ω1, ω2) between two states ω1, ω2 ∈ D(X), on the same set X, can
be defined as the join of the distances in [0, 1], between validities:

d(ω1, ω2) B
∨

p∈Pred (X)

∣∣∣ω1 |= p − ω2 |= p
∣∣∣. (4.16)

Similarly, the distance d(p1, p2) between two predicates p1, p2 ∈ Pred (X) on
the same set, is defined as:

d(p1, p2) B
∨

ω∈D(X)

∣∣∣ω |= p1 − ω |= p2
∣∣∣. (4.17)

Note that the above formulations involve predicates only, not observables in
general.
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Figure 4.2 Distance graph between distributions, see Example 4.5.2.

4.5.1 Distance between states

The distance defined in (4.16) is commonly called the total variation distance,
which is a special case of the Kantorovich distance, see e.g. [61, 17, 132, 128].
Its two alternative characterisations below are standard. We refer to [95] for
more information about the validity-based approach.

Proposition 4.5.1. Let X be an arbitrary set, with states ω1, ω2 ∈ D(X). Then:

d
(
ω1, ω2

)
= max

U⊆X
ω1 |= 1U − ω2 |= 1U =

1
2

∑
x∈X

∣∣∣ω1(x) − ω2(x)
∣∣∣.

We write maximum ‘max’ instead of join
∨

to express that the supremum
is actually reached by a subset (sharp predicate).

Proof. Let ω1, ω2 ∈ D(X) be two discrete probability distributions on the
same set X. We will prove the two inequalities labeled (a) and (b) in:

1
2

∑
x∈X

∣∣∣ω1(x) − ω2(x)
∣∣∣ (a)
≤ max

U⊆X
ω1 |= 1U − ω2 |= 1U

≤
∨

p∈Pred (X)

∣∣∣ω1 |= p − ω2 |= p
∣∣∣

(b)
≤ 1

2

∑
x∈X

∣∣∣ω1(x) − ω2(x)
∣∣∣.

This proves Proposition 4.5.1 since the inequality in the middle is trivial.
We start with some preparatory definitions. Let U ⊆ X be an arbitrary subset.
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We shall write ωi(U) =
∑

x∈U ωi(x) = (ω |= 1U). We partition U in three
disjoint parts, and take the relevant sums:

U> = {x ∈ U | ω1(x) > ω2(x)}
U= = {x ∈ U | ω1(x) = ω2(x)}
U< = {x ∈ U | ω1(x) < ω2(x)}

 U↑ = ω1(U>) − ω2(U>) ≥ 0
U↓ = ω2(U<) − ω1(U<) ≥ 0.

We use this notation in particular for U = X. In that case we can use:

1 = ω1(X) = ω1(X>) + ω1(X=) + ω1(X<)
1 = ω2(X) = ω2(X>) + ω2(X=) + ω2(X<)

Hence by subtraction we obtain, since ω1(X=) = ω2(X=),

0 =
(
ω1(X>) − ω2(X>)

)
+

(
ω1(X<) − ω2(X<)

)
That is,

X↑ = ω1(X>) − ω2(X>) = ω2(X<) − ω1(X<) = X↓ .

As a result:

1
2

∑
x∈X

∣∣∣ω1(x) − ω2(x)
∣∣∣

= 1
2

∑
x∈X>

(
ω1(x) − ω2(x)

)
+

∑
x∈X<

(
ω2(x) − ω1(x)

)
= 1

2

((
ω1(X>) − ω2(X>)

)
+

(
ω2(X<) − ω1(X<)

))
= 1

2
(
X↑ + X↓

)
= X↑

(4.18)

We have prepared the ground for proving the above inequalities (a) and (b).

(a) We will see that the above maximum is actually reached for the subset U =
X>, first of all because:

1
2

∑
x∈X

∣∣∣ω1(x) − ω2(x)
∣∣∣ (4.18)
= X↑ = ω1(X>) − ω2(X>)

= ω1 |= 1X> − ω2 |= 1X>

≤ max
U⊆X

ω1 |= 1U − ω2 |= 1U .

(b) Let p ∈ Pred (X) be an arbitrary predicate. We have:
(
1U & p

)
(x) = 1U(x) ·
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p(x), which is p(x) if x ∈ U and 0 otherwise. Then:∣∣∣ω1 |= p − ω2 |= p
∣∣∣

=
∣∣∣∣ (ω1 |= 1X>& p + ω1 |= 1X=& p + ω1 |= 1X<& p

)
−

(
ω2 |= 1X>& p + ω2 |= 1X=& p + ω2 |= 1X<& p

) ∣∣∣∣
=

∣∣∣∣ (ω1 |= 1X>& p − ω2 |= 1X>& p
)
−

(
ω2 |= 1X<& p − ω1 |= 1X<& p

) ∣∣∣∣
=



(
ω1 |= 1X>& p − ω2 |= 1X>& p

)
−

(
ω2 |= 1X<& p − ω1 |= 1X<& p

)
if ω1 |= 1X>& p − ω2 |= 1X>& p

(∗)
≥ ω2 |= 1X<& p − ω1 |= 1X<& p(

ω2 |= 1X<& p − ω1 |= 1X<& p
)
−

(
ω1 |= 1X>& p − ω2 |= 1X>& p

)
otherwise

≤

ω1 |= 1X>& p − ω2 |= 1X>& p if (∗)
ω2 |= 1X<& p − ω1 |= 1X<& p otherwise

=


∑

x∈X> (ω1(x) − ω2(x)) · p(x) if (∗)∑
x∈X< (ω2(x) − ω1(x)) · p(x) otherwise

≤


∑

x∈X> ω1(x) − ω2(x) if (∗)∑
x∈X< ω2(x) − ω1(x) otherwise

=

 X↑ if (∗)
X↓ = X↑ otherwise

= X↑
(4.18)
= 1

2
∑

x∈X

∣∣∣ω1(x) − ω2(x)
∣∣∣.

This completes the proof.

Example 4.5.2. Consider the set of ‘fractional’ distributions:{
Flrn(φ)

∣∣∣∣ φ ∈ N[4]
(
{a, b, c}

) }
.

Its
((

3
4

))
= 15 elements form a triangle, as described in Figure 4.2, with each

edge describing a (total variation) distance of 1
4 .

The sum-formulation in Proposition 4.5.1 is useful in many situations, for
instance in order to prove that the above distance function d between states is
a metric.

Lemma 4.5.3. The distance d(ω1, ω2) between states ω1, ω2 ∈ D(X) in (4.16)
turns the set of distributionsD(X) into a metric space, with [0, 1]-valued met-
ric.

Proof. If d(ω1, ω2) = 1
2
∑

x∈X |ω1(x)−ω2(x) | = 0, then |ω1(x)−ω2(x) | = 0 for
each x ∈ X, so that ω1(x) = ω2(x), and thus ω1 = ω2. Obviously, d(ω1, ω2) =
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d(ω2, ω1). The triangle inequality holds for d since it holds for the standard
distance on [0, 1].

d(ω1, ω3) = 1
2

∑
x∈X

∣∣∣ω1(x) − ω3(x)
∣∣∣

≤ 1
2

∑
x∈X

∣∣∣ω1(x) − ω2(x)
∣∣∣ + ∣∣∣ω2(x) − ω3(x)

∣∣∣
= 1

2

∑
x∈X

∣∣∣ω1(x) − ω2(x)
∣∣∣ + 1

2

∑
x∈X

∣∣∣ω2(x) − ω3(x)
∣∣∣

= d(ω1, ω2) + d(ω2, ω3).

We use this same sum-formulation for the following result. It uses the no-
tion of non-expansive function, which is frequently used as choice of map-
ping between metric spaces. Explicitly f : (X, d) → (Y, d) is non-expansive if
d
(
f (x), f (x′)

)
≤ d(x, x′), for all x, x′ ∈ X. Such non-expansive functions are

automatically continuous, since if d(xn, x) → 0 as n goes to infinity, then also
d
(
f (xn), f (x)

)
→ 0.

Lemma 4.5.4. State transformation is non-expansive: for a channel c : X → Y
one has:

d
(
c =≪ω1, c =≪ω2

)
≤ d

(
ω1, ω2

)
.

Proof. Since:

d
(
c =≪ω1, c =≪ω2

)
= 1

2

∑
y∈Y

∣∣∣ (c =≪ω1)(y) − (c =≪ω2(y)
∣∣∣

= 1
2

∑
y∈Y

∣∣∣∣∣∣∣∑x∈X

ω1(x) · c(x)(y) −
∑
x∈X

ω2(x) · c(x)(y)

∣∣∣∣∣∣∣
= 1

2

∑
y∈Y

∣∣∣∣∣∣∣∑x∈X

c(x)(y) · (ω1(x) − ω2(x))

∣∣∣∣∣∣∣
≤ 1

2

∑
y∈Y

∑
x∈X

c(x)(y) ·
∣∣∣ω1(x) − ω2(x)

∣∣∣
= 1

2

∑
x∈X

∑
y∈Y

c(x)(y)

 · ∣∣∣ω1(x) − ω2(x)
∣∣∣

= d
(
ω1, ω2

)
.

We recall from Definition 3.1.5 that a coupling of two states ω1, ω2 ∈ D(X)
is a joint state σ ∈ D(X × X) that marginalises to ω1 and ω2, i.e. that satisfies
σ
[
1, 0

]
= ω1 and σ

[
0, 1

]
= ω2. Such couplings give an alternative formula-

tion of the distance between states, which is commonly called the Wasserstein
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distance, and can be described in terms of ‘optimal transport’, from one dis-
tribution to another, see [180] for details. The proof of the next result is stan-
dard and is included in order to be complete. It is often called KR-duality, for
Kantorovich-Rubenstein.

Proposition 4.5.5. For states ω1, ω2 ∈ D(X),

d(ω1, ω2) =
∧
{σ |= Eq⊥ | σ is a coupling between ω1, ω2}, (4.19)

where Eq : X × X → [0, 1] is the equality predicate from Definition 4.1.1 (4).

The binary predicate Eq⊥ is the discrete distance on the set X, since for
x, x′ ∈ X one has:

Eq⊥(x, x′) = 1 − Eq(x, x′) =

1 − 1 if x = x′

1 − 0 if x , x′

=

0 if x = x′

1 if x , x′.

The formula in the proposition can be generalised to a a ‘lifting’ of the distri-
bution functor D from sets to metric spaces. As such it is used above for a set
with the discrete metric Eq⊥.

As we have seen in Exercise 2.3.5 there can be infinitely many couplings of
two given distributions. This makes computing the infimum in (4.19) a chal-
lenge. However, the Wasserstein distance can be computed via (linear) optimi-
sation2.

Proof. We use the notation and results from the proof of Proposition 4.5.1. We
first prove the inequality (≤). Write X> = {x ∈ X | ω1(x) > ω2(x)} and let σ be
a coupling of ω1, ω2. Then:

ω1(x) =
∑
y∈X

σ(x, y) = σ(x, x) +
∑
y,x

σ(x, y)

≤ ω2(x) +
(
σ |= (1x ⊗ 1) & Eq⊥

)
.

This means that ω1(x)−ω2(x) ≤ σ |= (1x ⊗ 1) & Eq⊥ for x ∈ X>. We similarly
have:

ω2(x) =
∑
x∈X

σ(y, x) = σ(x, x) +
∑
y,x

σ(y, x)

≤ ω1(x) +
(
σ |= (1 ⊗ 1x) & Eq⊥

)
.

2 This is implemented for instance in Python’s ScyPi library.

341



342 Chapter 4. Observables and validity342 Chapter 4. Observables and validity342 Chapter 4. Observables and validity

Hence ω2(x) − ω1(x) for x < X>. Putting this together gives:

d(ω1, ω2) = 1
2

∑
x∈X

∣∣∣ω1(x) − ω2(x)
∣∣∣

= 1
2

∑
x∈X>

ω1(x) − ω2(x) + 1
2

∑
x∈¬X>

ω2(x) − ω1(x)

≤ 1
2

∑
x∈X>

σ |= (1x ⊗ 1) & Eq⊥ + 1
2

∑
x∈¬X>

σ |= (1 ⊗ 1x) & Eq⊥

= 1
2 σ |= (1X> ⊗ 1) & Eq⊥ + 1

2 σ |= (1 ⊗ 1¬X> ) & Eq⊥

≤ 1
2 σ |= Eq⊥ + 1

2 σ |= Eq⊥

= σ |= Eq⊥.

For the inequality (≥) one uses what is called an optimal coupling ρ ∈ D(X×
X) of ω1, ω2. It can be defined as:

ρ(x, y) B


min

(
ω1(x), ω2(x)

)
if x = y

max
(
ω1(x) − ω2(x), 0

)
·max

(
ω2(y) − ω1(y), 0

)
d(ω1, ω2)

otherwise.

(4.20)
We first check that this ρ is a coupling. Let x ∈ X> so that ω1(x) > ω2(x); then:∑

y∈X

ρ(x, y)

= ω2(x) + (ω1(x) − ω2(x)) ·
∑
y,x

max
(
ω2(y) − ω1(y), 0

)
d(ω1, ω2)

= ω2(x) + (ω1(x) − ω2(x)) ·
∑

y∈X< ω2(y) − ω1(y)
d(ω1, ω2)

= ω2(x) + (ω1(x) − ω2(x)) ·
X↓

d(ω1, ω2)

= ω2(x) + (ω1(x) − ω2(x)) · 1 see the proof of Proposition 4.5.1
= ω1(x).

If x < X>, so that ω1(x) ≤ ω2(x), then it is obvious that
∑

y ρ(x, y) = ω1(x)+0 =
ω1(x). This shows σ

[
1, 0

]
= ω1. In a similar way one obtains σ

[
0, 1

]
= ω2.

Finally,

ρ |= Eq =
∑
x∈X

ρ(x, x) =
∑
x∈X

min
(
ω1(x), ω2(x)

)
=

∑
x∈X>

ω2(x) +
∑
x<X>

ω1(x)

= ω2(X>) + 1 − ω1(X>)
= 1 −

(
ω1(X>) − ω2(X>)

)
= 1 − d(ω1, ω2).
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Figure 4.3 Visual comparance of distance and divergence between flip states, see
Remark 4.5.6 for details.

Hence d(ω1, ω2) = 1 −
(
ρ |= Eq

)
= ρ |= Eq⊥.

Now that we have a good understanding of the total variation distance on
distributions, there are a couple of comparisons to make.

Remark 4.5.6. In Definition 2.8.1 we have seen Kullback-Leibler divergence
DKL , as a measure of difference between states. However, this DKL is not a
proper metric, since it is not symmetric, see Exercise 2.8.1. Nevertheless, it
is often used as distance between states, especially in minimisation problems
(see e.g. Exercise ??).

Figure 4.3 compares the total variation distance and the Kullback-Leibler
divergence between two flip states:

d
(
flip(r),flip(s)

)
DKL

(
flip(r),flip(s)

)
.

for r, s ∈ [0, 1], where, recall, flip(r) = r|1⟩ + (1 − r)|0⟩. The distance and
divergence are zero when r = s and increases on both sides of the diagonal.
The distance ascends via straight planes, but the divergence has a more baroque
shape.

Remark 4.5.7. Let X be a finite set, say with N elements. We can view the set
D(X) of distributions on X as a subset of the N-dimensional cube [0, 1]N . The
total variation distance can be seen as coming from the norm on [0, 1]N given
by:

∥ x ∥tv B 1
2 ·

∑
i xi, for x ∈ [0, 1]N .
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However, on n-tuples of real numbers the Euclidean norm is common, defined
as:

∥ x ∥eu B
√∑

i x2
i , here for x ∈ [0, 1]N .

Is this difference relevant?
It is not, from a topological point of view. Both norms induce the same topol-

ogy on [0, 1]N . This follows from a general result about norms, see e.g. [30, III,
Prop. 1.5]. For this it suffices to show that the norms are related via constants.
In our case we have:

2
N · ∥ x ∥tv ≤ ∥ x ∥eu ≤ 2

√
N · ∥ x ∥tv

For the first inequality we use that xi =

√
x2

i ≤ ∥ x ∥eu , so ∥ x ∥tv = 1
2 ·

∑
i xi ≤

N
2 · ∥ x ∥eu . For the second inequality we abbreviate s = ∥ x ∥tv and observe that

xi ≤ 2s. Hence x2
i ≤ 4s2 and thus

∑
i x2

i ≤ 4N · s2. But then: ∥ x ∥eu =

√∑
i x2

i ≤

2
√

N · s.
We conclude that from a topological perspective it does not matter if we

use distributions (on a finite set) with the total variation distance or with the
Euclidean distance, induced by the underlying cube of unit intervals. This also
means that the induced Borel measures are the same. This will be relevant
later on, in Section ??, when we consider the Dirichlet probability measure on
D(X).

The relation between distributions and multisets is a recurring theme. Now
that we have a distance function on distributions we can speak about approxi-
mation of a distribution via a chain of multisets. This is what the next remark
is about. This topic returns as a law of large numbers in Section 5.5, see esp.
Theorem 5.5.4. Here we take a an algorithmic perspective.

Remark 4.5.8. Let a distribution ω ∈ D(X) be given. One can ask: is there a
sequence of natural multisets φK ∈ N[K](X) with Flrn(φK) getting closer and
closer to ω, in the total variation distance d, as K goes to infinity?

The answer is yes. Here is one way to do it. Assume the distribution ω has
support {x1, . . . , xN}, of course with N > 0. Below we use k·ω ∈ M({x1, . . . , xn}),
for k ≥ 0.

• Pick φ1 = 1| x j ⟩ where ω takes a maximum at x j, i.e., ω(x j) ≥ ω(xi) for all
i. Set variable cp B j, for ‘current position’.

• Look for the first position i after cp where φK(xi) < (n+ 1) ·ω(xi). Then you
set φK+1 B φK + 1| xi ⟩, and cp B i. This search wraps around, if needed.
When no i is found we are done and have Flrn(φK) = ω.
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Concretely, if ω = 1
6 | x1 ⟩ +

1
2 | x2 ⟩ +

1
3 | x3 ⟩. Then, consecutively,

• 0 · ω = 0 and φ1 = 1| x2 ⟩

• 1 · ω = 1
6 | x1 ⟩ +

1
2 | x2 ⟩ +

1
3 | x3 ⟩ and φ2 = 1| x2 ⟩ + 1| x3 ⟩

• 2 · ω = 1
3 | x1 ⟩ + 1| x2 ⟩ +

2
3 | x3 ⟩ and φ3 = 1| x1 ⟩ + 1| x2 ⟩ + 1| x3 ⟩

• 3 · ω = 1
2 | x1 ⟩ +

3
2 | x2 ⟩ + 1| x3 ⟩ and φ4 = 1| x1 ⟩ + 2| x2 ⟩ + 1| x3 ⟩

• 4 · ω = 2
3 | x1 ⟩ + 2| x2 ⟩ +

4
3 | x3 ⟩ and φ5 = 1| x1 ⟩ + 2| x2 ⟩ + 2| x3 ⟩

• 5 · ω = 5
6 | x1 ⟩ +

5
2 | x2 ⟩ +

5
3 | x3 ⟩ and φ6 = 1| x1 ⟩ + 3| x2 ⟩ + 2| x3 ⟩

• 6 ·ω = 1| x1 ⟩ + 3| x2 ⟩ + 2| x3 ⟩, giving rise to a halt, since φ6 = 6 ·ω and thus
Flrn(φ6) = ω.

In this case we get a finite sequence of multisets approaching ω. The sequence
is infinite for, e.g.,

ω = 1
7 | x1 ⟩ +

4
7 | x2 ⟩ +

2
7 | x3 ⟩ ≈ 0.1429| x1 ⟩ + 0.5714| x2 ⟩ + 0.2857| x3 ⟩.

Running the above algorithm gives, for instance:

• φ10 = 2| x1 ⟩ + 5| x2 ⟩ + 3| x3 ⟩

• φ100 = 15| x1 ⟩ + 56| x2 ⟩ + 29| x3 ⟩

• φ1000 = 143| x1 ⟩ + 571| x2 ⟩ + 286| x3 ⟩

• φ10000 = 1429| x1 ⟩ + 5713| x2 ⟩ + 2858| x3 ⟩.

The next result summarises some basic topological properties of metric
spaces of distributions. In short, when X is finite, thenD(X) is a compact Pol-
ish space: it is complete and has a countable dense subset, given by fractional
distributions. Like any metric space, D(X) is Hausdorff: two distinct distribu-
tions are contained in two disjoint open balls. Additionally,D(X) is convex, so
D(X) is a convex compact space, as studied for instance in [89].

Theorem 4.5.9.

1 For an arbitrary set X, the setD(X) has a dense subset:⋃
K∈N
D[K](X) ⊆ D(X) where D[K](X) B

{
Flrn(φ)

∣∣∣ φ ∈ N[K](X)
}
.

We often refer to the elements ofD[K](X) as fractional distributions.
2 If X is a finite set, then D(X), with the total variation distance d, is a com-

plete metric space.
3 When X is finite, thenD(X) is a Polish space: a complete metric space with

a countable dense subset.
4 When X is finite, the spaceD(X) is totally bounded, and thus compact.
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Proof. 1 Let ω ∈ D(X) and ε > 0. We need to find a multiset φ ∈ N(X)
with d(ω,Flrn(φ)) < ε. There is a systematic way to find such multisets via
the decimal representation of the probabilities in ω. This works as follows.
Assume we have:

ω = 0.383914217 . . .
∣∣∣a〉
+ 0.406475610 . . .

∣∣∣b〉
+ 0.209610173 . . .

∣∣∣c〉
.

For each n we chop off after n decimals and multiply with 10n, giving:

φ1 B 3
∣∣∣a〉
+ 4

∣∣∣b〉
+ 2

∣∣∣c〉
with d

(
ω,Flrn(φ1)

)
≤ 1

2 · 3 · 10−1

φ2 B 38
∣∣∣a〉
+ 40

∣∣∣b〉
+ 20

∣∣∣c〉
with d

(
ω,Flrn(φ2)

)
≤ 1

2 · 3 · 10−2

φ3 B 383
∣∣∣a〉
+ 406

∣∣∣b〉
+ 209

∣∣∣c〉
with d

(
ω,Flrn(φ3)

)
≤ 1

2 · 3 · 10−3

etc.

In general, for a distributionωwith supp(ω) = {x1, . . . , xM}we can thus con-
struct a sequence of multisets φn ∈ N

(
{x1, . . . , xM}

)
with d

(
ω,Flrn(φn)

)
≤

1
2 · M · 10−n. This distance becomes less than any given ε > 0, by choosing
n sufficiently large. This shows that the fractional distributions are dense in
D(X).

2 Let X have M elements, say X = {x1, . . . , xM} and ωi ∈ D(X) be a Cauchy
sequence. Fix n. Then for all i, j,∣∣∣ωi(xn) − ω j(xn)

∣∣∣ ≤ 2 · d
(
ωi, ω j

)
.

Hence, the sequence ωi(xn) ∈ [0, 1] is a Cauchy sequence, say with limit
rn ∈ [0, 1]. Take ω =

∑
n rn| xn ⟩ ∈ D(X). This is the limit of the distributions

ωi.
3 When X is finite, say with M elements, we know from Proposition 1.8.7 that
N[K](X) contains

((
M
K

))
multisets, so that D[K](X) contains

((
M
K

))
distribu-

tions. Hence a countable union
⋃

KD[K](X) of such finite sets is countable.
4 We use the standard result that a metric space is compact if and only if it

is complete and totally bounded. Hence, by item (2), it suffices to show that
D(X) is totally bounded. Suppose X has M elements. Let ε > 0 be given. We
need to find a finite number of ε-balls Bε(σ) whose union contains D(X).
Take K so that 1

2 ·M · 10−K < ε. The above argument for item (1) shows that
for each ω ∈ D(X) there is then an φ ∈ N[K](X) with d

(
ω,Flrn(φ)

)
< ε.

This shows:

D(X) ⊆
⋃

φ∈N[K](X)

{ω ∈ D(X) | d
(
ω,Flrn(φ)

)
< ε}

=
⋃

φ∈N[K](X)

Bε
(
Flrn(φ)

)
.
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Figure 4.4 Fractional distributions from D[K]
(
{a, b, c}

)
as points in the cube

[0, 1]3, for K = 20 on the left and K = 50 on the right. The plot on the left
contains

((
3
20

))
= 231 dots (distributions) and the one on the right

((
3

50

))
= 1326,

see Proposition 1.8.7.

Notice that the sequence of multisets φK approaching ω described in Re-
mark 4.5.8 has the special property that ∥φK∥ = K. This does not hold for the
sequence φn in the above proof. Such a size property is not needed there.

The denseness of the fractional distributions is illustrated in Figure 4.4.
A different way to approximate a distribution ω is described in Section 5.5,

via what is called the law of large numbers.

4.5.2 Distance between predicates

What we have to say about the validity-based distance (4.17) between predi-
cates is rather brief. First, there is also a pointwise formulation.

Lemma 4.5.10. For two predicates p1, p2 ∈ Pred (X),

d(p1, p2) =
∨
x∈X

∣∣∣ p1(x) − p2(x)
∣∣∣.

This distance function d makes the set Pred (X) into a metric space.
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Proof. First, we have for each x ∈ X,

d(p1, p2)
(4.17)
=

∨
ω∈D(X)

∣∣∣ω |= p1 − ω |= p2
∣∣∣

≥
∣∣∣ unit(x) |= p1 − unit(x) |= p2

∣∣∣
=

∣∣∣ p1(x) − p2(x)
∣∣∣.

Hence d(p1, p2) ≥
∨

x

∣∣∣ p1(x) − p2(x)
∣∣∣.

The other direction follows from:∣∣∣ω |= p1 − ω |= p2
∣∣∣ = ∣∣∣∣∣∣∣∑z∈X

ω(z) · p1(z) −
∑
z∈X

ω(z) · p2(z)

∣∣∣∣∣∣∣
≤

∑
z∈X

ω(z) ·
∣∣∣ p1(z) − p2(z)

∣∣∣
≤

∑
z∈X

ω(z) ·
∨
x∈X

∣∣∣ p1(x) − p2(x)
∣∣∣.

=

∑
z∈X

ω(z)

 ·∨
x∈X

∣∣∣ p1(x) − p2(x)
∣∣∣.

=
∨
x∈X

∣∣∣ p1(x) − p2(x)
∣∣∣.

The fact that we get a metric space is now straightforward.

There is an analogue of Lemma 4.5.4.

Lemma 4.5.11. Predicate transformation is also non-expansive: for a channel
c : X → Y one has, for predicates p1, p2 ∈ Pred (Y),

d
(
c ≫= p1, c ≫= p2

)
≤ d

(
p1, p2

)
.

Proof. Via the formulation of Lemma 4.5.10 we get:

d
(
c ≫= p1, c ≫= p2

)
=

∨
x∈X

∣∣∣ (c ≫= p1)(x) − (c ≫= p2)(x)
∣∣∣

=
∨
x∈X

∣∣∣∣∣∣∣∣
∑
y∈Y

c(x)(y) · p1(y) −
∑
y∈Y

c(x)(y) · p2(y)

∣∣∣∣∣∣∣∣
≤

∨
x∈X

∑
y∈Y

c(x)(y) ·
∣∣∣ p1(y) − p2(y)

∣∣∣
≤

∨
x∈X

∑
y∈Y

c(x)(y)

 · d(p1, p2
)

= d
(
p1, p2

)
.

348



4.5. Validity-based distances 3494.5. Validity-based distances 3494.5. Validity-based distances 349

Exercises

4.5.1 Prove, analogously to Excercise 3.3.2, that the total variation distance
satisfies, for distributions ω1, ω2 ∈ D(X) and K ∈ N,

d
(
ω1, ω2

)
≤ d

(
mn[K](ω1), mn[K](ω2)

)
.

4.5.2 1 Prove that for states ω,ω′ ∈ D(X) and ρ, ρ′ ∈ D(Y) there is an
inequality:

d
(
ω ⊗ ρ, ω′ ⊗ ρ′

)
≤ d

(
ω,ω′

)
+ d

(
ρ, ρ′

)
.

(In this situation there is an actual equality for Kullback-Leibler
divergence, see Lemma 2.8.2 (2).)

2 Prove similarly that for predicates p, p′ ∈ Pred (X) and q, q′ ∈
Pred (Y) one gets:

d
(
p ⊗ q, p′ ⊗ q′

)
≤ d(p, p′) + d(q, q′).

4.5.3 Let φ, ψ ∈ N[K](X) be two different natural multisets of the same
size K. Check that the distance between the corresponding fractional
distrbutions is at least 1

K in:

d
(
Flrn(φ), Flrn(ψ)

)
≥ 1

K .

(See also Figure 4.2.)
4.5.4 1 Show that for a state ω ∈ D(X), the “validity in ω” function (pred-

icate):

Pred (X)
ω |= (−)

// [0, 1]

is non-expansive.
2 Similarly, show that for a predicate p ∈ D(X) the “validity of p”

function is non-expansive:

D(X)
(−) |= p

// [0, 1]

4.5.5 In the context of Remark 4.5.6, check that:

d
(
flip(0),flip(1)

)
= 1 = d

(
flip(1),flip(0)

)
DKL

(
flip(0),flip(1)

)
= 0 = DKL

(
flip(1),flip(0)

)
.

(Using that the logarithm of zero is defined to be zero.)
4.5.6 This exercise uses the distance between a joint state and the product

of its marginals as measure of entwinedness, like in [77].

349



350 Chapter 4. Observables and validity350 Chapter 4. Observables and validity350 Chapter 4. Observables and validity

1 Take σ2 B
1
2 |00⟩ + 1

2 |11⟩ ∈ D
(
2 × 2

)
, for 2 = {0, 1}. Show that:

d
(
σ2, σ2

[
1, 0

]
⊗ σ2

[
0, 1

])
= 1

2 .

2 Take σ3 B
1
2 |000⟩ + 1

2 |111⟩ ∈ D
(
2 × 2 × 2

)
. Show that:

d
(
σ3, σ3

[
1, 0, 0

]
⊗ σ3

[
0, 1, 0

]
⊗ σ3

[
0, 0, 1

])
= 3

4 .

3 Now define σn ∈ D
(
2n) for n ≥ 2 as:

σn B
1
2 | 0 · · · 0︸︷︷︸

n times

⟩ + 1
2 | 1 · · · 1︸︷︷︸

n times

⟩.

Show that:

• each marginal πi =≪σn equals 1
2 |0⟩ +

1
2 |1⟩;

• the product
⊗

i (πi =≪σn) of the marginals is the uniform state
on 2n;

• d
(
σn,

⊗
i (πi =≪σn)

)
=

2n−1 − 1
2n−1 .

Note that the latter distance goes to 1 as n goes to infinity.

4.5.7 The next ‘splitting lemma’ is attributed to Jones [105], see e.g. [107,
128]. For ω1, ω2 ∈ D(X) with distance d B d(ω1, ω2) one can find
distributions ω′1, ω

′
2, σ ∈ D(X) so that both ω1 and ω2 can be written

as convex sum:

ωi = d · ω′i + (1 − d) · σ.

Prove this result.
Hint: Use the optimal coupling ρ from (4.20) to define σ(x) = ρ(x,x)

1−d .
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5

Variance and covariance

The previous chapter introduced validity ω |= p, of an observable p in a state
/ distribution ω. The current chapter uses validity to define the standard statis-
tical concepts of variance and covariance, and the associated notions of stan-
dard deviation and correlation. Informally, for a random variable (ω, p), the
variance Var(ω, p) describes the extent to which the observable p differs from
the expected value ω |= p, that is, how much much p varies or is spread out.
Together, ω |= p and Var(ω, p) are representational values that capture the
statistical essence of a random variable. The standard deviation of a random
variable is the square root of its variance.

The notion of covariance is used to compare two random variables. What do
we mean by two? We can have:

1 two random variables (ω, p1) and (ω, p2), with (possibly) different observ-
ables p1, p2 : X → R, but with the same shared state ω ∈ D(X);

2 a joint state τ ∈ D(X1 × X2) together with two observables q1 : X1 → R and
q2 : X2 → R on the two components X1, X2. Via weakening of the observ-
ables we get two random variables:(

τ, q1 ⊗ 1
) (

τ, 1 ⊗ q2
)

like in the first point, involving two observables q1 ⊗ 1 and 1 ⊗ q2, now on
the same set X1 × X2.

These differences are significant, but the two cases are not always clearly dis-
tinguished in the literature. One of the principles in this book is to make states
explicit. Hence we shall clearly distinguish between the first shared-state form
of covariance and the second joint-state form.

Apart from these subtleties, covariance captures to what extent two ran-
dom variables change together. Covariance may be positive, when the variables
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change together in the same direction, or negative, meaning that they change
in opposite directions.

This short chapter first introduces the basic definitions and results for vari-
ance, and for covariance in shared-state form. They are applied to draw distri-
butions, from Chapter 3, in Section 5.2. The joint-state version of covariance is
introduced in Section 5.3 and illustrated in several examples. Section 5.4 then
establishes the equivalence between:

• non-entwinedness of a joint state, meaning that it is the product of its (two)
marginals;

• joint-state independence of random variables on this state

• joint-state covariance is zero.

See Theorem 5.4.6 for details. Such equivalences do not hold for shared-state
formulations. This is one important reason for being careful about the distinc-
tion between a shared state and a joint state.

Covariance and correlation of (observables on) joint states is relevant in the
setting of updating, in the next chapter. In presence of such correlation, updat-
ing in one (product) component has crossover influence in the other compo-
nent.

At the end of this chapter we use what we have seen about variance, to
formulate what is called the weak law of large numbers. It shows that by accu-
mulating repeated draws from a distribution one comes arbitrary close to that
distribution. This is an alternative way of expressing the denseness of fractional
distributions among all distributions, as formulated in Theorem 4.5.9.

5.1 Variance and shared-state covariance

This section describes the standard notions of variance, covariance and corre-
lation within the setting of this book. It uses the validity relation |= and the op-
erations on observables from Section 4.2. Recall that we understand a random
variable here as a pair (ω, p) consisting of a state ω ∈ D(X) and an observable
p : X → R. The validity ω |= p is a real number, and can thus be used as
a scalar, in the sense of Section 4.2. The truth predicate forms an observable
1 ∈ Obs(X); scalar multiplication yields a new observable (ω |= p)·1 ∈ Obs(X).
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It can be subtracted1 from p, and then squared, giving an observable:(
p − (ω |= p) · 1

)2
=

(
p − (ω |= p) · 1

)
&

(
p − (ω |= p) · 1

)
∈ Obs(X).

This observable denotes the function that sends x ∈ X to
(
p(x) − (ω |= p)

)2
∈

R≥0. It is thus a factor. Its validity in the original state ω is called variance. It
captures how far the values of p are spread out from their expected value.

Definition 5.1.1. For a random variable (ω, p), the variance Var(ω, p) is the
non-negative number defined by:

Var(ω, p) B ω |=
(
p − (ω |= p) · 1

)2
.

When the underlying sample space X is a subset of R, say via an obvious
inclusion function incl : X ↪→ R, we simply write Var(ω) for Var(ω, incl).

The name standard deviation is used for the square root of the variance;
thus:

StDev(ω, p) B
√

Var(ω, p).

Example 5.1.2. 1 We recall Example 4.1.4 (1), with distribution flip( 3
10 ) =

3
10 |1⟩ +

7
10 |0⟩ and observable v(0) = −50 and v(1) = 100. We had ω |= v =

−5, and so we get:

Var
(
flip( 3

10 ), v
)
=

∑
x∈{0,1}

flip( 3
10 )(x) · (v(x) + 5)2

= 3
10 · (100 + 5)2 + 7

10 · (−50 + 5)2 = 4725.

The standard deviation is around 68.7.
2 For a (fair) dice we have pips = {1, 2, 3, 4, 5, 6} ↪→ R and mean(dice) = 7

2
so that:

Var
(
dice

)
=

∑
x∈pips

dice(x) ·
(
x − 7

2
)2

= 1
6 ·

(( 5
2
)2
+

( 3
2
)2
+

( 1
2
)2
+

( 1
2
)2
+

( 3
2
)2
+

( 5
2
)2
)
= 35

12 .

Via a suitable shift-and-rescale one can standardise an observable so that its
validity becomes 0 and its variance becomes 1, see Exercise 5.1.11.

The following result is known as the partition of variance into expected val-
ues; it is often useful in calculations. But it also has some important conse-
quences, formulated in a subsequent corollary.

1 Subtraction expressions like these occur more frequently in mathematics. For instance, an
eigenvalue λ of a matrix M may be defined as the scalar that forms a solution to the equation
M − λ · 1 = 0, where 1 is the identity matrix. A similar expression is used to define the
elements in the spectrum of a C∗-algebra. See also Excercise 4.2.14.
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Lemma 5.1.3. Variance satisfies:

Var(ω, p) =
(
ω |= p2) − (

ω |= p
)2
.

Proof. We have:

Var(ω, p)
= ω |=

(
p − (ω |= p) · 1

)2

=
∑
x∈X

ω(x) ·
(
p(x) − (ω |= p)

)2

=
∑
x∈X

ω(x) ·
(
p(x)2 − 2(ω |= p) · p(x) + (ω |= p)2

)
=

∑
x∈X

ω(x)p2(x)

 − 2(ω |= p) ·

∑
x∈X

ω(x) · p(x)

 + ∑
x∈X

ω(x) · (ω |= p)2


=

(
ω |= p2) − 2

(
ω |= p) · (ω |= p) + (ω |= p)2

=
(
ω |= p2) − (ω |= p)2.

Corollary 5.1.4. 1 For a distribution ω ∈ D(X) and an observable p on X,
there is an inequality:

ω |= p2 ≥
(
ω |= p

)2
.

2 For a channel c : X → Y and an observable q on Y there is a pointwise
inequality (see Subsection 4.2.1):

c ≫= q2 ≥
(
c ≫= q

)2 i.e. c ≫=
(
q & q

)
≥

(
c ≫= q

)
&

(
c ≫= q

)
.

Proof. The first inequality follows directly from Lemma 5.1.3, where we use
that variance is non-negative — since it is defined as validity of a square. The
inequality also occurs in Exercise 4.2.8 (2).

For the second item, let x ∈ X be arbitrary. Then:(
c ≫=

(
q & q

))
(x) = c(x) |= q2 see Definition 4.3.1
≥

(
c(x) |= q

)2 by the previous item
=

(
(c ≫= q)(x)

)
·
(
(c ≫= q)(x)

)
=

((
c ≫= q

)
&

(
c ≫= q

))
(x).

This result is used to obtain the variances of a draw distributions in a later
section. Also, it is used in the following example in which discrete distribu-
tions are introduced that approximate continuous ‘normal’ distributions, see
Section ??.

Example 5.1.5. We fix a number N ∈ N>0 and form the set:

S N B
{
0, 1, . . . , 2N

}
=

{
0, . . . ,N − 1, N, N + 1, . . . , 2N

}
.
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It has 2N + 1 elements, with N sitting in the middle.
For K ∈ N>0 we consider the average function:

(
S N

)K avg[K]
// Q where avg[K]

(
i1, . . . , iK

)
B

i1 + · · · + iK

K
.

We define a sequence of distributions ωK ∈ D(Q), as:

ωK B D
(
avg[K]

)(
unifS N ⊗ · · · ⊗ unifS N

)
=

unifS N + · · · + unifS N

K
in the style of Proposition 2.7.2.

(5.1)

The support of this distribution ωK is given by the set of numbers from 0 to
2N, with steps of 1

K . Thus:{
0, 1

K , . . . ,N−
1
K , N, N+ 1

K , . . . , 2N− 1
K , 2N

}
.

It has 2K · N + 1 elements, with N as midpoint. Figure 5.1 contains plots of
the resulting distributions, for N = 5 and K = 2, 3, 4, 5. We see that they
approximate a bell curve, which is typical for normal distribuitions2. Our aim
is to compute the mean and variance of these distributions. From the pictures
it is clear that the mean is N, but we like to establish this formally.

We can now derive the mean and variance of the distributions ωK ∈ D(S N),
namely:

mean(ωK) = N and Var(ωK) =
N · (N + 1)

3K
. (5.2)

The first equation is as expected. The proof involves the inclusion function
incl : S N → R and uses Proposition 1.2.6 (3):

mean(ωK) = ωK |= incl =
∑

0≤i1,...,iK≤2N

(
unifS N

)K(i1, . . . , iK) · avg(i1, . . . , iK)

=
∑

0≤i1,...,iK≤2N

1
(2N + 1)K ·

i1 + · · · + iK

K

=
1

(2N + 1)K · K
·

K · 2N · (2N + 1)K

2
= N.

To prove the variance equation in (5.2) we use Lemma 5.1.3 and Proposi-

2 See Section ?? and the dice explanations at Wolfram
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Figure 5.1 Averages ωK of uniform distributions on {0, 1, . . . , 10} from (5.1), for
K = 2, 3 at the top and K = 4, 5 at the bottom. The red line is (a scaled ver-
sion of) the probability density function of the continuous normal distribution
1
K · Norm(N,

√
N·(N+1)/3K), see Section ??.

tion 1.2.6 (4):

Var(ωK) =
(
ωK |= incl2) − (

ωK |= incl
)2

=
∑

0≤i1,...,iK≤2N

1
(2N + 1)K ·

( i1 + · · · + iK

K

)2

− N2

=
1

(2N + 1)K · K2 ·
K · 2N · (2N + 1)K ·

(
(3K + 1) · 2N + 2

)
12

− N2

=
N ·

(
(3K + 1) · 2N + 2

)
− 6K · N2

6K

=
2N2 + 2N

6K
=

N · (N + 1)
3K

.

The mean is constant, for fixed N, independently of the value of K. The vari-
ance does depend on K and goes to zero as K goes to infinity. In the pictures
in Figure 5.1 the bells become narrower, as K increases. In this way one can
choose discrete distributions with specific (fractional) variances. Of course, the
mean can be shifted to an arbitrary position via a translation function.

We continue with covariance and correlation, which involve two random
variables, instead one, as for variance. We can distinguish situations, namely:
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• The two random variables are of the form (ω, p1) and (ω, p2), where they
share their state ω.

• There is a joint state τ ∈ D(X1×X2) together with two observables q1 : X1 →

R and q2 : X2 → R on the two components X1, X2. This situation can be seen
as a special case of the previous point by first weakening the two observables
to the product space, via: π1 ≫= q1 = q1 ⊗1 and π2 ≫= q2 = 1⊗q2. In this way
we obtain two random variable with a shared state:

(τ, π1 ≫= q1) and (τ, π2 ≫= q2).

These observable transformations πi ≫= qi along a deterministic channel
πi : X1 × X2 → Xi can also be described simply as function composition
qi ◦ πi : X1 × X2 → R, see Lemma 4.3.2 (9).

We start with the situation in the first bullet above, and deal with the second
bullet in Definition 5.3.1 in Section 5.3.

Definition 5.1.6. Let (ω, p1) and (ω, p2) be two random variable with a shared
state ω ∈ D(X).

1 The covariance of these random variables is defined as the validity:

Cov
(
ω, p1, p2

)
B ω |=

(
p1 − (ω |= p1) · 1

)
&

(
p2 − (ω |= p2) · 1

)
.

2 The correlation between (ω, p1) and (ω, p2) is the covariance divided by
their standard deviations:

Cor
(
ω, p1, p2

)
B

Cov(ω, p1, p2)
StDev(ω, p1) · StDev(ω, p2)

.

Notice that variance Var(ω, p) is a special case of covariance Cov(ω, p, p),
namely with equal observables. Hence if there is an inclusion incl : X ↪→ R
and we would use this inclusion twice to compute covariance, we are in fact
computing variance.

Correlation is normalised covariance, so that the outcome is in the interval
[−1, 1], see Exercise 5.1.12 below. In ordinary language two phenomena are
called correlated when there is relation between them. More technically, two
random variables are called correlated if their correlation, as defined above, is
non-zero — or equivalently, when their covariance is non-zero. Positive corre-
lation means that the observables move together in the same direction, whereas
negative correlation means that they move in opposite directions. When the
correlation equals 1 (resp. −1), one speaks of perfect correlation (resp. anticor-
relation).

Before we go on, we state the following analogue of Lemma 5.1.3, leaving
the proof to the reader.
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Lemma 5.1.7. Covariance can be reformulated as:

Cov(ω, p1, p2) =
(
ω |= p1 & p2

)
−

(
ω |= p1

)
·
(
ω |= p2

)
.

Example 5.1.8. 1 We have seen in Definition 4.1.2 (2) how the average of
an observable can be computed as its validity in a uniform state. The same
approach is used to compute the covariance (and correlation) in a uniform
joint state. Consider the following to lists a and b of numerical data, of the
same length.

a = [5, 10, 15, 20, 25] b = [10, 8, 10, 15, 12]

We will identify a and b with random variables, namely with a, b : 5 →
R, where 5 = {0, 1, 2, 3, 4}. Hence there are obvious definitions: a(0) = 5,
a(1) = 10, a(2) = 15, a(3) = 20, a(4) = 25, and simililarly for b. Then we
can compute their averages as validities in the uniform state unif5 on the set
5:

avg(a) = unif5 |= a = 15 avg(a) = unif5 |= a = 11.

We will calculate the covariance between a and b wrt. the uniform state
unif5, as:

Cov
(
unif5, a, b

)
= unif5 |=

(
a − (unif5 |= a) · 1

)
&

(
b − (unif5 |= b) · 1

)
=

∑
i

1
5 ·

(
a(i) − 15

)
·
(
b(i) − 11

)
= 11.

2 In order to obtain the correlation between a, b, we first need to compute their
variances:

Var(unif5, a) =
∑

i
1
5
(
a(i) − 15

)2
= 50

Var(unif5, b) =
∑

i
1
5
(
b(i) − 11

)2
= 5.6

Then:

Cor
(
unif5, a, b

)
=

Cov(unif5, a, b)
√

Var(unif5, a) ·
√

Var(unif5, b)
=

11
√

50 ·
√

5.6
≈ 0.66.

The next result collects several linearity properties for (co)variance and cor-
relation. This shows that one can do quite a bit of re-scaling and stretching of
observables without changing the outcome.

Theorem 5.1.9. Consider a state ω ∈ D(X), with observables p, p1, p2 ∈

Obs(X) and numbers r, s ∈ R.
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1 Covariance satisfies:

Cov(ω, p1, p2) = Cov(ω, p2, p1)
Cov(ω, p1, 1) = 0

Cov(ω, r · p1, p2) = r · Cov(ω, p1, p2)
Cov(ω, p, p1 + p2) = Cov(ω, p, p1) + Cov(ω, p, p2)

Cov(ω, p1 + r · 1, p2 + s · 1) = Cov(ω, p1, p2).

2 Variance satisfies:

Var(ω, r · p) = r2 · Var(ω, p)
Var(ω, p + r · 1) = Var(ω, p)
Var(ω, p1 + p2) = Var(ω, p1) + 2 · Cov(ω, p1, p2) + Var(ω, p2).

3 For correlation we have:

Cor(ω, p1, p2) = Cor(ω, p2, p1)

Cor(ω, r · p1, s · p2) =

Cor(ω, p1, p2) if r, s have the same sign

−Cor(ω, p1, p2) otherwise.
Cor(ω, p1 + r · 1, p2 + s · 1) = Cor(ω, p1, p2).

Proof. 1 Obviously, covariance is symmetric and covariance with truth is 0.
Covariance preserves scalar multiplication in each (observable) argument
since by Lemma 5.1.7:

Cov(ω, r · p1, p2) =
(
ω |= (r · p1) & p2

)
−

(
ω |= r · p1

)
·
(
ω |= p2

)
= r ·

(
ω |= p1 & p2

)
− r ·

(
ω |= p1

)
·
(
ω |= p2

)
= r · Cov(ω, p1, p2).

For preservation of sums we reason from the definition:

Cov(ω, p, p1 + p2)
=

(
ω |= p & (p1 + p2)

)
−

(
ω |= p

)
·
(
ω |= p1 + p2

)
=

(
ω |= (p & p1) + (p & p2)

)
−

(
ω |= p

)
·
(
(ω |= p1) + (ω |= p2)

)
=

(
ω |= p & p1

)
+

(
ω |= p & p2

)
−

(
ω |= p

)
·
(
ω |= p1

)
−

(
ω |= p

)
·
(
ω |= p2

)
= Cov(ω, p, p1) + Cov(ω, p, p2)

The equation Cov(ω, p1 + r · 1, p2 + s · 1) = Cov(ω, p1, p2) follows from the
previous equations.

2 The first property holds by what we have just seen:

Var(ω, r · p) = Cov(ω, r · p, r · p) = r2 · Cov(ω, p, p) = r2 · Var(ω, p).
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Similarly, Var(ω, p + r · 1) = Var(ω, p). Next:

Var(ω, p1 + p2)
= Cov(ω, p1 + p2, p1 + p2)
= Cov(ω, p1 + p2, p1) + Cov(ω, p1 + p2, p2)
= Cov(ω, p1, p1) + Cov(ω, p2, p1) + Cov(ω, p1, p2) + Cov(ω, p2, p2)
= Var(ω, p1) + 2 · Cov(ω, p1, p2) + Var(ω, p2).

3 Symmetry of correlation is obvious. By unpacking the definition of correla-
tion and using the previous two items we get:

Cor(ω, r · p1, s · p2) =
Cov(ω, r · p1, s · p2)√

Var(ω, r · p1) ·
√

Var(ω, s · p2)

=
r · s · Cov(ω, p1, p2)√

r2 · Var(ω, p1) ·
√

s2 · Var(ω, p2)

=
r · s · Cov(ω, p1, p2)

|r| ·
√

Var(ω, p1) · |s| ·
√

Var(ω, p2)

=

Cor(ω, p1, p2) if r, s have the same sign

−Cor(ω, p1, p2) otherwise.

(The same sign means: either both r ≥ 0 and s ≥ 0 or both r ≤ 0 and s ≤ 0.)
The final equation Cor(ω, p1+r ·1, p2+ s ·1) = Cor(ω, p1, p2) holds since

both variance and covariance are closed under addition of constants.

Exercises

5.1.1 Let ω be a state and p be a factor on the same set. Define for v ∈ R≥0,

f (v) B ω |= (p − v · 1)2.

Show that the function f : R≥0 → R≥0 takes its minimum value at
ω |= p.

5.1.2 Let ω ∈ D(X) and p ∈ Obs(X). Prove that:

Var(ω, p) = 0 ⇐⇒ p is constant on the subset supp(ω) ⊆ X.

5.1.3 Let τ ∈ D(X × Y) be a joint state with an observable p : X → R. We
can turn them into a random variable in two ways, by marginalisation
and weakening:

(τ
[
1, 0

]
, p) and (τ, π1 ≫= p),

where π1 ≫= p = p ⊗ 1 is an observable on X × Y .
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These two random variables have the same expected value, by (4.7).
Show that they have the same variance too:

Var(τ
[
1, 0

]
, p) = Var(τ, π1 ≫= p).

As a result, the standard deviations are also the same.
5.1.4 Define g(r) B flip(r) ⊗ flip(1−r) ∈ D(2 × 2) and show that for each

r ∈ [0, 1],

Cov
(
g(r)

)
= Cov

(
g(r), π1, π2

)
= 0.

5.1.5 Use Jensen’s inequality, see Lemma 2.8.3, to prove the inequalityω |=
p2 ≥

(
ω |= p

)2 in Corollary 5.1.4 (1).
5.1.6 Let λ ∈ R>0.

1 Prove that
∑
k≥1

pois[λ](k) · k · (k−1) = λ2;

2 Use this equation to show that
∑
k≥1

pois[λ](k) · k2 = λ2 + λ;

3 Deduce that Var
(
pois[λ]) = λ.

5.1.7 Prove Lemma 5.1.7 along the lines of the proof of Lemma 5.1.3.
5.1.8 Show for a predicate p,

1 Cov(ω, p, p⊥) = −Var(ω, p) ≤ 0;
2 Var(ω, p⊥) = Var(ω, p).

5.1.9 Let h : X → Y be a function, with a state ω ∈ D(X) on its domain an
an observable q : Y → R on its codomain. Show that:

Var
(
ω, q ◦ h

)
= Var

(
D(h)(ω), q

)
.

Hint: Recall Exercise 4.3.4.
5.1.10 Consider a distribution ω ∈ D(X), a channel c : X → Y and an ob-

servable q : Y → R. Prove the ‘law of total variance’, in analogy with
the law of total expectation in Exercise 4.2.7:

Var
(
c =≪ω, q

)
=

(
ω |= Var

(
c(−), q

))
+ Var

(
ω, c ≫= q

)
.

Conclude that Var
(
c =≪ω, q

)
≥ Var

(
ω, c ≫= q

)
.

5.1.11 Let (ω, p) be a random variable on a space X. Define a new standard
score observable StSc(ω, p) : X → R by:

StSc(ω, p)(x) B
p(x) − (ω |= p)
StDev(ω, p)

.

This pair ofωwith StSc(ω, p)(x) is also called the Z-random variable.
It is normalised in the sense that:

1 ω |= StSc(ω, p) = 0;
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2 Var
(
ω,StSc(ω, p)

)
= StDev

(
ω,StSc(ω, p)

)
= 1.

Prove these two items.
5.1.12 Recall the Cauchy-Schwarz inequality, for real numbers ai, bi ∈ R,(∑

i aibi

)2
≤

(∑
i a2

i

)
·
(∑

i b2
i

)
.

Use this inequality to prove that correlation is in the interval [−1, 1].
5.1.13 Let ω ∈ D(X) be a state with an n-test p⃗ = p1, . . . , pn, see Defini-

tion 4.2.2.

1 Define the (symmetric) covariance matrix as:

CovMat(ω, p⃗) B

 Cov(ω, p1, p1) · · · Cov(ω, p1, pn)
...

...
Cov(ω, pn, p1) · · · Cov(ω, pn, pn)


Prove that all rows and all colums add up to 0 and that the entries
on the diagonal are non-negative and have a sum below 1.

2 Next consider the vector v of validities and the symmetric matrix A
of conjunctions:

v B

ω |= p1...
ω |= pn

 A B

ω |= p1 & p1 · · · ω |= p1 & pn
...

...
ω |= pn & p1 · · · ω |= pn & pn


Check that CovMat(ω, p⃗) = A − v · vT , where (−)T is transpose.

5.1.14 In linear regression a finite collection (ai, bi)1≤i≤n of real numbers
ai, bi ∈ R is given. The aim is to find coefficients v,w ∈ R of a
line y = vx + w that best approximates these points. The error that
is minimised is the ‘sum of squared residuals’ given as:

f (v,w) B
∑

i

(
bi − (vai + w)

)2
.

We redescribe the ai, bi as observables a, b : {1, 2, . . . , n} → R, with
a(i) = ai, b(i) = bi, together with the uniform distribution unif on the
space {1, 2, . . . , n}. Thus we have two random variables (unif , a) and
(unif , b) with a shared state. Write:

a B 1
n
∑

i ai b B 1
n
∑

i bi.

By taking partial derivatives ∂ f
∂v and ∂ f

∂w , setting them to zero, and using
some elementary calculus, one obtains the best linear approximation
of the (ai, bi) via coefficients given by the familiar formulas:

v̂ =
∑

i ai(bi − b)∑
i ai(ai − a)

ŵ = b − v̂ a.
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1 Derive the above formulas for v̂ and ŵ.
2 Show that one can also write the slope v̂ of the best line as:

v̂ =
∑

i (ai − a)(bi − b)∑
i (ai − a)2 .

3 Check that this yields:

v̂ =
Cov(unif , a, b)

Var(unif , a)
.

4 Thus, with the above values v̂, ŵ the sum of squares of b−(v̂·a+ŵ·1)
is minimal. Show that the latter expression can also be written in
terms of standard scores, see Exercise 5.1.11, namely as:

b − (v̂ · a + ŵ · 1) = StDev(b) ·
(
StSc(b) − Cor(a, b) · StSc(a)

)
,

where we have omitted the uniform distribution for convenience.
The right-hand-side shows that by using correlation as scalar one
can bring the standard score of a closest to the standard score of b.

Linear regression is described here as a technique for obtaining the
‘best’ line, from data points (ai, bi). Once this line is found, one can
use it for prediction: if we have an arbitrary first coordinate a we
can predict the corresponding second coordinate as v̂ · a + ŵ. For in-
stance, if ai is number of hours spent learning by student i, and bi is
the resulting mark of student i, then linear regression may give a rea-
sonable prediction of the mark given a (new) number a of time spent
on learning. Chapter ?? is devoted to learning techniques, of which
linear regression is simple instance.

5.2 Draw distributions and their (co)variances

This section establishes standard (co)variance results for draw distributions
multinomial, hypergeometric and Pólya, but also of Poisson multinomials. We
continue the approach of Section 4.4 and use inclusion functions incl : N[K](X) ↪→
M(X), from the set of K-sized natural multisets into the set of arbitrary multi-
sets, so that we can exploitM(X)’s cone structure (addition and scalar multi-
plication). In the literature one sometimes finds descriptions of such variances
as vectors, but they presuppose an ordering on the points of the underlying
space. The multiset description given below does not require such an ordering.
It forms an analogue of Proposition 4.4.1.
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Proposition 5.2.1. 1 For a distribution ω ∈ D(X),

Var
(
mn[K](ω)

)
= K · ω · (1 − ω) ∈ M(X).

2 For a non-empty urn υ ∈ N[L](X) of size L ≥ K,

Var
(
hg[K](υ)

)
= K ·

L−K
L−1

· Flrn(υ) ·
(
1 − Flrn(υ)

)
∈ M(X).

3 For a non-empty urn υ ∈ N(X),

Var
(
pl[K](υ)

)
= K ·

L+K
L+1

· Flrn(υ) ·
(
1 − Flrn(υ)

)
.

4 For a distribution ω ∈ D(X) and a rate λ ∈ R>0,

Var
(
Pmn[λ](ω)

)
= λ · ω ∈ M(X).

Proof. 1 We use the formulation of Lemma 5.1.3 and compute inM(X),

Var
(
mn[K](ω)

)
=

(
mn[K](ω) |= incl2

)
−

(
mn[K](ω) |= incl

)2

=

 ∑
φ∈N[K](X)

mn[K](ω)(φ) · φ2

 −mean
(
mn[K](ω)

)2

= K · (K−1) · ω2 + K · ω −
(
K · ω

)2

by Exercise 3.3.8 and Proposition 4.4.1 (1)
= K · ω · (1 − ω).

2 For a non-empty urn υ ∈ N[L](X) of size L ≥ K, we use Exercise 3.4.4 and
Proposition 4.4.1 (2).

Var
(
hg[K](υ)

)
=

 ∑
φ≤Kυ

hg[K](υ)(φ) · φ2

 −mean
(
hg[K](υ)

)2

= K · Flrn(υ) ·
(K−1) · υ + (L−K)

L−1
−

(
K · Flrn(υ)

)2

= K · Flrn(υ) ·
(

L−K
L−1

+
L · (K−1) · υ − (L−1) · K · υ

L · (L−1)

)
= K · Flrn(υ) ·

(
L−K
L−1

−
(L−K) · υ
L · (L−1)

)
= K ·

L−K
L−1

· Flrn(υ) ·
(
1 − Flrn(υ)

)
.

3 Similarly, for a non-empty urn υ ∈ N[L](X), we now use Exercise 3.5.1 and
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Proposition 4.4.1 (3).

Var
(
pl[K](υ)

)
=

 ∑
φ∈N[K](supp(υ))

pl[K](υ)(φ) · φ2

 −mean
(
pl[K](υ)

)2

= K · Flrn(υ) ·
(K−1) · υ + (L+K)

L+1
−

(
K · Flrn(υ)

)2

= K · Flrn(υ) ·
(

L+K
L+1

+
L · (K−1) · υ − (L+1) · K · υ

L · (L+1)

)
= K · Flrn(υ) ·

(
L+K
L+1

−
(L+K) · υ
L · (L+1)

)
= K ·

L+K
L+1

· Flrn(υ) ·
(
1 − Flrn(υ)

)
.

4 Finally, using Proposition 4.4.1 (4) together with Exercises 3.3.8, and 5.1.6,

Var
(
Pmn[λ](ω)

)
=

 ∑
φ∈N(X)

Pmn[λ](ω)(φ) · φ2

 −mean
(
Pmn[λ](ω)

)2

=

 ∑
K∈N

pois[λ](K) ·
∑

φ∈N[K](X)

mn[K](ω)(φ) · φ2

 − (
λ · ω

)2

=

 ∑
K∈N

pois[λ](K) ·
(
K · (K−1) · ω2 + K · ω

) − λ2 · ω2

=

 ∑
K∈N

pois[λ](K) · K · (K−1)

 · ω2 +

 ∑
K∈N

pois[λ](K) · K

 · ω − λ2 · ω2

= λ2 · ω2 + λ · ω − λ2 · ω2

= λ · ω.

Recall from (4.13) the multiset-evaluation observable evx : M(X) → R≥0

given by evx(φ) = φ(x). The above formulations of variance as multisets can
also be written as:

Var
(
mn[K](ω)

)
=

∑
x∈X

Var
(
mn[K](ω), evx

) ∣∣∣ x〉
∈ M(X). (5.3)

(And similarly for hg[K](υ), pl[K](υ) and Pmn[λ](ω).)
There are anologous results and definitions for covariance.

Proposition 5.2.2. Let X be a set with a two different elements y , z from X
and with a number K ∈ N.
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1 For an urn-distribution ω ∈ D(X),

Cov
(
mn[K](ω)

)
B

∑
y,z∈X

Cov
(
mn[K](ω, evy, evz

) ∣∣∣y, z〉
= −K · (ω ⊗ ω) ∈ M(X × X).

2 For an urn υ ∈ N[L](X) of size L ≥ K,

Cov
(
hg[K](υ)

)
B

∑
y,z∈X

Cov
(
hg[K](υ), evy, evz

) ∣∣∣y, z〉
= −K ·

L−K
L−1

·
(
Flrn(υ) ⊗ Flrn(υ)

)
∈ M(X × X).

3 In the Pólya case:

Cov
(
pl[K](υ)

)
B

∑
y,z∈X

Cov
(
pl[K](υ), evy, evz

) ∣∣∣y, z〉
= −K ·

L+K
L+1

·
(
Flrn(υ) ⊗ Flrn(υ)

)
∈ M(X × X).

4 The Poisson point processes always has zero covariance:

Cov
(
Pmn[λ](ω)

)
B

∑
y,z∈X

Cov
(
Pmn[λ](ω), evy, evz

) ∣∣∣y, z〉
= 0 ∈ M(X × X).

Proof. 1 Using the covariance formula of Lemma 5.1.7 and Exercise 3.3.8 we
compute:

Cov
(
mn[K](ω), evy, evz

)
=

(
mn[K](ω) |= evy & evz

)
−

(
mn[K](ω) |= evy

)
·
(
mn[K](ω) |= evz

)
= K · (K − 1) · ω(y) · ω(z) − K · ω(y) · K · ω(z)
= −K · ω(y) · ω(z).
= −K · (ω ⊗ ω)(y, z).

2 In the same way, using Exercise 3.4.4 and Proposition 4.4.1 (2):

Cov
(
hg[K](υ), evy, evz

)
=

(
hg[K](υ) |= evy & evz

)
−

(
hg[K](υ) |= evy

)
·
(
hg[K](υ) |= evz

)
= K · (K−1) · Flrn(υ)(y) ·

υ(z)
L−1

− K · Flrn(υ)(y) · K · Flrn(υ)(z)

= K · Flrn(υ)(y) ·
L · (K−1) · υ(z) − K · (L−1) · υ(z)

L · (L−1)

= −K ·
L−K
L−1

· Flrn(υ)(y) · Flrn(υ)(z).
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3 Similarly, via Exercise 3.5.1 and Proposition 4.4.1 (3):

Cov
(
pl[K](υ), evy, evz

)
=

(
pl[K](υ) |= evy & evz

)
−

(
pl[K](υ) |= evy

)
·
(
pl[K](υ) |= evz

)
= K · (K−1) · Flrn(υ)(y) ·

υ(z)
L+1

− K · Flrn(υ)(y) · K · Flrn(υ)(z)

= K · Flrn(υ)(y) ·
L · (K−1) · υ(z) − K · (L+1) · υ(z)

L · (L+1)

= −K ·
L+K
L+1

· Flrn(υ)(y) · Flrn(υ)(z).

4 Via Proposition 4.4.1 (4) together with Exercises 3.3.8, and 5.1.6 we get:

Cov
(
Pmn[λ](ω), evy, evz

)
=

(
Pmn[λ](ω) |= evy & evz

)
−

(
Pmn[λ](ω) |= evy

)
·
(
Pmn[λ](ω) |= evz

)
=

∑
K∈N

pois[λ](K) ·
(
mn[K](ω) |= evy & evz

)
−

∑
K∈N

pois[λ](K) ·
(
mn[K](ω) |= evy

)
·

∑
K∈N

pois[λ](K) ·
(
mn[K](ω) |= evz

)
=

∑
K∈N

pois[λ](K) · K · (K − 1) · ω(y) · ω(z)


−

∑
K∈N

pois[λ](K) · K · ω(y)

 · ∑
K∈N

pois[λ](K) · K · ω(z)


= λ2 · ω(y) · ω(z) − λ · ω(y) · λ · ω(z)
= 0.

On the diagonal in these joint multisets, where y = z, one recovers the vari-
ances. When the elements of the space X are ordered, these covariance multi-
sets can be seen as matrices. We elaborate an illustration.

Example 5.2.3. Consider a group of 50 people of which 25 vote for the green
party (G), 10 vote liberal (L) and the remaining ones vote for the christian-
democractic party (C). We thus have a set of vote options V = {G, L,C} with a
(natural) voter multiset ν = 25|G ⟩ + 10|L⟩ + 15|C ⟩.

We select five people from the group and look at their votes. These five
people are obtained in hypergeometric mode, where selected individuals step
out of the group and are no longer available for subsequent selection.
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The hypergeometric mean is introduced in Proposition 4.4.1 (2). It gives the
multiset:

mean
(
hg[5](ν)

)
= 5 · Flrn(ν) = 5

2 |G ⟩ +
3
2 |L⟩ + 1|C ⟩.

The deviations of the mean are given by the variance, see Proposition 5.2.1 (2),
as a multiset on V .

Var
(
hg[5](ν)

)
= 5 ·

50 − 5
50 − 1

·
∑
x∈V

Flrn(ν)(x) · (1 − Flrn(ν)(x))
∣∣∣ x〉

= 225
196 |G ⟩ +

27
28 |L⟩ +

36
49 |C ⟩

≈ 1.148|G ⟩ + 0.9643|L⟩ + 0.7347|C ⟩.

The covariances give a 2-dimensional multiset on the product V×V , see Propo-
sition 5.2.2 (2).

Cov
(
hg[5](ν)

)
= 225

196 |G,G ⟩ −
135
196 |G, L⟩ −

45
98 |G,C ⟩

− 135
196 |L,G ⟩ +

27
28 |L, L⟩ −

27
98 |L,C ⟩

− 45
98 |C,G ⟩ −

27
98 |C, L⟩ +

36
49 |C,C ⟩

≈ 1.148|G,G ⟩ − 0.6888|G, L⟩ − 0.4592|G,C ⟩

− 0.6888|L,G ⟩ + 0.9643|L, L⟩ − 0.2755|L,C ⟩

− 0.4592|C,G ⟩ − 0.2755|C, L⟩ + 0.7347|C,C ⟩.

When these covariances are seen as a matrix, we recognise that the matrix is
symmetric and has variances on its diagonal.

We recall from Definition 4.4.3 the extension of an observable p on a set X
to an observable on natural multisetsN(X) over X. This can be done additively
and multiplicatively. Interestingly, the additive extension p+ interacts well with
(co)variance in the multinomial case, like with validity in Proposition 4.4.4 (1).

Proposition 5.2.4. Let p, q : X → R be observables on a set X, with their
addtive extensions p+, q+ : N(X) → R. For a distribution ω ∈ D(X) and a
number K ∈ N,

1 Variance of p+ over multinomial draws is related to variance of p over X,
via:

Var
(
mn[K](ω), p+

)
= K · Var

(
ω, p

)
.

2 Similarly for covariance:

Cov
(
mn[K](ω), p+, q+

)
= K · Cov

(
ω, p, q

)
.
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Proof. 1 By Proposition 4.4.4 (1) and Exercise 3.3.8:

Var
(
mn[K](ω), p+

)
= mn[K](ω) |= p+ & p+ −

(
mn[K](ω) |= p+

)2

=
∑

φ∈N[K](X)

mn[K](ω)(φ) · p+(φ) · p+(φ) − K2 · (ω |= p)2

=
∑
x,y∈X

p(x) · p(y) ·
∑

φ∈N[K](X)

mn[K](ω)(φ) · φ(x) · φ(y) − K2 · (ω |= p)2

=
∑
x,y∈X

p(x) · p(y) ·

 K · (K−1) · ω(x) · ω(y) if x , y
K · (K−1) · ω(x)2 + K · ω(x) if x = y

 − K2 · (ω |= p)2

= K · (K−1) · (ω |= p)2 + K · (ω |= p & p) − K2 · (ω |= p)2

= K · (ω |= p & p) − K · (ω |= p)2

= K · Var
(
ω, p

)
.

2 Similarly.

5.2.1 Distributions of validities and of variances

Fix a random variable (ω, p) on a set X and a number K. We can form the multi-
nomial distribution mn[K](ω) on the setN[K](X) of natural multisets φ of size
K, over X. Applying frequentist learning to such multisets φ gives new distri-
butions Flrn(φ) ∈ D(X), and thus new random variables (Flrn(φ), p). We can
look a the validity and variance of the latter. This gives what we call distribu-
tions of validity and distributions of variance. They are defined as distributions
on R via:

dval[K](ω, p) B D
(
Flrn(−) |= p

)(
mn[K](ω)

)
=

∑
φ∈M[K](X)

mn[K](ω)(φ)
∣∣∣Flrn(φ) |= p

〉
dvar[K](ω, p) B D

(
Var(Flrn(−), p)

)(
mn[K](ω)

)
=

∑
φ∈M[K](X)

mn[K](ω)(φ)
∣∣∣Var(Flrn(φ), p)

〉
.

(5.4)

Such distributions are useful in hypothesis testing in statistics, for instance
when ω is a huge distribution for which we wish we check the validity of the
observable (or predicate) p. We can then take small samples φ from ω via the
multinomial distribution and check the validity of p in the normalised sample
Flrn(φ). Proposition 5.2.5 (1) below says that the mean of all such samples
equals the validity ω |= p.

We illustrate the above definitions (5.4). Consider a three-element set X =
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{a, b, c} with distribution ω = 1
6 |a⟩ +

1
2 |b⟩ +

1
3 |c⟩ and observable p = 6 · 1a +

4 · 1b + 12 · 1c. It is not hard to see that:

ω |= p = 7 and Var
(
ω, p) = 13.

The distributions of validities is:

dval[2](ω, p) = 1
36

∣∣∣Flrn(2|a⟩) |= p
〉
+ 1

6

∣∣∣Flrn(1|a⟩ + 1|b⟩) |= p
〉

+ 1
4

∣∣∣Flrn(2|b⟩) |= p
〉
+ 1

9

∣∣∣Flrn(1|a⟩ + 1|c⟩) |= p
〉

+ 1
3

∣∣∣Flrn(1|b⟩ + 1|c⟩) |= p
〉
+ 1

9

∣∣∣Flrn(2|c⟩) |= p
〉

= 1
36

∣∣∣1|a⟩ |= p
〉
+ 1

6

∣∣∣ 1
2 |a⟩ +

1
2 |b⟩ |= p

〉
+ 1

4

∣∣∣1|b⟩ |= p
〉
+ 1

9

∣∣∣ 1
2 |a⟩ +

1
2 |c⟩ |= p

〉
+ 1

3

∣∣∣ 1
2 |b⟩ +

1
2 |c⟩ |= p

〉
+ 1

9

∣∣∣1|c⟩ |= p
〉

= 1
36

∣∣∣6〉
+ 1

6

∣∣∣5〉
+ 1

4

∣∣∣4〉
+ 1

9

∣∣∣9〉
+ 1

3

∣∣∣8〉
+ 1

9

∣∣∣12
〉

It is not hard to see that its mean satisfies:

1
36 · 6 + · · · +

1
9 · 12 = 7 = ω |= p.

As to the variance:( 1
36 · 6

2 + · · · + 1
9 · 122) − 72 = 13

2 =
1
2 · Var(ω, p).

These outcomes are in line with Proposition 5.2.5 (1) (2) below.
Next, the distribution of variances is:

dvar[2](ω, p) = 1
36

∣∣∣Var(1|a⟩, p)
〉
+ 1

6

∣∣∣Var( 1
2 |a⟩ +

1
2 |b⟩, p)

〉
+ 1

4

∣∣∣Var(1|b⟩, p)
〉
+ 1

9

∣∣∣Var( 1
2 |a⟩ +

1
2 |c⟩, p)

〉
+ 1

3

∣∣∣Var( 1
2 |b⟩ +

1
2 |c⟩, p)

〉
+ 1

9

∣∣∣Var(1|c⟩, p)
〉

= 1
36

∣∣∣62 − 62 〉 + 1
6

∣∣∣26 − 52 〉 + 1
4

∣∣∣42 − 42 〉
+ 1

9

∣∣∣90 − 92 〉 + 1
3

∣∣∣80 − 82 〉 + 1
9

∣∣∣122 − 122 〉
= 7

18

∣∣∣0〉
+ 1

6

∣∣∣1〉
+ 1

9

∣∣∣9〉
+ 1

3

∣∣∣16
〉
.

The mean 7
18 · 0+ · · ·+

1
3 · 16 of this distribution equals 13

2 =
1
2 ·Var(ω, p). This

is an instance of Proposition 5.2.5 (3).
Diagrammatically the definitions (5.4) involve the composites:

D(X)
mn[K]

// D
(
M[K](X)

) D(Flrn)
// D

(
D(X)

) D(−|=p)

&&

D(Var(−,p))

88
D(R) (5.5)

The distribution of validities dval[K] generalises the distribution of means that
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is often used in hypothesis testing in statistics (see e.g. [172]). This distribution
of means uses the validiy (−) |= p to compute the mean, by taking the inclu-
sion incl : X ↪→ R as observable, as in Definition 4.1.3. This works of course
only when X is a set of numbers. The above approach (5.4) with an arbitrary
observable p is more general.

Once we have formed a distribution of validities / variances, we can ask
what its validity / variance is. It turns out that these can be expressed in terms
of validity / variance of the orginal random variable. These results resemble
Theorem 3.3.3 which says that transforming a multinomial distribution along
frequentist learning yields the orginal (urn) distribution.

Proposition 5.2.5. Let (ω, p) be a random variable on a set X, with a number
K > 0.

1 The mean of the distribution of validities is the validity of the original ran-
dom variable:

mean
(
dval[K](ω, p)

)
= ω |= p.

2 The variance of the distribution of validities satisfies:

Var
(
dval[K](ω, p)

)
=

Var(ω, p)
K

.

3 The mean of the distribution of variances is:

mean
(
dvar[K](ω, p)

)
=

K−1
K
· Var(ω, p).

There is a fourth option to consider, namely the variance of the distribution
of variances, but that doesn’t seem to be very interesting.

Proof. 1 Easy, via the following diagrammatic proof.

D(X)
mn[K]

// D
(
M[K](X)

) D(Flrn)
// D

(
D(X)

) D(−|=p)
//

flat
��

D(R)
mean
��

D(X)
(−)|=p

// R

The rectangle on the right commutes by Exercise 4.1.9 (3), and the triangle
on the left by Theorem 3.3.3.

2 The second item requires more work. Let’s assume supp(ω) = {x1, . . . , xn}.
We first prove the auxiliary result (∗) below, via the Multinomial Theo-
rem (1.40), and via Exercise 3.3.8. Usage of this exercise is denoted below
by the marked equation

(E)
= .∑

φ∈M[K](X)

mn[K](ω)(φ)
(
Flrn(φ) |= p

)2
=

(K−1)
(
ω |= p

)2
+

(
ω |= p2)

K
. (∗)
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We reason as follows.

∑
φ∈M[K](X)

mn[K](ω)(φ)
(
Flrn(φ) |= p

)2

=
∑

φ∈M[K](X)

mn[K](ω)(φ)
(∑

i
φ(xi)

K · p(xi)
)2

(1.40)
=

1
K2 ·

∑
φ∈M[K](X)

mn[K](ω)(φ) ·
∑

ψ∈N[2]({1,...,n})

(ψ ) ·
∏

i

(
φ(xi) · p(xi)

)ψ(i)

=
1

K2 ·

2 ∑
i, j

∑
φ∈M[K](X)

mn[K](ω)(φ) · φ(xi) · p(xi) · φ(x j) · p(x j)

+
∑

i

∑
φ∈M[K](X)

mn[K](ω)(φ) · φ(xi)2 · p(xi)2


(E)
=

1
K2 ·

2 ∑
i, j

K · (K−1) · ω(xi) · p(xi) · ω(x j) · p(x j)

+
∑

i

K · (K−1) · ω(xi)2 · p(xi)2 + K · ω(xi) · p(xi)2


(1.40)
=

K−1
K
·
(∑

i ω(xi) · p(xi)
)2
+

1
K
·
(∑

i ω(xi) · p(xi)2)
=

(K−1)
(
ω |= p

)2
+

(
ω |= p2)

K
.

Now we are ready to prove the formula for the variance of the distribution
of validities in item (2) in the proposition. We use item (1) and the auxiliarly
equation (∗).

Var
(
dval[K](ω, p)

)
=

∑
φ∈M[K](X)

mn[K](ω)(φ)
(
Flrn(φ) |= p

)2
−

(
mean

(
dval[K](ω, p)

))2

(∗)
=

(K−1)
(
ω |= p

)2
+

(
ω |= p2)

K
−

(
ω |= p

)2

=
−
(
ω |= p

)2
+

(
ω |= p2)

K

=
Var(ω, p)

K
.
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3 We use item (1) and (∗).

mean
(
dvar[K](ω, p)

)
=

∑
φ∈M[K](X)

mn[K](ω)(φ) · Var
(
Flrn(φ), p

)
=

∑
φ∈M[K](X)

mn[K](ω)(φ) ·
(
Flrn(φ) |= p2) − (Flrn(φ) |= p)2

)
(∗)
=

(
ω |= p2) − (K−1)

(
ω |= p

)2
+

(
ω |= p2)

K

=
(K−1)

(
ω |= p2)
K

−
(K−1)

(
ω |= p

)2

K

=
K−1

K
· Var(ω, p).

Exercises

5.2.1 In the distribution of validities (5.4) we have used multinomial sam-
ples. We can also use hypergeometric ones. Show that in that case the
analogue of Proposition 5.2.5 (1) still holds: for an urn υ ∈ N(X), an
observable p : X → R and a number K ≤ ∥υ∥,

mean
(
D

(
Flrn(−) |= p

)(
hg[K](υ)

))
= Flrn(υ) |= p.

5.2.2 1 Prove Equation (5.3).
2 Formulate and prove similar equations for the distributions hg[K](υ),

pl[K](υ) and Pmn[λ](ω).

5.3 Joint-state covariance and correlation

Section 5.1 has introduced variance and shared-state covariance / correlation.
This section looks at a slightly different version, which we call joint-state co-
variance / correlation. It is subtly different from the shared-state version since
the observables involved are defined not on the sample space of the shared
underlying state, but on the components of a product space.

We will thus first define covariance and correlation for a joint state with
observables on its component spaces, as a special case of what we have seen
so far.

Definition 5.3.1. Let τ ∈ D(X1×X2) be a joint state on sets X1, X2 and let q1 ∈
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Obs(X1) and q2 ∈ Obs(X2) be two observables on these two sets separately. In
this situation the joint covariance is defined as:

JCov(τ, q1, q2) B Cov(τ, π1 ≫= q1, π2 ≫= q2).

Thus we use the weakenings π1 ≫= q1 = q1 ⊗ 1 and π2 ≫= q2 = 1 ⊗ q2 to turn
the observables q1, q2 on different sets X1, X2 into observables on the same
(product) set X1 × X2 — so that Definition 5.1.6 applies.

Similarly, the joint correlation is:

JCor(τ, q1, q2) B Cor(τ, π1 ≫= q1, π2 ≫= q2).

In both these cases, if there are inclusions X1 ↪→ R and X2 ↪→ R, then one can
use these inclusions as random variables and write just JCov(τ) and JCor(τ).

Joint covariance can be reformulated in different ways, including in the style
that we have seen before, in Lemma 5.1.3 and 5.1.7.

Lemma 5.3.2. Joint covariance can be reformulated in terms of the two marginals
τ
[
1, 0

]
and τ

[
0, 1

]
of the joint state τ ∈ D(X1 × X2), namely as:

JCov
(
τ, q1, q2

)
= τ |=

(
q1 − (τ

[
1, 0

]
|= q1) · 1

)
⊗

(
q2 − (τ

[
0, 1

]
|= q2) · 1

)
.

=
(
τ |= q1 ⊗ q2

)
−

(
τ
[
1, 0

]
|= q1

)
·
(
τ
[
0, 1

]
|= q2

)
.

As a consequence, when τ is non-entwined, the joint covariance is zero, what-
ever the obervables q1, q2 are:

JCov
(
τ1 ⊗ τ2, q1, q2

)
= 0.

The situation with zero (joint) covariance is subtle and will be investigated
further in the next section.

Proof. The first equation follows essentially from the relation between se-
quential and parallel conjunction & and ⊗, see Exercise 4.3.8.

JCov(τ, q1, q2) = Cov(τ, π1 ≫= q1, π2 ≫= q2).
= τ |=

(
(π1 ≫= q1) − (τ |= π1 ≫= q1) · 1

)
&

(
(π2 ≫= q2) − (τ |= π2 ≫= q2) · 1

)
(4.12)
= τ |=

(
(π1 ≫= q1) − (τ

[
1, 0

]
|= q1) · (π1 ≫= 1)

)
&

(
(π2 ≫= q2) − (τ

[
0, 1

]
|= q2) · (π2 ≫= 1)

)
= τ |=

(
π1 ≫=

(
q1 − (τ

[
1, 0

]
|= q1) · 1

))
&

(
π2 ≫=

(
q2 − (τ

[
0, 1

]
|= q2) · 1

))
= τ |=

(
q1 − (τ

[
1, 0

]
|= q1) · 1

)
⊗

(
q2 − (τ

[
0, 1

]
|= q2) · 1

)
.
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Via this first equation in Lemma 5.3.2 we prove the second one:

JCov(τ, q1, q2)
= τ |=

(
q1 − (τ

[
1, 0

]
|= q1) · 1

)
⊗

(
q2 − (τ

[
0, 1

]
|= q2) · 1

)
=

∑
x1∈X1, x2∈X2

τ(x1, x2) ·
(
q1 − (τ

[
1, 0

]
|= q1) · 1

)
(x1)

·
(
q2 − (τ

[
0, 1

]
|= q2) · 1

)
(x2)

=
∑

x1∈X1, x2∈X2

τ(x1, x2) ·
(
q1(x1) − (τ

[
1, 0

]
|= q1)

)
·
(
q2(x2) − (τ

[
0, 1

]
|= q2)

)
=

 ∑
x1∈X1, x2∈X2

τ(x1, x2) · q1(x1) · q2(x2)


−

 ∑
x1∈X1, x2∈X2

τ(x1, x2) · q1(x1) · (τ
[
0, 1

]
|= q2)


−

 ∑
x1∈X1, x2∈X2

τ(x1, x2) · (τ
[
1, 0

]
|= q1) · q2(x2)


+

(
τ
[
1, 0

]
|= q1

)
·
(
τ
[
0, 1

]
|= q2

)
=

(
τ |= q1 ⊗ q2

)
−

(
τ
[
1, 0

]
|= q1

)
·
(
τ
[
0, 1

]
|= q2

)
.

We turn to some illustrations. Many examples of covariance are actually of
joint form, especially if the underlying sets are subsets of the real numbers.
In the joint case it makes sense to leave these inclusions implicit, as will be
illustrated below.

Example 5.3.3. 1 Consider sets X = {1, 2} and Y = {1, 2, 3} as subsets of R,
together with a joint distribution τ ∈ D(X × Y) given by:

τ = 1
4 |1, 1⟩ +

1
4 |1, 2⟩ +

1
4 |2, 2⟩ +

1
4 |2, 3⟩.

Its two marginals are:

τ
[
1, 0

]
= 1

2 |1⟩ +
1
2 |2⟩ τ

[
0, 1

]
= 1

4 |1⟩ +
1
2 |2⟩ +

1
4 |3⟩.

Since both X ↪→ R and Y ↪→ R we get means as validities of the inclusions:

mean
(
τ
[
1, 0

])
= 3

2 mean
(
τ
[
1, 0

])
= 2.

Now we can compute the joint covariance in the joint state τ as:

JCov(τ) = τ |=
(
incl −mean

(
τ
[
1, 0

])
· 1

)
⊗

(
incl −mean

(
τ
[
1, 0

])
· 1

)
=

∑
x∈X, y∈Y

τ(x, y) · (x − 3
2 ) · (y − 2)

= 1
4
(
− 1

2 · −1 + 1
2 · 1

)
= 1

4 .

375



376 Chapter 5. Variance and covariance376 Chapter 5. Variance and covariance376 Chapter 5. Variance and covariance

2 In order to calculate the (joint) correlation of τ we first need the variances
of its marginals:

Var
(
τ
[
1, 0

])
=

∑
x∈X

τ
[
1, 0

]
(x) ·

(
x − 3

2
)2
= 1

4

Var
(
τ
[
0, 1

])
=

∑
y∈Y

, τ
[
0, 1

]
(y) ·

(
y − 2

)2
= 1

2 .

Then:

JCor(τ) =
JCov(τ)√

Var
(
τ
[
1, 0

])
·
√

Var
(
τ
[
0, 1

]) = 1/4

1/2 · 1/
√

2
= 1

2

√
2.

We have defined joint covariance as a special case of ordinary covariance.
We now show that shared-state covariance can also be seen as joint-state co-
variance, namely for a copied state. Recall that copying of states is a subtle
matter, since ∆ =≪ω , ω ⊗ ω, in general, see Subsection 2.3.2.

Proposition 5.3.4. Shared state covariance can be expressed as joint covari-
ance via copying:

Cov
(
ω, p1, p2

)
= JCov

(
∆ =≪ω, p1, p2

)
.

More generally, for suitably typed channels c, d,

Cov
(
ω, c ≫= p, d ≫= q

)
= JCov

(
⟨c, d⟩ =≪ω, p, q

)
.

The latter equation is reminiscent of Proposition 4.3.3, with validity |= being
maintained under a swap of state / predicate transformation.

Proof. We prove the second equation since the first one is a special case,
namely when c, d are identity channels. Via Lemma 5.3.2 we get:

JCov
(
⟨c, d⟩ =≪ω, p, q

)
= ⟨c, d⟩ =≪ω |=

(
p − ((⟨c, d⟩ =≪ω)

[
1, 0

]
|= p) · 1

)
⊗

(
q − ((⟨c, d⟩ =≪ω)

[
0, 1

]
|= q) · 1

)
= ω |= ⟨c, d⟩ ≫=

((
p − (c =≪ω |= p) · 1

)
⊗

(
q − (d =≪ω |= q) · 1

))
= ω |=

(
c ≫=

(
p − (ω |= c ≫= p) · 1

))
&

(
d ≫=

(
q − (ω |= d ≫= q) · 1

))
by Lemma 4.3.2 (7)

= ω |=
(
(c ≫= p) − (ω |= c ≫= p) · 1

)
&

(
(d ≫= q) − (ω |= d ≫= q) · 1

)
since c ≫= (−) is linear and preserves 1

= Cov
(
ω, c ≫= p, d ≫= q

)
.

We started with ‘ordinary’ covariance in Definition 5.1.6 for two random
variables with a shared state. It was subsequently used to define the ‘joint’
version in Definition 5.3.1. The above result shows that we could have done
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this the other way around too: obtain the ordinary formulation in terms of the
joint version. As we shall see below, there are notable differences between
shared-state and joint-state versions, see Proposition 5.4.3 and Theorem 5.4.6
in the next section.

But first we formulate a joint-state analogue for the linearity properties of
Theorem 5.1.9.

Theorem 5.3.5. Consider a state τ ∈ D(X1 × X2), with observables q1 ∈

Obs(X1), q2, q3 ∈ Obs(X2) and numbers r, s ∈ R.

1 Joint-state covariance satisfies:

JCov(τ, q1, q2) = JCov(τ, q2, q1)
JCov(τ, q1, 1) = 0

JCov(τ, r · q1, q2) = r · JCov(τ, q1, q2)
JCov(ω, q1, q2 + q3) = JCov(τ, q1, q2) + Cov(τ, q1, q3).

JCov(τ, q1 + r · 1, q2 + s · 1) = JCov(τ, q1, q2).

2 For joint-state correlation we have:

JCor(τ, r · q1, s · q2) =

JCor(τ, q1, q2) if r, s have the same sign

−JCor(τ, q1, q2) otherwise.
JCor(τ, q1 + r · 1, q2 + s · 1) = JCor(ω, q1, q2).

Proof. This follows directly from Theorem 5.1.9, using that predicate trans-
formation πi ≫= (−) is linear and thus preserves sums and scalar multiplications
(and also truth), see Lemma 4.3.2 (2).

We conclude this section with a medical example about the correlation be-
tween disease and test.

Example 5.3.6. We start with a space D = {d, d⊥} for occurence of a disease
or not (for a particular person) and a space T = {p, n} for a positive or negative
test outcome. Prevalence is used to indicate the prior likelihood of occurrence
of the disease, for instance in the whole population, before a test. It can be
described via a flip-like channel:

[0, 1] ◦
prev
// D with prev(r) B r|d ⟩ + (1 − r)|d⊥ ⟩.

We assume that there is a test for the disease with the following characteristics.

• (‘sensitivity’) If someone has the disease, then the test is positive with prob-
ability of 90%.
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• (‘specificity’) If someone does not have the disease, there is a 95% chance
that the test is negative.

We formalise this via a channel test : D→ T with:

test(d) = 9
10 | p⟩ +

1
10 |n⟩ test(d⊥) = 1

20 | p⟩ +
19
20 |n⟩.

We can now form the joint ‘graph’ state:

joint(r) B ⟨id , test⟩ =≪prev(r) ∈ D
(
D × T

)
.

Exercise 5.3.4 below tells that it does not really matter which observables we
choose, so we simply take 1d : D → [0, 1] and 1p : T → [0, 1], mapping d
and p to 1 and d⊥ and n to 0. We are thus interested in (joint-state) correlation
function:

[0, 1] ∋ r 7−→ JCor
(
joint(r), 1d, 1p

)
∈ [−1, 1].

This is plotted in Figure 5.2, on the left. We see that, with the sensitivity and
specificity values as given above, there is a clear positive correlation beteen
disease and test, but less so in the corner cases with minimal and maximal
prevalence.

We now fix a prevalence of 20% and wish to understand correlation as a
function of sensitivity and specificity. We thus parameterise the above test
channel to test(se, sp) : D→ T with parameters se, sp ∈ [0, 1].

test(se, sp)(d) = se| p⟩ + (1 − se)|n⟩
test(se, sp)(d⊥) = (1 − sp)| p⟩ + sp|n⟩.

As before we form a joint state, but now with different parameters.

joint(se, sp) B ⟨id , test(se, sp)⟩ =≪prev( 1
5 ) ∈ D

(
D × T

)
.

We are then interested in the function:

[0, 1] × [0, 1] ∋ (se, sp) 7−→ JCor
(
joint(se, sp), 1d, 1p

)
∈ [−1, 1].

It is described on the right in Figure 5.2. We see that with maximal sensitivity
and specificity (both 1) the correlation between disease and test is also maximal
(actually 1), and dually with minimal sensitivity and specificity (both 0) the
correlation is minimal (namely −1). These (unrealistic) extremes correspond
to an optimal test and an inferior one.

Exercise 5.3.5 makes some intuitive properties of this (parameterised) cor-
relation between disease and test explicit.
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Figure 5.2 Disease-Test correlations, on the left as a function of prevalence (with
fixed sensitivity and specificity) and on the right as a function of sensitivity and
specificity (with fixed prevalence), see Example 5.3.6 for details.

Exercises

5.3.1 Find examples of covariance and correlation computations in the liter-
ature (or online) and determine if they are of shared-state or joint-state
form.

5.3.2 Prove that:

JCor(τ, q1, q2) =
JCov(τ, q1, q2)

StDev(τ
[
1, 0

]
, q1) · StDev(τ

[
0, 1

]
, q2)

.

5.3.3 Consider distributions τi ∈ D(Xi) with observables pi ∈ Obs(Xi) for
i = 1, 2. Use Theorem 5.1.9 (2) to prove that:

Var
(
τ1 ⊗ τ2, (π1 ≫= p1) + (π2 ≫= p2)

)
= Var

(
τ1, p1

)
+ Var

(
τ2, p2

)
,

where the observable (π1 ≫= p1) + (π2 ≫= p2) : X1 × X2 → R sends a
pair (x1, x2) to p1(x1) + p(x2).

5.3.4 Consider two two-element sample spaces X1 = {a1, b1} and X2 =

{a2, b2} with a joint state τ ∈ D(X1 × X2). Prove that in this binary
case joint-state covariance and correlation do not depend on the ob-
servables, that is:

JCor(τ, p1, p2) = ±JCor(τ, q1, q2),

for all non-constant observables p1, q1 ∈ Obs(X1), p2, q2 ∈ Obs(X2).
Hint: Use Theorem 5.3.5 to massage p1, p2 to the observables which
send a1, b1 to 0 and a2, b2 to 1.
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5.3.5 Prove in the context of Example 5.3.6,

1 for each s ∈ [0, 1] one has:

JCor
(
joint(s, 1 − s, 1d, 1p

)
= 0;

2 for all se, sp ∈ [0, 1],

se + sp ≥ 1 ⇐⇒ JCor
(
joint(se, sp), 1d, 1p

)
≥ 0.

5.4 Independence for random variables

Earlier we have called a joint state / distribution entwined when it cannot be
written as product of its marginals. This may be called dependence, but the
word ‘dependence’ is standardly used for random variables. Such dependence
(or independence) is the topic of this section. We shall follow the approach
of the previous two sections and introduce two versions of dependence, also
called shared-state and joint-state. Independence is related to the property ‘co-
variance is zero’, but in a subtle manner. This will be elaborated below.

Suppose we have two random variables describing the number of icecream
sales and the temperature. Intuitively one expects a dependence between the
two, and that the two variables are correlated (in an informal sense). The op-
posite, namely independence is usually formalised as follows. Two random
variables p1, p2 are called independent if the equation,

P[p1 = a, p2 = b] = P[p1 = a] · P[p2 = b]. (5.6)

holds for all real numbers a, b. In this formulation a distribution is assumed
in the background. We like to use it explicitly. How should the above equa-
tion (5.6) then be read?

As we described in Subsection 4.1.1, the expression P[p = a] can be in-
terpreted as transformation along the observable p : X → R, considered as
deterministic channel:

P[p = a] B D(p)(ω)(a) = p =≪ω |= 1a
(4.11)
= ω |= p ≫= 1a.

where ω ∈ D(X) is the implicit distribution.
We can then translate the above requirement in Equation (5.6) into the con-

dition:

⟨p1, p2⟩ =≪ω = (p1 =≪ω) ⊗ (p2 =≪ω). (5.7)

But this says that the joint state ⟨p1, p2⟩ =≪ ω on R × R, transformed along
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⟨p1, p2⟩ : X → R×R, is non-entwined: it is the product of its marginals. Indeed,
its (first) marginal is:(

⟨p1, p2⟩ =≪ω
)[

1, 0
]
= π1 =≪

(
⟨p1, p2⟩ =≪ω

)
=

(
π1 ◦· ⟨p1, p2⟩

)
=≪ω

= p1 =≪ω.

This brings us to the following definition. We formulate it for two random
variables, but it can easily be extended to n-ary form.

Definition 5.4.1. Let (ω, p1) and (ω, p2) be two random variables with a com-
mon, shared state ω. These random variables will be called independent if the
transformed state ⟨p1, p2⟩ =≪ω on R×R is non-entwined, as in Equation (5.7):
it is required to be the product of its marginals, as in:

⟨p1, p2⟩ =≪ω = (p1 =≪ω) ⊗ (p2 =≪ω).

We sometimes call this the shared-state form of independence, in order to
distinguish it from a later joint-state version.

We give an illustration, of non-independence, that is, of dependence.

Example 5.4.2. Consider a fair coin flip = 1
2 |1⟩ +

1
2 |0⟩. We are going to

use it twice, first to determine how much we will bet (either €100 or €50),
and secondly to determine whether the bet is won or not. Thus we use the
distribution ω = flip ⊗ flip with underlying set 2× 2, where 2 = {0, 1}. We will
define two observables p1, p2 : 2 × 2 → R, to be used as random variables for
this same, shared distribution ω.

We first define an auxiliary observable p : 2→ R for the amount of the bet:

p(1) = 100 p(0) = 50.

We then define p1 = p ⊗ 1 = p ◦ π1 : 2 × 2→ R, via weakening, as on the left
below. The observable p2 is defined on the right.

p1(x, y) B p(x) =

 100 if x = 1
50 if x = 0

p2(x, y) B

 p(x) if y = 1
−p(x) if y = 0.

We claim that (ω, p1) and (ω, p2) are not independent. Intuitively this may be
clear, since the observable p forms a connection between p1 and p2. Formally,
we can see this by doing the calculations. First we find out what the joint state
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is:

⟨p1, p2⟩ =≪ω = D(⟨p1, p2⟩)(flip ⊗ flip)

= 1
4

∣∣∣ p1(1, 1), p2(1, 1)
〉
+ 1

4

∣∣∣ p1(1, 0), p2(1, 0)
〉

+ 1
4

∣∣∣ p1(0, 1), p2(0, 1)
〉
+ 1

4

∣∣∣ p1(0, 0), p2(0, 0)
〉

= 1
4

∣∣∣100, 100
〉
+ 1

4

∣∣∣100,−100
〉
+ 1

4

∣∣∣50, 50
〉
+ 1

4

∣∣∣50,−50
〉
.

Its two marginals are, inD(R),

p1 =≪ω =
(
⟨p1, p2⟩ =≪ω

)[
1, 0

]
= 1

2 |100⟩ + 1
2 |50⟩

p2 =≪ω =
(
⟨p1, p2⟩ =≪ω

)[
0, 1

]
= 1

4 |100⟩ + 1
4 | − 100⟩ + 1

4 |50⟩ + 1
4 | − 50⟩.

It is not hard to see that the parallel product ⊗ of these two marginal distribu-
tions differs from the joint distribution ⟨p1, p2⟩ =≪ω on R × R.

Proposition 5.4.3. The shared-state covariance of shared-state independent
random variables is zero: if random variables (ω, p1) and (ω, p2) are indepen-
dent, then Cov(ω, p1, p2) = 0.

The converse does not hold.

Proof. If (ω, p1) and (ω, p2) are independent, then, by definition, ⟨p1, p2⟩ =≪

ω = (p1 =≪ω) ⊗ (p2 =≪ω). The calculation belows shows that covariance is
then zero. It uses multiplication &: R × R → R as observable. It can also be
described as the parallel product id ⊗ id of the observable id : R → R with
itself.

Cov(ω, p1, p2)
=

(
ω |= p1 & p2

)
−

(
ω |= p1

)
·
(
ω |= p2

)
by Lemma 5.1.7

=
(
ω |= & ◦ ⟨p1, p2⟩

)
−

(
p1 =≪ω |= id

)
·
(
p2 =≪ω |= id

)
by Exercise 4.1.5

=
(
⟨p1, p2⟩ =≪ω |= &

)
−

(
(p1 =≪ω) ⊗ (p2 =≪ω) |= id ⊗ id

)
by Lemma 4.2.9, 4.1.5

=
(
⟨p1, p2⟩ =≪ω |= &

)
−

(
⟨p1, p2⟩ =≪ω |= &

)
by assumption

= 0.

The claim that the converse does not hold follows from Example 5.4.4, right
below.

Example 5.4.4. We continue Example 5.4.2. The set-up used there involves
two dependent random variables (ω, p1) and (ω, p2), with shared state ω =
flip ⊗ flip. We show here that they (nevertheless) have covariance zero. This
proves the second claim of Proposition 5.4.3, namely that zero-covariance need
not imply independence, in the shared-state context.
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We first compute the validities (expected values):

ω |= p1 =
1
4 · p1(1, 1) + 1

4 · p1(1, 0) + 1
4 · p1(0, 1) + 1

4 · p1(0, 0)

= 1
4 · 100 + 1

4 · 100 + 1
4 · 50 + 1

4 · 50 = 75

ω |= p2 =
1
4 · 100 + 1

4 · −100 + 1
4 · 50 + 1

4 · −50 = 0

Then:

Cov(ω, p1, p2)

= ω |=
(
p1 − (ω |= p1) · 1

)
&

(
p2 − (ω |= p2) · 1

)
= 1

4

(
(100−75) · 100 + (100−75) · −100 + (50−75) · 50 + (50−75) · −50

)
= 0.

We now turn to independence in joint-state form, in analogy with joint-state
covariance in Definition 5.3.1.

Definition 5.4.5. Let τ ∈ D(X1 × X2) be a joint state and with two observables
q1 ∈ Obs(X1) and q2 ∈ Obs(X2). We say that there is joint-state independence
of q1, q2 if the two random variables (τ, π1 ≫= q1) and (τ, π2 ≫= q2) are (shared-
state) independent, as described in Definition 5.4.1.

Concretely, this means that:

(q1 ⊗ q2) =≪τ =
(
q1 =≪τ

[
1, 0

])
⊗

(
q2 =≪τ

[
0, 1

])
. (5.8)

Equation (5.8) is an instance of the formulation (5.7) used in Definition 5.4.1
since πi ≫= qi = qi ◦ πi and:

⟨q1 ◦ π1, q2 ◦ π2⟩ =≪τ = D
(
⟨q1 ◦ π1, q2 ◦ π2⟩

)
(τ)

= D
(
q1 × q2

)
(τ)

(2.25)
= (q1 ⊗ q2) =≪τ(

(q1 ◦ π1) =≪τ
)
⊗

(
(q2 ◦ π2) =≪τ

)
=

(
q1 =≪(π1 =≪τ)

)
⊗

(
q2 =≪(π2 =≪τ)

)
=

(
q1 =≪τ

[
1, 0

])
⊗

(
q2 =≪τ

[
0, 1

])
.

In the joint-state case — unlike in the shared-state situation — there is a
tight connection between non-entwinedness, independence and covariance be-
ing zero.

Theorem 5.4.6. For a joint state τ ∈ D(X1×X2) the following three statements
are equivalent.

1 τ is non-entwined, i.e. τ is the product of its marginals;
2 the two observables qi ∈ Obs(Xi) are joint-state independent wrt. τ;
3 the joint-state covariance JCov(τ, q1, q2) is zero, for all observables qi ∈

Obs(Xi) — or equivalently, all correlations JCor(τ, q1, q2) are zero.
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Proof. Let joint state τ ∈ D(X1 × X2) be given. We write τi B πi =≪τ ∈ D(Xi)
for its marginals.

(1)⇒ (2). If τ is non-entwined, then τ = τ1 ⊗ τ2. Hence for all observables
q1 ∈ Obs(X1) and q2 ∈ Obs(X2) we have that σ B (q1 ⊗ q2) =≪ τ is non-
entwined. To see this, first note that πi =≪σ = qi =≪τi. Then, by Exercise 2.4.8:

(π1 =≪σ) ⊗ (π2 =≪σ) = (q1 =≪τ1) ⊗ (q2 =≪τ2)
= (q1 ⊗ q2) =≪(τ1 ⊗ τ2) = (q1 ⊗ q2) =≪τ = σ.

(2) ⇒ (3). Let q1 ∈ Obs(X1) and q2 ∈ Obs(X2) be two observables. We
may assume that q1, q2 are independent wrt. τ, that is, (q1 ⊗ q2) =≪ τ = (q1 =≪

τ1) ⊗ (q2 =≪τ2) as in (5.8). We must prove JCov(τ, q1, q2) = 0. Consider, like
in the proof of Proposition 5.4.3, the multiplication map &: R×R→ R, given
by &(r1, r2) = r1 · r2, as an observable on R × R. We consider its validity:

(q1 ⊗ q2) =≪τ |= & =
∑

r1,r2∈R

(
(q1 ⊗ q2) =≪τ

)
(r1, r2) · &(r1, r2)

=
∑

r1,r2∈R
D(q1 × q2)(τ)(r1, r2) · r1 · r2

=
∑

r1,r2∈R

 ∑
(x1,x2) ∈ (q1×q2)−1(r,s)

τ(x1, x2)

 · r · s
=

∑
r1,r2∈R

∑
x1∈q−1

1 (r),x2∈q−1
2 (s)

τ(x1, x2) · q1(x1) · q2(x2)

=
∑

x1,x2∈X

τ(x1, x2) · (q1 ⊗ q2)(x1, x2)

= τ |= q1 ⊗ q2.

In the same way one proves (q1 =≪ τ1) ⊗ (q2 =≪ τ2) |= & = (τ1 |= q1) ·
(τ2 |= q2). But then we are done via the formulation of binary covariance from
Lemma 5.3.2:

JCov(τ, q1, q2) =
(
τ |= q1 ⊗ q2

)
− (τ1 |= q1) · (τ2 |= q2)

=
(
(q1 ⊗ q2) =≪τ |= &

)
−

(
(q1 =≪τ1) ⊗ (q2 =≪τ2) |= &

)
=

(
(q1 ⊗ q2) =≪τ |= &

)
−

(
(q1 ⊗ q2) =≪τ |= &

)
= 0.

(3) ⇒ (1). Let joint-state covariance JCov(τ, q1, q2) be zero for all observ-
ables q1, q2. In order to prove that τ is non-entwined, we have to show τ(x, y) =
τ1(x) · τ2(y) for all (x, y) ∈ X1 ×X2. We choose as random variables the observ-
ables 1x and 1y and use again the formulation of covariance from Lemma 5.3.2.
Then, since, by assumption, the binary covariance is zero, so that:

τ(x, y) = τ |= 1x ⊗ 1y = (τ1 |= 1x) · (τ2 |= 1y) = τ1(x) · τ2(y).
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In essence this result says that joint-state independence and joint-state co-
variance being zero are not properties of observables, but of joint states.

Exercises

5.4.1 Prove, in the setting of Definition 5.4.5 that the first marginal
(
(q1 ⊗

q2) =≪ τ
)[

1, 0
]

of the transformed state along q1 ⊗ q2 is equal to the
transformed marginal q1 =≪τ

[
1, 0

]
.

5.5 The law of large numbers, in weak form

In this section we describe what is called the weak law of large numbers. The
strong version appears later on, in ??. This weak law captures limit behaviour
of probabilistic operations, such as: if we throw a fair dice many, many times,
we expect to see each number of pips 1

6 of the time. It is sometimes also called
Bernoulli’s Theorem.

We shall describe this law of large numbers in two forms: as binary version,
which is most familiar, and as multivariate version. Both versions use results
about means and variances that we have seen before.

First we need to introduce two famous inequalities, due to Markov and to
Chebyshev. If we have an observable p : X → R and a number a ∈ R we
introduce a sharp predicate [p ≥ a] on X, defined in an obvious way as:

[p ≥ a](x) B

1 if p(x) ≥ a

0 otherwise.
(5.9)

We can similarly write [p > a], [p ≤ a] and [p < a].

Lemma 5.5.1. Let ω ∈ D(X) be a state, p ∈ Obs(X) an observable, and a ∈ R
an arbitrary number. Then:

1 Chebyshev’s inequality holds: a ·
(
ω |= [p ≥ a]

)
≤ ω |= p;

2 Markov’s inequality holds: a2 ·
(
ω |=

[
| p − (ω |= p) · 1 | ≥ a

])
≤ Var(ω, p).

Proof. 1 Because:

ω |= p ≥ ω |= p & [p ≥ a] ≥ ω |= (a · 1) & [p ≥ a]
= ω |= a ·

(
1 & [p ≥ a]

)
= ω |= a · [p ≥ a]
= a ·

(
ω |= [p ≥ a]

)
.
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2 Write q B p − (ω |= p) · 1 : X → R, so that q(x) = p(x) − (ω |= p). Then:[
|q| ≥ a

]
(x) = 1 ⇐⇒ |q(x)| ≥ a

=⇒ q(x)2 ≥ a2 ⇐⇒
[
q2 ≥ a2](x) = 1.

This gives an inequality of (sharp) predicates:
(
|q| ≥ a

)
≤

(
q2 ≥ a2). Hence,

by the previous item (Markov’s inequality),

a2 ·
(
ω |=

[
| p − (ω |= p) · 1 | ≥ a

])
= a2 ·

(
ω |=

[
|q| ≥ a

])
≤ a2 ·

(
ω |=

[
q2 ≥ a2])

≤ ω |= q2 by item (1)

= Var(ω, p).

We turn to the weak law of large numbers, in binary form. To start, fix the
single and parallel coin states:

σ B flip
( 1

2
)
= 1

2 |1⟩ +
1
2 |0⟩ ∈ D(2) and σn B σ ⊗ · · · ⊗ σ ∈ D(2n),

with an average predicate on 2n, namely:

2n avgn // [0, 1] defined by avgn
(
x1, . . . , xn

)
B

x1 + · · · + xn

n
. (5.10)

The predicate avgn captures the average number of heads (as 1) in n coin flips.
Then:

σ |= avg1 =
1
2 · 1 +

1
2 · 0 =

1
2

σ2 |= avg2 =

1
4 · (1 + 1) + 1

4 · (1 + 0) + 1
4 · (0 + 1) + 1

4 · (0 + 0)
2

= 1
2

...

σn |= avgn =

∑
1≤k≤n

(
n
k

)
· k

2n

n
=

mean
(
bn[n]( 1

2 )
)

n
=

n · 1/2

n
= 1

2 .

For the last equation, see Example 4.1.4 (4). These equations express that in n
coin flips the average number of heads is 1

2 . This makes perfect sense.
The weak law of large numbers involves a more subtle statement, namely

that for each ε > 0 the validity:

σn |=
[ ∣∣∣ avgn −

1
2 · 1

∣∣∣ ≥ ε]. (5.11)

goes to zero as n goes to infinity. One may think that this convergence to zero
is obvious, but it is not, see Figure 5.3. The above validities (5.11) do go down,
but not monotonously.
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Figure 5.3 Example validities (5.11) with ε = 1
10 , from n = 1 to n = 20.

Theorem 5.5.2 (Weak law of large numbers). Using the fair coinσ = flip
( 1

2
)
=

1
2 |1⟩ +

1
2 |0⟩ and the average predicate avgn : 2n → [0, 1] from (5.10), for each

ε > 0,

lim
n→∞

σn |=
[ ∣∣∣ avgn −

1
2 · 1

∣∣∣ ≥ ε] = 0.

Proof. We use Chebyshev’s inequality from Lemma 5.5.1 (2). Since σn |=

avgn =
1
2 , as we have seen above, it gives an inequality in:

σn |=
[ ∣∣∣ avgn −

1
2 · 1

∣∣∣ ≥ ε] ≤ Var
(
σn, avgn

)
ε2

(∗)
=

1
4nε2 .

It suffices to prove the marked equality
(∗)
= , since then it is clear that the limit in

the theorem goes to zero, as n goes to infinity.
The product 2n comes with n projection functions πi : 2n → 2. Using these

we can write the predicate avgn : 2n → [0, 1] as 1
n ·

∑
i πi. Thus:

σn |= avgn & avgn =
1
n2 ·

∑
i, j

σn |= πi & π j

=
1
n2 ·

∑
i

σn |= πi & πi +
∑

i, j, i, j

σn |= πi & πi


=

1
n2 ·

(
n
2
+

n2 − n
4

)
=

n + 1
4n

.

Hence, by Lemma 5.1.3,

Var
(
σn, avgn

)
=

(
σn |= avgn & avgn

)
−

(
σn |= avgn

)2
=

n + 1
4n
−

1
4
=

1
4n
.

This proves the marked equation
(∗)
= , and thus the theorem.
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An obvious next step is to extend this result to arbitrary distributions. So let
us fix a distribution ω. For a number n ∈ N and for an element y ∈ X we use
the accumulation predicate accfrac(y) : Xn → [0, 1], given by:

accfrac(y)
(
x1, . . . , xn

)
B

acc
(
x1, . . . , xn

)
(y)

n
=

∣∣∣ {i | xi = y}
∣∣∣

n
. (5.12)

Thus, the predicate accfrac(y) outputs the fraction of y’s in an input sequence.
For instance, accfrac(c)(a, b, c, c, b) = 2

5 .
As one may expect, the validity of accfrac(y) converges to ω(y) in product

states ωn = ω ⊗ · · · ⊗ ω when n goes to infinity. This is the content of item (3)
below, which is the multivariate version of the weak law of large numbers.

Proposition 5.5.3. Consider the above situation, with a distribution ω, an
element y ∈ X, and the predicate accfrac(y) from (5.12).

1 The validity is given by:

ωn |= accfrac(y) = ω(y).

2 The formula for the variance is:

Var
(
ωn, accfrac(y)

)
=

ω(y) · (1 − ω(y))
n

.

3 For each ε > 0,

lim
n→∞

ωn |=
[ ∣∣∣ accfrac(y) − ω(y) · 1

∣∣∣ ≥ ε] = 0.

Proof. 1 Notice that we can write:

accfrac(y) = 1
n ·

(
Xn acc // N[n](X)

evy
// R≥0

)
,

where evxi is the point evaluation map from (4.13). Then, using acc as a
deterministic channel,

ωn |= accfrac(y) = 1
n ·

(
ωn |= acc ≫= evy

)
= 1

n ·
(
acc =≪iid [n](ω) |= evy

)
= 1

n ·
(
mn[n](ω) |= evy

)
by Theorem 2.6.7

= ω(y) by Lemma 3.3.2.
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2 Via a combination of several earlier results we get:

Var
(
ωn, accfrac(y)

)
= Var

(
ωn, 1

n · (evy ◦ acc)
)

= 1
n2 · Var

(
ωn, evy ◦ acc

)
by Theorem 5.1.9 (2)

= 1
n2 · Var

(
D(acc)(ωn), evy

)
by Exercise 5.1.9

= 1
n2 · Var

(
mn[n](ω), evy

)
see Theorem 2.6.7

=
ω(y) · (1 − ω(y))

n
.

The latter equation involves a combination of Proposition 5.2.1 (1) and
Equation (5.3).

3 Via Chebyshev’s inequality from Lemma 5.5.1 (2), in combination with the
previous two items, we get:

lim
n→∞

ωn |=
[ ∣∣∣ accfrac(y) − ω(y) · 1

∣∣∣ ≥ ε] ≤ lim
n→∞

Var(ωn, accfrac(y))
ε2

= lim
n→∞

ω(y) · (1 − ω(y))
n · ε2

= 0.

There is an alternative formulation. In the above situation we use the ac-
cumulation map acc : Xn → N[n](X). We shall use it in combination with
frequentist learning, namely as function:

Flrn ◦ acc : Xn −→ D(X).

For instance
(
Flrn ◦ acc

)
(a, c, a, a, c, b) = Flrn

(
acc(a, c, a, a, c, b)

)
= 1

2 |a⟩ +
1
6 |b⟩ +

1
3 |c⟩. This composite Flrn ◦ acc is related to the predicate accfrac that

we use above (5.12), since, for x⃗ ∈ Xn,(
Flrn ◦ acc

)
(x⃗) =

∑
y∈X

acc(x⃗)(y)
n

∣∣∣y〉
=

∑
y∈X

accfrac(y)(x⃗)
∣∣∣y〉

.

For a given state ω ∈ D(X) we can look at the total variation distance d, see
Subsection 4.5.1, as a predicate Xn → [0, 1], given by:

x⃗ 7−→ d
(
Flrn

(
acc(x⃗)

)
, ω

)
= 1

2 ·
∑
y∈X

∣∣∣ Flrn
(
acc(x⃗)

)
(y) − ω(y)

∣∣∣
= 1

2 ·
∑
y∈X

∣∣∣ accfrac(y)(x⃗) − ω(y)
∣∣∣. (5.13)

This predicate is used in the following multivariate weak large number the-
orem. Informally it says: the distribution that is obtained by accumulating n
samples from ω has a total variation distance to ω that goes to zero as n goes
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to infinity. This holds ‘in probability’, since it is expressed as a predicate that
is evaluated in a (product) state ωn.

Theorem 5.5.4. For a state ω ∈ D(X) and a number ε > 0 one has:

lim
n→∞

ωn |=
[

d
(
Flrn(acc(−)), ω

)
≥ ε

]
= 0.

Alternatively, in terms of multinomial distributions:

lim
n→∞

mn[n](ω) |=
[

d
(
Flrn(−), ω

)
≥ ε

]
= 0.

Proof. Let supp(ω) ⊆ X have ℓ ∈ N>0 elements. There is an inequality of
sharp predicates on Xn of the form:[

d
(
Flrn(acc(−)), ω

)
≥ ε

]
≤

∑
y∈supp(ω)

[ ∣∣∣ accfrac(y) − ω(y) · 1
∣∣∣ ≥ 2ε

ℓ

]
. (∗)

Indeed, if the right-hand-side in (∗) is 0, then for each x⃗ ∈ Xn and y ∈ supp(ω)
we have: ∣∣∣ Flrn(acc(x⃗))(y), ω(y)

∣∣∣ = ∣∣∣ accfrac(y)(x⃗), ω(y)
∣∣∣ < ε

2ℓ .

The predicate (5.13) now satisfies:

d
(
Flrn(acc(−)), ω

)
(x⃗) = 1

2 ·
∑

y∈supp(ω)

∣∣∣ Flrn(acc(x⃗))(y), ω(y)
∣∣∣

< 1
2 ·

∑
y∈supp(ω)

2ε
ℓ
= ε.

Thus the left-hand-side in (∗) satisfies:
[

d
(
Flrn(acc(−)), ω

)
≥ ε

]
(x⃗) = 0.

Now we can prove the first limit result in the theorem:

lim
n→∞

ωn |=
[

d
(
Flrn(acc(−)), ω

)
≥ ε

]
≤ lim

n→∞
ωn |=

∑
y∈supp(ω)

[ ∣∣∣ accfrac(y) − ω(y) · 1
∣∣∣ ≥ 2ε

ℓ

]
by (∗)

=
∑

y∈supp(ω)

lim
n→∞

ωn |=
[ ∣∣∣ accfrac(y) − ω(y) · 1

∣∣∣ ≥ 2ε
ℓ

]
= 0 by Proposition 5.5.3 (3).

The second limit in the theorem is now obtained via Proposition 4.3.3 and
Theorem 2.6.7.

Figure 5.4 gives an impression of the terms in a limit like in Theorem 5.5.4,
for ω = 1

4 |a⟩ +
5
12 |b⟩ +

1
3 |c⟩. The plot covers only a small initial fragment

because of the exponential growth of the sample space. For instance, the space
of the parallel product ω12 has 312 elements, which is more than half a million.
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Figure 5.4 Initial segment of the limit from Theorem 5.5.4, with ω = 1
4 |a⟩ +

5
12 |b⟩ +

1
3 |c⟩ and ε = 1

10 , from n = 1 to n = 12.

This initial segment suggests that the validities go down, but the suggestion is
weak; Theorem 5.5.4 provides certainty.

In the end we recall from Theorem 3.3.3 the equation:

ω = Flrn =≪mn[K](ω) =
∑

φ∈N[K](X)

mn[K](ω)(φ) · Flrn(φ).

This says that an arbitrary distribution ω is actually equal to a convex sum of
normalised multinomial draws from it. This works for any number K, and not
only in the limit. We can formulate the second equation in the above Theo-
rem 5.5.4 in a somewhat similar way as:

lim
n→∞

∑{
mn[n](ω)(φ)

∣∣∣∣ φ ∈ N[n](X) with d
(
Flrn(φ), ω

)
≥ ε

}
= 0.

We can read this as: for each very large multiset φ, if its normalisation Flrn(φ)
differs more than a little bit (ε) from ω, then it is an unlikely multinomial draw
from ω. Or, turned around, the normalisation of a large multiset φ drawn from
ω, looks very much like ω. This the basis of sampling from a distribution, see
Subsection 2.2.1.

Exercises

5.5.1 For a number a ∈ R, write 1≥a : R → [0, 1] for the sharp predicate
with 1≥a(r) = 1 iff r ≥ a. Consider an observable p : X → R as a de-
terministic channel. Check that the sharp predicate [p ≥ a] from (5.9)
can also be described as predicate transformation p ≫= 1≥a.

5.5.2 Prove that
(
Flrn ◦ acc

)
=≪ωn = ω.

5.5.3 Show how Theorem 5.5.2 is an instance of Theorem 5.5.3 (3).
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6

Updating distributions

One of the most interesting and magical aspects of probability distributions
(states) is that they can be ‘updated’. Informally, this means that in the light of
evidence (new information), one can revise a distribution to a new distribution,
so that the new distribution better matches the evidence. This updating is also
called belief update, conditioning, revision, learning or inference.

Less informally, for a factor (or predicate or event) p and a distribution ω,
both on the same sample space, one can form a new updated (conditioned)
distribution, written as ω|p. It absorps the evidence p into ω. This updating
satisfies various properties, including the famous rule of Thomas Bayes, and
also a less well known but also important validity-increase property:

ω|p |= p ≥ ω |= p.

It states that after absorbing the evidence p the validity of p increases. This
makes perfect good sense and is crucial in probabilistic learning.

Updating is particularly interesting for joint distributions. A theme that will
run through this chapter is that probabilistic updating (conditioning) has ‘cross-
over’ influence. This means that if we have a joint distribution on a product
sample space, then updating in one component typically changes the distribu-
tion in the other component (the marginal). This crossover influence is another
magical aspect in a probabilistic setting and depends on correlation between
the two components. As we shall see, channels play an important role in this
phenomenon.

The combination of updating and transformation along a channel adds its
own dynamics to the topic. An update ω|p involves both a distribution ω and a
factor p. In presence of a channel we can first transform the state ω or the fac-
tor p and then update. But we can also transform an updated state ω|p. How are
all these related? The power of conditioning becomes apparent when it is com-
bined with transformation, especially for inference in probabilistic reasoning.
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We shall see two forms of inference: forward inference involves condition-
ing followed by state transformation; it is commonly called causal reasoning.
There is also backward inference, which is observable transformation followed
by conditioning, and is known as evidential reasoning. We illustrate the use-
fulness of both these inference techniques in many examples in Sections 6.2
and 6.7, but also for Bayesian networks, in Sections 6.4 and 6.5. In the lat-
ter two sections we illustrate how a representation as a string diagram guides
the reasoning in a network, up and down channels, via forward and backward
inference, involving (forward) state transformation and (backward) predicate
transformation. These string diagrams are used both for Bayesian networks
and for (hidden) Markov models.

In Section 6.7 we take a first look at the topic of parameter learning, espe-
cially in the form of learning the value of a bias r ∈ [0, 1] in a distribution
flip(r), when there is coin flip evidence. More concretely, if we have a coin
of unknown bias r, and we have evidence of so-and-so many of its head and
tail flips, what can we deduce about this bias r? Since the bias has a con-
tinuous range [0, 1], we should use a continuous distribution over [0, 1], that
gets updated with every piece of evidence. So far we have considered only
discrete distributions. We illustrate how chopping up the unit interval into dis-
crete parts, with a discrete distribution on these parts, still gives reasonably
good results.

At the end of this chapter, Section 6.8 is of a more fundamental nature.
Technically, it gives an isomorphism between the set D(X) of distributions on
a finite set X, and the set of functions Pred (X)→ [0, 1] that preserve the effect
module structure. We argue that this isomorphism relates the frequentist view
on probabilities, using distributions ω ∈ D(X) as assignments of probabilities,
to the Bayesian view, using belief evaluations of predicates.

6.1 Update basics

We shall use updating and conditioning synonymously. These terms refer to
the incorporation of evidence into a distribution, where the evidence is given
by a predicate (or more generally by a factor). This section describes the def-
inition and basic results, including Bayes’ theorem and validity-increase. The
relevance of conditioning in probabilistic reasoning will be demonstrated in
many examples later on in this chapter.

Definition 6.1.1. Let ω ∈ D(X) be a distribution on a sample space X and let
p ∈ Fact(X) = (R≥0)X be a factor, on the same space X.
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1 If the validity ω |= p is non-zero, we define a new distribution ω|p ∈ D(X)
as normalised pointwise product of ω and p:

ω|p(x) B
ω(x) · p(x)
ω |= p

i.e. ω|p =
∑
x∈X

ω(x) · p(x)
ω |= p

∣∣∣ x〉
. (6.1)

This distribution ω|p may be pronounced as: ω, given p.
2 The conditional expectation or conditional validity of an observable q on X,

given p and ω, is the validity:

ω|p |= q.

3 For a channel c : X → Y and a factor q on Y we define the updated channel
c|q : X → Y via pointwise updating:

c|q(x) B c(x)|q.

In writing c|q we assume that validity c(x) |= q = (c ≫= q)(x) is non-zero, for
each x ∈ X.

Often, the distribution ω before updating is called the prior or the a priori
distribution, whereas the updated distribution ω|p is called the posterior or the
a posteriori distribution. The posterior incorporates the evidence given by the
factor p. One may thus expect that in the updated state ω|p the factor p is more
true than in ω. This is indeed the case, as will be shown in Theorem 6.1.5
below.

In Equation (6.1) we see that the validity ω |= p is used for normalisation.
Computing this validity may be computationally expensive, when the distribu-
tion ω has a very large support. We shall describe how to sample an updated
distribution in Subsection 6.6.1.

Notice that we define updating ω|p only for factor p : X → R≥0, with non-
negative outcomes, and not for arbitrary observables X → R. The latter lead to
negative probabilities, which are excluded in our setting.

The conditioning c|q of a channel in item (3) is in fact a generalisation of the
conditioning of a state ω|p in item (1), since the state ω ∈ D(X) can be seen
as a channel ω : 1 → X with a one-element set 1 = {0} as domain. We shall
demonstrate the usefulness of conditioning of channels in Section 6.3, but we
focus on updating of distributions first.

The standard conditional probability notation is: P(E | D) for events E,D ⊆
X, where the distribution involved is left implicitly. If ω is this implicit distri-
bution, then P(E | D) corresponds to the conditional expectation expressed by
the validity ω|1D |= 1E of the sharp predicate 1E , in the state ω updated with
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the sharp predicate 1D. Indeed,

ω|1D |= 1E =
∑
x∈X

ω|1D (x) · 1E(x)

(6.1)
=

∑
x∈E

ω(x) · 1D(x)
ω |= 1D

=

∑
x∈E∩D ω(x)∑

x∈D ω(x)
=

P(E ∩ D)
P(D)

= P(E | D).

The formulation ω|p of conditioning that is used above is not restricted to sharp
predicates, but works much more generally for fuzzy predicates / factors p.
This is sometimes called updating with soft or uncertain evidence [21, 37, 79].
It is what we use as default form.

Example 6.1.2.

1 Let’s take the numbers of a dice as sample space: pips = {1, 2, 3, 4, 5, 6}, with
a fair / uniform dice distribution dice = unifpips =

1
6 |1⟩+

1
6 |2⟩+

1
6 |3⟩+

1
6 |4⟩+

1
6 |5⟩ +

1
6 |6⟩. We consider the predicate evenish ∈ Pred (pips) = [0, 1]pips

expressing that we are fairly certain of the outcome being even:

evenish (1) = 1
5 evenish (3) = 1

10 evenish (5) = 1
10

evenish (2) = 9
10 evenish (4) = 9

10 evenish (6) = 4
5

We first compute the validity of evenish for our fair dice:

dice |= evenish =
∑

x∈pips

dice(x) · evenish (x)

= 1
6 ·

1
5 +

1
6 ·

9
10 +

1
6 ·

1
10 +

1
6 ·

9
10 +

1
6 ·

1
10 +

1
6 ·

4
5

= 2+9+1+9+1+8
60 = 1

2 .

If we take evenish as evidence, we can update our dice state and get:

dice
∣∣∣
evenish =

∑
x∈pips

dice(x) · evenish (x)
dice |= evenish

∣∣∣ x〉
=

1/6 · 1/5

1/2

∣∣∣1〉
+

1/6 · 9/10

1/2

∣∣∣2〉
+

1/6 · 1/10

1/2

∣∣∣3〉
+

1/6 · 9/10

1/2

∣∣∣4〉
+

1/6 · 1/10

1/2

∣∣∣5〉
+

1/6 · 4/5

1/2

∣∣∣6〉
= 1

15

∣∣∣1〉
+ 3

10

∣∣∣2〉
+ 1

30

∣∣∣3〉
+ 3

10

∣∣∣4〉
+ 1

30

∣∣∣5〉
+ 4

15

∣∣∣6〉
.

As expected, the probabilities for the even pips are now, in the posterior,
higher than for the odd ones: the evenish evidence has been incorporated.
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2 The following alarm example is due to Pearl [145]. It involves an ‘alarm’ set
A = {a, a⊥} and a ‘burglary’ set B = {b, b⊥}, with the following a priori joint
distribution ω ∈ D(A × B).

0.000095|a, b⟩ + 0.009999|a, b⊥ ⟩ + 0.000005|a⊥, b⟩ + 0.989901|a⊥, b⊥ ⟩.

Apparently, alarms are very rare, with or without burglary, and the most
common situation is described by the last summand: no alarm, no burglary.

The a priori burglary distribution is the second marginal:

ω
[
0, 1

]
= 0.0001|b⟩ + 0.9999|b⊥ ⟩.

Someone reports that the alarm went off, but with only 80% certainty be-
cause of deafness. This can be described as a predicate p : A → [0, 1] with
p(a) = 0.8 and p(a⊥) = 0.2. We can also write this predicate in terms of
weighted point predicates: p = 0.8 ·1a+0.2 ·1a⊥ . There is a ‘type’ mismatch
between p and ω, since p is a predicate on A and ω is a (joint) distribution
on the product set A × B. This mismatch can be solved via weakening p to
p⊗ 1 = π1 ≫= p, so that it becomes a predicate on A× B. Then we can do the
update of the joint distribution:

ω|p⊗1 ∈ D(A × B).

In order understand it in detail we first compute the validity:

ω |= p ⊗ 1 =
∑

x∈A, y∈B

ω(x, y) · p(x) = 0.206.

We can then compute the updated joint state as:

ω|p⊗1 =
∑

x∈A, y∈B

ω(x, y) · p(x)
ω |= p

∣∣∣ x, y〉
= 0.0003688|a, b⟩ + 0.03882|a, b⊥ ⟩

+ 0.000004853|a⊥, b⟩ + 0.9608|a⊥, b⊥ ⟩.

The resulting posterior burglary distribution — with the alarm evidence
taken into account — is obtained by taking the second marginal of the up-
dated distribution:(

ω|p⊗1
)[

0, 1
]
= 0.0004|b⟩ + 0.9996|b⊥ ⟩.

We see that the burglary probability is four times higher in the posterior
than in the prior. What happens is noteworthy: evidence about one compo-
nent A changes the probabilities in another component B. This ‘crossover
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influence’ (in the terminology of [97]) or ‘crossover inference’ happens pre-
cisely because the joint distribution ω is entwined, so that the different parts
can influence each other.

One of the main results about conditioning is Bayes’ theorem. We present it
here for factors, and not just for sharp predicates (events), as is common.

Theorem 6.1.3. Let ω be distribution on a sample space X, and let p, q be
factors on X.

1 The product rule holds for conditional validity:

ω|p |= q =
ω |= p & q
ω |= p

.

2 Bayes’ rule holds:

ω|p |= q =
(ω|q |= p) · (ω |= q)

ω |= p
.

This result carefully distinguishes a product rule, in item 1, and Bayes’ rule,
in item (2). This distinction is not always made, since the rules are closely
related, and the product rule is sometimes also called Bayes’ rule.

Proof. 1 We straightforwardly compute:

ω|p |= q =
∑
x∈X

ω|p(x) · q(x)
(6.1)
=

∑
x∈X

ω(x) · p(x)
ω |= p

· q(x)

=

∑
x∈X ω(x) · p(x) · q(x)

ω |= p

=

∑
x∈X ω(x) · (p & q)(x)

ω |= p
=
ω |= p & q
ω |= p

.

2 This follows directly by using the previous item twice, in combination with
the commutativity of conjunction &, in:

ω|p |= q
(1)
=

ω |= p & q
ω |= p

=
ω |= q & p
ω |= p

(1)
=

(ω|q |= p) · (ω |= q)
ω |= p

.

Example 6.1.4. We instantiate Proposition 6.1.3 with sharp predicates 1E , 1D

for subsets / events E,D ⊆ X. Then the familiar formulations of the product /
Bayes rule appear.

1 The product rule specialises to the definition of conditional probability:

P(E | D) = ω|1D |= 1E =
ω |= 1D & 1E

ω |= 1D
=
ω |= 1D∩E

P(D)
=

P(D ∩ E)
P(D)

.
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2 Bayes rule, in the general formulation of Proposition 6.1.3 (2) specialises to
the well known inversion property of conditional probabilities:

P(E | D) = ω|1D |= 1E =
(ω|1E |= 1D) · (ω |= 1D)

ω |= 1E
=

P(D | E) · P(E)
P(D)

.

We have explained updating ω|p as incorporating the evidence p into the
distribution ω. Thus, one expects p to be ‘more true’ in ω|p than in ω. The next
result shows that this is indeed the case. It plays an important role in learning
see Chapter ??.

Theorem 6.1.5 (Validity-increase). For a distribution ω and a factor p on the
same set, if the validity ω |= p is non-zero, one has:

ω|p |= p ≥ ω |= p.

Proof. We recall the inequality ω |= p & p ≥
(
ω |= p

)2 from Corol-
lary 5.1.4 (1), or from Exercise 4.2.8 (2). Then, by the product rule from The-
orem 6.1.3 (1),

ω|p |= p =
ω |= p & p
ω |= p

≥

(
ω |= p

)2

ω |= p
= ω |= p.

We add a few more basic facts about conditioning.

Lemma 6.1.6. Let ω be distribution on X, with factors p, q ∈ Fact(X).

1 Conditioning with truth has no effect:

ω|1 = ω.

2 Conditioning with a point predicate gives a point state: for a ∈ X,

ω|1a = 1|a⟩, assuming ω(a) , 0.

3 Iterated conditionings commute:(
ω|p

)
|q = ω|p&q =

(
ω|q

)
|p.

4 Conditioning is stable under multiplication of the factor with a scalar s > 0:

ω|s·p = ω|p.

5 Conditioning can be done component-wise, for product states and factors:

(σ ⊗ τ)
∣∣∣
(p⊗q) =

(
σ|q

)
⊗

(
τ|p

)
.

6 Marginalisation of a conditioning with a (similarly) weakened predicate is
conditioning of the marginalised state:

ω|1⊗q
[
0, 1

]
= ω

[
0, 1

]∣∣∣
q.
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7 For a function f : X → Y, used as deterministic channel,(
f =≪ω

)∣∣∣
q = f =≪

(
ω
∣∣∣
q◦ f

)
.

When we ignore undefinedness issues, we see that items 1 and 3 show that
conditioning is an action on distributions, namely of the monoid of factors with
conjunction (1,&), see Definition 1.4.4.

Proof. 1 Trivial since ω |= 1 = 1.

2 Assuming ω(a) , 0 we get for each x ∈ X,

ω|1a (x) =
ω(x) · 1a(x)
ω |= 1a

=
ω(a) · 1|a⟩(x)

ω(a)
= 1|a⟩(x).

3 It suffices to prove:

(
ω|p

)
|q(x) =

ω|p(x) · q(x)
ω|p |= q

=
ω(x)·p(x)/ω|=p · q(x)

ω|=p&q/ω|=p
by Proposition 6.1.3 (1)

=
ω(x) · (p & q)(x)
ω |= p & q

= ω|p&q(x).

4 First we have:

ω |= s · p =
∑
x∈X

ω(x) · (s · p)(x) =
∑
x∈X

ω(x) · s · p(x)

= s ·

∑
x∈X

ω(x) · p(x)

 = s ·
(
ω |= p

)
.

Next:

ω|s·p(x) =
ω(x) · (s · p)(x)
ω |= s · p

=
ω(x) · s · p(x)

s · (ω |= p)
=
ω(x) · p(x)
ω |= p

= ω|p(x).

5 For states σ ∈ D(X), τ ∈ D(Y) and factors p on X and q on Y one has:(
(σ ⊗ τ)

∣∣∣
(p⊗q)

)
(x, y) =

(σ ⊗ τ)(x, y) · (p ⊗ q)(x, y)
(σ ⊗ τ) |= (p ⊗ q)

=
σ(x) · τ(y) · p(x) · q(y)

(σ |= p) · (τ |= q)
by Lemma 4.2.9

=
σ(x) · p(x)
σ |= p

·
τ(y) · q(y)
τ |= q

=
(
σ|p

)
(x) ·

(
τ|q

)
(y)

=
((
σ|p

)
⊗

(
τ|q

))
(x, y).
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6 Let ω ∈ D(X × Y) and q be a factor on Y; then for an element y ∈ Y ,(
ω|1⊗q

[
0, 1

])
(y) =

∑
x∈X

ω|1⊗q(x, y)

=
∑
x∈X

ω(x, y) · (1 ⊗ q)(x, y)
ω |= 1 ⊗ q

(4.7)
=

(
ω
[
0, 1

])
(y) · q(y)

ω
[
0, 1

]
|= q

=
(
ω
[
0, 1

]∣∣∣
q

)
(y).

7 For f : X → Y , ω ∈ D(X) and q ∈ Fact(Y),(
( f =≪ω)|q

)
(y) = D( f )(ω)|q(y) =

D( f )(ω)(y) · q(y)
D( f )(ω) |= q

=
∑

x∈ f −1(y)

ω(x) · q(y)∑
x∈ f −1(y) ω(x) · p(y)

=
∑

x∈ f −1(y)

ω(x) · q( f (x))∑
x ω(x) · q( f (x))

=
∑

x∈ f −1(y)

ω|q◦ f (x)

= D( f )
(
ω|q◦ f

)
(y) =

(
f =≪(ω|q◦ f )

)
(y).

In the beginning of this section we have defined updating ω|p for a state
ω ∈ D(X) and a factor p : X → R≥0. Now let’s assume that this factor p
is bounded: there is a bound B ∈ R>0 such that p(x) ≤ B for all x ∈ X.
The rescaled factor 1

B · p is then a predicate. Proposition 6.1.6 (4) shows that
updating with the factor p is the same as updating with the predicate 1

B · p. A
further fact is that when we restrict the factor p to the (finite) support supp(ω) ⊆
X of the distribution at hand, then it is bounded, for instance with bound B =
max

{
p(x)

∣∣∣ x ∈ supp(ω)
}
. Hence we do not loose much if we restrict updating

to predicates. Nevertheless it is most convenient to define updating for factors
so that we do not have to bother about any rescaling.

We conclude with another example.

Example 6.1.7. Recall the simple question we had in Remark 2.2.1: two urns
of the same size K, are filled with red (R) and green (G) balls, where the only
thing that we know is that the first urn has more red balls. The aim is to show
that the probability of drawing a red ball is higher from the first urn than from
the second urn.

Let’s see how our update mechanism handles this situation. The number
of red balls in an urn is in the set X B {0, 1, . . . ,K}. Since this number is
unknown, we will work with the uniform distribution unifX =

∑
0≤i≤K

1
K+1 | i⟩ ∈

D(X), for both urns. There is a predicate red : X → [0, 1], namely red (i) = i
K .
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It thus gives the likelihood of a red ball. It is not hard to see that a priori we
have:

unifX |= red = 1
2 .

We use the order ≥ on X as a sharp predicate geq : X × X → [0, 1], where
geq(x, y) = 1 iff x ≥ y. We can then form the updated joint state:

(unifX ⊗ unifX)
∣∣∣
geq ∈ D(X × X).

It incorporates the given information that the first urn contains more red balls
than the second one. By taking the first and second marginals we obtain the
updated orginal urns, for which we can ask the expectation of a red ball. Inde-
pendently of the size K of the urns we get:(

(unifX ⊗ unifX)
∣∣∣
geq

)[
1, 0

]
|= red = 2

3(
(unifX ⊗ unifX)

∣∣∣
geq

)[
0, 1

]
|= red = 1

3 .

Drawing red from the first now clearly has a higher probability. Details of the
verification are left as an exercise below.

Exercises

6.1.1 Check that ω|p can be described as Flrn
(
ω • p), using the action •

from Exercise 4.2.15.
6.1.2 Consider the following girls / boys riddle: given that a family with

two children has a boy, what is the probability that the other child is
a girl? Take as space {G, B}. On it we use the uniform distribution
unif = 1

2 |G ⟩ +
1
2 |B⟩ since there is no prior knowledge.

1 Take as ‘at least one girl’ and ‘at least one boy’ predicates on
{G, B} × {G, B}:

g B
(
1B ⊗ 1B

)⊥
= (1G ⊗ 1) > (1B ⊗ 1G)

b B
(
1G ⊗ 1G

)⊥
= (1B ⊗ 1) > (1G ⊗ 1B).

Compute unif ⊗ unif |= g and unif ⊗ unif |= b.
2 Check that unif ⊗ unif

∣∣∣
b |= g = 2

3 .

(For a description and solution of this problem in a special library for
probabilistic programming of the functional programming language
Haskell, see [50].)

6.1.3 In the setting of Example 6.1.2 (1) define a new predicate oddish =
evenish⊥ = 1 − evenish .

1 Compute dice|oddish
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2 Prove the equation below, involving a convex sum of states on the
left-hand side.

(dice |= evenish ) · ω|evenish + (dice |= oddish ) · ω|oddish = dice.

6.1.4 Let p : X → R≥0 be a non-zero factor, on a finite set X. Check that
updating the uniform distribution on X with p, as in:

unifX |p,

is a way of turning the factor p into a distribution on X via normali-
sation.

6.1.5 Prove that:

ω |= p2 ≤ ω|p |= p2.

Hint: Use Bayes’ law in combination with Theorem 6.1.5 and Corol-
lary 5.1.4.

6.1.6 Let p1, . . . , pn ∈ Pred (X) be a test, i.e. an n-tuple of predicates on X
with p1 > · · ·> pn = 1. Let ω ∈ D(X) and q ∈ Fact(X).

1 Check that 1 =
∑

i (ω |= pi).
2 Prove what is called the law of total probability:

ω =
∑

1≤i≤n

(ω |= pi) · ω|pi . (6.2)

What happens to the expression on the right-hand side if one of
the pi has validity zero? Check that this equation generalises Exer-
cise 6.1.3.
(The expression on the right-hand side in (6.2) is used to turn a
test into a ‘denotation’ function D(X) → D(D(X)) in [132, 133],
namely as ω 7→

∑
i (ω |= pi)

∣∣∣ω|pi

〉
. This proces is described more

abstractly in terms of ‘hypernormalisation’ in [76].)
3 Show that:

ω |= q =
∑

1≤i≤n

ω |= q & pi.

4 Prove now:

ω|q |= pi =
ω |= q & pi∑
j ω |= q & p j

.

6.1.7 Show that conditioning a convex sum of states yields a convex sum of
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conditioned states: for σ, τ ∈ D(X), p ∈ Fact(X) and r, s ∈ [0, 1] with
r + s = 1,(

r · σ + s · τ
)∣∣∣

p

=
r · (σ |= p)

r · (σ |= p) + s · (τ |= p)
· σ|p +

s · (τ |= p)
r · (σ |= p) + s · (τ |= p)

· τ|p

=
r · (σ |= p)

(r · σ + s · τ) |= p
· σ|p +

s · (τ |= p)
(r · σ + s · τ) |= p

· τ|p.

6.1.8 Consider ω ∈ D(X) and p ∈ Fact(X) where p is non-zero, at least
on the support of ω. Check that updating ω with p can be undone via
updating with 1

p .
6.1.9 This exercise will demonstrate that conditioning may both create and

remove entwinedness of distributions.

1 Write yes = 11 : 2→ [0, 1], where 2 = {0, 1}, and no = yes⊥ = 10.
Prove that the following conditioning of a non-entwined state,

τ B (flip ⊗ flip)
∣∣∣
(yes⊗yes)>(no⊗no)

is entwined.
2 Consider the state ω ∈ D(2 × 2 × 2) given by:

ω = 1
18 |111⟩ + 1

9 |110⟩ + 2
9 |101⟩ + 1

9 |100⟩
+ 1

9 |011⟩ + 2
9 |010⟩ + 1

9 |001⟩ + 1
18 |000⟩

Prove that ω’s first and third component are entwined:

ω
[
1, 0, 1

]
, ω

[
1, 0, 0

]
⊗ ω

[
0, 0, 1

]
.

3 Now let ρ be the following conditioning of ω:

ρ B ω|1⊗yes⊗1.

Prove that ρ’s first and third component are non-entwined.

The phenomenon that entwined states become non-entwined via con-
ditioning is called screening-off, whereas the opposite, non-entwined
states becoming entwined via conditioning, is called explaining away.

6.1.10 Show that for ω ∈ D(X) and p1, p2 ∈ Fact(X) one has:(
∆ =≪ω

)∣∣∣
p1⊗p2

= ∆ =≪
(
ω|p1&p2

)
.

Note that this is a consequence of Lemma 6.1.6 (7).
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6.1.11 We have mentioned (right after Definition 6.1.1) that updating of the
identity channel has no effect. Prove more generally that for an ordi-
nary function f : X → Y , updating the associated deterministic chan-
nel ‹ f › : X → Y has no effect:

‹ f ›|q = ‹ f ›.

6.1.12 Let c : Z → X and d : Z → Y be two channels with a common domain
Z, and with factors p ∈ Fact(X) and q ∈ Fact(Y) on their codomains.
Prove that the update of a tuple channel is the tuple of the updates:

⟨c, d⟩|p⊗q = ⟨c|p, d|q⟩.

Prove also that for e : U → X and f : V → Y ,

(e ⊗ f )|p⊗q = (e|p) ⊗ ( f |q).

6.1.13 In [97] the influence of a predicate p on a state ω is measured via the
total variation distance d(ω,ω|p). This influence can be zero, for the
truth predicate p = 1.

Consider the set {H,T } with state flip(r) = r|H ⟩ + (1−r)|T ⟩, and
with predicate p = 1H . Prove that d(flip(r),flip(r)|p)→ 1 as r → 0.

6.1.14 Consider the situation in Example 6.1.7 and prove consecutively:

1 (unifX ⊗ unifX)
∣∣∣
geq =

∑
i, j∈X, i≥ j

2
(K+1)(K+2)

∣∣∣ i, j
〉
;

2 the first and second marginals are:(
(unifX ⊗ unifX)

∣∣∣
geq

)[
1, 0

]
=

∑
0≤i≤K

2(i+1)
(K+1)(K+2)

∣∣∣ i〉(
(unifX ⊗ unifX)

∣∣∣
geq

)[
0, 1

]
=

∑
0≤i≤K

2(K+1−i)
(K+1)(K+2)

∣∣∣ i〉
3 the validities of the predicate red in these marginals are:(

(unifX ⊗ unifX)
∣∣∣
geq

)[
1, 0

]
|= red = 2

3(
(unifX ⊗ unifX)

∣∣∣
geq

)[
0, 1

]
|= red = 1

3 .

Hint: Recall Proposition 1.2.6 (1), and (2).

6.2 Examples of forward and backward inference

Forward transformation =≪of states / distributions and backward transformation
≫= of observables can be combined with updating of states. This combination
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gives rise to the powerful techniques of forward and backward inference. The
current section defines these forms of inference and then elaborates many il-
lustrations. The mathematical analysis of forward and backward inference is
postponed to the next section.

The next definition captures the two basic patterns — first formulated in this
form in [96]. We shall refer to them jointly as channel-based inference, or as
reasoning along channels.

Definition 6.2.1. Let ω ∈ D(X) be a state on the domain of a channel c : X →
Y .

1 For a factor p ∈ Fact(X), we define forward inference as transformation
along c of the state ω updated with p, as in:

c =≪ω|p ∈ D(Y).

This is also called causal reasoning.

2 For a factor q ∈ Fact(Y), backward inference is updating of ω with the
transformed factor:

ω|c ≫= q ∈ D(X).

This is sometimes called explanation or evidential reasoning. We shall also
refer this operation as Pearl’s update rule, in contrast with Jeffrey’s update
rule, to be discussed in Section 7.7.

In both cases the distribution ω is often called the prior distribution or simply
the prior. Similarly, c =≪ω|p and ω|c ≫= q are called posterior distributions or just
posteriors.

Thus, with forward inference one first conditions and then performs (for-
ward, state) transformation, whereas for backward inference one first performs
(backward, factor) transformation, and then one conditions. The next result
shows that backward inference produces a validity increase.

Theorem 6.2.2. The validity of a factor q in a predicted state c =≪ ω is in-
creased when ω is replaced by ω|c ≫= q, in:

c =≪
(
ω|c ≫= q

)
|= q ≥ c =≪ω |= q,

for ω ∈ D(X), c : X → Y and q ∈ Fact(Y).
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Proof. Via the back-and-forth transformation of Proposition 4.3.3 and the va-
lidity increase of Theorem 6.1.5:

c =≪
(
ω
∣∣∣
c ≫= q

)
|= q = ω

∣∣∣
c ≫= q |= c ≫= q

≥ ω |= c ≫= q
= c =≪ω |= q.

In the remainder of this section we illustrate the forward and backward infer-
ences mechanisms in several examples. They mostly involve backward infer-
ence, since that is the more useful technique. An important first step in these
examples is to recognise the channel that is hidden in the description of the
problem. It is instructive to try and do this, before reading the analysis and the
solution.

Example 6.2.3. We start with the following question from [158, Example 1.12].

Consider two urns. The first contains two white and seven black balls, and the second
contains five white and six black balls. We flip a coin and then draw a ball from the
first urn or the second urn depending on whether the outcome was heads or tails. What
is the conditional probability that the outcome of the toss was heads given that a white
ball was selected?

Our analysis involves two sample spaces {H,T } for the sides of the coin and
{W, B} for the colours of the balls in the urns. The coin distribution is uni-
form: unif = 1

2 |H ⟩+
1
2 |T ⟩. The above description implicitly contains a channel

c : {H,T } → {W, B}, determined by the two urns:

c(H) = Flrn
(
2|W ⟩ + 7|B⟩

)
c(T ) = Flrn

(
5|W ⟩ + 6|B⟩

)
= 2

9 |W ⟩ +
7
9 |B⟩ = 5

11 |W ⟩ +
6

11 |B⟩.

As in the above quote, the first urn is associated with heads and the second one
with tails.

The evidence that we have is described in the quote after the word ‘given’.
It is captured by the point predicate 1W on the set of colours {W, B}, indicating
that a white ball was selected. This evidence can be pulled back (transformed)
along the channel c, to a predicate c ≫= 1W on the sample space {H,T }. It is
given by: (

c ≫= 1W
)
(H) =

∑
x∈{W,B}

c(H)(x) · 1W (x) = c(H)(W) = 2
9 .

Similarly we get
(
c ≫= 1W

)
(T ) = c(T )(W) = 5

11 .
The answer that we are interested in is obtained by updating the prior unif

with the transformed evidence c ≫= 1W , as given by unif |c ≫= 1H . This is an in-
stance of backward inference.
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In order to obtain the answer, we first we compute the validity:

unif |= c ≫= 1W = unif(H) · (c ≫= 1W )(H) + unif(T ) · (c ≫= 1W )(T )
= 1

2 ·
2
9 +

1
2 ·

5
11 =

1
9 +

5
22 =

67
198 .

Then:

unif |c ≫= 1W =
1/2 · 2/9

67/198
|H ⟩ +

1/2 · 5/11

67/198
|T ⟩ = 22

67 |H ⟩ +
45
67 |T ⟩.

Thus, the conditional probability of heads is 22
67 . The same outcome is obtained

in [158], of course, but there via an application of Bayes’ rule.

Example 6.2.4. Consider the following classical question from [175].

A cab was involved in a hit and run accident at night. Two cab companies, Green and
Blue, operate in the city. You are given the following data:

• 85% of the cabs in the city are Green and 15% are Blue
• A witness identified the cab as Blue. The court tested the reliability of the witness

under the circumstances that existed on the night of the accident, and concluded that
the witness correctly identified each one of the two colors 80% of the time and failed
20% of the time.

What is the probability that the cab involved in the accident was Blue rather than Green?

We use as colour set C = {G, B} for Green and Blue. There is a prior ‘base
rate’ distribution ω = 17

20 |G ⟩ +
3

20 |B⟩ ∈ D(C), as in the first bullet above.
The reliability information in the second bullet translates into a ‘correctness’
channel c : {G, B} → {G, B} given by:

c(G) = 4
5 |G ⟩ +

1
5 |B⟩ c(B) = 1

5 |G ⟩ +
4
5 |B⟩.

The second bullet also gives evidence of a Blue car. It translates into a point
predicate 1B on {G, B}. It can be used for backward inference, giving the answer
to the query, as posterior:

ω|c ≫= 1B =
17
29 |G ⟩ +

12
29 |B⟩ ≈ 0.5862|G ⟩ + 0.4138|B⟩.

Thus the probability that the Blue car was actually involved in the incident is
a bit more that 41%. This may seem like a relatively low probability, given
that the evidence says ‘Blue taxicab’ and that observations are 80% accurate.
But this low percentage is explained by the fact that there are relatively few
Bleu taxicabes in the first place, namely only 15%. This is in the prior, base
rate distribution ω. It is argued in [175] that humans find it difficult to take
such base rates (or priors) into account. This phenomenon is called base rate
neglect, see also [62].
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Example 6.2.5. We continue in the setting of Example 2.4.3, with a teacher in
a certain mood — pessimistic (p), neutral (n) or optimistic (o) — making pre-
dictions about pupils’ performances depending on the mood. We assume that
the pupils have done rather poorly, with no-one scoring above 5, as described
by the following evidence / predicate q on the set of grades Y = {1, 2, . . . , 10}.

q = 1
10 · 11 +

3
10 · 12 +

3
10 · 13 +

2
10 · 14 +

1
10 · 15.

Using the original mood distribution ω = 1
8 | p⟩ +

3
8 |n⟩ +

1
2 |o⟩ and channel

c : X → Y from Example 2.4.3, we can compute the validity of this predicate
q in the predicted state c =≪ω as:

c =≪ω |= q = ω |= c ≫= q = 299
4000 = 0.07475.

One can check that the updated state ω′ = ω|c ≫= q obtained via backward infer-
ence is:

ω′ = 77
299 | p⟩ +

162
299 |n⟩ +

60
299 |o⟩ ≈ 0.2575| p⟩ + 0.5418|n⟩ + 0.2007|o⟩.

Interestingly, after updating, the teacher has more realistic view in the sense
that the validity of the predicate q has risen to c =≪ω′ |= q = 15577

149500 ≈ 0.1042.
This validity increase — see Theorem 6.2.2 — is one way how the mind can
adapt to external evidence: seeing the poor results leads to more pessimism.

Example 6.2.6. Recall the Medicine-Blood Table (1.28) with data on different
types of medicine via a set M = {0, 1, 2} and blood pressure via the set B =
{H, L}. From the table we can extract a channel b : M → B describing the
blood pressure distribution for each medicine type. This channel is obtained
by column-wise frequentist learning:

b(0) = 2
3 |H ⟩ +

1
3 |L⟩ b(1) = 7

9 |H ⟩ +
2
9 |L⟩ b(2) = 5

8 |H ⟩ +
3
8 |L⟩.

The prior medicine distribution ω = 3
20 |0⟩ +

9
20 |1⟩ +

2
5 |2⟩ is obtained from the

totals row in the table.
The predicted state b =≪ ω is 7

10 |H ⟩ +
3
10 |L⟩. It is the distribution that is

learnt from the totals column in Table (1.28). Suppose we wish to focus on
the people that take either medicine 1 or 2. We do so by conditioning, via the
subset E = {1, 2} ⊆ B, with associated sharp predicate 1E : B→ [0, 1]. Then:

ω |= 1E =
9
20 +

2
5 =

17
20 so ω|1E =

9/20

17/20
|1⟩ +

2/5

17/20
|2⟩ = 9

17 |1⟩ +
8
17 |2⟩.
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Forward reasoning, precisely as in Definition 6.2.1 (1), gives:

b =≪
(
ω|1E

)
= b =≪

( 9
17 |1⟩ +

8
17 |2⟩

)
= ( 9

17 ·
7
9 +

8
17 ·

5
8 )|H ⟩ + ( 9

17 ·
2
9 +

8
17 ·

3
8 )|H ⟩

= 12
17 |H ⟩ +

5
17 |L⟩.

This shows the distribution of high and low blood pressure among people using
medicine 1 or 2.

We turn to backward reasoning. Suppose that we have evidence 1H on {H, L}
of high blood pressure. What is then the associated distribution of medicine
usage? It is obtained in several steps.(

b ≫= 1H
)
(x) =

∑
y∈B

b(x)(y) · 1H(y) = b(x)(H)

ω |= b ≫= 1H =
∑
x∈M

ω(x) · (b ≫= 1H)(x) =
∑
x∈M

ω(x) · b(x)(H)

= 3
20 ·

2
3 +

9
20 ·

7
9 +

2
5 ·

5
8 =

7
10

ω|b ≫= 1H =
∑
x∈M

ω(x) · (b ≫= 1H)(x)
ω |= b ≫= 1H

∣∣∣ x〉
=

3/20 · 2/3

7/10
|0⟩ +

9/20 · 7/9

7/10
|1⟩ +

2/5 · 5/8

7/10
|2⟩

= 1
7 |0⟩ +

1
2 |1⟩ +

5
14 |2⟩ ≈ 0.1429|0⟩ + 0.5|1⟩ + 0.3571|2⟩.

We can also reason with ‘soft’ evidence, using the full power of fuzzy pred-
icates. Suppose we are only 95% sure that the blood pressure is high, due
to some measurement uncertainty. Then we can use as evidence the predicate
q : B→ [0, 1] given by q(H) = 19

20 and q(L) = 1
20 , that is, as q = 19

20 ·1H+
1

20 ·1L.
It yields:

ω|b ≫= q =
39
272 |0⟩ +

135
272 |1⟩ +

49
136 |2⟩

≈ 0.1434|0⟩ + 0.4963|1⟩ + 0.3603|2⟩.

This slightly differs from the outcome with sharp evidence.

Example 6.2.7. The following question comes from [174, §6.1.3] (and is also
used in [140]).

One fish is contained within the confines of an opaque fishbowl. The fish is equally
likely to be a piranha or a goldfish. A sushi lover throws a piranha into the fish bowl
alongside the other fish. Then, immediately, before either fish can devour the other,
one of the fish is blindly removed from the fishbowl. The fish that has been removed
from the bowl turns out to be a piranha. What is the probability that the fish that was
originally in the bowl by itself was a piranha?
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Let’s use the letters ‘p’ and ‘g’ for piranha and goldfish. We are looking at a
situation with multiple fish in a bowl, where we cannot distinguish the order.
Hence we describe the contents of the bowl as a (natural) multiset over {p, g},
that is, as an element of N({p, g}). The initial situation can then be described
as a distribution ω ∈ D(N({p, g})) with:

ω = 1
2

∣∣∣ 1| p⟩
〉
+ 1

2

∣∣∣ 1|g⟩
〉
.

Adding a piranha to the bowl involves a function A : N({p, g}) → N({p, g}),
such that A(φ) = (φ(p) + 1)| p⟩ + φ(g)|g⟩. It forms a deterministic channel.

We use a piranha predicate P : N({p, g}) → [0, 1] that gives the likelihood
P(φ) of taking a piranha from a multiset / bowl φ. Thus:

P(φ) B Flrn(φ)(p)
(2.5)
=

φ(p)
φ(p) + φ(g)

.

We have now collected all ingredients to answer the question via backward
inference along the deterministic channel A. It involves the following steps.

(A ≫= P)(φ) = P(A(φ)) =
φ(p) + 1

φ(p) + 1 + φ(g)
ω |= A ≫= P = 1

2 · (A ≫= P)(1| p⟩) + 1
2 · (A ≫= P)(1|g⟩)

= 1
2 ·

1+1
1+1+0 +

1
2 ·

0+1
0+1+1 =

1
2 +

1
4 =

3
4

ω|A ≫= P =
1/2 · 1

3/4

∣∣∣ 1| p⟩
〉
+

1/2 · 1/2

3/4

∣∣∣ 1|g⟩
〉

= 2
3

∣∣∣ 1| p⟩
〉
+ 1

3

∣∣∣ 1|g⟩
〉
.

Hence the answer to the question in the beginning of this example is: 2
3 proba-

bility that the original fish is a piranha.

Example 6.2.8. In [160, §20.1] a situation is described with five different bags,
numbered 1, . . . , 5, each containing its own mixture of cherry (C) and lime (L)
candies. This situation can be described via a candy channel:

B ◦
c // {C, L} where B = {1, 2, 3, 4, 5} and



c(1) = 1|C ⟩
c(2) = 3

4 |C ⟩ +
1
4 |L⟩

c(3) = 1
2 |C ⟩ +

1
2 |L⟩

c(4) = 1
4 |C ⟩ +

3
4 |L⟩

c(5) = 1|L⟩.

The initial bag distribution is ω = 1
10 |1⟩ +

1
5 |2⟩ +

2
5 |3⟩ +

1
5 |4⟩ +

1
10 |5⟩.

In the situation described in [160, §20.1] the sample space of bags B is
regarded as hidden (not directly observable), in a scenario where a new bag
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i ∈ B is given and candies are drawn from it, inspected and returned. It turns
out that 10 consecutive draws yield a lime candy; what can we then infer about
the distribution of bags?

Transforming the lime point predicate 1L along channel c yields the fuzzy
predicate c ≫= 1L : B→ [0, 1] given by:

c ≫= 1L = >i c(i)(L) · 1i =
1
4 · 12 > 1

2 · 13 > 3
4 · 14 > 1 · 15.

The question is what we learn about the bag distribution after observing this
predicate 10 consecutive times? This involves computing:

ω|c ≫= 1L =
1
10 |2⟩ +

2
5 |3⟩ +

3
10 |4⟩ +

1
5 |5⟩

ω|c ≫= 1L |c ≫= 1L = ω|(c ≫= 1L)&(c ≫= 1L) = ω|(c ≫= 1L)2

= 1
26 |2⟩ +

4
13 |3⟩ +

9
26 |4⟩ +

4
13 |5⟩

≈ 0.0385|2⟩ + 0.308|3⟩ + 0.346|4⟩ + 0.308|5⟩

ω|c ≫= 1L |c ≫= 1L |c ≫= 1L = ω|(c ≫= 1L)&(c ≫= 1L)&(c ≫= 1L) = ω|(c ≫= 1L)3

= 1
76 |2⟩ +

4
19 |3⟩ +

27
76 |4⟩ +

8
19 |5⟩

≈ 0.0132|2⟩ + 0.211|3⟩ + 0.355|4⟩ + 0.421|5⟩ . . .

Figure 20.1 in [160] gives a plot of these distributions; it is reconstructed here
in Figure 6.1 via the above formulas. It shows that bag 5 quickly becomes most
likely — as expected since it contains most lime candies — and that bag 1 is
impossible after drawing the first lime.

Example 6.2.9. Medical tests form standard examples of Bayesian reasoning,
via backward inference, see e.g. Exercises 6.2.1 and 6.2.2 below. Here we look
at Covid-19 which is interesting because its standard PCR-test has low false
positives but high false negatives, and moreover these false negatives depend
on the day after infection.

The Covid-19 PCR-test has almost no false positives. This means that if you
do not have the disease, then the likelihood of a (false) postive test is very
low. This means that the specificity of the test is very high, see Exercises 6.2.1
and 6.2.2 below. In our calculations below we put it at 1%, independently of
the day that you get tested. In contrast, the PCR-test has considerable false
negative rates, which depend on the day after infection. The plot at the top in
Figure 6.2 gives an indication; it does not precisely reflect the medical reality,
but it provides a reasonable approximation, good enough for our calculation.
This plot shows that if you are infected at day 0, then a test at this day or
the day after (day 1) will surely be negative. On the second day after your
infection a PCR-test might start to detect, but still there is only a 20% chance of
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Figure 6.1 Posterior, updated bag distributions ω|(c ≫= 1L)n for n = 0, 1, . . . , 10,
aligned vertically, after n candy draws that all happen to be lime.

a positive outcome. This probability increases and after on day 6 the likelihood
of a positive test has risen to 80%.

How to formalise this situation? We use the following three sample spaces,
for Covid (C), days after infection (D), and test outcome (T ).

C = {c, c⊥} D = {0, 1, 2, 3, 4, 5, 6} T = {p, n}.

The test probabilities are then captured via a test channel t : C ×D→ T , given
in the following way. The first equation captures the false positives (speci-
ficity), and the second one the false negatives (sensitivity), as in the plot at the
top of Figure 6.2.

t(c⊥, i) = 1
100 | p⟩ +

99
100 |n⟩

t(c, i) =



1|n⟩ if i = 0 or i = 1
2
10 | p⟩ +

8
10 |n⟩ if i = 2

3
10 | p⟩ +

7
10 |n⟩ if i = 3

4
10 | p⟩ +

6
10 |n⟩ if i = 4

6
10 | p⟩ +

4
10 |n⟩ if i = 5

8
10 | p⟩ +

2
10 |n⟩ if i = 6.
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Figure 6.2 Covid-19 false negatives and posteriors after tests. In the lower plot P2
means: positive test after 2 days, that is, in state (r|c⟩ + (1 − r)|c⊥ ⟩) ⊗ φ2, where
r ∈ [0, 1] is the prior Covid probability. Similarly for N2, P5, N5.

In practice it is often difficult to determine the precise date of infection. We
shall consider two cases, where the infection happened (around) two and five
days ago, via the two distributions:

σ2 =
1
4 |1⟩ +

1
2 |2⟩ +

1
4 |3⟩ σ5 =

1
4 |4⟩ +

1
2 |5⟩ +

1
4 |6⟩.

Let’s consider the case where we have no (prior) information about the like-
lihood that the person that is going to be tested has the disease. Therefore we
use as prior ω = unifC =

1
2 |c⟩ +

1
2 |c

⊥ ⟩.
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Suppose in this situation we have a positive test, say after two days. What
do we then learn about the disease probability? Our evidence is the postive test
predicate 1p on T , which can be transformed to t ≫= 1p on C × D. We can use
this predicate to update the joint state ω⊗σ2. The distribution that we are after
is the first marginal of this updated state, as in:(

(ω ⊗ σ2)
∣∣∣
t ≫= 1p

)[
1, 0

]
∈ D(C).

We shall go through the computation step-by-step. First,

t ≫= 1p =
∑

x∈C, y∈D

t(x, y)(p) · 1(x,y)

= 2
10 · 1(c,2) +

3
10 · 1(c,3) +

4
10 · 1(c,4) +

6
10 · 1(c,5) +

8
10 · 1(c,6)

+ 1
100 · 1(c⊥,0) +

1
100 · 1(c⊥,1) +

1
100 · 1(c⊥,2) +

1
100 · 1(c⊥,3)

+ 1
100 · 1(c⊥,4) +

1
100 · 1(c⊥,5) +

1
100 · 1(c⊥,6).

Then:

ω ⊗ σ2 |= t ≫= 1p =
∑

x∈C, y∈D

ω(x) · σ2(y) · (t ≫= 1p)(x, y)

= 1
2 ·

1
2 ·

2
10 +

1
2 ·

1
4 ·

3
10 +

1
2 ·

1
4 ·

1
100 +

1
2 ·

1
2 ·

1
100 +

1
2 ·

1
4 ·

1
100

= 40+30+1+2+1
800 = 37

400 .

But then:

(ω ⊗ σ2)
∣∣∣
t ≫= 1p

=
1/2 · 1/2 · 2/10

37/400

∣∣∣c, 2〉
+

1/2 · 1/4 · 3/10

37/400

∣∣∣c, 3〉
+

1/2 · 1/4 · 1/100

37/400

∣∣∣c⊥, 1〉
+

1/2 · 1/2 · 1/100

37/400

∣∣∣c⊥, 2〉
+

1/2 · 1/4 · 1/100

37/400

∣∣∣c⊥, 3〉
= 20

37

∣∣∣c, 2〉
+ 15

37

∣∣∣c, 3〉
+ 1

74

∣∣∣c⊥, 1〉
+ 1

37

∣∣∣c⊥, 2〉
+ 1

74

∣∣∣c⊥, 3〉
.

Finally:(
(ω ⊗ σ2)

∣∣∣
t ≫= 1p

)[
1, 0

]
= 35

37 |c⟩ +
2
37 |c

⊥ ⟩ ≈ 0.946|c⟩ + 0.054|c⊥ ⟩.

Hence a positive test changes the a priori likelihood of 50% to about 95%. In
a similar way one can compute the effect of a negative test:(

(ω ⊗ σ2)
∣∣∣
t ≫= 1n

)[
1, 0

]
= 165

363 |c⟩ +
198
363 |c

⊥ ⟩ ≈ 0.455|c⟩ + 0.545|c⊥ ⟩.

We see that a negative test, 2 days after infection, reduces the prior disease
probability of 50% only slightly, namely to 45%. Thus, a negative PCR test is
not very informative, but a positive test is.

Doing the test around 5 days after infection gives more certainty, especially
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in the case of a negative test:(
(ω ⊗ σ5)

∣∣∣
t ≫= 1p

)[
1, 0

]
= 60

61 |c⟩ +
1

61 |c
⊥ ⟩ ≈ 0.984|c⟩ + 0.016|c⊥ ⟩(

(ω ⊗ σ5)
∣∣∣
t ≫= 1n

)[
1, 0

]
= 40

139 |c⟩ +
99

139 |c
⊥ ⟩ ≈ 0.288|c⟩ + 0.712|c⊥ ⟩.

The lower plot in Figure 6.2 gives a more elaborate description, for different
prior disease probabilities (prevalences) r ∈ [0, 1] in a distribution ω = r|c⟩ +
(1 − r)|c⊥ ⟩ as used above. We see that a postive test outcome quickly gives
certainty about having the disease. But a negative test outcome gives only a
little bit of information with respect to the prior — which in this plot can be
represented as the diagonal. For this reason, if you get a negative PCR-test,
often a second test is done a few days later.

In the next two examples we look at estimating the number of fish in a pond
by counting marked fishes, first in multinomial (actually binomial) mode and
then in hypergeometric mode.

Example 6.2.10. Capture and recapture is a methodology used in ecology to
estimate the size of a population. So imagine we are looking at a pond and
we wish to learn the number of fish that it contains. We catch twenty of them,
mark them, and throw them back. Subsequently we catch another twenty, and
find out that five of them are marked. What do we learn about the number of
fish? This is generally called a Lincoln-Peterson mark-and-recapture problem.

The number of fish in the pond must be at least 20. Let’s assume the maximal
number is 300. We will be considering units of 10 fish. Hence the underlying
sample space F together with the uniform ‘prior’ state unifF is:

F = {20, 30, 40, . . . , 300} with unifF =
∑
x∈F

1
29 | x⟩.

We now assume that K = 20 of the fish in the pond are marked. We can then
compute for each value 20, 30, 40, . . . in the fish space F the probability of
finding 5 marked fish when 20 of them are caught. In order not to complicate
the calculations too much, we catch these 20 fish one by one, check if they are
marked, and then throw them back. This means that the probability of catching
a marked fish remains the same, and is described by a binomial distribution,
see Example 2.1.2 (2). Its parameters are K = 20 with probability 20

i of catch-
ing a marked fish, where i ∈ F is the assumed total number of fish. This is
incorporated in the following ‘catch’ channel c : F → {0, 1, . . . ,K}.

c(i) B bn[K]
(

K
i

) (2.1)
=

∑
0≤k≤K

(
K
k

)
·
(

K
i

)k
·
(

i−K
i

)K−k ∣∣∣k〉
.

Once this is set up, we construct a posterior state by updating the prior with
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Figure 6.3 The posterior fish number distribution after catching 5 marked fish, in
multinomial mode, see Example 6.2.10.

the information that five marked fish have been found. The latter is expressed
as point predicate 15 ∈ Pred

(
{0, . . . ,K}

)
on the codomain of the channel c.

We can now do backward inference, as in Definition 6.2.1 (2), and obtain the
updated uniform distribution:

unifF

∣∣∣
c ≫= 15

=
∑
i∈F

(
20/i

)5
·
(
i−20/i

)15∑
j
(
20/j

)5
·
(

j−20/j
)15

∣∣∣ i〉.
The bar chart of this posterior is in Figure 6.3; it indicates the likelihoods of
the various numbers of fish in the pond. One can also compute the expected
value (mean) of this posterior; it’s 116.5 fish. In case we had caught 10 marked
fish out of 20, the expected number would be 47.5.

Note that taking a uniform prior corresponds to the idea that we have no
idea about the number of fish in the pond. But possibly we already had a good
estimate from previous years. Then we could have used such an estimate as
prior distribution, and updated it with this year’s evidence.

Later on, in Example ??, we shall see a ‘continuous’ version of this example,
where the space of fish numbers is not a finite set {20, 30, . . . , 300} but an
interval [20, 300] ⊆ R. The bar chart in Figure 6.3 then becomes a smooth
line, see Figure ??.

Example 6.2.11. We take another look at the previous example. There we used
the multinomial distribution (in binomial form) for the probability of catching
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five marked fish, per pond size. This multinomial mode is appropriate for draw-
ing with replacement, which corresponds to returning each fish that we catch
to the pond. This is probably not what happens in practice. So let’s try to re-
describe the capture-recapture model in hypergeometric mode (like in [159,
§4.8.3, Ex. 8h]).

Let’s write M = {m,m⊥} for the space with elements m for marked and m⊥ for
unmarked. Our recapture catch (draw) of K = 20 fish, with 5 of them marked,
is thus a multiset κ = 5|m⟩+15|m⊥ ⟩. The urn from which we draw is the pond,
in which the total number of fish is unknown, but we do know that 20 of them
are marked. The urn / pond is thus a multiset 20|m⟩ + (i − 20)|m⊥ ⟩ with i ∈ F.

We now use a channel:

{20, 30, . . . , 300} = F ◦
d // N[K](M) �

{
0, 1, . . . ,K

}
,

given by:

d(i) B hg[K]
(
20|m⟩ + (i − 20)|m⊥ ⟩

)
.

The updated pond distribution is then:

unifF

∣∣∣
d ≫= 1κ

=
∑
i∈F

(i−20
15 )/( i

20)∑
j ( j−20

15 )/( j
20)

∣∣∣ i〉.
Its bar-chart is in Figure 6.4. It differs minimally from the multinomial one in
Figure 6.3. In the hypergeometric case the expected value is 113 fish, against
116.5 in the multinomial case. When the recapture involves 10 marked fish,
the expected values are 45.9, against 47.5. As we have already seen in Propo-
sition 3.5.4 (1), the hypergeometric distribution on small draws from a large
urn look very much like a multinomial distribution.

We include another example of a similar kind. It does not involve fish but
tanks.

Example 6.2.12. During the second world war British statisticians developed
a method to estimate the German tank production, of a particular model, from
the serial numbers of destroyed tanks found at the battlefield. This has become
a challenge that attracted quite a bit of interest. We refer to a Wikipedia page1

on this topic for background information and for various approaches. The page
contains an example with specific numbers, which we copy. Here we develop
a channel-based solution, using updating in several ways.

Suppose tanks with serial numbers 19, 40, 42 and 60 have been found. It
is assumed that the tanks are produced with increasing numbers, starting from

1 https://en.wikipedia.org/wiki/German_tank_problem
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Figure 6.4 The posterior fish number distribution after catching 5 marked fish, in
hypergeometric mode, see Example 6.2.11.

zero, and that they are deployed by the (German) army as soon as they are
available. The question is: what is the likely total number of produced tanks?

The first thing that we can say is that at least 60 tanks must have been pro-
duced. Thus we use as lower end-point:

MiP = 60 where MiP stands for: minimal production.

We don’t know the maximum, but since the known serial numbers are rela-
tively low, we expect that the maximal production MaP is not terribly high.
We choose:

MaP = 250.

Our aim is thus to derive a production distribution on the interval production
space P =

[
MiP ,MaP

]
=

[
60, 250

]
⊆ N. We start from a uniform prior unifP ∈

D(P).
The observation space O, containing the serial numbers of tanks that can be

found is then the interval O = [0,MaP]. We thus assume that 0 is the serial
number of the tank that was produced first.

Let n ∈ P be the total number produced tanks. How likely is it to find a
serial number i ≤ n at the battlefield? It makes sense that this likelihood is
higher for lower i. Indeed, a tank with a low number is produced a longer
time ago, and is thus in combat for a longer time, and is thus more likely to
have been destroyed — so that its serial number can be registered. We make

418
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Figure 6.5 The plots of observation distributions for minimum production on the
left, and for maximal production on the right, see Example 6.2.12.

the simplifying assumption that this likelihood descreases linearly when the
number i rises.

In order to capture this assumption we use a predicate qn on the observation
space O = [0,MaP], for each production number n ∈ P = [MiP ,MaP]. We
define, for i ∈ O,

qn(i) B


n−i/n when i < n

0 when i ≥ n.

Of course, when n tanks have been produced — starting with number 0 — it is
impossible to find a serial number i ≥ n. This explains the last clause. The first
clause expresses the linear decline as i rises.

We can now define a tank channel t : P → O, from production to observa-
tion. We use the above predicates qn to update the uniform distribution on O,
as in:

t(n) B unifO

∣∣∣
qn
.

Figure 6.5 describes the observation distributions t
(
MiP

)
for minimal produc-

tion on the left. The distribution t
(
MaP

)
for maximal production is on the right.

Non-zero probabilities exist only for i < MiP = 60 on the left, in decreasing
order. When production is maximal, all numbers i < MaP = 250 occur in the
support of the distribution t

(
MaP

)
.

We now define a posterior distribution ω ∈ D(P) via backward reasoning,
using the discovered serial numbers as point predicates on P. Thus we take:

ω B unifP

∣∣∣
t ≫= 119

∣∣∣
t ≫= 140

∣∣∣
t ≫= 142

∣∣∣
t ≫= 160

= unifP

∣∣∣
(t ≫= 119) & (t ≫= 140) & (t ≫= 142) & (t ≫= 160).

Figure 6.6 contains the resulting posterior tank production distribution. It reaches
its maximum at n = 90, for the number of produced tanks. This corresponds
closely to the number n = 89 derived at Wikipedia for what is there called the
Bayesian mean. However, the mean of the distribution in Figure 6.6 is 126.5.
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Figure 6.6 The plot of the posterior tank production distribution from Exam-
ple 6.2.12.

Exercises

6.2.1 We consider some disease with an a priori probability (or ‘preva-
lence’) of 1%. There is a test for the disease with the following char-
acteristics.

• (‘sensitivity’) If someone has the disease, then the test is positive
with probability of 90%.

• (‘specificity’) If someone does not have the disease, there is a 95%
chance that the test is negative.

1 Take as disease space D = {d, d⊥}; describe the prior as a distribu-
tion on D;

2 Take as test space T = {p, n} and describe the combined sensitivity
and specificity as a channel c : D→ T ;

3 Show that the predicted positive test probability is almost 6%.
4 Assume that a test comes out positive. Use backward reasoning to

prove that the probability of having the disease (the posterior, or
‘Positive Predictive Value’, PPV) is then a bit more than 15% (to
be precise: 18

117 ). Explain why it is so low — remembering Exam-
ple 6.2.4.

6.2.2 In the context of the previous exercise we can derive the familiar
formulas for Postive Predictive Value (PPV) and Negative Predictive
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Value (NPV) of medical tests. Let’s assume we have a disease preva-
lence (prior) given by ω = p|d ⟩+(1−p)|d⊥ ⟩with parameter p ∈ [0, 1]
and a channel channel c : {d, d⊥} → {p, n} with sensitivity and speci-
ficity parameters se, sp ∈ [0, 1] in:

sensitivity: c(d) = se| p⟩ + (1 − se)|n⟩
specificity: c(d⊥) = (1 − sp)| p⟩ + sp|n⟩.

Check that:

PPV B ω|c ≫= 1p (d) =
p · se

p · se + (1 − p) · (1 − sp)
.

This is commonly expressed in medical textbooks as:

PPV =
prevalence · sensitivity

prevalence · sensitivity + (1 − prevalence) · (1 − specificity)
.

Check similarly that:

NPV B ω|c ≫= 1n (d⊥) =
(1 − p) · sp

p · (1 − se) + (1 − p) · sp
.

As an aside, the (positive) likelihood ratio LR is the fraction:

LR B
c(d)(p)
c(d⊥)(p)

=
se

1 − sp
.

6.2.3 Give a channel-based analysis and answer to the following question
from [158, Chap. I, Exc. 39].
Stores A, B, and C have 50, 75, and 100 employees, and respectively, 50, 60,
and 70 percent of these are women. Resignations are equally likely among
all employees, regardless of sex. One employee resigns and this is a woman.
What is the probability that she works in store C?

6.2.4 The multinomial and hypergeometric charts in Figures 6.3 and 6.4
are very similar, but there are differences, notably when there are few
fish in the pond. For instance, when there are only 40 fish in the pond
(with 20 of them marked) the charts really differ. Give a conceptual
explation for this difference.

6.2.5 The following situation about the relationship between eating ham-
burgers and having Kreuzfeld-Jacob disease is insprired by [9, §1.2].
We have two sets: E = {H,H⊥} about eating Hamburgers (or not),
and D = {K,K⊥} about having Kreuzfeld-Jacob disease (or not). The
following distributions on these sets are given: half of the people eat
hamburgers, and only one in hundred thousand have Kreuzfeld-Jacob
disease, which we write as:

ω = 1
2 |H ⟩ +

1
2 |H

⊥ ⟩ and σ = 1
100,000 |K ⟩ +

99,999
100,000 |K

⊥ ⟩.
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1 Suppose that we know that 90% of the people who have Kreuzfeld-
Jacob disease eat Hamburgers. Use this additional information to
define a channel c : D→ E with c =≪σ = ω.

2 Compute the probability of getting Kreuzfeld-Jacob for someone
eating hamburgers (via backward inference).

6.2.6 Consider in the context of Example 6.2.9 a negative Covid-19 test
obtained after 2 days, via the distribution σ2 =

1
4 |1⟩ +

1
2 |2⟩ +

1
4 |3⟩,

assuming a uniform disease prior ω. Show that the posterior ‘days’
distribution is:(

(ω ⊗ σ2)
∣∣∣
t ≫= 1n

)[
0, 1

]
= 199

726 |1⟩ +
179
363 |2⟩ +

169
726 |3⟩

≈ 0.274|1⟩ + 0.493|2⟩ + 0.233|3⟩.

Explain why there a (small) shift ‘forward’, making the earlier days
more likely in this posterior — with respect to the prior σ2.

6.2.7 Consider the following challenge, copied from [168].

(i) I have forgotten what day it is.
(ii) There are ten buses per hour in the week and three buses per hour at the

weekend.
(iii) I observe four buses in a given hour.
(iv) What is the probability that it is the weekend?

Let W = {wd ,we} be a set with elements wd for weekday and we for
weekend, with prior distribution 5

7 |wd ⟩+ 2
7 |we ⟩. Use the Poisson dis-

tribution to define a channel bus : W → D∞(N) and use it to answer
the above question via backward inference.

6.3 Analysis of forward and backward inference

The previous section contains many illustrations of probabilistic inference via
updating. The current section is more mathematical in nature and looks at
the properties of channel-based inference inference. One recurring topic is the
crossover influence through updating of joint states. The abstract results of this
section will be illustrated again in the next section on Bayesian networks.

Our first result illustrates how forward and backward inference show up
naturally in reasoning in a graphical setting: when a joint distribution has a
specific form, as indicated below (6.3), then the marginal in one component
after an update in the other component can be described via reasoning along
the channels involved.
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Theorem 6.3.1. Consider the following situation, with a distribution σ ∈

D(X) and two channels c : X → Y and d : X → Z. Define a joint distribu-
tion ω ∈ D(Y × Z) as:

ω B ⟨c, d⟩ =≪σ =

σ

c d

Y Z

(6.3)

Then, for a factor q ∈ Fact(Y),(
ω|q⊗1

)[
0, 1

]
= d =≪σ|c ≫= q. (6.4)

The right-hand-side of this equation (6.4) involves a forward inference of a
backward inference. What happens can be described at an intuitive level using
the string diagram in (6.3): the evidence q is first pull backward (down) along
channel c, the resulting factor c ≫= q is used to update the distribution σ, and
then the result is pushed forward (up) along channel d.

The left-hand-side of the equation (6.4) can also be written in terms of pro-
jections π1 : Y × Z → Y and π2 : Y × Z → Z, namely as: π2 =≪ω|π1 ≫= q. The for-
mulation with the projections will be generalised to an inference query in 6.16.

Proof. We first note that:

ω |= q ⊗ 1 = ⟨c, d⟩ =≪σ |= q ⊗ 1
= σ |= ⟨c, d⟩ ≫= (q ⊗ 1) by Proposition 4.3.3
= σ |= (c ≫= q) & (d ≫= 1) by Lemma 4.3.2 (7)
= σ |= (c ≫= q) & 1
= σ |= c ≫= q.

Then, for an element z ∈ Z,(
ω|q⊗1

)[
0, 1

]
(z) =

∑
y∈Y

ω(y, z) · (q ⊗ 1)(y, z)
ω |= q ⊗ 1

=
∑
y∈Y

∑
x∈X

σ(x) · c(x)(y) · d(x)(z) · q(y)
σ |= c ≫= q

=
∑
x∈X

σ(x) · (c ≫= q)(x) · d(x)(z)
σ |= c ≫= q

=
∑
x∈X

σ|c ≫= q(x) · d(x)(z) =
(
d =≪σ|c ≫= q

)
(z)

At several earlier places in this book we have encountered string-diagram-
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matic equations of the form (6.5) described below. Such equations between
two graphs are of interest for reversal of channels, see Chapter 7.

Theorem 6.3.2. Let σ ∈ D(X) and τ ∈ D(Y) be distributions with channels
c : X → Y and d : Y → X for which the following equation between graphs
holds.

σ τ

=
c d

Y X XY

(6.5)

As a consequence, via marginalisation, σ = d =≪τ and τ = c =≪σ.
For a factor q ∈ Fact(Y), backward inference along c and forward inference

along d coincide:

σ|c ≫= q = d =≪τ|q. (6.6)

In particular, when q is a point predicate 1y for y ∈ Y we get:

σ|c ≫= 1y = d(y). (6.7)

Thus, the channel d is completely determined by σ and c, under the condition
that the validity σ |= c ≫= 1y = c =≪σ |= 1y = (c =≪σ)(y) is non-zero, for each
y ∈ Y, so that the update σ|c ≫= 1y is well-defined. Equivalently, c =≪σ must have
full support.

In the next chapter we shall see that the formula σ|c ≫= 1y defines a reversed
‘dagger’ channel c†σ : Y → X applied to y.

Proof. We show that an arbitrary predicate p gets the same validity in both
distributions, see Remark 4.2.11. We use Proposition 4.3.3 several times.

σ|c ≫= q |= p =
σ |= (c ≫= q) & p

σ |= c ≫= q
by Theorem 6.1.3 (1)

=
σ |= ⟨c, id ⟩ ≫= (q ⊗ p)

c =≪σ |= q
by Lemma 4.3.2 (7)

=
⟨c, id ⟩ =≪σ |= q ⊗ p
π1 =≪(⟨c, id ⟩ =≪σ) |= q

=
⟨id , d⟩ =≪τ |= q ⊗ p
π1 =≪(⟨id , d⟩ =≪τ) |= q

by assumption

=
τ |= q & (d ≫= p)

τ |= q
again by Lemma 4.3.2 (7)

= τ|q |= d ≫= p by Theorem 6.1.3 (1)
= d =≪τ|q |= p.

424



6.3. Analysis of forward and backward inference 4256.3. Analysis of forward and backward inference 4256.3. Analysis of forward and backward inference 425

In the special case when q is a point predicate 1y we get:

σ|c ≫= 1y

(6.6)
= d =≪τ|1y = d =≪1|y⟩ by Lemma 6.1.6 (2)

= d(y).

This result can be applied in several situations that we have seen before,
involving an equation between graphs, of the form (6.5).

Examples 6.3.3.

1 The archetypal equation of the form (6.5) is the one in Theorem 3.3.1, re-
lating accumulation and arrangement (3.14). We can use it in two ways and
obtain descriptions of accumulation and arrangement as updates along each
other: for φ ∈ N[K](X) and x⃗ ∈ XK ,

iid [K](ω)
∣∣∣
acc ≫= 1φ

= arr(φ) mn[K](ω)
∣∣∣
arr ≫= 1x⃗

= ‹acc›(x⃗).

In these examples the prior distributions iid [K](ω) and mn[K](ω) do not
play a role in the outcome. This phenomenon will be described in terms of
‘sufficient statistic’ in Section 7.6.

2 In Exercise 3.2.12 we have seen that the draw-store-delete channel DSD can
be obtained via updating, namely as: ω ⊗ mn[K](ω)

∣∣∣
mconsψ

= DSD(ψ), for
an arbitrary distribution ω. It is an instance of Equation (6.7), since:

• the predicate mconsψ used in Exercise 3.2.12 can also be written as a
transformation of a point predicate, namely as mcons ≫= 1ψ;

• there is a graph equations diagram (3.13), that fits the pattern (6.5) in
Theorem 6.3.2.

3 In Theorem 3.4.4 we have seen the graph equations diagram (3.25). By ap-
plying Equation (6.7) we see how hypergeometric(-store) distributions can
be obtained from multinomial ones via updating. For an urn υ ∈ N[L+K](X),

hgs[K](υ) = mn[K](ω) ⊗mn[L](ω)
∣∣∣
sum ≫= 1υ

.

By taking the first marginals on both sides we get the hypergeometric distri-
bution as marginal of an update:

hg[K](υ) = hgs[K](υ)
[
1, 0

]
=

(
mn[K](ω) ⊗mn[L](ω)

∣∣∣
sum ≫= 1υ

)[
1, 0

]
.

4 In Theorem 3.3.8 we have seen Diagram (3.21) from which we can extra an
equation, for an arbitrary distribution ω ∈ D(X) with full support and for
each λ ∈ R>0,

mn[K](ω) =

⊗
x∈X

pois[λ · ω(x)]

 ∣∣∣∣sum ≫= 1K
.
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Formally, we have to add a frequencies isomorphism Freq : NX �
→ N(X) on

the right hand side, so that the types precisely match. This map Freq turns a
tuple t : X → N into a multiset

∑
x t(x)| x⟩.

This way to describe the multinomial distribution as an update of par-
allel Poisson distributions is well-known, especially in bivariate form, see
e.g. [159, §6.4].

Recall from Definition 6.1.1 that we use updating not only for distributions,
written as ω|p, but also for channels c, via elementwise updating: c|q(x) B
c(x)|q. This is used in the next result.

Theorem 6.3.4. Let c : X → Y be a channel with a state ω ∈ D(X) on its
domain and a factor q ∈ Fact(Y) on its codomain. Then:(

c =≪ω
)
|q = c|q =≪ω|c ≫= q. (6.8)

Proof. For each y ∈ Y ,

(c =≪ω)|q(y) =
(c =≪ω)(y) · q(y)

c =≪ω |= q

=
∑
x∈X

ω(x) · c(x)(y) · q(y)
ω |= c ≫= q

=
∑
x∈X

ω(x) · (c ≫= q)(x)
ω |= c ≫= q

·
c(x)(y) · q(y)
(c ≫= q)(x)

=
∑
x∈X

ω|c ≫= q(x) ·
c(x)(y) · q(y)

c(x) |= q

=
∑
x∈X

ω|c ≫= q(x) · c(x)|q(y)

=
∑
x∈X

ω|c ≫= q(x) · c|q(x)(y) =
(
c|q =≪ω|c ≫= q

)
(y).

This result has a number of useful consequences.

Corollary 6.3.5. For appropriately typed channels, states, and factors:

1 (d ◦· c)|q = d|q ◦· c|d ≫= q, a form of chain rule;

2 (⟨c, d⟩ =≪ω)|p⊗q = ⟨c|p, d|q⟩ =≪ω|(c ≫= p)&(d ≫= q);

3 ((e ⊗ f ) =≪ω)|p⊗q = (e|p ⊗ f |q) =≪ω|(e ≫= p)⊗( f ≫= q).

Proof. 1 Since:

(d ◦· c)|q(x) = (d ◦· c)(x)|q = (d =≪c(x))|q
(6.8)
= d|q =≪c(x)|d ≫= q

= d|q =≪
(
c|d ≫= q(x)

)
=

(
d|q ◦· c|d ≫= q

)
(x).
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2 By Exercise 6.1.12 and Lemma 4.3.2 (7):

(⟨c, d⟩ =≪ω)|p⊗q
(6.8)
= (⟨c, d⟩|p⊗q =≪ω|⟨c,d⟩ ≫= (p⊗q)

= ⟨c|p, d|q⟩ =≪ω|(c ≫= p)&(d ≫= q).

3 Similarly:

((e ⊗ f ) =≪ω)|p⊗q
(6.8)
= ((e ⊗ f )|p⊗q =≪ω|(e⊗ f ) ≫= (p⊗q)

= (e|p ⊗ f |q) =≪ω|(e ≫= p)⊗( f ≫= q).

Exercises

6.3.1 Consider a joint distribution τ ∈ D(X × Y) together with two channel
c : X → U and d : Y → V , and define ω ∈ D(U × V) as:

ω B (c ⊗ d) =≪τ =
c d

τ

Prove for a factor q on U that:(
ω|q⊗1

)[
0, 1

]
= d =≪

(
τ|(c ≫= q)⊗1

[
1, 0

])
.

6.3.2 Prove the two equations in Example 6.3.3 (1) directly, via the defini-
tion of updating.

6.3.3 Apply (6.7) to diagram (3.18).
6.3.4 Let X be a finite set and υ ∈ N(X) be an urn with full support. For

numbers K,N ∈ N and for a multiset φ ∈ N[K](X), prove that:

pl[K+N](υ)
∣∣∣
hg[K] ≫= 1φ

= D(− + φ)
(
pl[N](υ + φ)

)
.

6.3.5 1 Let K1, . . . ,KN ∈ N with ψ ∈ N[K](X) be given, where K =
∑

i Ki.
Show that, for any ω ∈ D(X),(

mn[K1](ω) ⊗ · · · ⊗mn[KN](ω)
)∣∣∣

sum ≫= 1ψ

=
∑

φ1≤K1ψ, ..., φN≤KN ψ,
∑

i φi=ψ

(
ψ

φ1, ..., φN

)
(

K
K1,...,KN

) ∣∣∣φ1, . . . , φN
〉
.

(Exercise 1.8.5 guarantees that the probabilities in this sum over
multisets add up to one.)

2 Describe the diagram of the form (6.5) that gives rise to the equa-
tion in the previous item.

6.3.6 Let c : X → Y be a channel, with state ω ∈ D(X × Z).
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1 Prove that for a factor p ∈ Fact(Z),(
(c ⊗ id ) =≪ω

)
|1⊗p = (c ⊗ id ) =≪ω|1⊗p.

2 Show also that for q ∈ Fact(Y × Z),((
(c ⊗ id ) =≪ω

)
|q

)[
0, 1

]
=

(
ω|(c⊗id ) ≫= q

)[
0, 1

]
.

6.3.7 Let c : X → Y be a channel with a distribution ω ∈ D(X) and with
two factors p ∈ Fact(X), q ∈ Fact(Y). Check that:

c|q =≪
(
ω|p&(c ≫= q)

)
=

(
c =≪ω|p

)
|q.

Check that Theorem 6.3.4 is a special case, for p = 1.
6.3.8 Let p ∈ Fact(X) and q ∈ Fact(Y) be two factors on spaces X,Y .

1 Show that for two channels c : Z → X and d : Z → Y with a distri-
bution σ ∈ D(Z) on their (common) domain, one has:(

⟨c, d⟩ =≪σ
)
|p⊗q

[
1, 0

]
=

(
c =≪σ|d ≫= q

)
|p

(⟨c, d⟩ =≪σ)|p⊗q
[
0, 1

]
=

(
d =≪σ|c ≫= p

)
|q

2 For channels e : U → X and d : V → Y with a joint state ω ∈
D(U × V) one has:(

(e ⊗ f ) =≪ω
)
|p⊗q

[
1, 0

]
=

(
e =≪

(
ω|1⊗( f ≫= q)

[
1, 0

]))
|p(

(e ⊗ f ) =≪ω
)
|p⊗q

[
0, 1

]
=

(
f =≪

(
ω|(e ≫= p)⊗1

[
0, 1

]))
|q.

6.4 Inference in Bayesian networks

In previous sections we have seen several examples of channel-based infer-
ence, in forward and backward form. This section shows how to apply these
inference methods to Bayesian networks, via an example that is often used in
the literature: the ‘Asia’ Bayesian network, originally from [121]. It captures
the situation of patients with a certain probability of smoking and of an earlier
visit to Asia; this influences certain lung diseases and the outcome of an xray
test.

The Bayesian network example considered here is described in several steps:
Figure 6.7 contains the network in the form of a string diagram, where boxes
represent channels, and where copiers (black dots) and types of wires are writ-
ten explicitly. Figure 6.8 gives the conditional probability tables associated
with the nodes of this network, in traditional style.
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smoking asia

tublung

either

bronc

dysp xray

S

B L T

E

D X

A

Figure 6.7 The string diagram of the Asia Bayesian network, with node abbrevia-
tions: bronc = bronchitis, dysp = dyspnea, lung = lung cancer, tub = tuberculosis.
The wires all have 2-element (yes/no) sets of the form A = {a, a⊥}. These sets are
used in the string diagram as types, annotating the wires.

Figure 6.9 reformulates these probability tables as distributions and chan-
nels, so that channel-based reasoning techniques can be used (as introduced
in [96] for Bayesian networks). Specifically, this Figure 6.9 introduces distri-
butions smoke ∈ D(S ) and asia ∈ D(A) and channels lung : S → L, tub : A→
T , bronc : S → B, xray : E → X, dysp : B × E → D, either : L × T → E.

The aim of this section is illustrate channel-based inference in this ‘Asia’
Bayesian network. It is not so much the actual outcomes that we are interested
in, but more the systematic methodology that is used to obtain these outcomes.
This methodology involves sequential and parallel composition of channels
(written as ◦· and ⊗), transformation of predicates and states along channels,
and updating of distributions.

Probability of lung cancer, given no bronchitis
Let’s start with the question: what is the probability that someone has lung
cancer, given that this person does not have bronchitis. The latter information
is the evidence. It takes the form of a point predicate 1b⊥ = (1b)⊥ : B → [0, 1]
on the set B = {b, b⊥} used for presence and absence of bronchitis.

In order to obtain this updated probability of lung cancer we ‘follow the
graph’, as in Theorem 6.3.1. In Figure 6.7 we see that we can transform (pull
back) the evidence along the bronchitis channel bronc : S → B, and obtain
a predicate bronc ≫= 1b⊥ on S . The latter can be used to update the smoking
distribution on S . Subsequently, we can push the updated distribution forward
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P(smoke)

0.5

P(asia)

0.01

smoke P(lung)

s 0.1

s⊥ 0.01

asia P(tub)

a 0.05

a⊥ 0.01

smoke P(bronc)

s 0.6

s⊥ 0.3

either P(xray)

e 0.98

e⊥ 0.05

bronc either P(dysp)

b e 0.9

b e⊥ 0.7

b⊥ e 0.8

b⊥ e⊥ 0.1

lung tub P(either)

ℓ t 1

ℓ t⊥ 1

ℓ⊥ t 1

ℓ⊥ t⊥ 0

Figure 6.8 The conditional probability tables of the Asia Bayesian network,
copied from [121, Table 1].

smoke = 0.5| s⟩ + 0.5| s⊥ ⟩ asia = 0.01|a⟩ + 0.99|a⊥ ⟩

lung(s) = 0.1|ℓ ⟩ + 0.5|ℓ⊥ ⟩ tub(a) = 0.05| t ⟩ + 0.95| t⊥ ⟩
lung(s⊥) = 0.01|ℓ ⟩ + 0.99|ℓ⊥ ⟩ tub(a⊥) = 0.01| t ⟩ + 0.99| t⊥ ⟩

bronc(s) = 0.6|b⟩ + 0.4|b⊥ ⟩ xray(e) = 0.98| x⟩ + 0.02| x⊥ ⟩
bronc(s⊥) = 0.3|b⟩ + 0.7|b⊥ ⟩ xray(e⊥) = 0.05| x⟩ + 0.95| x⊥ ⟩

dysp(b, e) = 0.9|d ⟩ + 0.1|d⊥ ⟩ either(ℓ, t) = 1|e⟩
dysp(b, e⊥) = 0.7|d ⟩ + 0.3|d⊥ ⟩ either(ℓ, t⊥) = 1|e⟩
dysp(b⊥, e) = 0.8|d ⟩ + 0.2|d⊥ ⟩ either(ℓ⊥, t) = 1|e⟩

dysp(b⊥, e⊥) = 0.1|d ⟩ + 0.9|d⊥ ⟩ either(ℓ⊥, t⊥) = 1|e⊥ ⟩

Figure 6.9 The conditional probability tables from Figure 6.8, reformulated as
distributions and channels.

along the lung channel lung : S → L via state transformation. Thus we follow
the ‘V’ shape in the relevant part of the graph, that we studied on its own in
Theorem 6.3.1.

Combining this down-update-up steps gives the required outcome:

lung =≪
(
smoke

∣∣∣
bronc ≫= 1b⊥

)
= 0.0427|ℓ ⟩ + 0.9573|ℓ⊥ ⟩. (6.9)
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We see that this calculation combines forward and backward inference, see
Definition 6.2.1.

Probability of smoking, given a positive xray
In Figures 6.8 and 6.9 we see a prior smoking probability of 50%. We like to
know what this probability becomes if we have evidence of a positive xray.
The latter is given by the point predicate 1x ∈ Pred (X) for X = {x, x⊥}.

There is a long path (down) from xray to smoking, see Figure 6.7, that we
need to use for (backward) predicate transformation. Along the way there is
a slight complication, namely that the node ‘either’ has two parent nodes, so
that pulling back along the either channel yields a predicate on the product set
L × T . The only sensible thing to do is to continue predicate transformation
downwards, but now with the parallel product channel lung ⊗ tub : S × A →
L × T . The resulting predicate on S × A can be used to update the product
state smoke ⊗ asia. Then we can take the first marginal to obtain the desired
outcome. Thus we compute:(

(smoke ⊗ asia)
∣∣∣
(lung⊗tub) ≫= (either ≫= (xray ≫= 1x))

)[
1, 0

]
=

(
(smoke ⊗ asia)

∣∣∣
(xray ◦· either ◦· (lung⊗tub)) ≫= 1x

)[
1, 0

]
= 0.6878| s⟩ + 0.3122| s⊥ ⟩.

(6.10)

Thus, a positive xray makes it more likely — w.r.t. the uniform prior — that the
patient smokes — as is to be expected. This is obtained by backward inference.

Probability of lung cancer, given both dyspnoea and tuberculosis
Our next inference challenge involves two evidence predicates, namely 1d on D
for dyspnoea and 1t on T for tuberculosis. We would like to know the updated
lung cancer probability.

The situation looks complicated, because of the ‘closed loop’ in Figure 6.7.
But we can proceed in a straightforward manner and combine evidence via
conjunction & at a suitable meeting point. We now clearly separate the forward
and backward stages of the inference process. We first move the prior states
forward to a point that includes the set L — the one that we need to marginalise
on to get our conclusion. We abbreviate this state on B × L × T as:

σ B (bronc ⊗ lung ⊗ id ) =≪
(
(∆ ⊗ tub) =≪(smoke ⊗ asia)

)
=

(
⟨bronc, lung⟩ ⊗ tub

)
=≪(smoke ⊗ asia)

=
(
⟨bronc, lung⟩ =≪smoke

)
⊗

(
tub =≪asia

)
.

Recall that we write ∆ for the copy channel, in this expression of type S →
S × S .
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Going in the backward direction we can form a predicate, called p below,
on the set B × L × T , by predicate transformation and conjunction:

p B
(
1 ⊗ 1 ⊗ 1t

)
&

(
(id ⊗ either) ≫= (dys ≫= 1d)

)
.

The result that we are after is now obtained via updating and marginalisation:

σ|p
[
0, 1, 0

]
= 0.0558|ℓ ⟩ + 0.9442|ℓ⊥ ⟩. (6.11)

There is an alternative way to describe the same outcome, using that certain
channels can be ‘shifted’. In particular, in the definition of the above state
σ, the channel bronc is used for state transformation. It can also be used in
a different role, namely for predicate transformation. We then use a slightly
different state, now on S × L × T ,

τ B (id ⊗ lung ⊗ id ) =≪
(
(∆ ⊗ tub) =≪(smoke ⊗ asia)

)
=

(
⟨id , lung⟩ ⊗ tub

)
=≪(smoke ⊗ asia)

=
(
⟨id , lung⟩ =≪smoke

)
⊗

(
tub =≪asia

)
.

The bronc channel is now used for predicate transformation in the predicate:

q B
(
1 ⊗ 1 ⊗ 1t

)
&

(
(bronc ⊗ either) ≫= (dys ≫= 1d)

)
.

The same updated lung cancer distribution is now obtained as:

τ|q
[
0, 1, 0

]
= 0.0558|ℓ ⟩ + 0.9442|ℓ⊥ ⟩. (6.12)

The reason why the outcomes (6.11) and (6.12) are the same is the topic of
Exercise 6.4.3.

We conclude that inference in Bayesian networks can be done composi-
tionally via a combination of forward and backward inference, basically by
following the network structure, when represented as a string diagram.

In the end we like to remark that one can also use the joint distribution as-
sociated with the network for probabilistic reasoning. This is conceptually rel-
evant, but not very efficient, because these joint distributions quickly become
very large.

Let us write α ∈ D
(
S × B× L×D× E × X × T × A

)
for the joint distribution

given by the string diagram in Figure 6.10. It arises by making sure that each
distribution and channel in the network has an outgoing wire. We shall not
describe this distribution α explicitly, since its underlying space has 28 = 256
elements.

Recall that earlier we asked for the lung cancer probability, given no bron-
chitis. In the product space S ×B×L×D×E×X×T ×A underlying the distribu-
tion α, the evidence 1b⊥ is a predicate on the set B, which is the second product
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smoking asia

tublung

either

bronc

dysp xray

S B L TED X A

Figure 6.10 The ‘joint’ version of the Asia network from Figure 6.7, where each
wire is copied to the top. This gives a joint distribution α on the product space
S × B × L × D × E × X × T × A.

component. We are interested in the resulting L-marginal, which is at the third
position. Thus we first weaken the evidence 1b⊥ to a predicate π2 ≫= 1b⊥ on the
entire product, via the second projection π2 : S ×B×L×D×E×X×T ×A→ B.
Similarly, we use the third projection π3 for marginalisation, to get as outcome:

π3 =≪α|π2 ≫= 1b⊥
= π3 =≪α|1⊗1b⊥⊗1⊗1⊗1⊗1⊗1⊗1

= 0.0427|ℓ ⟩ + 0.9573|ℓ⊥ ⟩.
(6.13)

The fact that we get the same outcome as in the earlier combination (6.9) of
backward and forward inference follows essentially from Theorem 6.3.1.

Similarly, the smoking distribution (6.10) of given a positive xray can be
obtained via the joint distribution α as:

π1 =≪α|π6 ≫= 1x = π1 =≪α|1⊗1⊗1⊗1⊗1⊗1x⊗1⊗1

= 0.6878| s⟩ + 0.3122| s⊥ ⟩.
(6.14)

The lung cancer distributions (6.11) and (6.12) given dyspnoea and tuberculo-
sis is:

π3 =≪α|(π4 ≫= 1d) & (π7 ≫= 1t) = π3 =≪α|1⊗1⊗1⊗1d⊗1⊗1⊗1t⊗1

= 0.0558|ℓ ⟩ + 0.9442|ℓ⊥ ⟩.
(6.15)

These inferences via the joint distribution are often computationally infeasible.
However, the inferences may work well via backward and forward reasoning
along the channels in the Bayesian network. Making such reasoning possible
is one of the main reasons for introducing these Bayesian networks represen-
tations in the first place.
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The above formulas illustrate a general pattern, involving weakening and
marginalisation via projections. Accordingly, we may define an inference query
on a joint state ω ∈ D

(
X1 × · · · × Xn

)
with evidence p ∈ Fact(Xi) and output in

X j as distribution:

π j =≪ω|πi ≫= p ∈ D(X j). (6.16)

It combines forward and backward inference along projection channels. When
the joint state ω is ‘factored’ in terms of channels — as illustrated in the string
diagram in Figure 6.10 — such inference query (6.16) can be computed more
efficiently via inference along the channels — as illustrated in this section.
How one factors a joint state into a string diagram of channels is described in
Section 7.8.

Exercises

6.4.1 Consider the wetness Bayesian network from Subsection 2.5.2. Write
down the channel-based inference formulas for the following infer-
ence questions and check the outcomes that are given below.

1 The updated sprinkler distribution, given evidence of a slippery
road, is 63

260 |b⟩ +
197
260 |b⟩.

2 The updated wet grass distribution, given evidence of a slippery
road, is 4349

5200 |d ⟩ +
851
5200 |d

⊥ ⟩.

6.4.2 We continue with the wetness network.

1 Add copiers and wires to the string diagram in Figure 2.4 to get a
joint distribution on the product set A×B×D×C×E — just like the
diagram in Figure 6.10 is a ‘joint’ version of the original diagram
in Figure 6.7.

2 Check that this diagram corresponds to the following (sequential
and parallel) composite of channels, giving as joint distributionω ∈
D

(
A × B × D ×C × E

)
.

ω =
(
id ⊗ id ⊗ wg ⊗ id ⊗ sr

)
◦·
(
id ⊗ ∆2 ⊗ ∆3

)
◦·
(
id ⊗ sp ⊗ sr

)
◦· ∆3 ◦· wi .
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3 Explicitly, this joint distribution ω is:

399
6250 |a, b, d, c, e⟩ +

171
6250 |a, b, d, c, e

⊥ ⟩ + 27
1250 |a, b, d, c

⊥, e⊥ ⟩
+ 21

6250 |a, b, d
⊥, c, e⟩ + 9

6250 |a, b, d
⊥, c, e⊥ ⟩ + 3

1250 |a, b, d
⊥, c⊥, e⊥ ⟩

+ 672
3125 |a, b

⊥, d, c, e⟩ + 288
3125 |a, b

⊥, d, c, e⊥ ⟩ + 168
3125 |a, b

⊥, d⊥, c, e⟩
+ 72

3125 |a, b
⊥, d⊥, c, e⊥ ⟩ + 12

125 |a, b
⊥, d⊥, c⊥, e⊥ ⟩ + 399

20000 |a
⊥, b, d, c, e⟩

+ 171
20000 |a

⊥, b, d, c, e⊥ ⟩ + 243
1000 |a

⊥, b, d, c⊥, e⊥ ⟩ + 21
20000 |a

⊥, b, d⊥, c, e⟩
+ 9

20000 |a
⊥, b, d⊥, c, e⊥ ⟩ + 27

1000 |a
⊥, b, d⊥, c⊥, e⊥ ⟩ + 7

1250 |a
⊥, b⊥, d, c, e⟩

+ 3
1250 |a

⊥, b⊥, d, c, e⊥ ⟩ + 7
5000 |a

⊥, b⊥, d⊥, c, e⟩ + 3
5000 |a

⊥, b⊥, d⊥, c, e⊥ ⟩
+ 9

100 |a
⊥, b⊥, d⊥, c⊥, e⊥ ⟩

Express the two inferences in the previous exercise as suitable mar-
ginalisations of this joint distributionω, updated with suitably weak-
ened predicates, as in (6.13), (6.14), (6.15).

If you feel mathematically sufficiently fit, you may even recalcu-
late the resulting distributions in this way, as given in the previous
exericse.

6.4.3 Check that the equality of the outcomes in (6.11) and in (6.12) can be
explained via Exercises 6.3.6 (2) and 4.3.9.

6.5 Hidden Markov models

Hidden Markov models are much simpler than Bayesian networks: they in-
volve only two channels, one for transitions and one for observations (ab-
stractly called ‘emissions’). The channel for transitions can be iterated mul-
tiple times, giving observations at each stage. Hidden Markov models are used
in many situations. We introduce them here, with special attention for validity
and updating.

Let us start with a graphical description of an example of what is called a
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hidden Markov model.

Sunny

Cloudy

Rainy

4/5

1/2

3/20

1/5

1/5

1/5

3/10

1/20

3/5

Stay-in

Go-out

1/2

1/2

1/5

4/5

1/10

9/10
(6.17)

This model has three ‘hidden’ elements, namely Cloudy, Sunny, and Rainy,
representing the weather condition on a particular day. There are ‘temporal’
transitions with associated probabilities between these elements, as indicated
by the labeled arrows. For instance, if it is cloudy today, then there is a 50%
chance that it will be cloudy again tomorrow. There are also two ‘visible’ ele-
ments on the right: Stay-in, and Stay-out, describing two possible actions (ab-
stractly: ‘emissions’) of a person, depending on the weather condition. There
are transitions with probabilities from the hidden elements, on the left in (6.17),
to the visible elements, on the right. The idea is that with every time step a tran-
sition is made between hidden elements, resulting in a visible outcome. Such
steps may be repeated for a finite number of times — or even forever. The in-
teraction between what is hidden and what can be observed is a key element of
hidden Markov models. For instance, one may ask: given a certain initial posi-
tion, how likely is it to see a consecutive sequence of the four visible elements:
Stay-in, Stay-in, Go-out, Stay-in?

Hidden Markov models are simple statistical models that have many appli-
cations in temporal pattern recognition, in speech, handwriting or gestures, but
also in robotics and in biological sequences. This section will briefly look into
hidden Markov models, using the notation and terminology of channels and
string diagrams, with special emphasis on validity and updating. Indeed, a hid-
den Markov model can be defined easily in terms of channels and forward and
backward transformation of states and observables. In addition, conditioning
of states by observables can be used to formulate and answer elementary ques-
tions about hidden Markov models. Learning for Markov models will be de-
scribed separately in Sections ?? and ??. Markov models are examples of prob-
abilistic automata. Such automata will be studied separately, in Chapter ??.
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Definition 6.5.1. A Markov model (or a Markov chain) is given by a set X of
‘internal positions’, typically finite, with a ‘transition’ channel t : X → X and
an initial state / distribution σ ∈ D(X).

A hidden Markov model, often abbreviated as HMM, is a Markov model, as
just described, with an additional ‘emission’ channel e : X → Y , where Y is a
set of ‘outputs’.

In the above illustration (6.17) we have as sets of positions and outputs:

X =
{
Cloudy,Sunny,Rainy

}
Y =

{
Stay-in,Go-out

}
,

with transition channel t : X → X,

t(Cloudy) = 1
2

∣∣∣Cloudy
〉
+ 1

5

∣∣∣Sunny
〉
+ 3

10

∣∣∣Rainy
〉

t(Sunny) = 3
20

∣∣∣Cloudy
〉
+ 4

5

∣∣∣Sunny
〉
+ 1

20

∣∣∣Rainy
〉

t(Rainy) = 1
5

∣∣∣Cloudy
〉
+ 1

5

∣∣∣Sunny
〉
+ 3

5

∣∣∣Rainy
〉
,

and emission channel e : X → Y ,

e(Cloudy) = 1
2

∣∣∣Stay-in
〉
+ 1

2

∣∣∣Go-out
〉

e(Sunny) = 1
5

∣∣∣Stay-in
〉
+ 4

5

∣∣∣Go-out
〉

e(Rainy) = 9
10

∣∣∣Stay-in
〉
+ 1

10

∣∣∣Go-out
〉
.

An initial state is missing in the picture (6.17).
In the literature on Markov models, the elements of the set X are often called

states. This clashes with the terminology in this book, since we use ‘state’
as synonym for ‘distribution’. So, here we call σ ∈ D(X) an (initial) state /
distribution, and we call elements of X (internal) positions. At the same time
we may call X the sample space. The transition channel t : X → X is an endo-
channel on X, that is, a channel from the space X to itself. As a function, it is
of the form t : X → D(X); it is an instance of a coalgebra, that is, a map of the
form A→ F(A) for a functor F, see Section ?? for more information. A HMM
is an instance of a coalgebra, of the form X −→ D(X) ×D(Y).

In a Markov chain / model one can iteratitively compute successor distri-
butions. For an initial distribution σ and transition channel t one can form
successor states via state transformation:

σ

t =≪σ

t =≪(t =≪σ) = (t ◦· t) =≪σ = t2 =≪σ
...

tn =≪σ

where tn B

unit if n = 0
t ◦· tn−1 if n > 0.

In these transitions the state at stage n + 1 depends only on the state at stage n:
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in order to predict a future step, all we need is the immediate predecessor state.
This makes HMMs relatively easy dynamical models. Multi-stage dependen-
cies can be handled as well, by enlarging the sample space, see Exercise 6.5.6
below.

One interesting problem in the area of Markov chains is to find a ‘stationary’
state σ∞ with t =≪ σ∞ = σ∞, see Exercise 6.5.2 for an illustration, and also
Exercise 2.4.18 for a sufficient condition.

Here we are more interested in hidden Markov models 1
σ
→ X

t
→ X

e
→Y . The

elements of the set Y are observable — and hence sometimes called signals —
whereas the elements of X are hidden. Thus, many questions related to hidden
Markov models concentrate on what one can learn about X via Y , in a finite
number of steps. Hidden Markov models are examples of models with latent
variables.

We briefly discuss some basic issues related to HMMs in separate subsec-
tions. A recurring theme is the relationship between ‘parallel’ and ‘sequential’
formulations.

6.5.1 Validity in hidden Markov models

The first question that we like to address is: given a sequence of observables,
what is their probability (validity) in a HMM? Standardly in the literature, one
only looks at the probability of a sequence of point observations (elements), but
here we use a more general approach. After all, one may not be certain about
observing a specific point at a particular position, or some point observations
may be missing; in the latter case one may wish to replace them by a constant
(uniform) observation.

We proceed by defining validity of a sequence of observables in a joint state
first; subsequently we look at (standard) algorithms for computing these va-
lidities efficiently. We thus start by defining a relevant joint state.

We fix a HMM 1
σ
→ X

t
→ X

e
→Y . For each n ∈ N a channel ⟨e, t⟩n : X →

Yn × X is defined in the following manner:

⟨e, t⟩0 B
(
X ◦

id
// X � 1 × X � Y0 × X

)
⟨e, t⟩n+1 B

(
X ◦
⟨e,t⟩n // Yn × X ◦

idn ⊗ ⟨e,t⟩
// Yn × (Y × X) � Yn+1 × X

)
.

(6.18)

We recall that the tuple ⟨e, t⟩ of channels is (e⊗ t) ◦· ∆, see Definition 2.4.4 (3).
With these tuples we can form a joint state ⟨e, t⟩n =≪σ ∈ D(Yn×X). As a string
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diagram it looks as follows.

σ

t

...

tee · · ·e

Y Y Y X

(6.19)

We consider the combined likelihood of a sequence of observables on the set
Y in a hidden Markov model. In the literature these observables are typically
point predicates 1y : Y → [0, 1], for y ∈ Y , but, as mentioned, here we allow
more general observables Y → R.

Definition 6.5.2. Let H =
(
1

σ
→ X

t
→ X

e
→Y

)
be a hidden Markov model and

let p⃗ = p1, . . . , pn be a list of observables on Y . The validity H |= p⃗ of this
sequence p⃗ in the modelH is defined via the tuples (6.18) as:

H |= p⃗ B
(
⟨e, t⟩n =≪σ

)[
1, . . . , 1, 0

]
|= p1 ⊗ · · · ⊗ pn

(4.7)
= ⟨e, t⟩n =≪σ |= p1 ⊗ · · · ⊗ pn ⊗ 1

(4.11)
= σ |= ⟨e, t⟩n ≫=

(
p1 ⊗ · · · ⊗ pn ⊗ 1

)
.

(6.20)

The marginalisation mask [1, . . . , 1, 0] contains n times the number 1. It en-
sures that the X outcome in (6.19) is discarded.

We describe an alternative way to formulate this validity without using the
(big) joint state on Yn × X. It forms the essence of the classical ‘forward’
and ‘backward’ algorithms for validity in HMMs, see e.g. [15, 158] or [108,
App. A]. An alternative algorithm is described in Exercise 6.5.4.

Proposition 6.5.3. The HMM-validity (6.20) can be computed as:

H |= p⃗ = σ |= (e ≫= p1) &
t ≫=

(
(e ≫= p2) &
t ≫=

(
(e ≫= p3) & · · ·

t ≫= (e ≫= pn) · · ·
))
.

(6.21)

This validity can be calculated recursively in forward manner as:

σ |= α
(
p⃗
)

where

 α
(
[q]

)
= e ≫= q

α
(
[q1] ++ q⃗

)
= (e ≫= q1) & (t ≫= α

(
q⃗
)
).
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Alternatively, this validity can be calculated recursively in backward manner
as:

σ |= β
(
p⃗, 1

)
where

 β
(
[q]

)
= q

β
(
q⃗ ++ [qn, qn+1]

)
= β

(
q⃗ ++ [(e ≫= qn) & (t ≫= qn+1)]

)
.

Proof. We first prove, by induction on n ≥ 1 that for observables pi on Y and
q on X one has:

⟨e, t⟩n ≫= (p1 ⊗ · · · ⊗ pn ⊗ q)
= (e ≫= p1) & t ≫= ((e ≫= p2) & t ≫= (· · · t ≫= ((e ≫= pn) & t ≫= q) · · · ))

(∗)

The base case n = 1 is easy by Lemma 4.3.2 (7):

⟨e, t⟩1 ≫= (p1 ⊗ q) = (e ≫= p1) & (t ≫= q).

For the induction step we reason as follows.

⟨e, t⟩n+1 ≫=
(
p1 ⊗ · · · ⊗ pn ⊗ pn+1 ⊗ q

)
= ⟨e, t⟩n ≫=

(
(id n ⊗ ⟨t, e⟩) ≫=

(
p1 ⊗ · · · ⊗ pn ⊗ pn+1 ⊗ q

))
= ⟨e, t⟩n ≫=

(
p1 ⊗ · · · ⊗ pn ⊗ (⟨e, t⟩ ≫= (pn+1 ⊗ q)

)
= ⟨e, t⟩n ≫=

(
p1 ⊗ · · · ⊗ pn ⊗ ((e ≫= pn+1) & (t ≫= q))

)
as just shown

(IH)
= (e ≫= p1) & t ≫= ((e ≫= p2) & t ≫= (· · ·

t ≫= ((e ≫= pn) & t ≫= ((e ≫= pn+1) & (t ≫= q))) · · · )).

We can now prove Equation (6.21):

H |= p⃗
(6.20)
= σ |= ⟨e, t⟩n ≫=

(
p1 ⊗ · · · ⊗ pn ⊗ 1

)
(∗)
= (e ≫= p1) & t ≫= ((e ≫= p2) & t ≫= (· · · t ≫= ((e ≫= pn) & t ≫= 1) · · · ))
= (e ≫= p1) & t ≫= ((e ≫= p2) & t ≫= (· · · t ≫= (e ≫= pn) · · · )).

6.5.2 Filtering

Given a sequence p⃗ of factors, one can compute their validity H |= p⃗ in a
HMM H , as described above. But we can also use these factors to ‘guide’
the evolution of the HMM. At each state i the factor pi is used to update the
current state, via backward inference. The new state is then moved forward via
the transition function. This process is called filtering, after the Kalman filter
from the 1960s that is used for instance in trajectory optimisation in navigation
and in rocket control (e.g. for the Apollo program). The system can evolve
autonomously via its transition function, but observations at regular intervals
can update (correct) the current state.
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Definition 6.5.4. Let H =
(
1

σ
→ X

t
→ X

e
→Y

)
be a hidden Markov model and

let p⃗ = p1, . . . , pn be a list of factors on Y . It gives rise to the filtered sequence
of states σ1, σ1, . . . , σn+1 ∈ D(X) following the observe-update-proceed prin-
ciple:

σ1 B σ and σi+1 B t =≪σi|e ≫= pi .

In the terminology of Definition 6.2.1, the definition of the state σi+1 in-
volves both forward and backward inference. Below we show that the final
state σn+1 in the filtered sequence can also be obtained via crossover inference
on a joint state, obtained via the tuple channels (6.18). This fact gives a theoret-
ical justification, but is of little practical relevance — since joint states quickly
become too big to handle.

Proposition 6.5.5. In the context of Definition 6.5.4,

σn+1 =
(
⟨e, t⟩n =≪σ

)∣∣∣
p1⊗ ··· ⊗pn⊗1

[
0, . . . , 0, 1

]
The marginalisation mask [0, . . . , 0, 1] has n zero’s.

Proof. By induction on n ≥ 1. The base case with ⟨e, t⟩1 = ⟨e, t⟩ is handled as
follows. (

⟨e, t⟩ =≪σ
)∣∣∣

p1⊗1
[
0, 1

]
= π2 =≪

(
⟨e|p1 , t⟩ =≪σ|⟨e,t⟩ ≫= (p1⊗1)

)
by Corollary 6.3.5 (2)

= t =≪σ|e ≫= p1 by Lemma 4.3.2 (7)
= σ2.

The induction step requires a bit more work:(
⟨e, t⟩n+1 =≪σ

)∣∣∣
p1⊗ ··· ⊗pn⊗pn+1⊗1

[
0, . . . , 0, 0, 1

]
= πn+2 =≪

((
(id n ⊗ ⟨e, t⟩) =≪(⟨e, t⟩n =≪σ)

)∣∣∣
p1⊗ ··· ⊗pn⊗pn+1⊗1

)
(6.8)
= πn+2 =≪

(
(id n ⊗ ⟨e, t⟩)

∣∣∣
p1⊗ ··· ⊗pn⊗pn+1⊗1

=≪
(
⟨e, t⟩n =≪σ

)∣∣∣
(idn⊗⟨e,t⟩) ≫= (p1⊗ ··· ⊗pn⊗pn+1⊗1)

)
=

(
πn+2 =≪(id n ⊗ ⟨e|pn+1 , t⟩)

)
=≪
((
⟨e, t⟩n =≪σ

)∣∣∣
p1⊗ ··· ⊗pn⊗((e ≫= pn+1)&(t ≫= 1))

)
=

(
t ◦· πn+1

)
=≪
((
⟨e, t⟩n =≪σ

)∣∣∣
p1⊗ ··· ⊗pn⊗(e ≫= pn+1)

)
= t =≪

((
(⟨e, t⟩n =≪σ)

∣∣∣
p1⊗ ··· ⊗pn⊗1

∣∣∣
1⊗ ··· ⊗1⊗(e ≫= pn+1)

)[
0, . . . , 0, 1

])
by Lemma 6.1.6 (3) and Lemma 4.2.10 (1)

= t =≪
((

(⟨e, t⟩n =≪σ)
∣∣∣
p1⊗ ··· ⊗pn⊗1

)[
0, . . . , 0, 1

]∣∣∣
e ≫= pn+1

)
by Lemma 6.1.6 (6)

(IH)
= t =≪

(
σn+1

∣∣∣
e ≫= pn+1

)
= σn+2.
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The next consequence of the previous proposition may be understood as
Bayes’ rule for HMMs — or more accurately, the product rule for HMMs, see
Proposition 6.1.3.

Corollary 6.5.6. Still in the context of Definition 6.5.4, let q be a predicate on
X. Its validity in the final state in the sequence σ1, . . . , σn+1, filtered by factors
p1, . . . , pn, is given by:

σn+1 |= q =
⟨e, t⟩n =≪σ |= p1 ⊗ · · · ⊗ pn ⊗ q

H |= p⃗
.

Proof. This follows from Bayes’ rule, in Proposition 6.1.3 (1):

σn+1 |= q =
(
⟨e, t⟩n =≪σ

)∣∣∣
p1⊗···⊗pn⊗1

[
0, . . . , 0, 1

]
|= q

=
(
⟨e, t⟩n =≪σ

)∣∣∣
p1⊗···⊗pn⊗1 |= 1 ⊗ · · · ⊗ 1 ⊗ q by (4.7)

=

(
⟨e, t⟩n =≪σ

)
|=

(
p1 ⊗ · · · ⊗ pn ⊗ 1

)
&

(
1 ⊗ · · · ⊗ 1 ⊗ q

)(
⟨e, t⟩n =≪σ

)
|= p1 ⊗ · · · ⊗ pn ⊗ 1

=

(
⟨e, t⟩n =≪σ

)
|= p1 ⊗ · · · ⊗ pn ⊗ q
H |= p⃗

.

The last equation uses Lemma 4.2.10 (1) and Definition 6.5.2.

6.5.3 Metropolis-Hastings

A question with practical relevance is the following. Suppose we have a non-
empty multiset φ ∈ M(X), so with real-valued multiplicities, how can we sam-
ple from its normalisation Flrn(φ) = 1

∥φ∥
· φ ∈ D(X), without computing the

size ∥φ∥? When φ is a distribution with large support, calculating this sum
∥φ∥ =

∑
x φ(x) may be undoable.

The Metropolis-Hastings algorithm from the early 1950s provides an an-
swer. It shows how to turn φ into a Markov chain c : X → X for which Flrn(φ)
is a stationary state, forming a stationary state: c =≪Flrn(φ) = Flrn(φ), that is,
a fixed point of state transformation along the channel c. Now we can form a
sequence of elements from X by starting with an arbitrary point x0 ∈ X, and
sample successively xn+1 ← c(xn). One obtains a sequence x0, . . . , xN whose
accumulation acc

(
x0, . . . , xN

)
∈ D(X) approaches Flrn(φ), as N increases, see

e.g. [22, 173] for more information.
We sketch how to obain the channel c : X → X, from a multiset φ ∈ M(X).

We assume that φ has full support, i.e. that X = supp(φ) and thus that the set X
is finite. We describe a simplified version; the construction can be generalised,
by factoring in an arbitrary ‘candidate’ channel r : X → X.
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One first defines a function α : X →M(X) as:

α(x) B
∑
y∈X

min
(
1,
φ(y)
φ(x)

) ∣∣∣y〉
.

The channel c : X → X is then defined as:

c(x)(y) B


α(x)(y)
|X |

if x , y

1 −
∑{ α(x)(z)

|X |

∣∣∣∣ z ∈ X, z , x
}

if x = y.

The second clause ensures that each c(x) is a distribution,
We need to show is that c =≪Flrn(φ) = Flrn(φ). We give an exemplaric proof

for X = {u, v,w} with the multiset φ ∈ M(X) satisfying φ(u) ≤ φ(w) ≤ φ(v).
Then:

α(u) = 1
∣∣∣u〉
+ 1

∣∣∣v〉
+ 1

∣∣∣w〉
α(v) =

φ(u)
φ(v)

∣∣∣u〉
+ 1

∣∣∣v〉
+
φ(w)
φ(v)

∣∣∣w〉
α(w) =

φ(u)
φ(w)

∣∣∣u〉
+ 1

∣∣∣v〉
+ 1

∣∣∣w〉
.

And:

c(u) =
1
3

∣∣∣u〉
+

1
3

∣∣∣v〉
+

1
3

∣∣∣w〉
c(v) =

φ(u)
3φ(v)

∣∣∣u〉
+

(
1 −

φ(u)
3φ(v)

−
φ(w)
3φ(v)

) ∣∣∣v〉
+
φ(w)
3φ(v)

∣∣∣w〉
c(w) =

φ(u)
3φ(w)

∣∣∣u〉
+

1
3

∣∣∣v〉
+

(
1 −

φ(u)
3φ(w)

−
1
3

) ∣∣∣w〉
.

We check that Flrn(φ) is a stationary state.

(
c =≪Flrn(φ)

)
(u) =

1
∥φ∥
·
∑
x∈X

φ(x) · c(x)(u)

=
1
∥φ∥
·

(
φ(u) ·

1
3
+ φ(v) ·

φ(u)
3φ(v)

+ φ(w) ·
φ(u)

3φ(w)

)
=

1
∥φ∥
· φ(u) = Flrn(φ)(u).

443



444 Chapter 6. Updating distributions444 Chapter 6. Updating distributions444 Chapter 6. Updating distributions

Similarly,(
c =≪Flrn(φ)

)
(v)

=
1
∥φ∥
·

(
φ(u) ·

1
3
+ φ(v) ·

(
1 −

φ(u)
3φ(v)

−
φ(w)
3φ(v)

)
+ φ(w) ·

1
3

)
=

1
∥φ∥
· φ(v) = Flrn(φ)(v)(

c =≪Flrn(φ)
)
(w)

=
1
∥φ∥
·

(
φ(u) ·

1
3
+ φ(v) ·

φ(w)
3φ(v)

+ φ(w) ·
(
1 −

φ(u)
3φ(w)

−
1
3

))
=

1
∥φ∥
· φ(w) = Flrn(φ)(w).

The proof may be generalised to arbitrary multisets, but the many case distinc-
tions easily obfuscate what is going on.

Exercises

6.5.1 Consider the HMM example 6.17 with initial state σ = 1|Cloudy⟩.

1 Compute successive states tn =≪σ for n = 0, 1, 2, 3.
2 Compute successive observations e =≪(tn =≪σ) for n = 0, 1, 2, 3.
3 Check that the validity of the sequence of (point-predicate) obser-

vations Go-out,Stay-in,Stay-in is 837
5000 = 0.1674.

4 Show that filtering, as in Definition 6.5.4, with these same three
(point) observations yields as final outcome:

1867
6696 |Cloudy⟩ + 347

1395 |Sunny⟩ + 15817
33480 |Rainy⟩

≈ 0.279|Cloudy⟩ + 0.249|Sunny⟩ + 0.472|Rainy⟩.

6.5.2 Consider the transition channel t associated with the HMM exam-
ple 6.17. Check that in order to find a stationary stateσ∞ = x|Cloudy⟩+
y|Sunny⟩ + z|Rainy⟩ one has to solve the equations:

x = 1
2 x + 3

20 y + 1
5 z

y = 1
5 x + 4

5 y + 1
5 z

z = 3
10 x + 1

20 y + 3
5 z

Deduce that σ∞ = 1
4 |Cloudy⟩ + 1

2 |Sunny⟩ + 1
4 |Rainy⟩ and double-

check that t =≪σ∞ = σ∞.
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6.5.3 (The set-up of this exercise is copied from machine learning lecture
notes of Doina Precup.) Consider a 5-state hallway of the form:

321 4 5

Thus we use a space X = {1, 2, 3, 4, 5} of positions, together with a
space Y = {2, 3} of outputs, for the number of surrounding walls. The
transition and emission channels t : X → X and e : X → Y for a robot
in this hallway are given by:

t(1) = 3
4 |1⟩ +

1
4 |2⟩ e(1) = 1|3⟩

t(2) = 1
4 |1⟩ +

1
2 |2⟩ +

1
4 |3⟩ e(2) = 1|2⟩

t(3) = 1
4 |2⟩ +

1
2 |3⟩ +

1
4 |4⟩ e(3) = 1|2⟩

t(4) = 1
4 |3⟩ +

1
2 |3⟩ +

1
4 |5⟩ e(4) = 1|2⟩

t(5) = 1
4 |4⟩ +

3
4 |5⟩ e(5) = 1|3⟩.

We use σ = 1|3⟩ as start state, and we have a sequence of observa-
tions α = [2, 2, 3, 2, 3, 3], formally as a sequence of point predicates
[12, 12, 13, 12, 13, 13].

1 Check that (σ, t, e) |= α = 3
512 .

2 Next we filter with the sequence α. Show that it leads succesively
to the following states σi as in Definition 6.5.4

σ1 B σ = 1|3⟩
σ2 =

1
4 |2⟩ +

1
2 |3⟩ +

1
4 |4⟩

σ3 =
1
16 |1⟩ +

1
4 |2⟩ +

3
8 |3⟩ +

1
4 |4⟩ +

1
16 |5⟩

σ4 =
3
8 |1⟩ +

1
8 |2⟩ +

1
8 |4⟩ +

3
8 |5⟩

σ5 =
1
8 |1⟩ +

1
4 |2⟩ +

1
4 |3⟩ +

1
4 |4⟩ +

1
8 |5⟩

σ6 =
3
8 |1⟩ +

1
8 |2⟩ +

1
8 |4⟩ +

3
8 |5⟩

σ7 =
3
8 |1⟩ +

1
8 |2⟩ +

1
8 |4⟩ +

3
8 |5⟩.

6.5.4 Apply Bayes’ rule to the validity formulation (6.21) in order to prove
the correctness of the following HMM validity algorithm.

(σ, t, e) |= [] B 1
(σ, t, e) |= [p1] ++ p⃗ B

(
σ |= e ≫= p1

)
·
(
(t =≪σ|e ≫= p1 , t, e) |= p⃗

)
.

(Notice the connection with filtering from Definition 6.5.4.)
6.5.5 A random walk is a Markov model d : Z → Z given by d(n) = r|n −

1⟩ + (1 − r)|n + 1⟩ for some r ∈ [0, 1]. This captures the idea that a
step-to-the-left or a step-to-the-right are the only possible transitions.
(The letter ‘d’ hints at modeling a drunkard.)
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1 Start from initial state σ = 1|0⟩ ∈ D(Z) and describe a couple
of subsequent states d =≪ σ, d2 =≪ σ, d3 =≪ σ, . . . Which pattern
emerges?

2 Prove that for K ∈ N,

dK =≪σ =
∑

0≤k≤K

bn[K](1 − r)(k)
∣∣∣2k − K

〉
=

∑
0≤k≤K

(
K
k

)
· (1 − r)k · rK−k

∣∣∣2k − K
〉

6.5.6 A Markov chain X → X has a ‘one-stage history’ only, in the sense
that the state at stage n + 1 depends only on the state at stage n. The
following situation from [158, Chap. III, Ex. 4.4] involves a two-stage
history.

Suppose that whether or not it rains today depends on wheather conditions
through the last two days. Specifically, suppose that if it has rained for the
past two days, then it will rain tomorrow with probability 0.7; if it rained
today but not yesterday, then it will rain tomorrow with probability 0.5; if
it rained yesterday but not today, then it will rain tomorrow with probability
0.4; if it has not rained in the past to days, then it will rain tomorrow with
probability 0.2.

1 Write R = {r, r⊥} for the state space of rain and no-rain outcomes,
and capture the above probabilities via a channel c : R × R→ R.

2 Turn this channel c into a Markov chain ⟨π2, c⟩ : R × R → R × R,
where the second component of R × R describes whether or not it
rains on the current day, and the first component on the previous
day. Describe ⟨π2, c⟩ both as a function and as a string diagram.

3 Generalise this approach to a history of length N > 1: turn a chan-
nel XN → X into a Markov model XN → XN , where the relevant
history is incorporated into the sample space.

6.5.7 Use the approach of the prevous exercise to turn a hidden Markov
model into a Markov model.

6.5.8 LetH1 andH2 be two HMMs. Define their parallel productH1 ⊗H2

using the tensor operation ⊗ on states and channels.

6.5.9 Consider the multiset φ = 5|1⟩+4|2⟩+3|3⟩+2|4⟩+1|5⟩ ∈ M(X) for
X = {1, 2, 3, 4, 5}. Use the Metropolis-Hastings method from Subsec-
tion 6.5.3 to obtain a channel c : X → X with c =≪Flrn(φ) = Flrn(φ).
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6.6 Updating draw distributions

In this section we apply updating to distributions that are obtained by drawing
from an urn, as described in Chapter 3. We first show that updating commutes
with multinomial channels. The proof is not particularly difficult, but the re-
sult is noteworthy because it shows how well basic probabilistic notions are
integrated.

Recall from Definition 4.4.3 that p• : N(X) → R is the multiplicative ex-
tension of an observable p : X → R, see, defined by p•(φ) =

∏
x∈X p(x)φ(x).

Proposition 4.4.4 (2) we already saw that the validity mn[K](ω) |= p• in a
multinomial distribution equals the K-power (ω |= p)K of the validity in the
original distribution. We now extend this result to updating.

Theorem 6.6.1. Let ω ∈ D(X) be given. For a factor (or predicate) p : X →
R≥0 and a number K ∈ N, one has the following results about updating with
the multiplicative extension p• : N(X)→ R≥0.

1 By updating a multinomial distribution with the multiplicative extension p•

one still has a multinomial distribution, with an updated urn:

mn[K](ω)
∣∣∣

p• = mn[K](ω|p).

2 Similarly, for the parallel multinomial law pml from Section 3.6,

pml
(∑

i ni|ωi ⟩
)∣∣∣

p• = pml
(∑

i ni| ωi|p ⟩
)
.

3 Updating a Poisson point process does not only effect the distribution ω but
also the rate λ:

Pmn[λ](ω)
∣∣∣
p• = Pmn[λ · (ω |= p)]

(
ω|p

)
.

Proof. 1 Via the validity formula of Proposition 4.4.4 (2), for φ ∈ N[K](X),

mn[K](ω)
∣∣∣

p• (φ) =
mn[K](ω)(φ) · p•(φ)

mn[K](ω) |= p•

= (φ ) ·
(∏

x ω(x)φ(x)) · (∏x p(x)φ(x))
(ω |= p)K

= (φ ) ·
∏

x

(
ω(x) · p(x)
ω |= p

)φ(x)

since ∥φ∥ = K

= (φ ) ·
∏

x
ω|p(x)φ(x)

= mn[K](ω|p)(φ).
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2 Similarly, via Proposition 4.4.7:

pml
(∑

i ni|ωi ⟩
)∣∣∣

p•

=
∑

φ∈N[K](X)

pml
(∑

i ni|ωi ⟩
)
(φ) · p•(φ)

pml
(∑

i ni|ωi ⟩
)
|= p•

∣∣∣φ〉
where K =

∑
i ni

(3.33)
=

∑
i, φi∈N[ni](X)

∏
i mn[ni](ωi)(φi) · p•(φi)∏

i (ωi |= p)ni

∣∣∣ ∑i φi
〉

=
∑

i, φi∈N[ni](X)

∏
i

(φi ) ·
∏

x (ω(x) · p(x))φi(x)

(ωi |= p)ni

∣∣∣ ∑i φi
〉

=
∑

i, φi∈N[ni](X)

∏
i

(φi ) ·
∏

x

(
ω(x) · p(x)
ωi |= p

)φi(x) ∣∣∣ ∑i φi
〉

=
∑

i, φi∈N[ni](X)

∏
i

(φi ) ·
∏

x
ωi|p(x)φi(x)

∣∣∣ ∑i φi
〉

=
∑

i, φi∈N[ni](X)

∏
i

mn[ni](ωi|p)(φi)
∣∣∣ ∑i φi

〉
= pml

(∑
i ni| ωi|p ⟩

)
.

3 Using Proposition 4.4.4 (2) and (4) together with the item (1), we get for an
arbitrary multiset φ ∈ N(X), say with of size K = ∥φ∥,

Pmn[λ](ω)
∣∣∣
p• (φ) =

Pmn[λ](ω)(φ) · p•(φ)
Pmn[λ](ω) |= p•

(3.52)
=

e−λ · λK ·mn[K](φ) · p•(φ)
K! · e−λ·(ω|=p⊥)

=
e−λ·(1−(ω|=p⊥)) · λK · (ω |= p)K

K!
·

mn[K](φ) · p•(φ)
mn[K](ω) |= p•

=
e−λ·(ω|=p) · (λ · (ω |= p))K

K!
·mn[K]

(
ω|p

)
(φ)

(3.52)
= Pmn[λ · (ω |= p)]

(
ω|p

)
(φ).

Example 6.6.2. We continue Example 3.9.2, with a disease distribution ω =
1
6 |a⟩ +

1
8 |b⟩ +

3
8 |c⟩ +

1
3 |d ⟩ with λ = 5 patients arriving per hour. Let’s now

assume that people with diseases a, b are treated separately. When we wish
to consider the arrival probabilities for these diseases only, we update with
the (sharp) predicate p : {a, b, c, d} → [0, 1] given by p(a) = p(b) = 1 and
p(c) = p(d) = 0. The validity ω |= p is ω(a) + ω(b) = 1

8 +
1
6 =

7
24 , and the

updated distribution ρ is:

ρ B ω|p =
1/8

7/24
|a⟩ +

1/6

7/24
|b⟩ = 3

7 |a⟩ +
4
7 |b⟩.
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The adapted rate for these two diseases is λ · (ω |= p) = 5 · 7
24 =

35
24 . Thus the

arrival probabilities, for multisets of these two diseases a, b only, are:

Pmn[5](ω)
∣∣∣
p• = Pmn[5 · 7

24 ]
(
ω|p

)
= Pmn[ 35

24 ](ρ)

= pois[ 35
24 ](0) ·mn[0](ρ) + pois[ 35

24 ](1) ·mn[1](ρ)

+ pois[ 35
24 ](2) ·mn[2](ρ) + · · ·

= e−35/24 ·
(
1
∣∣∣0〉
+ 5

8

∣∣∣1|a⟩〉 + 5
6

∣∣∣1|b⟩〉
+ 25

128

∣∣∣2|a⟩〉 + 25
48

∣∣∣1|a⟩ + 1|b⟩
〉
+ 25

72

∣∣∣2|b⟩〉 + · · · )
= 0.233

∣∣∣0〉
+ 0.145

∣∣∣1|a⟩〉 + 0.194
∣∣∣1|b⟩〉

+ 0.0454
∣∣∣2|a⟩〉 + 0.121

∣∣∣1|a⟩ + 1|b⟩
〉
+ 0.0808

∣∣∣2|b⟩〉 + · · ·
We now restrict to multiplicative extensions 1E

•
of sharp predicates, which

are sharp themselves, see Exercise 4.4.3. The action φ • p of a factor p on a
multiset φ from Exercise 4.2.15 can be used to get an analogue of the first item
in the next proposition for hypergeometric and Pólya distributions. However,
this result is more restricted and works only for a sharp predicate p. The sharp
predicate restricts both the urn and the draws from it to balls of certain colours
only.

Theorem 6.6.3. Let υ ∈ N(X) be an urn and E ⊆ X an event / subset, forming
a sharp indicator predicate 1E : X → [0, 1].

1 If
∥∥∥ υ • 1E

∥∥∥ ≥ K,

hg[K](υ)
∣∣∣
1E
• = hg[K]

(
υ • 1E

)
.

2 Similarly, if υ • 1E is non-empty,

pl[K](υ)
∣∣∣
1E
• = pl[K]

(
υ • 1E

)
.

Proof. 1 We first recall from Exercise 4.4.3 that 1E
•
(φ) = 1 iff supp(φ) ⊆ E,

for φ ∈ N(X). Next, let’s write L = ∥υ∥ for the size of the urn and LE = ∥υ •

1E∥ for the size of the restricted urn — where it is assumed that LE ≥ K.
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Then:

hg[K](υ) |= 1E
•
=

∑
φ≤Kυ

hg[K](υ)(φ) · 1E
•
(φ)

=
∑

φ≤Kυ, supp(φ)⊆E

hg[K](υ)(φ)

=
∑

φ≤Kυ•1E

hg[K](υ)(φ)

=

∑
φ≤Kυ•1E

(
υ•1E
φ

)
(

L
K

) =

(
LE
K

)(
L
K

) by Lemma 1.8.2.

As a result:

hg[K](υ)
∣∣∣
1E
• (φ) =

∑
φ≤Kυ

hg[K](υ)(φ) · 1E
•
(φ)

hg[K](υ) |= 1E
•

∣∣∣φ〉
=

∑
φ≤Kυ•1E

∏
x

(
υ(x)
φ(x)

)
(

L
K

) ·

(
L
K

)(
LE
K

) ∣∣∣φ〉
=

∑
φ≤Kυ•1E

(
υ•1E
φ

)
(

LE
K

) ∣∣∣φ〉
= hg[K]

(
υ • 1E

)
.

2 Similarly.

6.6.1 Sampling from updated distributions

The following program fragments perform an update of a distribution ω ∈

D(X), on the left with a sharp predicate to ω|1E , for a subset E ⊆ X, and on the
right to ω|p, for a fuzzy predicate p : X → [0, 1].

x← ω
if x in E:

return x

x← ω
y← flip(p(y))
if y == 1:

return x

(6.22)

The mechanism on the left is rejection sampling, where all the samples from
ω outside the subset E are rejected. The approach on the right is called im-
portance sampling. The value p(x) ∈ [0, 1] is used as input r for flip(r) =
r|1⟩ + (1−r)|0⟩ and thus determines if the orginal sample x is returned.

We briefly look into the correctness of these programs. In the sharp case,
on the left, we can describe the indicator map 1E as a function X → 2, where
2 = {0, 1}. We use the tuple of functions ⟨id , 1E⟩ : X → X × 2 to transform
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the multinomial distribution mn[K](ω) ∈ D
(
N[K](X)

)
to a distribution in

D
(
N[K](X × 2)

)
. The second projection π2 : X × 2 → 2 can be used as a

sharp predicate. Its multiplicative extension π2
• : N[K]

(
X × 2

)
→ 2 can then

be used for updating. It singles out those cases where E holds. Finally, we
marginalise to D

(
N[K](X)

)
. Thus, as semantics of the rejection sampling on

the left in (6.22), we use:

DN(π1)
(
DN(⟨id , 1E⟩)

(
mn[K](ω)

)∣∣∣
π2
•

)
= DN(π1)

(
mn[K]

(
D(⟨id , 1E⟩)(ω)

)∣∣∣
π2
•

)
by naturality of multinomial

= DN(π1)
(
mn[K]

(
D(⟨id , 1E⟩)(ω)

∣∣∣
π2

))
by Theorem 6.6.1 (1)

= DN(π1)
(
mn[K]

(
D(⟨id , 1E⟩)(ω|π2◦⟨id ,1E⟩)

))
by Lemma 6.1.6 (7)

= mn[K]
(
D(π1)

(
D(⟨id , 1E⟩)(ω|1E )

))
again by naturality

= mn[K]
(
ω|1E

)
.

Hence, the program produces samples from the updated distribution ω|1E , as
intended.

We turn to the update on the right in (6.22), with a fuzzy predicate p : X →
[0, 1]. We identify this function p with the composite flip ◦ p, giving a channel
p : X → 2, see Exercise 4.3.6, as used above. We can form a tuple ⟨id , p⟩ : X →
X × 2, but now it is a channel. Hence we have to use the extension N[K] of
multisets to the category of channels, from Corollary 3.7.8. We thus take as
semantics of the above program on right in (6.22):

DN(π1)
((
N[K](⟨id , p⟩) =≪mn[K](ω)

)∣∣∣
π2
•

)
= DN(π1)

(
mn[K]

(
⟨id , p⟩ =≪ω

)∣∣∣
π2
•

)
by channel naturality (3.43)

= DN(π1)
(
mn[K]

(
(⟨id , p⟩ =≪ω)|π2

))
by Theorem 6.6.1 (1)

(∗)
= DN(π1)

(
mn[K]

(∑
x ω|p(x)

∣∣∣ x, 1〉))
= mn[K]

(
D(π1)

(∑
x ω|p(x)

∣∣∣ x, 1〉))
by naturality of multinomial

= mn[K]
(
ω|p

)
.

For the marked equation
(∗)
= we first note that the channel ⟨id , p⟩ : X → X × 2

is of the form:

⟨id , p⟩(x) =
∑
x∈X

p(x)
∣∣∣ x, 1〉

+ (1−p(x))
∣∣∣ x, 0〉

.
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Hence:

⟨id , p⟩ =≪ω |= π2 =
∑
x∈X

ω(x) · p(x) · π2(x, 1) + ω(x) · (1−p(x) · π2(x, 0)

=
∑
x∈X

ω(x) · p(x) = ω |= p.

And thus:(
⟨id , p⟩ =≪ω

)
|π2 =

∑
x∈X

ω(x) · p(x)
ω |= p

∣∣∣ x, 1〉
=

∑
x∈X

ω|p(x)
∣∣∣ x, 1〉

.

An alternative to sample from ω|p is the Metropolis-Hastings method, see
Subsection 6.5.3.

Exercises

6.6.1 Prove Theorem 6.6.3 (2) yourself.
6.6.2 The question below is adapted from [159, §6.4]. Let ω ∈ D(X) be a

distribution with a subset E ⊆ X and with numbers L ≤ K. Recall, for
a multiset φ, that (φ • 1E)(x) = φ(x) · 1E(x). Define sharp predicate
EL : N[K](X)→ [0, 1] by:

EL(φ) B


1 if

∑
x<E

φ(x) = L

0 otherwise.

Thus, EL(φ) = 1 iff
∥∥∥φ • 1¬E

∥∥∥ = L.
Prove that:

D
(
− • 1E

)(
mn[K](ω)

∣∣∣
EL

)
= mn[K−L]

(
ω|1E

)
.

6.6.3 Fix a multiset ψ ∈ N[K+1](X) of size K+1 and define the sharp
predicate mconsψ : X × N[K](X)→ [0, 1] as:

mconsψ(x, φ) B

1 if 1| x⟩ + φ = ψ

0 otherwise.

Show that for any distribution ω ∈ D(X),

ω ⊗mn[K](ω)
∣∣∣
mconsψ

= DSD(ψ),

where the draw-store-delete channel DSD is from Exercise 3.2.12.
Later on we shall see that this equation follows from a general result,
see Example 6.3.3 (2).
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6.6.4 We return to the multiplicative extension p• : L(X)→ R≥0 to lists, of
a factor p : X → R≥0, from Exercise 4.4.7.

1 Show that:

iid [K](ω)
∣∣∣
p• = iid [K]

(
ω|p

)
.

2 Prove next for Poisson-iid that:

Piid [λ](ω)
∣∣∣
p• = Piid [λ · (ω |= p)](ω).

6.7 Discretisation, and coin bias learning

In this chapter we have introduced updating for distributions ω ∈ D(X). It
involves incorporating evidence p into a new distribution ω|p making p more
true, see Theorem 6.1.5. In this way we learn which element x ∈ X has the
highest probability, and thus is the most likely.

This approach can also be used for what is called parameter learning. Con-
sider a coin flip(r), with a bias r ∈ [0, 1] that is unkown. What we do know
are a few coin flips: a certain sequence of heads and tails. What can we then
infer about r? By following the above approach we seek a distribution ω on the
space of parameters r, and update this distribution with the evidence (of flips).
A problem is that the bias r ranges over a continuous space [0, 1], whereas the
discrete distributions that we have used so far have a finite support — or pos-
sibly countable support, for D∞. This situation forms a good motivation for
continuous probability theory, which we postpone to Chapter ??.

In the meantime the situation is not hopeless. What we can do is discretise:
chop up the continuous interval [0, 1] into finitely many points and apply the
discrete techniques that we do know (like in Riemann integration). If we let the
number of points increase, we may still get reasonably good results. This is in-
deed the case, as we will illustrate below. In fact, computers doing computation
in continuous probability perform such fine-grained discretisation.

We start with discretisation of an interval of real numbers.

Definition 6.7.1. Let a, b ∈ R with a < b and N ∈ N with N > 0 be given.

1 We write [a, b]N ⊆ [a, b] ⊆ R for the interval [a, b] reduced to N elements:

[a, b]N B
{

a + (i + 1
2 )s

∣∣∣∣ 0 ≤ i < N
}

where s B
b − a

N
=

{
a + 1

2 s, a + 3
2 s, . . . , a + 2N−1

2 s
}

=
{

a + 1
2 s, a + 3

2 s, . . . , b − 1
2 s

}
.
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2 Let f : S → R≥0 be a function, defined on a finite subset S ⊆ R. We write
Disc( f , S ) ∈ D(S ) for the discrete distribution defined as:

Disc( f , S ) B
∑
x∈S

f (x)
t

∣∣∣ x〉
where t B

∑
x∈S

f (x).

Often we combine the notations from these two items and use discretised states
of the form Disc( f , [a, b]N).

To see an example of item (1), consider the interval [1, 2] with N = 3. The
step size s is then s = 2−1

3 =
1
3 , so that:

[1, 2]3 =
{

1 + 1
2 ·

1
3 , 1 + 3

2 ·
1
3 , 1 + 5

2 ·
1
3

}
=

{
1 + 1

6 , 1 + 1
2 , 1 + 5

6

}
.

We choose to use internal points only and exclude the end-points in this finite
subset since the end-points sometimes give rise to boundary problems, with
functions being undefined. When N goes to infinity, the smallest and largest
elements in [a, b]N will approximate the end-points a and b — from above and
from below, respectively.

The ‘total’ number t in item (2) normalises the formal sum and ensures that
the multiplicities add up to one. In this way we can define a uniform distri-
bution on [a, b]N as unif[a,b]N , like before, or alternatively as Disc(1, [a, b]N),
where 1 is the constant-one function.

Example 6.7.2. We look at the following classical question: suppose we are
given a coin with an unknown bias, we flip it eight times, and observe the
following list of heads (H) and tails (T ):

[T,H,H,H,T,T,H,H].

What can we then say about the bias of the coin?
The frequentist approach that we have seen in Section 2.2 would turn the

above list into a multiset and then into a distribution, by frequentist learning,
see also Diagram (2.14). This gives:

[T,H,H,H,T,T,H,H] 7−→ 5|H ⟩ + 3|T ⟩ 7−→ 5
8 |H ⟩ +

3
8 |T ⟩.

Here we do not use this frequentist approach to learning the bias parameter,
but take a Bayesian route. We assume that the bias parameter itself is given
by a distribution, describing the likelihoods of various bias values. We assume
no prior knowledge and therefore start from the uniform distribution. It will
be updated based on successive observations, using the technique of backward
inference, see Definition 6.2.1 (2).

The bias b of a coin is a number in the unit interval [0, 1], giving rise to
a coin distribution flip(b) = b|H ⟩ + (1 − b)|T ⟩. Thus we can see flip as a
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channel flip : [0, 1] → {H,T }. At this stage we avoid continuous distributions
and discretise the unit interval. We choose N = 100 in the chop up, giving as
underlying space [0, 1]N with N = 100 points, on which we take the uniform
distribution unif as prior:

unif B Disc(1, [0, 1]N) =
∑

x∈[0,1]N

1
N | x⟩

=
∑

0≤i<N

1
N

∣∣∣ 2i+1
2N

〉
= 1

N

∣∣∣ 1
2N

〉
+ 1

N

∣∣∣ 3
2N

〉
+ · · · + 1

N

∣∣∣ 2N−1
2N

〉
.

We use the flip operation as a channel, restricted to the discretised space:

[0, 1]N ◦
flip
// {H,T } given by flip(b) = b|H ⟩ + (1 − b)|T ⟩.

There are the two (sharp, point) predicates 1H and 1T on the codomain
{H,T }. It is not hard to show, see Exercise 6.7.2 below, that:

flip =≪unif |= 1H = flip =≪unif |= 1T =
1
2 .

Predicate transformation along flip yields two predicates on [0, 1]N given by:(
flip ≫= 1H

)
(r) = r and

(
flip ≫= 1T

)
(r) = 1 − r.

Given the above sequence of head/tail observations [T,H,H,H,T,T,H,H],
we perform successive predicate transformations flip ≫= 1(−) and update the
prior (uniform) state accordingly. This gives, via Lemma 6.1.6 (3),

unif |flip ≫= 1T

unif |flip ≫= 1T |flip ≫= 1H = unif |(flip ≫= 1T )&(flip ≫= 1H ) = unif |(flip ≫= 1H )&(flip ≫= 1T )

unif |flip ≫= 1T |flip ≫= 1H |flip ≫= 1H = unif |(flip ≫= 1T )&(flip ≫= 1H )&(flip ≫= 1H )

= unif |(flip ≫= 1H )2&(flip ≫= 1T )
...

unif |(flip ≫= 1H )5&(flip ≫= 1T )3

As we already know from Lemma 6.1.6 (3), the order of updating does not
matter. Indeed, the order of the coin flips in the list [T,H,H,H,T,T,H,H]
of observations does not matter. What matters is the associated multiset of
observations 5|H ⟩ + 3|T ⟩. The multiplicities 5 and 3 reappear in the predicate
(flip ≫= 1H)5 & (flip ≫= 1T )3 in the last line above.

An overview of the distributions arising from these succesive updates is
given in Figure 6.11. These distributions approximate (continuous) Beta dis-
tributions, see Example ?? later on. The probability distribution functions of
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these Beta distributions form a smoothed out version of the bar charts in Fig-
ure 6.11.

After these eight updates, let’s write ρ B unif |(flip ≫= 1H )5&(flip ≫= 1T )3 for the re-
sulting distribution. We now ask three questions.

1 Where does ρ reach its highest value, and what is it? The answers are given
by the singleton set of maximum values:

argmax(ρ) =
{

5
8

}
with ρ( 5

8 ) ≈ 0.025347.

2 What is the predicted coin distribution? The outcome, with truncated multi-
plicities, is:

flip =≪ρ = 0.6|H ⟩ + 0.4|T ⟩.

3 What is the expected value of ρ? It is:

mean(ρ) = 0.6 = ρ |= flip ≫= 1H .

For mathematical reasons2 the exact outcome is 0.6. However, we have used
approximation via discretisation. The value computed with this discretisation
is 0.599999985316273. We can conclude that chopping the unit interval up
with N = 100 already gives a fairly good approximation.

It turns out that that all the distributions in Figure 6.11 can be described
in a uniform manner, as a certain parameterised class of distributions, which
is closed under backward inference, along the flip channel. Updating along
flip corresponds simply to an increase of parameters. This is very convenient
since it means that we do not have to perform the — computationally costly —
distribution updates, but we can simply do parameter updates. Such situations
occur more often and involve a ‘conjugate prior’ relationship. We shall study
it more systematically later on, in Section ??. At this stage we only describe
the relevant class of distributions and show how it is closed under backward
inference along flip.

Thus we define, dependent on the discretisation parameter N ∈ N, the chan-
nel BetaN : N>0 × N>0 → [0, 1]N as normalisation:

BetaN(a, b) B Flrn

 ∑
r∈[0,1]N

ra−1 · (1 − r)b−1
∣∣∣r 〉

=
∑

r∈[0,1]N

ra−1 · (1 − r)b−1∑
s∈[0,1]N

sa−1 · (1 − s)b−1

∣∣∣r 〉. (6.23)

Then we have the following results.
2 The distribution ρ is an approximation of the probability density function Beta(6, 4), which

has mean 6
6+4 =

3
5 = 0.6, see Exercise ??.
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Figure 6.11 Coin bias distributions arising from the prior discrete uniform distri-
bution on the discretised unit interval [0, 1]N for N = 100, via backward inferences
using successive coin observations [T,H,H,H,T,T,H,H]. The red line in these
plots is given by 1/100 times the corresponding continuous Beta-distribution. It
shows how closely the discrete approximations match the continuous probability
density function.

Proposition 6.7.3. Let N ∈ N be the the discretisation parameter, used in the
chopped subspace [0, 1]N ⊆ [0, 1], with uniform distribution unif ∈ D

(
[0, 1]N

)
,

and let a, b ∈ N>0.

1 The discretised Beta distribution BetaN(a, b) satisfies:

BetaN(a, b) = unif
∣∣∣
(flip ≫= 1H )a−1&(flip ≫= 1T )b−1 .

2 The class of discretised Beta distributions is closed under backward infer-
ence along flip:

BetaN(a, b)
∣∣∣
flip ≫= 1H

= BetaN(a + 1, b)

BetaN(a, b)
∣∣∣
flip ≫= 1T

= BetaN(a, b + 1).

More generally, for n,m ∈ N one has:

BetaN(a, b)
∣∣∣
(flip ≫= 1H )n&(flip ≫= 1T )m = BetaN(a + n, b + m).

This second item shows how backward inference of a prior BetaN(a, b)
along a flip can be expressed via an update of the ‘hyperparameters’ a, b.
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Proof. 1 For r ∈ [0, 1]N we have:

unif
∣∣∣
(flip ≫= 1H )a−1 & (flip ≫= 1T )b−1 (r) =

unif(r) · (flip ≫= 1H)a−1(r) · (flip ≫= 1T )b−1(r)
unif |= (flip ≫= 1H)a−1 & (flip ≫= 1T )b−1

=
1/N · ra−1 · (1 − r)b−1∑

s∈[0,1]N
1/N · sa−1 · (1 − s)b−1

= BetaN(a, b).

2 We use this result and Lemma 6.1.6 (3) to prove the general statement:

BetaN(a, b)
∣∣∣
(flip ≫= 1H )n & (flip ≫= 1T )m

= unif
∣∣∣
(flip ≫= 1H )a−1 & (flip ≫= 1T )b−1

∣∣∣
(flip ≫= 1H )n & (flip ≫= 1T )m

= unif
∣∣∣
(flip ≫= 1H )a−1 & (flip ≫= 1T )b−1 & (flip ≫= 1H )n & (flip ≫= 1T )m

= unif
∣∣∣
(flip ≫= 1H )a+n−1 & (flip ≫= 1T )b+m−1

= BetaN(a + n, b + m).

6.7.1 Discretisation of distributions

In the beginning of this section we have described how to chop up intervals
[a, b] of real numbers into a discrete sample space. We have used this in partic-
ular for the unit interval [0, 1] that we used as space for a coin bias. Since there
is an isomorphism [0, 1] � D(2), this discretisation of [0, 1] might as well be
seen as a discretisation of the set of distributions on 2 = {0, 1}. Can we do such
discretisation more generally, for sets of distributions D(X)? There is an easy
way to do so via normalisation of natural multisets.

Recall that we writeN[K](X) for the set of natural multisets — with natural
numbers as multiplicities — of size K. We recall from Theorem 4.5.9 (1) that
for K > 0 we collect ‘fractional’ distributions in a subset:

D[K](X) B
{

Flrn(φ)
∣∣∣∣ φ ∈ N[K](X)

}
=

{
1
K · φ

∣∣∣∣ φ ∈ N[K](X)
}
.

Recall also — from Proposition 1.8.7 — that if the set X has n elements, then
N[K](X) contains

((
n
K

))
multisets, so thatD[K](X) contains

((
n
K

))
distributions.

For instance, when X = {a, b}, thenM[5](X) contains the multisets:

5|a⟩, 4|a⟩ + 1|b⟩, 3|a⟩ + 2|b⟩, 2|a⟩ + 3|b⟩, 1|a⟩ + 4|b⟩, 5|b⟩.

Hence,D[5]({a, b}) contains the distributions:

1|a⟩, 4
5 |a⟩ +

1
5 |b⟩,

3
5 |a⟩ +

2
5 |b⟩,

2
5 |a⟩ +

3
5 |b⟩,

1
5 |a⟩ +

4
5 |b⟩, 1|b⟩.

By taking large K inD[K](X) we can obtain fairly good approximations, since
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the union of these subsets D[K](X) ⊆ D(X) is dense, by Theorem 4.5.9 (1).
Figure 4.4 gives a visual representation.

Example 6.7.4. Consider an election3 with three candidates a, b, c, which we
collect in a set X of candidates, as X B {a, b, c}. A candidate wins if (s)he gets
more than 50% of the votes. A poll has been conducted among 100 possible
voters, giving the following preferences.

candidates a b c

poll numbers 52 28 20

What is the probability that candidate a then wins in the election? Notice that
these are poll numbers, before the election, not actual votes. If they were actual
votes, candidate a gets more than 50%, and thus wins. However, this is a poll
and we like to learn about voter preferences.

A state in D(X) is used as distribution of preferences over the three candi-
dates in X = {a, b, c}. In this example we discretise the set of states and work
with the finite subset D[K](X) ↪→ D(X) of fractional distributions. There is
no initial knowledge about voter preferences, so our prior υK is the uniform
distribution over these preference distributions:

υK B unifD[K](X) =
∑

φ∈N[K](X)

1((
3
K

)) ∣∣∣Flrn(φ)
〉
∈ D

(
D[K](X)

)
.

We use the following sharp predicates on D[K](X), called: aw for a wins,
bw for b wins, cw for c wins, and nw for no-one wins. They are defined on a
fractional distribution σ ∈ D[K](X) as:

aw(σ) = 1 ⇐⇒ σ(a) > 1
2

bw(σ) = 1 ⇐⇒ σ(b) > 1
2

cw(σ) = 1 ⇐⇒ σ(c) > 1
2

nw(σ) = 1 ⇐⇒ σ(a) ≤ 1
2 and σ(b) ≤ 1

2 and σ(c) ≤ 1
2 .

The prior validities:

υK |= aw υK |= bw υK |= cw υK |= nw

all approximate 1
4 , as K goes to infinity.

We use the inclusionD[K](X) ↪→ D(X) as a channel i : D[K](X)→ X. Like
in the above coin scenario, we perform successive backward inferences, using

3 This illustration is copied and adapted from Sam Staton’s tutorial at the Mathematical
Foundations of Programming Semantics conference, 2021.
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the above poll numbers, to obtain a posterior ρK obtained via updates:

ρK B υK | (i ≫= 1a)52 | (i ≫= 1b)28 | (i ≫= 1c)20 = υK | (i ≫= 1a)52 & (i ≫= 1b)28 & (i ≫= 1c)20 .

The posterior validity ρK |= aw takes the following values, for several values
of the discretisation parameter K.

K = 100 K = 500 K = 1000

probability that a wins 0.578 0.609 0.613

Clearly, these validities are approximations. When modeled via continuous
probability theory, see Example ??, the probability that a wins can be cal-
culated more accurately as 0.617. This illustrates that the above discretisations
of states work reasonably well.

To give a bit more perspective, the posterior probability that b or c wins
with the above poll numbers is close to zero. The probability that no-one wins
is substantial, namely almost 0.39.

Exercises

6.7.1 Recall the N-element set [a, b]N from Definition 6.7.1 (1).

1 Show that its largest element is b − 1
2 s, where s = b−a

N .
2 Prove that

∑
x∈[a,b]N

x = N(a+b)
2 , via Proposition 1.2.6 (1).

3 Show that [0, 1]N is closed under orthosupplement: if r ∈ [0, 1]N ,
then also 1 − r ∈ [0, 1]N . It it an effect algebra?

6.7.2 Consider coin parameter learning in Example 6.7.2.

1 Show that the predicition in the prior (uniform) state unif on [0, 1]N

gives a fair coin, i.e.

flip =≪unif = 1
2 |1⟩ +

1
2 |0⟩.

This equality is independent of N.
2 Prove that, also independently of N,

unif |= flip ≫= 1H =
1
2 .

3 Show next that:

unif |flip ≫= 1H =
∑

x∈[0,1]N

2x
N | x⟩.

460



6.7. Discretisation, and coin bias learning 4616.7. Discretisation, and coin bias learning 4616.7. Discretisation, and coin bias learning 461

4 Use Proposition 1.2.6 (2) to prove that:(
flip =≪(unif |flip ≫= 1H )

)
(H) = 2

3 −
1

6N2 .

Conclude that flip =≪ (unif |flip ≫= 1H ) approaches 2
3 |H ⟩ +

1
3 |T ⟩ as N

goes to infinity.

6.7.3 Check that the probabilities
(
flip =≪ρ

)
(H) and mean(ρ) are the same,

in Example 6.7.2.
6.7.4 Check that BetaN(1, 1) in (6.23) is the uniform distribution unif on

[0, 1]N .
6.7.5 Consider the discretised beta channel BetaN : N × N → D(X) in the

following diagram:

(N>0 × N>0) × N({H,T })
add
��

BetaN×id
// D([0, 1]N) × N({H,T })

infer
��

N>0 × N>0
BetaN // D([0, 1]N)

where the maps add and infer are given by:

add
(
a, b, n|H ⟩ + m|T ⟩

)
= (a + n, b + m)

infer
(
ω, n|H ⟩ + m|T ⟩

)
= ω|(flip ≫= 1H )n&(flip ≫= 1T )m .

Prove the following points.

1 The map add is an action of the monoid N({H,T }) on N>0 × N>0.
2 Also infer : D([0, 1]N) × N({H,T }) → D([0, 1]N) is a monoid ac-

tion.
3 The above rectangle commutes — making BetaN a homomorphism

of monoid actions. (This description of a conjugate prior relation-
ship as a monoid action comes from [87].)

6.7.6 We accept, without proof, the following equation. For a, b ∈ N,

lim
N→∞

1
N
·

∑
r∈[0,1]N

ra−1 · (1 − r)b−1 =
(a − 1)! · (b − 1)!

(a + b − 1)!
. (∗)

Use equation (∗) to prove that the binary Pólya distribution can be
obtained from the binomial, via the limit of the discretised Beta dis-
tribution (6.23):

lim
N→∞

(
bn[K] =≪BetaN(a, b)

)
(i)

= pl[K]
(
a|H ⟩ + b|T ⟩

)(
i|H ⟩ + (K−i)|T ⟩

)
.

Later, in Exercise ?? we shall see a proper continuous version of this
result.
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6.7.7 Redo the coin bias learning from the beginning of this section in the
style of Example 6.7.4, via discretisationD[K](2) of states inD(2) �
[0, 1].

6.8 Frequentist and Bayesian probability

Here, at the end of this chapter, we have encountered some of the basic con-
cepts in (our treatment of) discrete probability theory, namely: distributions
(states), predicates, validity, and updating. Before continuing we like to sit
back and reflect on what we have seen so far, from a more abstract perspective.

We start with a fundamental result, for which we recall that the set Pred (X) =
[0, 1]X of fuzzy predicates on a set X has the structure of an effect module: there
are truth and falsity predicates 1, 0, orthocomplement p⊥, partial sum p > q,
and scalar multiplication r · p, see Subsection 4.2.3.

The next result is a Riesz-style representation result, representing distribu-
tions on X via a double dual [0, 1][0,1]X

.

Theorem 6.8.1.

1 Let X be a finite set. There is then a ‘representation’ isomorphism,

D(X) V

�
// EMod

(
Pred (X), [0, 1]

)
(6.24)

given by validity: V(ω)(p) B ω |= p. It gives a bijective correspondence
between distributions inD(X) and ‘predicate evaluations’ Pred (X)→ [0, 1]
that preserve the effect module structure.

2 This isomorphism (6.24) is natural in X, with respect to channels c : X → Y;
they give a commuting diagram of the following form:

D(X)
c =≪(−)

��

V

�
// EMod

(
Pred (X), [0, 1]

)
h 7→ h(c ≫= −)
��

D(Y) V

�
// EMod

(
Pred (Y), [0, 1]

)
This result uses the notation EMod

(
Pred (X), [0, 1]

)
for the ‘hom’ set of

homomorphisms of effect modules Pred (X) → [0, 1]. The mapping X 7→
EMod

(
Pred (X), [0, 1]

)
forms a monad on Sets, known as the expectation mo-

nad, see [89].

Proof. 1 We have already seen that V(ω) : Pred (X) → [0, 1] preserves the
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effect module structure, see Lemma 4.2.6. In order to show that it is an iso-
morphism, let h : Pred (X) → [0, 1] be a homomorphism of effect modules.
It gives rise to a distribution, via point predicates 1x ∈ Pred (X), for x ∈ X.

V−1(h) B
∑
x∈X

h(1x)
∣∣∣ x〉
∈ D(X).

The probabilities h(1x) add up to one since h is a map of effect modules:∑
x∈X

h(1x) = h

>
x∈X

1x

 = h(1) = 1.

TheseV andV−1 are each other’s inverses:(
V−1 ◦ V

)
(ω) =

∑
x∈X

V(ω)(1x)
∣∣∣ x〉
=

∑
x∈X

(
ω |= 1x

) ∣∣∣ x〉
=

∑
x∈X

ω(x)
∣∣∣ x〉
= ω

(
V ◦ V−1)(h)(p) =

∑
x∈X

h(1x)
∣∣∣ x〉 |= p =

∑
x∈X

h(1x) · p(x)

= h

>
x∈X

p(x) · 1x

 = h(p).

In the last line we use that h is a homomorphism of effect modules and that
the predicate p has a normal form >x p(x) · 1x, see Lemma 4.2.3 (2).

2 Naturality for the representation isomorphism V in (6.24) follows from
Proposition 4.3.3: for a channel c : X → Y ,((

h 7→ h(c ≫= −)
)
◦ V

)
(ω)(q) = V(ω)(c ≫= q)

= ω |= c ≫= q
= c =≪ω |= q
= V(c =≪ω)(q)
=

(
V ◦ (c =≪−)

)
(ω)(q).

There are two leading interpretations of probability, namely a frequentist
interpretation and a Bayesian interpretation. The frequentist approach treats
probability distributions as records of probabilities of occurrences, obtained
from long-term accumulations, e.g. from frequentist learning. One can asso-
ciate this view with the set D(X) of distributions on the left-hand-side of
the representation isomorphism (6.24). The right-hand-side fits the Bayesian
view, which focuses on assigning probabilities to belief functions (predicates),
see [42], in this situation via special functions Pred (X) → [0, 1] that preserve
the effect module structure. The representation isomorphism demonstrates that
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the frequentist and Bayesian interpretations of probability are thightly con-
nected, at least in finite discrete probability. We shall see a similar isomor-
phism below, in Theorem 6.8.6, for infinite discrete probability. The situation
for continuous probability will be described in Theorem ??.

But first we look at how operations on distributions, like marginalisation,
tensor product, and updating work accross the above representation isomor-
phism (6.24). The next result establishes a close connection between opera-
tions on distributions and logical operations, like between marginalisation and
weakening. In the case of updating (conditioning) of a distribution, we see that
the corresponding logical formulation is the common formulation of condi-
tonal probability as a fraction of probability assignments. Not suprisingly, the
connection relies on Bayes’ rule.

Proposition 6.8.2. Fix finite sets X,Y.

1 Let h : Pred (X × Y) → [0, 1] be a map of effect modules. Define first and
second marginals h

[
1, 0

]
: Pred (X) → [0, 1] and h

[
0, 1

]
: Pred (Y) → [0, 1]

of h as:

h
[
1, 0

]
(p) B h(p ⊗ 1) and h

[
0, 1

]
(q) B h(1 ⊗ q).

Then:V−1(h[1, 0]) = V−1(h)
[
1, 0

]
andV−1(h[0, 1]) = V−1(h)

[
0, 1

]
.

2 Let h : Pred (X)→ [0, 1] and k : Pred (Y)→ [0, 1] be maps of effect modules.
We define their tensor product h ⊗ k : Pred (X × Y)→ [0, 1] as:

(h ⊗ k)(r) B h
(
x 7→ k

(
r(x,−)

))
= k

(
y 7→ h

(
r(−, y)

))
.

Then:V−1(h ⊗ k
)
= V−1(h) ⊗V−1(k).

3 Let h : Pred (X) → [0, 1] be a map of effect modules and let p ∈ Pred (X) be
a predicate with h(p) , 0. We define an update h|p : Pred (X)→ [0, 1] as:

h|p(q) B
h(p & q)

h(p)
.

Then:V−1(h|p) = V−1(h)
∣∣∣
p.

Proof. 1 We consider the first marginal only. It is easy to see that the map
h
[
1, 0

]
: Pred (X) → [0, 1], as defined above, preserves the effect module
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structure. We get an equality of distributions since for x ∈ X,

V−1(h[1, 0])(x) = h
[
1, 0

]
(1x) = h(1x ⊗ 1)

= h

1x ⊗>
y∈Y

1y


=

∑
y∈Y

h(1x ⊗ 1y)

=
∑
y∈Y

h(1(x,y))

=
∑
y∈Y

V−1(h)(x, y) = V−1(h)
[
1, 0

]
(x).

2 For elements u ∈ X and v ∈ Y we have:

V−1(h ⊗ k
)
(u, v) =

(
h ⊗ k

)
(1(u,v)) = h

(
x 7→ k

(
1(u,v)(x,−)

))
= h

(
x 7→ k(1u(x) · 1v)

)
= h

(
x 7→ 1u(x) · k(1v)

)
= h

(
k(1v) · 1u

)
= k(1v) · h(1u)
= V−1(h)(u) · V−1(k)(v)
=

(
V−1(h) ⊗V−1(k)

)
(u, v).

The same can be shown for the other formulation of h ⊗ k in item (2).
3 Again, h|p : Pred (X)→ [0, 1] is a map of effect modules. Next, for x ∈ X,

V−1(h|p)(x) = h|p(1x) =
h(p ⊗ 1x)

h(p)

=
V−1(h) |= p ⊗ 1x

V−1(h) |= p

= V−1(h)
∣∣∣
p |= 1x by Bayes, see Theorem 6.1.3 (2)

= V−1(h)
∣∣∣
p(x).

The above results make it possible to do probability theory in a distribution-
free style, with only predicates and predicate transformers (effect module maps).
We illustrate how this works using an earlier example.

Example 6.8.3. We illustrate the purely Bayesian approach, on the right-hand-
side of the isomorphism (6.24), for the Medicine-Blood updates from Exam-
ple 6.2.6. There, we had a prior medicine distribution ω = 3

20 |0⟩+
9

20 |1⟩+
2
5 |2⟩,

which we now replace by the predicate evaluation Ω B V(ω) : Pred (M) →
[0, 1], where M = {0, 1, 2} is the set of medicines. Thus:

Ω(p) B V(ω)(p) = 3
20 · p(0) + 9

20 · p(1) + 2
5 · p(2).
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It can be updated with the sharp predicate 1E ∈ Pred (M), where E = {1, 2} ⊆
M gives a restriction to medicines 1, 2. Via the update formula of Proposi-
tion 6.8.2 (3) we get a new predicate evaluation Ω|1E : Pred (M) → [0, 1],
namely:

Ω|1E (p) =
Ω(p & 1E)
Ω(1E)

=
9/20 · p(1) + 2/5 · p(2)

9/20 + 2/5
= 9

17 · p(1) + 8
17 · p(2).

It corresponds to the updated distributionω|1E =
9

17 |1⟩+
8
17 |2⟩ that we obtained

in Example 6.2.6.
Next we recall from Example 6.2.6 the channel b : M → B, where B =

{H, L} the set for high / low blood pressure. This channel is formulated in
terms of distributions (on B), which we now like to avoid. We recall from Ex-
ercise 4.3.10 that such a channel bijectively corresponds to a predicate trans-
former operation β = b ≫= (−) : Pred (B) → Pred (M), preserving the effect
module structure of predicates. This map β puts channels ‘on the Bayesian’
side, in the world of predicates. Explicitly, for q ∈ Pred (B), it is defined as:

β(q)(0) B (b ≫= q)(0) = b(0)(H) · q(H) + b(0)(L) · q(L)
= 2

3 · q(H) + 1
3 · q(L).

Similarly, β(q)(1) B 7
9 · q(H) + 2

9 · q(L) and β(q)(2) B 5
8 · q(H) + 3

8 · q(L).
We are interested in learning the new predicate evaluation (on M) when we

have evidence of a high blood pressure. We then update Ω with β(1H), giving
as new predicate evaluation:

Ω|β(1H )(p) =
Ω(p & β(1H))
Ω(β(1H))

=
3/20 · β(1H)(0) · p(0) + 9/20 · β(1H)(1) · p(1) + 2/5 · β(1H)(2) · p(2)

3/20 · β(1H)(0) + 9/20 · β(1H)(1) + 2/5 · β(1H)(2)

=
3/20 · 2/3 · p(0) + 9/20 · 7/9 · p(1) + 2/5 · 5/8 · p(2)

3/20 · 2/3 + 9/20 · 7/9 + 2/5 · 5/8

= 1
7 · p(0) + 1

2 · p(1) + 5
14 · p(2).

This predicate evaluation corresponds, via the isomorphism (6.24), to the up-
dated distribution ω|b ≫= 1H =

1
7 |0⟩ +

1
2 |1⟩ +

5
14 |2⟩ computed in Example 6.2.6.

We finish this section with an extension of the correspondence (6.24) be-
tween distributions in D(X) and predicate evaluations Pred (X) → [0, 1] to
distributions in D∞(X), with countable support. This involves effect algebras
/modules with countable joins (least upper bounds). We shall use the terms∞-
joins and∞-continuity for what are commonly calledω-joins andω-continuity.
Since we often use the Greek letter ω for states / distributions, we choose to
avoid using it also for the first infinite ordinal ω in these expressions. The use

466



6.8. Frequentist and Bayesian probability 4676.8. Frequentist and Bayesian probability 4676.8. Frequentist and Bayesian probability 467

of the sign ∞ for the countable case is in line with the notation D∞(X) for the
set of distribution with countable support.

Posets with countable join are basic structures in the semantics of program-
ming languages, see [153, 2], since they provide least fixed points of con-
tinuous functions, see Exercise 6.8.4. Instead of requiring joins of countable
chains, one can also use joins of directed sets.

Definition 6.8.4. Consider a poset (A,≤).

1 A sequence (or chain) of elements an ∈ A, for n ∈ N, is called ascending if
an ≤ an+1 for each n.

2 The poset (A,≤) will be called an∞-cpo, or, in words, a countably complete
partial order, if each ascending chain (an) in A has a least upperbound (join)∨

n an ∈ A.
3 A monotone function f : A → B between two ∞-complete posets A, B is

called ∞-continuous if it preserves joins of ascending chains, that is, if
f
(∨

n an
)
=

∨
n f (an), for each ascending chain (an) in A.

4 We shall write∞-Cpo for the category of∞-cpo’s with∞-continuous (and,
implicitly, monotone) functions between them.

These countable joins can be combined with effect algebra / module struc-
ture, see Definition 4.2.1. Later on, in Section ?? we shall see how these ef-
fect algebras with joins capture the order-theoretic essentials of so-called σ-
algebras of measurable subsets.

Definition 6.8.5.

1 An ∞-effect algebra is an effect algebra which is ∞-complete as a poset,
using the order described in Exercise 4.2.16. From the same exercise we
know that the sum > automatically preserves joins in each argument.

We shall write ∞-EA for the category with ∞-effect algebras as objects,
and with∞-continuous effect algebra maps as morphisms.

2 Similarly, an∞-effect module is an effect module E which is∞-complete as
poset, and whose scalar multiplication [0, 1] × E → E is ∞-continuous in
each argument.

The category∞-EMod contains such∞-effect modules, with∞-continous
effect module maps between them.

In the last point we implicitly use that the unit interval [0, 1] is an ∞-cpo.
This is obvious.

For each set X, the powerset P(X) is an effect algebra with arbitrary joins, so
in particular ∞-joins. The unit interval [0, 1] is an ∞-effect module, and more
generally, each set of predicates Pred (X) = [0, 1]X is an ∞-effect module, via
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pointwise joins. Later on, in continuous probability, we shall see measurable
spaces whose sets of measurable subsets form examples of∞-effect algebras.

We recall from Exercise 4.2.17 that the sum operation > of an ∞-effect
algebra is continuous in both arguments separately. Explicitly:

∨
n x > yn =

x >
∨

n yn. Further, if there are joins
∨

, there are also meets
∧

via orthosup-
plement.

Theorem 6.8.6. For each countable set X there is a representation isomor-
phism,

D∞(X) V

�
// ∞-EMod

(
Pred (X), [0, 1]

)
(6.25)

also given by validity: V(ω)(p) B ω |= p. This isomorphism is natural in X,
like in Theorem 6.8.1 (2).

Proof. Much of this works as in the proof of Theorem 6.8.1, except that we
have to prove thatV(ω) : Pred (X)→ [0, 1] is∞-continuous, now that we have
ω ∈ D∞(X). So let (pn) be an ascending chain of predicates, with pointwise
join p =

∨
n pn. Then:

V(ω)
(∨

n
pn

)
= ω |=

∨
n

pn =
∑
x∈X

ω(x) ·
(∨

n
pn

)
(x)

=
∑
x∈X

ω(x) ·
(∨

n
pn(x)

)
=

∑
x∈X

∨
n
ω(x) · pn(x)

(∗)
=

∨
n

∑
x∈X

ω(x) · pn(x) =
∨

n
V(ω)(pn).

The direction (≥) of the marked equation
(∗)
= holds by monotonicity. For (≤) we

reason as follows. Since X is countable, we can write it as X = {x1, x2, . . .}. For
each N ∈ N we can use that finite sums preserve∞-joins in:∑

k≤N

∨
n
ω(xk) · pn(xk) =

∨
n

∑
k≤N

ω(xk) · pn(xk) ≤
∨

n

∑
x∈X

ω(x) · pn(x).

Hence:∑
x∈X

∨
n
ω(x) · pn(x) = lim

N→∞

∑
k≤N

∨
n
ω(xk) · pn(xk) ≤

∨
n

∑
x∈X

ω(x) · pn(x).

The inverse ofV in (6.25) is defined as countable formal sum, using that X
is countable: for a homomorphism of ∞-effect modules h : Pred (X) → [0, 1]
we take:

V−1(h) B
∑
x∈X

h(1x)
∣∣∣ x〉

.
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In order to see that the probabilities h(1x) add up to one, we write the set X as
X = {x1, x2, . . .}. We express the sum over these xi via a join of an ascending
chain: ∑

x∈X

h(1x) =
∨

n

∑
k≤n

h(1xk ) =
∨

n
h

>
k≤n

1xk


= h

(∨
n

1{x1,...,xn}

)
= h(1) = 1.

The arguments thatV andV−1 are each other’s inverses, and thatV is natural,
work essentially in the same way as in the proof of Theorem 6.8.1.

Exercises

6.8.1 Consider the representation isomorphism in Theorem 6.8.1.

1 Show that a uniform distribution corresponds to the mapping that
sends a predicate to its average value.

2 Show that for finite sets X,Y and maps h ∈ EMod
(
Pred (X), [0, 1]

)
and k ∈ EMod

(
Pred (Y), [0, 1]

)
one has:(

h ⊗ k
)[

1, 0
]
= h.

6.8.2 Recall from Theorem 4.2.5 that Pred (X) is the free effect module on
the effect algebra P(X), for a finite set X.

1 Deduce from this fact that there is an isomorphism:

EA
(
P(X), [0, 1]

)
� EMod

(
Pred (X), [0, 1]

)
.

Describe this isomorphism in detail.
2 Conclude that an alternative version of the representation isomor-

phism (6.24) is:

D(X)
�
// EA

(
P(X), [0, 1]

)
6.8.3 Recall the Poisson distribution pois[λ] =

∑
k∈N e−λ · λ

k

k! |k ⟩ ∈ D∞(N)
from (2.3). Describe the corresponding homomorphism of ∞-effect
modules Pred (N)→ [0, 1] via (6.25).

6.8.4 Let (A,≤) be an∞-cpo.

1 Suppose that A has a least element 0 ∈ A. For an ∞-continuous
function f : A→ A define:

fix( f ) B
∨
n∈N

f n(0) ∈ A.
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Check that this is well-defined, i.e. that the chain
(
f n(0)

)
of iterated

applications of f is ascending. Prove that fix( f ) ∈ A is the least
fixed point of f , i.e. that: f

(
fix( f )

)
= fix( f ) and for any x ∈ A, if

f (x) = x, then fix( f ) ≤ x.
2 Call a subset U ⊆ A Scott open if U is an upset (i.e. y ≥ x ∈ U

implies y ∈ U) and satisfies, for any ascending chain (an),∨
n

an ∈ U =⇒ an ∈ U, for some n ∈ N.

Check that the Scott open subsets form a topology on A.
3 Let f : A → B be a monotone function, where B is also an ∞-cpo.

Show that:

f is∞-continuous ⇐⇒ f is topologically continuous,

where ∞-continuity means that f preserves ∞-joins (see Defini-
tion 6.8.4 (3)), and topological continuity means that f −1(V) ⊆ A
is (Scott) open when V ⊆ B is (Scott) open.

4 Consider the unit interval [0, 1] as ∞-effect module, and thus im-
plicitly as∞-cpo. Check that the Scott open subsets are of the form
(r, 1] ⊆ [0, 1] for r ≥ 0.

470



7

Daggers and disintegrations

In the previous chapter we have seen how distributions are updated, via incor-
poration of evidence, and how such updated distributions are used in proba-
bilistic reasoning. In this chapter we use updating in a structural manner and
show how it can be used to turn, under suitable conditions, a channel X → Y
into a channel Y → X in the other direction. This reversal of channels is also
called Bayesian inversion. It corresponds to turning a conditional probability
P(Y | X) into P(X | Y). Earlier we have seen forward and backward inference
along a channel. With this reversal of channels we can tie the notions together
and show that forward inference along a channel c corresponds to backward
reasoning along the reversed channel c† — and vice-versa.

We shall make extensive use of string diagrams for describing the properties
of channel inversion (like in [24]). In the last section of this chapter we show
that there is also neat categorical structure involved: channel inversion forms a
‘dagger’ functor Krn→ Krnop, on a category Krn of kernels (as in [27]).

Once we understand Bayesian inversion, we describe it as an instance of a
more general technique, called disintegration. In essence it involves turning a
channel:

Z

YX

into:

Z

Y

X

Thus, disintegration changes an outgoing wire (here labeled X) into an incom-
ing wire. Doing so in a probabilistic setting involves re-normalisation. In the
first three sections of this chapter we shall introduce this change of wires, ulti-
mately in a form more general than described above.

This chapter illustrates, in Sections 7.4 and 7.5, how channel inversion and
disintegration are used to solve practical problems, like learning with missing
data, naive Bayesian classification, and in decision tree learning. Subsequently,
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in Section 7.6 the notion of sufficient statistic is introduced as a special form of
disintegration without a particular dependence (wire). Such sufficient statistics
express basic relationships that actually occurred earlier in several examples —
for instance between accumulation and arrangement, in Theorem 3.3.1. Only
now the general account is provided, in terms of disintegration.

We also use dagger channels to describe a new update rule, named after
Jeffrey. It is different from backward inference, which we call Pearl’s rule,
and produces quite different outcomes. It is in general not well understood
when one should use which rule. What we will show is that the two update
rules correspond to two intuitively different forms of learning, namely learn-
ing from what’s right (via encouragement) and learning from what’s wrong
(via discouragement). This will be made mathematically precise: Pearl’s rule
increases validity, whereas Jeffrey’s rule decreases (Kullback-Leibler) diver-
gence. Thus, Jeffrey’s rule can be understood as a correction mechanism, like
in predictive coding theory. In Section 7.7 we introduce the basics of Jeffrey’s
rule, with several illustrations. Further explanations and examples will be given
in Chapter ?? on statistical learning.

As already announced, the final section of this chapter captures channel re-
versal in categorical terms and illustrates the analogies with reveral of rela-
tions.

7.1 Bayesian inversion: the dagger of a channel

In this section we make a construction explicit that we have already been using
several times, namely the reversal of a channel. This reversal is familiar in the
literature, under the name Bayesian inversion. It turns a conditional probability
P(y | x) into P(x | y). We shall describe it as a construction that turns a channel
X → Y into a channel Y → X, in presence of a ‘prior’ distribution on X. A
superscript-dagger notation (−)† is often used for these Bayesian inversions
since such inversions are similar to the adjoint-transpose of a linear operator A
between Hilbert spaces, see [27]. Such a transpose is typically written as A†,
or also as A∗. The dagger notation is more common in quantum theory, and has
been formalised in terms of dagger categories [28]. This categorical approach
is sketched in Section 7.9 below.

Suppose we have a channel c : X → Y and a distribution ω ∈ D(X). How
can we obtain a channel Y → X. Well, starting from an element y ∈ Y , we can
form the point predicate 1y on Y , and turn it into a predicate c ≫= 1y on X via
predicate transformation. The updateω|c ≫= 1y now gives a new distribution on X,
via backward inference. In this way we have constructed a function Y → D(X).
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There is one caveat: the update ω|c ≫= 1y must exist, that is we need to have that
the non-zero validity of:

ω |= c ≫= 1y
(4.11)
= c =≪ω |= 1y =

(
c =≪ω

)
(y).

Thus, in order to form the dagger, we need to require that the image distribution
c =≪ ω has full support, so that

(
c =≪ ω

)
(y) , 0 for each y ∈ Y . Such a full

support requirement only makes sense if the set Y is finite. The definition below
summarises the situation and introduces notation for the reversed channel.

Definition 7.1.1. Let c : X → Y be a channel, where the codomain Y is a finite
set, with a distribution ω ∈ D(X) on its domain, such that the transformed /
predicted state c =≪ω ∈ D(Y) has full support.

The reversed ‘dagger’ channel c†ω : Y → X is defined as on y ∈ Y as:

c†ω(y) B ω|c ≫= 1y =
∑
x∈X

ω(x) · c(x)(y)
(c =≪ω)(y)

∣∣∣ x〉
=

∑
x∈X

ω(x) · c(x)(y)∑
z ω(z) · c(z)(y)

∣∣∣ x〉
.

(7.1)

We have already implicitly used the dagger of a channel in many situations.
We list several of them below, together with some new examples.

Example 7.1.2. In Example 6.2.3 we used a channel c : {H,T } → {W, B} from
the two sides of a coin to two colors of balls in an urn, together with a fair coin
unif ∈ D({H,T }). We had evidence of a white ball and wanted to know the
updated coin distribution. The outcome that we computed can be described via
a dagger channel, since:

c†unif(W) = unif |c ≫= 1W =
22
67 |H ⟩ +

45
67 |T ⟩.

The same redescription in terms of Bayesian inversion can be used for Exam-
ples 6.2.4 and 6.2.10, 6.2.11. In Example 6.2.6 we can use Bayesian inver-
sion for the point evidence case, but not for the illustration with soft evidence,
i.e. with fuzzy predicates.

We make some special cases of the dagger of a channel explicit.

Lemma 7.1.3. Let X,Y be sets, where Y is finite.

1 When also X is finite, c : X → Y is a channel, and the uniform distribution
unifX =

∑
x∈X

1
|X | | x⟩ is used as prior, then:

c†unifX
(y) =

∑
x∈X

c(x)(y)∑
z∈X c(z)(y)

∣∣∣ x〉
.
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2 When f : X → Y is a surjective function, used as deterministic channel
X → Y, then for an ω ∈ D(X) such thatD( f )(ω) has full support,

f †ω(y) =
∑

x∈ f −1(y)

ω(x)
D( f )(ω)(y)

∣∣∣ x〉
.

In this situation one has f ◦· f †ω = id , or, more explicitly, for y ∈ Y,(
f ◦· f †ω

)
(y) = f =≪ f †ω(y) = D( f )

(
f †ω(y)

)
= 1

∣∣∣y〉
.

3 By combinining the previous two points we find that the dagger of a surjec-
tive function, with respect to the uniform prior, is the probabilistic inverse
introduced in Definition 2.4.6:

f †unifX
= f ∼1.

The surjectivity of the function in the last to items is needed for the full
support requirement that is required for daggers.

Proof. 1 This follows directly from the definitions.
2 Recall that ‹ f › = unit ◦ f : X → D(Y) is the deterministic channel corre-

sponding to f , where the ‹·› brackets are often omitted. Thus:

f †ω(y)
(7.1)
=

∑
x∈X

ω(x) · ‹ f ›(x)(y)∑
z∈X ω(z) · ‹ f ›(z)(y)

∣∣∣ x〉
=

∑
x∈ f −1(y)

ω(x)∑
z∈ f −1(y) ω(z)

∣∣∣ x〉
=

∑
x∈ f −1(y)

ω(x)
D( f )(ω)(y)

∣∣∣ x〉
see Lemma 2.1.3.

Then:

D( f )
(

f †ω(y)
)
=

∑
x∈ f −1(y)

ω(x)
D( f )(ω)(y)

∣∣∣ f (x)
〉

=
∑

x∈ f −1(y)

ω(x)
D( f )(ω)(y)

∣∣∣y〉
= 1

∣∣∣y〉
.

3 We now have, for a surjective function f : X ↠ Y ,

f †unifX
(y) =

∑
x∈ f −1(y)

unifX(x)∑
z∈ f −1(y) unifX(z)

∣∣∣ x〉
=

∑
x∈ f −1(y)

1/|X |∑
z∈ f −1(y) 1/|X |

∣∣∣ x〉
=

∑
x∈ f −1(y)

1
| f −1(y) |

∣∣∣ x〉
(2.29)
= f ∼1(y).
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Theorem 6.3.2 describes updating when a joint distribution can be written in
two different ways as graph. In the special case (6.7) when the update involves
a point predicate, the above dagger formula (7.1) emerges. We shall soon see
(in Definition 7.1.1) that daggers indeed arise in such a graph situation. In the
meantime we re-describe the earlier examples, now as daggers / reversals of
channels.

Example 7.1.4. In Example 6.3.3 we have seen several instances of backward
inference ω|c ≫= 1y that we now recognise as daggers of the channel c.

Originally, in Example 2.4.5 we have introduced the arrangement channel
arr : N[K](X) → XK as the probabilistic inverse of the accumulation function
acc : XK → N[K](X), see Definition 2.4.6. Using Lemma 7.1.3 (3) we see that
we can now write:

arr = acc∼1 = acc†unifXK
,

where the latter description as dagger works if the set X is finite.
Accumulation can be described as a dagger too, namely of arrangement. In

Example 6.3.3 we have done so for the multinomial distribution as prior. But
it also works for the uniform distribution, when the set X is finite, since by
Lemma 7.1.3 (1),

arr†unifN[K](X)
(x⃗) =

∑
φ∈N[K](X)

arr(φ)(x⃗)∑
ψ∈N[K](X) arr(ψ)(x⃗)

∣∣∣φ〉
= 1

∣∣∣acc(x⃗)
〉
= ‹acc›(x⃗).

Calculating the dagger of a channel may require some work. We illustrate
this for the hypergeometric channel, see Definition 2.6.1 and Section 3.4 for
details. We describe its dagger for four different priors: uniform, multinomial,
Pólya and finally multinomial itself.

Theorem 7.1.5. Consider the hypergeometric channel hg[K] : N[L](X) →
N[K](X), for numbers L ≥ K

1 Let X be a non-empty and finite set, say with N B |X | > 0 elements. We
take as prior the uniform distribution on the (finite) set N[L](X) of multi-
sets of size L. The resulting dagger acts on φ ∈ N[K](X) and produces a
distribution on N[L](X), of the form:

hg[K]†unifN[L](X)
(φ) =

∑
ψ∈N[L−K](X)

(
φ+ψ
φ

)
(

L+N−1
K+N−1

) ∣∣∣φ + ψ〉
.

2 Letω ∈ D(X) be a distribution; taking the multinomial distribution mn[L](ω)
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on N[L](X) as prior gives:

hg[K]†mn[L](ω)(φ) =
∑

ψ∈N[L−K](X)

mn[L−K](ω)(ψ)
∣∣∣φ + ψ〉

.

3 Let X be non-empty and finite again and let υ ∈ Nfs(X) be an urn with full
support; then:

hg[K]†pl[L](υ)(φ) =
∑

ψ∈N[L−K](X)

pl[L−K](υ + φ)(ψ)
∣∣∣φ + ψ〉

.

4 Let υ ∈ N[M](X) be a multiset of size M ≥ L, where by assumption L ≥ K.
We take the hypergeometric distribution hg[L](υ) as prior. In order to keep
things well-defined we have to restrict the domain of the dagger to a subset
of N[K](X), as in:

{
φ ∈ N[K](X)

∣∣∣ φ ≤K υ
}

◦

hg[K]†hg[L](υ)
// N[L](X)

On such a φ ≤K υ this dagger is given by:

hg[K]†hg[L](υ)(φ) =
∑

ψ≤L−Kυ−φ

hg[L−K](υ − φ)(ψ)
∣∣∣φ + ψ〉

.

Proof. 1 Since we have a uniform distribution as prior, Lemma 7.1.3 (1) ap-
plies:

hg[K]†unifN[L](X)
(φ) =

∑
υ∈N[L](X), φ≤Kυ

hg[K](υ)(φ)∑
ν∈N[L](X), φ≤Kν hg[K](ν)(φ)

∣∣∣υ〉
=

∑
ψ∈N[L−K](X)

(φ+ψφ )/(L
K)∑

ν∈N[L](X), φ≤Kν
(νφ)/(L

K)

∣∣∣φ + ψ〉
=

∑
ψ∈N[L−K](X)

(
φ+ψ
φ

)
(

L+N−1
K+N−1

) ∣∣∣φ + ψ〉
by Exercise 1.8.8.

2 We use that hg[K] ◦· mn[L] = mn[K], see Corollary 3.4.2 (6).

hg[K]†mn[L](ω)(φ) =
∑

υ∈N[L](X)

hg[K](υ)(φ) ·mn[L](ω)(υ)
(hg[K] =≪mn[L](ω))(φ)

∣∣∣υ〉
=

∑
υ∈N[L](X), φ≤Kυ

(
υ
φ

)
(

L
K

) · L!
υ
·
φ

K!
·

∏
x∈X ω(x)υ(x)∏
x∈X ω(x)φ(x)

∣∣∣υ〉
=

∑
υ∈N[L](X), φ≤Kυ

(L−K)!
(υ − φ)

·
∏
x∈X

ω(x)υ(x)−φ(x)
∣∣∣υ〉

=
∑

ψ∈N[L−K](X)

mn[L−K](ω)(ψ)
∣∣∣φ + ψ〉

.
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3 Let urn υ ∈ Nfs(X) have size M B ∥υ∥ > 0. We use that hg[K] ◦· pl[L] =
pl[K], see Proposition 3.5.2 (3). Then, for φ ∈ N[K](X),

hg[K]†pl[L](υ)(φ) =
∑

χ∈N[L](X)

hg[K](χ)(φ) · pl[L](υ)(χ)
(hg[K] =≪pl[L](υ))(φ)

∣∣∣χ〉
=

∑
χ∈N[L](X), φ≤Kχ

(
χ
φ

)
(

L
K

) ·
((
υ
χ

))
((

M
L

)) · ((M
K

))((
υ
φ

)) ∣∣∣χ〉
=

∑
χ∈N[L](X), φ≤Kχ

χ · K! · (L−K)!
φ · (χ−φ) · L!

·
(υ+χ−1) · L! · (M−1)!
χ · (υ−1) · (M+L−1)!

·
(M+K−1)! · φ · (υ−1)
K! · (M−1)! · (υ+φ−1)

∣∣∣χ〉
=

∑
χ∈N[L](X), φ≤Kχ

(L−K)! · (υ+χ−1) · (M+K−1)!
(χ−φ) · (M+L−1)! · (υ+φ−1)

∣∣∣χ〉
=

∑
ψ∈N[L−K](X)

(L−K)! · (υ+φ+ψ−1) · (M+K−1)!
ψ · (M+L−1)! · (υ+φ−1)

∣∣∣φ + ψ〉
=

∑
ψ∈N[L−K](X)

((
υ+φ
ψ

))
((

M+K
L−K

)) ∣∣∣φ + ψ〉
=

∑
ψ∈N[L−K](X)

pl[L−K](υ + φ)(ψ)
∣∣∣φ + ψ〉

.

4 We assume that φ ∈ N[K](X) satisfies φ ≤K υ and we write M B ∥υ∥ ≥ L ≥
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K. Then, by Corollary 3.4.2 (5),

hg[K]†hg[L](υ)(φ)

=
∑

χ∈N[L](X)

hg[K](χ)(φ) · hg[L](υ)(χ)
(hg[K] =≪hg[L](υ))(φ)

∣∣∣χ〉
=

∑
χ∈N[L](X), φ≤Kχ, χ≤Lυ

(
χ
φ

)
(

L
K

) ·
(
υ
χ

)
(

M
L

) · (M
K

)(
υ
φ

) ∣∣∣χ〉
=

∑
χ∈N[L](X), φ≤Kχ, χ≤Lυ

χ · K! · (L−K)!
φ · (χ−φ) · L!

·
υ · L! · (M−L)!
χ · (υ−χ) · M!

·
M! · φ · (υ−φ)
K! · (M−K)! · υ

∣∣∣χ〉
=

∑
χ∈N[L](X), φ≤Kχ, χ≤Lυ

(L−K)! · (M−L)! · (υ−φ)
(χ−φ) · (M−K)! · (υ−χ)

∣∣∣χ〉
=

∑
ψ∈N[L−K](X), φ+ψ≤Lυ

(L−K)! · (M−L)! · (υ−φ)
ψ · (M−K)! · (υ−φ−ψ)

∣∣∣φ + ψ〉
=

∑
ψ≤L−Kυ−φ

(
υ−φ
ψ

)
(

M−K
L−K

) ∣∣∣φ + ψ〉
=

∑
ψ≤L−Kυ−φ

hg[L−K](υ − φ)(ψ)
∣∣∣φ + ψ〉

.

The above hypergeometric-dagger channels give for a draw φ of size K, a
distribution over urns of size L from which φ can be drawn, with the corre-
sponding (normalised) likelihoods. For instance, using the uniform prior, for
φ = 1|a⟩ + 2|b⟩ of size K = 3, when we consider urns of size L = 5 with balls
of colours a, b, from which φ can be drawn, we get:

hg[3]†unifN[5]({a,b})

(
1|a⟩ + 2|b⟩

)
= 1

5

∣∣∣3|a⟩ + 2|b⟩
〉
+ 2

5

∣∣∣2|a⟩ + 3|b⟩
〉
+ 2

5

∣∣∣1|a⟩ + 4|b⟩
〉
.

We can apply the hypergeometric channel to these urns, giving:

hg[3] =≪
(
hg[3]†unifN[5]({a,b})

(
1|a⟩ + 2|b⟩

))
= 1

50

∣∣∣3|a⟩〉 + 6
25

∣∣∣2|a⟩ + 1|b⟩
〉
+ 27

50

∣∣∣1|a⟩ + 2|b⟩
〉
+ 1

5

∣∣∣3|b⟩〉.
Unsurprisingly, the original draw φ = 1|a⟩ + 2|b⟩ gets the highest probability.

In general, in the situation of Definition 7.1.1, the pushforward c =≪c†ω(y) of
the inversion is called the posterior predictive distribution.

The following result gives the string-diagrammatic characterisation of dag-
ger channels that is used in [24].
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Theorem 7.1.6. Let c : X → Y be a channel, with finite codomain Y, together
with a distribution ω ∈ D(X) such that c =≪ω has full support. The resulting
dagger channel c†ω is the unique channel Y → X satisfying:

=

ω

c
ω

c

c†ω

(7.2)

In particular, by marginalising out the first wires we get:

ω = c†ω =≪
(
c =≪ω

)
. (7.3)

This is in essence the law of total probability, see Exercise 7.1.6 below.

Proof. We first check that (7.2) holds.

⟨id , c†ω⟩ =≪(c =≪ω) =
∑
y∈Y

∑
x∈X

(c =≪ω)(y) · c†ω(y)(x)
∣∣∣y, x〉

(7.1)
=

∑
y∈Y

∑
x∈X

(c =≪ω)(y) ·
ω(x) · c(x)(y)

(c =≪ω)(y)

∣∣∣y, x〉
=

∑
y∈Y

∑
x∈X

ω(x) · c(x)(y)
∣∣∣y, x〉

= ⟨c, id ⟩ =≪ω.

For uniqueness, let Equation (7.2) hold with dagger d : Y → X instead of c†ω.
Then we can apply Equation (6.7) from Theorem 6.3.2, giving for each y ∈ Y ,

d(y) = ω|c ≫= 1y

(7.1)
= c†ω(y).

A consequence (from [79]) of this result is that backward inference along a
channel c can be expressed as forward inference along the reversal of c, and
vice-versa. This demonstrates that the directions of inference and of channels
are closely connected.

Corollary 7.1.7. In the situation of Theorem 7.1.6, write τ B c =≪ω.

1 Given a factor q on Y, we can express backward inference as forward infer-
ence with the dagger:

ω|c ≫= q = c†ω =≪τ|q.

2 Given a factor p on X, we can express forward inference as backward infer-
ence with the dagger:

c =≪ω|p = τ | c†ω ≫= p.
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Proof. We combine Theorems 7.1.6 and 6.3.2. Item (1) follows directly from
Equation (6.6). Also item (2) follows from Equation (6.6), after left-right mir-
roring of the two string diagrams in (7.2).

We conclude this section with a few technical facts about daggers, for fu-
ture use. First we describe several compositionality properties of the dagger,
demonstrating that it interacts nicely with the basic constructions on channels.

Lemma 7.1.8. In the following we assume that daggers are well-defined, i.e. that
the relevant pushforwards have full support, see Definition 7.1.1.

1 For channels c : X → U and d : Y → V, with distributions ω ∈ D(X) and
ρ ∈ D(Y), (

c ⊗ d
)†
ω⊗ρ = c†ω ⊗ d†ρ.

2 For composable channels X
c
→ Y

d
→ Z and a distribution ω ∈ D(X), there

is the following ‘chain rule’.(
d ◦· c

)†
ω = c†ω ◦· d†c =≪ω.

3 Identity channels are stable under reversal:

id †ω = id .

4 Double reversal returns the original channel:(
c†ω

)†
c =≪ω
= c.

Proof. 1 For elements u ∈ U and v ∈ V we have:(
c ⊗ d

)†
ω⊗ρ(u, v) =

∑
(x,y)∈X×Y

(ω ⊗ ρ)(x, y) · (c ⊗ d)(x, y)(u, v)(
(c ⊗ d) =≪(ω ⊗ ρ)

)
(u, v)

∣∣∣ x, y〉
=

∑
(x,y)∈X×Y

ω(x) · ρ(y) · c(x)(u) · d(y)(v)(
(c =≪ω) ⊗ (d =≪ρ)

)
(u, v)

∣∣∣ x, y〉
=

∑
(x,y)∈X×Y

ω(x) · c(x)(u)
(c =≪ω)(u)

·
ρ(y) · d(y)(v)
(d =≪ρ)(v)

∣∣∣ x, y〉
=

∑
(x,y)∈X×Y

c†ω(u)(x) · d†ρ(u)(y)
∣∣∣ x, y〉

= c†ω(u) ⊗ d†ρ(u)

=
(
c†ω ⊗ d†ρ

)
(u, v).
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2 For z ∈ Z we have:(
c†ω ◦· d†c =≪ω

)
(z) = c†ω =≪d†c =≪ω(z)

=
∑
x∈X

∑
y∈Y

d†c =≪ω(z)(y) · c†ω(y)(x)
∣∣∣ x〉

=
∑
x∈X

∑
y∈Y

(c =≪ω)(y) · d(y)(z)
(d =≪(c =≪ω))(z)

·
ω(x) · c(x)(y)

(c =≪ω)(y)

∣∣∣ x〉
=

∑
x∈X

ω(x) ·
∑

y∈Y c(x)(y) · d(y)(z)
((d ◦· c) =≪ω)(z)

∣∣∣ x〉
=

∑
x∈X

ω(x) · (d ◦· c)(x)(z)
((d ◦· c) =≪ω)(z)

∣∣∣ x〉
=

(
d ◦· c

)†
ω

3 For an element x ∈ X,

id †ω(x) =
∑
z∈X

ω(z) · id (z)(x)
(id =≪ω)(x)

∣∣∣z〉 = ω(x)
ω(x)

∣∣∣ x〉
= 1

∣∣∣ x〉
= id (x).

4 Finally, for x ∈ X,(
c†ω

)†
c =≪ω

(x) =
∑
y∈Y

(c =≪ω)(y) · c†ω(y)(x)(
c†ω =≪(c =≪ω)

)
(x)

∣∣∣y〉
(7.3)
=

∑
y∈Y

(c =≪ω)(y)
ω(x)

·
ω(x) · c(x)(y)

(c =≪ω)(y)

∣∣∣y〉
=

∑
y∈Y

c(x)(y)
∣∣∣y〉

= c(x).

One can prove these results via equational reasoning with string diagrams,
using uniqueness of daggers. For instance preservation of composition ◦· by the
dagger, in item (2), follows by uniqueness from:

ω

c

d

ω

d

=
c†ω

c

=

c =≪ω

d

c†ω

c =≪ω

c†ω

==
d†c =≪ω

d

c

c†ω

d†c =≪ω

d

ω

The next result (from [94]) shows that the dagger (also) interacts nicely with
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the extension N[K] : Chan → Chan of the multinomial functor to the cate-
gory of channels, see Corollary 3.7.8.

Theorem 7.1.9. Let c : X → Y be a channel to a finite set Y, with a distribution
ω ∈ D(X) such that c =≪ω has full support. Fix a number K ∈ N.

1 The K-fold tensor product of channels cK = c ⊗ · · · ⊗ c : XK → YK satisfies
the following equation.

iid [K](ω) iid [K](c =≪ω)

=
cK (

c†ω
)K

(7.4)

As a result, the dagger commutes with K-fold tensor product:(
cK)†

iid [K](ω) =
(
c†ω

)K
. (7.5)

2 The multiset extension of channels N[K](c) : N[K](X) → N[K](Y) satis-
fies:

mn[K](ω) mn[K](c =≪ω)

=
N[K](c) N[K](c†ω)

(7.6)

We can now conclude that the dagger commutes with multiset-extension:

N[K](c)†mn[K](ω) = N[K]
(
c†ω

)
. (7.7)

Proof. 1 We start on the right-hand-side of (7.4):

⟨id ,
(
c†ω

)K
⟩ =≪ iid [K]

(
c =≪ω

)
=

∑
y⃗∈YK

∑
x⃗∈XK

(
c†ω

)K (⃗y)(x⃗) · iid [K](c =≪ω)(⃗y)
∣∣∣ y⃗, x⃗〉

=
∑
y⃗∈YK

∑
x⃗∈XK

∏
1≤i≤K

c†ω(yi)(xi) · (c =≪ω)(yi)
∣∣∣ y⃗, x⃗〉

=
∑
y⃗∈YK

∑
x⃗∈XK

∏
1≤i≤K

ω(xi) · c(xi)(yi)
(c =≪ω)(yi)

· (c =≪ω)(yi)
∣∣∣ y⃗, x⃗〉

=
∑
y⃗∈YK

∑
x⃗∈XK

∏
1≤i≤K

c(xi)(yi) · ω(xi)
∣∣∣ y⃗, x⃗〉

=
∑
y⃗∈YK

∑
x⃗∈XK

cK(x⃗)(⃗y) · iid [K](ω)(x⃗)
∣∣∣ y⃗, x⃗〉

= ⟨id , cK⟩ =≪iid [K](ω).
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2 We recall thatN[K](c) = acc◦· cK◦· arr : N[K](X)→ XK → YK → N[K](Y),
see Corollary 3.7.8. We use the previous point, in combination with the acc-
arr equation (3.14).

mn[K](ω)

(3.14)
=arr

cK

acc

iid [K](ω)

(7.4)
=

cK

acc

acc

iid [K](c =≪ω)

acc

acc

(
c†ω

)K

mn[K](c =≪ω)

acc(
c†ω

)K

arr
(3.14)
=

A direct proof, in the style of item (1), is much harder.

Notice that the naturality of the iid [K] and mn[K] channels — with re-
spect product and multiset functors extended to the category Chan, in Exer-
cise 2.4.8 (4) and in Theorem 3.7.12 — is a consequence of Equations (7.4)
and (7.6), via marginalising out the second wires. Concretely, in this way one
obtains the first equation in (3.43). In fact, marginalising out the first wires also
gives naturality equations, in combination with (7.3).

Exercises

7.1.1 Consider the sets X = {1, 2} and Y = {a, b, c} with channel c : X → Y
given by:

c(1) = 1
2 |a⟩ +

1
3 |b⟩ +

1
6 |c⟩ c(2) = 1

4 |a⟩ +
3
8 |b⟩ +

1
8 |c⟩.

Consider the following two distributions on X.

ω1 =
1
2 |1⟩ +

1
2 |2⟩ ω1 =

1
3 |1⟩ +

2
3 |2⟩.

1 Check that c =≪ω1 and c =≪ω2 both have full support.
2 Compute the dagger channels c†ω1 and c†ω2 .

7.1.2 In Exercises 6.2.1 and 6.2.2 we have seen a channel c : {d, d⊥} →
{p, n} that combines the sensitivity and specificity of a medical test,
in a situation with a prior / prevalence of 1% for the disease. Show that
the associated Positive Prediction Value (PPV) and Negative Predica-
tion Value (NPV) can be expressed via a dagger as:

PPV = c†ω(p)(d) = ω|c ≫= 1p (d) = 18
117

NPV = c†ω(n)(d⊥) = ω|c ≫= 1n (d⊥) = 1881
1883 ,

where ω = 1
100 |d ⟩ +

99
100 |d

⊥ ⟩ is the prior distribution.
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7.1.3 Let c : X → Y be a channel with distribution ω ∈ D(X), where c =≪ω

has full support. Consider the following distribution of distributions:

Ω B
∑
y∈Y

(c =≪ω)(y)
∣∣∣c†ω(y)

〉
∈ D

(
D(X)

)
.

Recall the probabilistic ‘flatten’ operation from Section 2.4 and show:

flat(Ω) = ω.

This says that Ω is ‘Bayes plausible’ in the terminology of [110], in
the context of Bayesian persuasion. The construction of Ω is one part
of the bijective correspondence in Exercise 7.2.4.

7.1.4 Consider the draw-delete channel DD : N[K+1](X)→ N[K](X) from
Definition 3.2.1 (2). Let X be a finite set, say with n elements. Con-
sider the the uniform state υ B unifN[K+1](X) onN[K+1](X), see Exer-
cise 2.4.3. Show that DD’s dagger, with respect to υ, can be described
on φ ∈ N[K](X) as:

DD†υ(φ) =
∑
x∈X

φ(x)+1
K+n

∣∣∣φ + 1| x⟩
〉
.

This dagger differs from the draw-add map DA : N[K](X) → N[K+
1](X).

7.1.5 Let p be a predicate on X, considered as a channel p : X → 2, and
let ω ∈ D(X) be a distribution. Compute the dagger p†ω : 2 → X and
show that:

p†ω(1) = ω|p and p†ω(0) = ω|p⊥ .

7.1.6 Let ω ∈ D(X) be a state.

1 Consider a predicate p : X → [0, 1] as a channel, as in the previous
exercise. Show that the binary version of the law of total probabil-
ity, see Exercise 6.1.6, can be expressed as:

ω = p†ω =≪
(
(ω |= p)|1⟩ + (ω |= p⊥)|0⟩

)
.

2 Let c : X → n be a channel and define n predicates on X by pi B

c ≫= 1i. Show that these p0, . . . , pn−1 form a test:

>i pi = 1 with c†ω(i) = ω|pi .

3 Conclude that the equation c†ω =≪ (c =≪ω) = ω from Equation 7.3
can also be understood as the (n-ary version of the) law of total
probability.
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7.1.7 Let c : X → Y and d : X → Z be channels with a distribution ω ∈

D(X) on their domain such that both pushforwards c =≪ω and d =≪ω

have full support. Show that:

⟨c, d⟩†ω(y, z) = ω|(c ≫= 1y)&(d ≫= 1z) = d†
c†ω(y)

(z)

= ω|(d ≫= 1z)&(c ≫= 1y) = c†
d†ω(z)

(y).

7.1.8 In Definition 6.5.4 we have seen filtering for hidden Markov models,
starting from a sequence of factors p⃗ as observations. In practice these
factors are often point predicates 1yi for a sequence of elements y⃗ of
the visible space Y . Show that in that case one can describe filtering
via Bayesian inversion as follows, for a hidden Markov model with
transition channel t : X → X, emission channel e : X → Y and initial
state σ ∈ D(X).

σ1 = σ and σi+1 = (t ◦· e†σi )(yi).

7.2 Disintegration of joint distributions

In Subsections 1.5.3 and 1.6.3 we have seen how a binary relation R ∈ P(A×B)
on A × B corresponds to a P-channel A → P(B), and similarly how a multiset
ψ ∈ M(A × B) corresponds to an M-channel A → M(B). The phenomenon
was called: extraction of a channel from a joint state. This section describes
the analogue for probabilistic binary / joint states and channels (like in [57]).
It is called disintegration. It turns out to be more subtle (than for P and M)
because probabilistic extraction requires normalisation — in order to ensure
the unitality requirement of aD-channel: multiplicities must add up to one.

In this section we look at disintegration, first for joint distributions. In the
next section we formulate a more general version, for channels, with multiple
incoming and outgoing wires. The graphical language of string diagrams is
useful for understanding the essentials: disintegration for joint states involves:

from
ω

X Y
extract c

X

Y
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so that:

ω

X Y
=

ω

X Y
c

(7.8)

It turns out that the extracted channel c can be obtained via a dagger of a
projection. This will be shown first.

Theorem 7.2.1 (Disintegration). Consider the two projections X
π1
←− X ×

Y
π2
−→ Y as deterministic channels. Let ω ∈ D(X × Y) be a joint distribution,

whose two marginals ω1 B ω
[
1, 0

]
= π1 =≪ω ∈ D(X) and ω2 B ω

[
0, 1

]
=

π2 =≪ω ∈ D(Y) both have full support.
Extract from the joint distribution ω the two channels:

c B
(
X ◦

(π1)†ω // X × Y ◦
π2 // Y

)
d B

(
Y ◦

(π2)†ω // X × Y ◦
π1 // X

)
Then:

1 These channels c and d can be described explicitly as:

c(x) B
∑
y∈Y

ω(x, y)
ω1(x)

∣∣∣y〉
d(y) B

∑
x∈X

ω(x, y)
ω2(y)

∣∣∣ x〉
. (7.9)

2 The joint distribution ω is the graph of both these channels: ⟨id , c⟩ =≪ω1 =

ω = ⟨d, id ⟩ =≪ω2, that is:

ω

X Y
c

=
ω

X Y
=

ω

X Y
d

(7.10)

3 The extracted channels are each other’s daggers:

c†ω1 = d and d†ω2 = c.

We sometimes use the following notation for these extracted channels:

ω
[
1, 0

∣∣∣ 0, 1] = c : X → Y and ω
[
0, 1

∣∣∣ 1, 0] = d : Y → X.

Proof. For all three items we only do the first equations, since the second ones
follow by symmetry.
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1 By assumption π1 =≪ω = ω1 has full support, so we can form the dagger
channel c B

(
π1

)†
ω. It is:

c(x)
(7.1)
=

∑
x′∈X

∑
y∈Y

ω(x′, y) · ‹π1›(x′, y)(x)
(π1 =≪ω)(x)

∣∣∣y〉
=

∑
y∈Y

ω(x, y)
ω1(x)

∣∣∣y〉
.

2 Using this formulation, we get, for x ∈ X and y ∈ Y ,(
⟨id , c⟩ =≪ω1

)
(x, y) = ω1(x) · c(x)(y) = ω(x, y).

3 Similarly,

c†ω1 (y)(x)
(7.1)
=

ω1(x) · c(x)(y)
(c =≪ω1)(y)

(7.9)
=

ω(x, y)∑
x∈X ω1(x) · c(x)(y)

=
ω(x, y)∑

x∈X ω(x, y)

=
ω(x, y)
ω2(y)

(7.9)
= d(y)(x).

From a joint distribution ω ∈ D(X × Y) we can extract two channels, in
both direction, written as ω

[
0, 1

∣∣∣ 1, 0] : X → Y and ω
[
1, 0

∣∣∣ 0, 1] : Y → X. The
direction of the channels is thus in a certain sense arbitrary, and does not reflect
any form of causality, see Chapter ??.

We have seen that disintegration can be defined in terms of daggers. This
also works the other way around: daggers can be obtained via disintegration.

Corollary 7.2.2. Let c : X → Y be channel with a distribution σ ∈ D(X) such
that c =≪σ has full support. Write ω B ⟨id , c⟩ =≪σ ∈ D(X × Y). The channel
ω
[
1, 0

∣∣∣ 0, 1] : Y → X extracted via disintegration is then the dagger c†σ.

Proof. The distribution π2 =≪ ω = c =≪ σ ∈ D(Y) has full support. The ex-
traction ω

[
1, 0

∣∣∣ 0, 1] : Y → X is thus well-defined. It is the dagger of c by
Theorem 7.2.1 (2) and (a swapped version of) Theorem 7.1.6.

Example 7.2.3. We shall look at two examples, involving spaces A = {a, a⊥}
and B = {b, b⊥}.

1 Consider the following state ω ∈ D(A × B),

ω = 1
4 |a, b⟩ +

1
2 |a, b

⊥ ⟩ + 1
4 |a

⊥, b⊥ ⟩.

We have as first marginal ω1 B ω
[
1, 0

]
= 3

4 |a⟩ +
1
4 |a

⊥ ⟩ with full support.
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The extracted channel c B ω
[
0, 1

∣∣∣ 1, 0] : A→ B is given by:

c(a)
(7.9)
=

ω(a, b)
ω1(a)

|b⟩ +
ω(a, b⊥)
ω1(a)

|b⊥ ⟩ =
1/4

3/4
|b⟩ +

1/2

3/4
|b⊥ ⟩ = 1

3 |b⟩ +
2
3 |b

⊥ ⟩

c(a⊥)
(7.9)
=

ω(a⊥, b)
ω1(a⊥)

|b⟩ +
ω(a⊥, b⊥)
ω1(a⊥)

|b⊥ ⟩ =
0

1/4
|b⟩ +

1/4

1/4
|b⊥ ⟩ = 1|b⊥ ⟩.

Then indeed, ⟨id , c⟩ =≪ω1 = ω.
2 Now let us start from a different joint distribution:

ω = 1
3 |a, b⟩ +

2
3 |a, b

⊥ ⟩.

Then ω1 B ω
[
1, 0

]
= 1|a⟩. It does not have full support. Let τ ∈ D(B) be

an arbitrary distribution. We define c : A→ B as:

c(a) = 1
3 |b⟩ +

2
3 |b

⊥ ⟩ and c(a⊥) = τ.

We then still get an equation ⟨id , c⟩ =≪ω1 = ω, no matter what τ is.
More generally, if we do not have full support, disintegrations may still

exist, but they are not unique. We generally avoid such non-uniqueness by
requiring full support.

Example 7.2.4. The natural join ▷◁ is a basic construction in database theory
that makes it possible to join two databases which coincide on their overlap.
Such natural joins are used in a probabilistic setting in [1, 18] — in particular
in relation to Bell tables, see Exercise 2.4.15.

Let ω ∈ D(X ⊗ Y) and ρ ∈ D(X ⊗ Z) be two joint distributions with equal
first marginal: ω

[
1, 0

]
= ρ

[
1, 0

]
. A natural join, if it exists, is a distribution

ω ▷◁ ρ ∈ D(X ⊗ Y ⊗ Z) which marginalises both to ω and two ρ, as in:

(ω ▷◁ ρ)
[
1, 1, 0

]
= ω and (ω ▷◁ ρ)

[
1, 0, 1

]
= ρ.

We show how such natural joins can be constructed via disintegration. Let’s
assume we have joint distributionsω ∈ D(X×Y) and ρ ∈ D(X×Z) as described
above, with common marginal written as σ B ω

[
1, 0

]
= ρ

[
1, 0

]
. We extract

channels:

c B ω
[
0, 1

∣∣∣ 1, 0] : X → Y d B ρ
[
0, 1

∣∣∣ 1, 0] : X → Z.

Now we define:

ω ▷◁ ρ B

σ

c d

X Y Z

(7.11)

488



7.2. Disintegration of joint distributions 4897.2. Disintegration of joint distributions 4897.2. Disintegration of joint distributions 489

The equation (ω ▷◁ ρ)
[
1, 1, 0

]
= ω can be obtained easily via diagrammatic

reasoning:

σ

c d

σ

c
=

c
=

ω

(7.10)
=

ω

Similarly one proves (ω ▷◁ ρ)
[
1, 0, 1

]
= ρ. For a concrete instantiation of this

construction, see Exercise 7.2.3. Such natural joins are typically non-trivial,
but the above construction (7.11) gives a clear recipe. The graphical approach
emphasises the relevant flows and is especially useful in more complicated
situations, with multiple distributions which agree on multiple marginals.

The next result illustrates two bijective correspondences resulting from dis-
integration. The first bijective correspondence is basically a reformulation of
disintegration itself (for states). The second one is new and involves distribu-
tions over distributions — sometimes called hyperdistributions [132, 133].

Theorem 7.2.5. Let X,Y be two sets, where Y is finite.

1 There is a bijective correspondence between:

τ ∈ D(X × Y) where τ
[
0, 1

]
has full support

=============================================================
ω ∈ D(X) and c : X → Y such that c =≪ω has full support

2 For each natural number N ≥ 1 there is a bijective correspondence between:

Ω ∈ D
(
D(X)

)
with

∣∣∣supp(Ω)
∣∣∣ = N

================================================
ρ ∈ D(X × N) where ρ

[
0, 1

]
has full support

Proof. 1 In the downward direction, starting from a joint distribution τ ∈

D(X × Y) we take ω B τ
[
1, 0

]
∈ D(X) as first marginal and we extract

a channel c B τ
[
0, 1

∣∣∣ 1, 0] : X → Y via disintegration. The latter exists be-
cause the second marginal τ

[
0, 1

]
has full support. In the upward direction

we transform a state-channel pair ω, c to the joint state τ B ⟨id , c⟩ =≪ω ∈

D(X × Y). By assumption, τ
[
0, 1

]
= c =≪ ω has full support. Doing these

transformations twice, both down-up and up-down, yields the orginal data,
by definition of disintegration.

2 Let distributionΩ ∈ D(D(X)) have a support with N elements, say supp(Ω) =
{ω0, . . . , ωN−1} with ωi ∈ D(X). We take:

ρ(x, i) B Ω(ωi) · ωi(x). (7.12)
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This yields a distribution ρ ∈ D(X × N) since these probabilities add up to
one: ∑

x∈X, i∈N

ρ(x, i) B
∑
i∈N

Ω(ωi) ·
∑
x∈X

ωi(x) =
∑
i∈N

Ω(ωi) = 1.

Furthermore, ρ’s second marginal has full support, since for each i ∈ N,

ρ
[
0, 1

]
(i) =

∑
x∈X

ρ(x, i) = Ω(ωi) ·
∑
x∈X

ωi(x) = Ω(ωi) > 0.

In the upward direction, starting from ρ ∈ D(X × N) we from the chan-
nel d B ρ

[
1, 0

∣∣∣ 0, 1] : N → X by disintegration and use it to define Ω ∈
D(D(X)) as:

Ω B
∑
i∈N

ρ
[
0, 1

]
(i)

∣∣∣d(i)
〉
. (7.13)

Since ρ
[
0, 1

]
(i) > 0 for each i ∈ N, the support of Ω has N elements.

Starting from Ω with support {ω0, . . . , ωN−1}, we can get ρ as in (7.12)
with extracted channel d satisfying:

d(i)(x) =
ρ(x, i)
ρ
[
0, 1

]
(i)
=
Ω(ωi) · ωi(x)
Ω(ωi)

= ωi(x).

Hence the definition (7.13) yields the original state Ω ∈ D(D(X)):∑
i∈N

ρ
[
0, 1

]
(i)

∣∣∣d(i)
〉
=

∑
i∈N

Ω(ωi)
∣∣∣ωi

〉
= Ω.

In the other direction, starting from a joint state ρ ∈ D(X×N) whose second
marginal has full support, we can form Ω as in (7.13) and turn it into a joint
state again via (7.12), whose probability at (x, i) is:

Ω(d(i)) · d(i)(x) = ρ
[
0, 1

]
(i) · ρ

[
1, 0

∣∣∣ 0, 1](i)(x)
=

(
⟨id , ρ

[
1, 0

∣∣∣ 0, 1]⟩ =≪ρ
[
0, 1

])
(x, i)

= ρ(x, i).

This last equation holds by disintegration.

By combining the two correspondences in this theorem we can bijectively
relate a ‘hyper’ distribution Ω ∈ D(D(X)) and a state-channel pair ω ∈ D(X),
c : X → Y , see Exercise 7.2.4 below. This corresponce is used in Bayesian
persuasion, see [110], where the channel c is called a signal.

With disintegration well-understood we can formulate a follow-up of cross-
over results in Theorem 6.3.1. There we looked at marginalisation after update.
Here we look at extraction of a channel after such an update, at the same posi-
tion of the original channel. The newly extracted channel can be expressed in
terms of an updated channel, see Definition 6.1.1 (3).
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Theorem 7.2.6. Let c : X → Y be a channel with state ω ∈ D(X) on its
domain, and let p ∈ Fact(X) and q ∈ Fact(Y) be factors.

1 The extraction on an updated graph state yields:(
⟨id , c⟩ =≪ω

)∣∣∣
p⊗q

[
0, 1

∣∣∣ 1, 0] = c|q where c|q(x) B c(x)|q.

2 And as a result: (
⟨id , c⟩ =≪ω

)∣∣∣
p⊗q = ⟨id , c|q⟩ =≪ω|p & (c ≫= q).

Proof. 1 For x ∈ X and y ∈ Y we have:

(
⟨id , c⟩ =≪ω

)∣∣∣
p⊗q

[
0, 1

∣∣∣ 1, 0](x)(y)
(7.9)
=

(
⟨id , c⟩ =≪ω

)∣∣∣
p⊗q(x, y)(

⟨id , c⟩ =≪ω
)∣∣∣

p⊗q

[
1, 0

]
(x)

=

(
⟨id , c⟩ =≪ω

)
(x, y) · (p ⊗ q)(x, y)∑

v
(
⟨id , c⟩ =≪ω

)
(x, v) · (p ⊗ q)(x, v)

=
ω(x) · c(x)(y) · p(x) · q(y)∑
v ω(x) · c(x)(v) · p(x) · q(v)

=
c(x)(y) · q(y)∑
v c(x)(v) · q(v)

=
c(x)(y) · q(y)

c(x) |= q
= c(x)|q(y)
= c|q(x)(y).

2 An (updated) joint state like (⟨id , c⟩ =≪ω)|p⊗q can always be written as graph
⟨id , d⟩ =≪ τ. The channel d is obtained by distintegration of the joint state,
and equals c|q by the previous point. The state τ is the first marginal of the
joint state. Hence we are done by charactersing this first marginal, in:(

⟨id , c⟩ =≪ω
)∣∣∣

p⊗q

[
1, 0

]
=

(
⟨id , c⟩ =≪ω

)∣∣∣
(1⊗q)&(p⊗1)

[
1, 0

]
by Exercise 4.3.8

=
(
⟨id , c⟩ =≪ω

)∣∣∣
1⊗q

∣∣∣
p⊗1

[
1, 0

]
by Lemma 6.1.6 (3)

=
(
⟨id , c⟩ =≪ω

)∣∣∣
1⊗q

[
1, 0

]∣∣∣
p by Lemma 6.1.6 (6)

= ω| c ≫= q |p by Theorem 6.3.1

= ω|p & (c ≫= q) by Lemma 6.1.6 (3).

Remark 7.2.7. In the preface to this book — to be precise, on page viii —
we distinguished two approaches to crossover effects in updating. They were
labeled there as ‘weaken-update-marginalise’ and ‘extract-infer’. We can now
make this more precise. In both cases we start from a joint distribution ω ∈
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D(X × Y) with evidence in the form of a factor q : Y → R≥0 on the second
component.

• The ‘weaken-update-marginalise’ approach first weakens q to a factor 1 ⊗
q = π2 ≫= q on the product space X × Y . The types now match, so that
1 ⊗ q can be used to update the joint distribution ω ∈ D(X × Y), giving
ω|1⊗q ∈ D(X × Y). Its first marginal ω|1⊗q

[
1, 0

]
∈ D(X) then gives the effect

in X of updating in Y .
• The ‘extract-infer’ approach works differently: it first extracts a channel c B
ω
[
0, 1

∣∣∣ 1, 0] : X → Y from ω, via disintegration, such that ω = ⟨id , c⟩ =≪σ,
where σ = ω

[
1, 0

]
∈ D(X) is ω’s first marginal. One then obtains the effect

in X of updating in Y via backward inference, as σ|c ≫= q ∈ D(X).

From Theorem 6.3.1 we know that both approaches give the same outcome.

Exercises

7.2.1 Let σ ∈ D(X) have full support and consider ω B σ ⊗ τ for some
τ ∈ D(Y). Check that the channel X → Y extracted from ω by disin-
tegration is the constant function x 7→ τ. Give a string diagrammatic
account of this situation.

7.2.2 Disintegrate the distribution Flrn(τ) ∈ D({H, L} × {1, 2, 3}) in Subsec-
tion 1.6.1 to a channel {H, L} → {1, 2, 3}.

7.2.3 Consider sets X = {x1, x2}, Y = {y1, y2, y3}, Z = {z1, z2, z3} with distri-
bution ω ∈ D(X × Y) given by:

1
4 | x1, y1 ⟩ +

1
4 | x1, y2 ⟩ +

1
6 | x2, y1 ⟩ +

1
6 | x2, y2 ⟩ +

1
6 | x2, y3 ⟩

and ρ ∈ D(X × Z) by:

1
12 | x1, z1 ⟩ +

1
3 | x1, z2 ⟩ +

1
12 | x1, z3 ⟩ +

1
8 | x2, z1 ⟩ +

1
8 | x2, z2 ⟩ +

1
4 | x2, z3 ⟩.

1 Check that ω and ρ have equal X-marginals.
2 Explicitly describe the extracted channels c B ω

[
0, 1

∣∣∣ 1, 0] : X →
Y and d B ω

[
0, 1

∣∣∣ 1, 0] : X → Z.
3 Show that the natural joinω ▷◁ ρ ∈ D(X×Y×Z) according to (7.11)

is:
1

24 | x1, y1, z1 ⟩ +
1
6 | x1, y1, z2 ⟩ +

1
24 | x1, y1, z3 ⟩

+ 1
24 | x1, y2, z1 ⟩ +

1
6 | x1, y2, z2 ⟩ +

1
24 | x1, y2, z3 ⟩

+ 1
24 | x2, y1, z1 ⟩ +

1
24 | x2, y1, z2 ⟩ +

1
12 | x2, y1, z3 ⟩

+ 1
24 | x2, y2, z1 ⟩ +

1
24 | x2, y2, z2 ⟩ +

1
12 | x2, y2, z3 ⟩

+ 1
24 | x2, y3, z1 ⟩ +

1
24 | x2, y3, z2 ⟩ +

1
12 | x2, y3, z3 ⟩.
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7.2.4 Combining the two items of Theorem 7.2.5 gives a bijective corre-
spondence between:

Ω ∈ D
(
D(X)

)
with

∣∣∣supp(Ω)
∣∣∣ = N

=============================================================
ω ∈ D(X) and c : X → N such that c =≪ω has full support

Define this correspondence in detail and check that it is bijective.
7.2.5 Prove the following possibilitistic analogues of Theorem 7.2.5.

1 There is a bijective correspondence between:

R ∈ P(X × Y)
=============================
U ∈ P(X) with f : U → P∗(Y)

where P∗ is used for the the subset of non-empty subsets.
2 For each number N ≥ 1 there is a bijective correspondence:

A ∈ P(P(X)) with |A | = N
=================================================
R ∈ P(X × N) with ∀i , j.∃x.¬

(
R(x, i)⇔ R(x, j)

)
7.2.6 Prove that the equation(

⟨id , c⟩ =≪σ
)∣∣∣

p⊗1
[
0, 1

∣∣∣ 1, 0] = c.

can be obtained both from Theorem 6.3.4 and from Theorem 7.2.6.
7.2.7 Prove that for a joint distribution ω ∈ D(X × Y) with full support one

has:

ω
[
1, 0

∣∣∣ 0, 1] = (
ω
[
0, 1

∣∣∣ 1, 0])† : Y → X.

7.2.8 Let ω ∈ D(X × Y) be a joint state, whose two marginals ω1 B

ω
[
1, 0

]
∈ D(X) and ω2 B ω

[
0, 1

]
∈ D(Y) have full support. Let

p ∈ Pred (X) and q ∈ Pred (Y) be arbitrary predicates.
Prove that there are predicates q1 on X and p2 on Y such that:

ω1 |= p & q1 = ω |= p ⊗ q = ω2 |= p1 & q.

This is a discrete version of [142, Prop. 6.7].
Hint: Disintegrate!

7.3 Disintegration, in general form

In the previous section we have introduced disintegration for joint distributions
ω ∈ D(X × Y). We are now generalising it first to channels Z → X × Y , and
then more specifically to channels X → Y1 × · · · × Yn. In the latter situation
we shall disintegrate for a subset of the outgoing wires, as indicated by the Yi.
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This gives considerable flexibility. The graphical language of string diagrams
is useful to see what happens.

In essence, the more general form of disintegration in this section involves
additional parameters. Traditionally, the situation at hand involves turing a con-
ditional probability P(X,Y | Z) into P(Z | X,Y) such that

P(X,Y | Z) = P(Y | X,Z) · P(X | Z).

This is captured diagrammatically in (7.14) below.

Definition 7.3.1. Consider a channel / box f : Z → X × Y

f

Z

YX

for which f
[
1, 0

]
= f has full support.

We say that f admits disintegration if there is a unique ‘disintegration’ channel
f ′ : X × Z → Y satisfying the equation:

f

f ′

YX

Z

= f

Z

YX

(7.14)

Graphically, one can think of the disintegration f ′ as being obtained via
bending the X-wire downward, as described below in (7.16).

Uniqueness of the channel f ′ in this definition means: for each channel
g : X × Z → Y and for each channel h from Z to B with full support one
has:

g

h
= f

Z

YX

=⇒ h = f and g = f ′

The first equation h = f
[
1, 0

]
in the conclusion is obtained simply by applying

discard to two right-most outgoing wires in the assumption — on the left
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and on the right of the equation — and using that g is unital:

g

hh
= =h = f

The second equation g = f ′ in the conclusion expresses uniqueness of the
disintegration box f ′.

We shall use the notation f
[
0, 1

∣∣∣ 1, 0] for this disintegration box f ′. This
notation will be explained in greater generality below.

The disintegration channel f ′ : X × Z → Y is a pointwise version of the
formulation for joint distributions on X × Y from (7.9):

f ′(x, z) B
∑
y∈Y

f (z)(x, y)
f
[
1, 0

]
(z)(x)

∣∣∣y〉
. (7.15)

The full-support assumption for the marginalised channel f
[
1, 0

]
says that the

marginal distribution f
[
1, 0

]
(z) = f (z)

[
1, 0

]
∈ D(X) has full support, for each

z ∈ Z. More explicitly, this means that for each x ∈ X, the sum
∑

y∈Y f (z)(x, y)
is non-zero. Implicitly, this means that the set X is finite.

Without the full support requirement, disintegrations may still exist, but they
are not unique, see Example 7.2.3 (2) for an illustration. We first describe an il-
lustration involving multinomial and hypergeometric channels from Chapter 3.

Example 7.3.2.

1 In Theorem 7.1.5 we have seen daggers of the hypergeometric channel, for
four different prior distributions. Corrolary 7.2.2 tells that such daggers can
be obtained via disintegration. We elaborate one case, with multinomials as
prior.

We fix a finite set X and numbers L ≥ K. We define a channel f : D(X)→
N[K] × N[L](X) of the form:

D(X) ◦
mn[L]

// N[L](X) ◦
⟨hg[K],id ⟩

// N[K](X) × N[L](X)

Notice that this channel’s first marginal f
[
1, 0

]
is the multinomial channel

mn[K], by Corollary 3.4.2 (6). Where Corrolary 7.2.2 uses a joint state, we
now use a channel, in line with the general approach to disintegration of this
section.
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We seek a disintegration d : N[K](X) × D(X)→ N[L](X) of the channel
f . We define it via the dagger from Theorem 7.1.5 (2):

d(φ, ω) B hg[K]†mn[L](ω)(φ) =
∑

χ∈N[L−K](X)

mn[L−K](ω)(χ)
∣∣∣φ + χ〉

.

The disintegration equation (7.14) now holds, where the diagram on the
right-hand-side is the above channel f .

mn[K]

d

mn[L]

hg[K]

=

We check this equation via the following calculation.

⟨id , d(−, ω)⟩ =≪mn[K](ω)

=
∑

φ∈N[K](X)

∑
ψ∈N[L](X)

d(φ, ω)(ψ) ·mn[K](ω)(φ)
∣∣∣φ, ψ〉

=
∑

ψ∈N[L](X)

∑
φ≤Kψ

mn[L−K](ω)(ψ − φ) ·mn[K](ω)(φ)
∣∣∣φ, ψ〉

=
∑

ψ∈N[L](X)

∑
φ≤Kψ

(L−K)!
(ψ − φ)

·
∏

x
ω(x)(ψ−φ)(x) ·

K!
φ
·
∏

x
ω(x)φ(x)

∣∣∣φ, ψ〉
=

∑
ψ∈N[L](X)

∑
φ≤Kψ

(
ψ
φ

)
(

L
K

) · L!
ψ
·
∏

x
ω(x)ψ(x)

∣∣∣φ, ψ〉
see Definition 1.8.1

=
∑

ψ∈N[L](X)

∑
φ≤Kψ

hg[K](ψ)(φ) ·mn[L](ω)(ψ)
∣∣∣φ, ψ〉

= ⟨hg[K], id ⟩ =≪mn[L](ω).

2 In Diagram (3.21) in Theorem 3.3.8 one can recognise how the sum of num-
bers function sum : Nm → N is disintegrated, with m-many parallel pois-
son channels pois[−] ⊗ · · · ⊗ pois[−] as prior. In this diagram one can ig-
nore the Freq boxes / channels, since they are isomorphisms. The relevant
disintegration channel is mn[−](−) ◦· (id ⊗ Flrn). It has a ‘dependent type’∏

K : ND(m)→ N[K](m).
3 Theorem 3.9.5, about Poisson multinomials, also expresses a disintegration

situation, but we have to tweak it a little bit to make it fit the mold of Di-
agram (7.14). This works via additional copiers, as in (2.32), followed by
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discarding. The first equation below is from Theorem 3.9.5.

Pmn[−](−)
pois[−]

=

size
mn[−](−)

pois[−]

=

mn[−](−)

Next we elaborate on the notation that we will use for disintegration.

Remark 7.3.3. In traditional notation in probability theory one simply omits
variables to express marginalisation. For instance, for a distributionω ∈ D(X1×

X2 × X3 × X4), considered as function ω(x1, x2, x3, x4) in four variables xi, one
writes:

ω(x2, x3) for the marginal
∑
x1,x4

ω(x1, x2, x3, x4).

We have been using masks instead: lists containing as only elements 0 or 1.
We then write ω

[
0, 1, 1, 0

]
∈ D(X2 × X3) to express the above marginalisation,

with a 0 (resp. a 1) at position i in the mask meaning that the i-th variable in
the distribution is discarded (resp. kept).

We like to use a similar mask-style notation for disintegration, mimicking
the traditional notation ω(x1, x4 | x2, x3). This requires two masks, separated by
the sign ‘|’ for conditional probability. We sketch how it works for a box

f

X

YnY1 · · ·

from X to Y1, . . . ,Yn. We introduce the following notation for a disintegration
channel, with two masks M and N.

f [N | M]

The idea is to change the wires Yi with a 1 at position i in M from output into
input wires in the box f [N | M]. This notation f [N | M] will be used in the
following manner:

1 masks M,N must both be of length n;
2 M,N must be disjoint: there is no position i with a 1 both in M and in N;
3 the marginal f [M] must have full support;
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4 the domain of the disintegration box f [N | M] is Y⃗ ∩ M, X, where Y⃗ ∩ M
contain precisely those Yi with a 1 in M at position i;

5 the codomain of f [N | M] is Y⃗ ∩ N.
6 f [N |M] is unique in satisfying an “obvious” adaptation of Equation (7.14),

in which f [M ∪ N] is equal to a string diagram consisting of f [M] suitably
followed by f [N | M].

How this really works is best illustrated via a concrete example. Consider the
box f on the left below, with five output wires. We elaborate the disintegration
f
[
1, 0, 0, 0, 1

∣∣∣ 0, 1, 0, 1, 0], as on the right.

f

Y1 Y2 Y3 Y4 Y5

X

f
[
1, 0, 0, 0, 1

∣∣∣ 0, 1, 0, 1, 0]
Y1

Y2 Y4

Y5

X

The disintegration box f
[
1, 0, 0, 0, 1

∣∣∣ 0, 1, 0, 1, 0] is unique in satisfying:

f
[
1, 0, 0, 0, 1

∣∣∣ 0, 1, 0, 1, 0]

f

= f

In traditional notation one could express this equation as:

f (Y1,Y5 | Y2,Y4, X) · f (Y2,Y4 | X) = f (Y1,Y2,Y4,Y5 | X).

The wiring then remains implicit.
Two points are still worth noticing.

• It is not required that at position i there is a 1 either in mask M or in mask
N when we form f [N | M]. If there is a 0 at i both in M and in N, then the
wire at i is discarded altogether. This happens in the above illustration for
the third wire: the string diagram on the right-hand side of the equation is
f [M ∪ N] = f

[
1, 1, 0, 1, 1

]
.
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• The above disintegration f
[
1, 0, 0, 0, 1

∣∣∣ 0, 1, 0, 1, 0] can be obtained from the
‘simple’, one-wire version of disintegration in Definition 7.3.1 by first suit-
ably rearranging wires and combining them via products. How to do this
precisely is left as an exercise (see below).

There is one more notational addition. This one is a non-standard construc-
tion in string diagrams.

Remark 7.3.4. Disintegration is a not a ‘compositional’ operation that can
be obtained by combining other string diagrammatic primitives. The reason is
that disintegration involves normalisation, via division in (7.15). Still it would
be nice to be able to use disintegration in diagrammatic form. For this purpose
one may use a trick: in the setting of Definition 7.3.1 we ‘bend’ the relevant
wire downwards and put a gray box around the result in order to indicate that
its interior is closed off and has become inaccessible. Thus:

disintegrate f

Z

YX

as f
[
0, 1

∣∣∣ 1, 0] = f

Y

ZX

(7.16)

This ‘shaded box’ notation can also be used for more complicated forms of
disintegration, as described above. This notation is useful to express some basic
properties of disintegration, see Exercise 7.3.5.

Using such shading we can describe the dagger of a channel c : X → Y as:

c†ω =

ω

c

X

Y

(7.17)

Exercises

7.3.1 Consider an extracted channel ω
[
1, 0, 0

∣∣∣ 0, 0, 1] for some state ω.

1 Write down the defining equation for this channel, as string dia-
gram.

2 Check that ω
[
1, 0, 0

∣∣∣ 0, 0, 1] is the same as ω
[
1, 0, 1

][
1, 0

∣∣∣ 0, 1].
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7.3.2 Check that a marginalisation ωM can also be described as disintegra-
tion ω

[
M

∣∣∣ 0, . . . , 0] where the number of 0’s equals the length of the
mask / list M.

7.3.3 Consider the channel / box f in Remark 7.3.3. Write down the equa-
tion for the disintegration f

[
0, 1, 0, 1, 0

∣∣∣ 1, 0, 1, 0, 1]. Formulate also
what uniqueness means.

7.3.4 Show how to obtain the disintegration f
[
0, 0, 0, 1, 1

∣∣∣ 0, 1, 1, 0, 0] in
Remark 7.3.3 from the formulation in Definition 7.3.1 via rearranging
and combining wires (via ×).

7.3.5 (From [57]) Prove the following ‘sequential’ and ‘parallel’ properties
of disintegration. The best way is to give a diagrammatic proof, using
uniqueness of disintegration.

=

=

7.3.6 Let f : X × Y → X × Z be a channel, where X,Y,Z are finite sets.
Define the “probabilistic trace” prtr( f ) : Y → Z as:

prtr( f ) B
f

Z

X

Y

(7.18)

where is used for the uniform distribution.
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1 Check that:

prtr( f )(y) =
∑
z∈Z

∑
x∈X

1
|X |
·

f (x, y)(x, z)∑
y′∈Y f (x, y)(x, y′)

 ∣∣∣z〉
A categorically oriented reader might now ask if the above defini-
tion prtr( f ) yields a proper ‘trace’ construction in the symmetric
monoidal Kleisli category Chan(D) of probabilistic channels, but
this is not the case: the so-called dinaturality condition fails. This
will be illustrated in the next few points.

2 Take space X = {a, b, c} and 2 = {0, 1} with channels f : X → 2× 2
and g : 2→ X defined by:

f (a) = 1
4 |0, 0⟩ +

3
4 |1, 0⟩

f (b) = 2
5 |0, 0⟩ +

3
5 |1, 1⟩

f (c) = 1
2 |0, 1⟩ +

1
2 |1, 0⟩

g(0) = 1
3 |a⟩ +

2
3 |c⟩

g(1) = 1
2 |a⟩ +

1
2 |b⟩.

The aim is to show an inequality of states:

f

2

X

g

,prtr
(
(g ⊗ id ) ◦· f

) f

2

g
prtr

(
f ◦· g

)
= =

2

Both sides are an instance of (7.18) with B = 1.
3 Check that (g ⊗ id ) ◦· f : X → X × 2 is:

a 7→ 11
24 |a, 0⟩ +

3
8 |b, 0⟩ +

1
6 |c, 0⟩

b 7→ 2
15 |a, 0⟩ +

3
10 |a, 1⟩ +

3
10 |b, 1⟩ +

4
15 |c, 0⟩

c 7→ 1
4 |a, 0⟩ +

1
6 |a, 1⟩ +

1
4 |b, 0⟩ +

1
3 |c, 1⟩.

And that f ◦· g : 2→ 2 × 2 is:

0 7→ 1
12 |0, 0⟩ +

1
3 |0, 1⟩ +

7
12 |1, 0⟩

1 7→ 13
40 |0, 0⟩ +

3
8 |1, 0⟩ +

3
10 |1, 1⟩.

4 Now show that the disintegration
(
(g⊗id )◦· f

)[
0, 1

∣∣∣ 1, 0] : X×X → 2
is:

(a, a) 7→ 1|0⟩ (b, a) 7→ 4
13 |0⟩ +

9
13 |1⟩ (c, a) 7→ 3

5 |0⟩ +
2
5 |1⟩

(a, b) 7→ 1|0⟩ (b, b) 7→ 1|1⟩ (c, b) 7→ 1|0⟩
(a, c) 7→ 1|0⟩ (b, c) 7→ 1|0⟩ (c, c) 7→ 1|1⟩.
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And that
(
f ◦· g

)[
0, 1

∣∣∣ 1, 0] : 2 × 2→ 2 is:

(0, 0) 7→ 1
5 |0⟩ +

4
5 |1⟩ (1, 0) 7→ 1|0⟩

(0, 1) 7→ 1|0⟩ (1, 1) 7→ 5
9 |0⟩ +

4
9 |1⟩.

5 Conclude that:

prtr
(
(g ⊗ id ) ◦· f

)
= 1

3 |0⟩ +
2
3 |1⟩,

whereas:

prtr
(
f ◦· g

)
= 17

45 |0⟩ +
28
45 |1⟩.

7.4 Disintegration for learning with missing data

This section consideres learning from tables in which some entries are missing
and illustrates how disintegration can be used to extract relevant channels. We
do not treat this topic exhaustively, but instead we elaborate two examples
from the literature in order to give an impression of the issues involved. The
examples differ with respect to the presence (or not) of prior information. The
learning methodology is the same in both cases.

7.4.1 Learning with missing data, without prior

We look at an example from [102, §6.2.1]. It involves pregnancy of cows,
which can be deduced from a urine test and a blood test. A simple Bayesian
network structure is assumed, which we write as string diagram:

Pregnancy

Blood Test Urine test

P

B U

with sets


P = {p, p⊥}
B = {b, b⊥}
U = {u, u⊥}.

(7.19)

The elements p and p⊥ represent ‘pregnancy’ and ‘no pregnancy’, respectively.
Similarly, b, b⊥ and u, u⊥ represent a positive and negative blood / urine test.

The data in [102] involves 5 cases, as given in the following table, where a
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question mark is used for a missing item.

case Pregnancy Blood test Urine test

1 ? b u
2 p b⊥ u
3 p b ?
4 p b u⊥

5 ? b⊥ ?

(7.20)

We wish to learn a distribution on P and two channels P → B and P → U
as interpretation of the Bayesian network (7.19). The state and two channels
can be obtained from a joint distribution on P × B × U by marginalisation and
disintegration (channel extraction). Our aim is thus to first learn such a joint
distribution from the table.

Earlier, with the Medicine-Blood Table (1.28), without missing data, we
could directly translate the table into a multiset and then turn it into a joint
distribution via frequentist learning. That approach does not work when some
of the data points are missing.

Here, instead, we shall translate each of the rows i in Table (7.20) into a
predicate qi on P × B ×U, using a point predicate when all data are there, like
in the second and fourth row, so:

q2 B 1(p,b⊥,u) = 1p ⊗ 1b⊥ ⊗ 1u q4 B 1(p,b,u⊥) = 1p ⊗ 1b ⊗ 1u⊥ .

For cases 1,3,5 we cannot use a point predicate where there is a missing item
?. There we use the truth predicate 1, in the parallel conjunction formulation
⊗. This indicates that all options are equally likely. Thus:

q1 B 1 ⊗ 1b ⊗ 1u q3 B 1p ⊗ 1b ⊗ 1 q5 B 1 ⊗ 1b⊥ ⊗ 1.

We can now update the uniform state unif on P × B × U with these predicates
qi. We take the convex sum over these five updates, corresponding to five rows
in Table 7.20.

τ B 1
5 · unif |q1 +

1
5 · unif |q2 +

1
5 · unif |q3 +

1
5 · unif |q4 +

1
5 · unif |q5

= 1
10 | p, b, u⟩ +

1
10 | p

⊥, b, u⟩ + 1
5 | p, b

⊥, u⟩ + 1
10 | p, b, u⟩ +

1
10 | p, b, u

⊥⟩

+ 1
5 | p, b, u

⊥⟩ + 1
20 | p, b

⊥, u⟩ + 1
20 | p

⊥, b⊥, u⟩ + 1
20 | p, b

⊥, u⊥⟩ + 1
20 | p

⊥, b⊥, u⊥⟩

= 1
5 | p, b, u⟩ +

3
10 | p, b, u

⊥⟩ + 1
4 | p, b

⊥, u⟩ + 1
20 | p, b

⊥, u⊥⟩

+ 1
10 | p

⊥, b, u⟩ + 1
20 | p

⊥, b⊥, u⟩ + 1
20 | p

⊥, b⊥, u⊥⟩.

The first marginal τ
[
1, 0, 0

]
= 4

5 | p⟩+
1
5 | p

⊥ ⟩ ∈ D(P) is the learned pregnancy
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distribution. The two ‘Blood test’ and ‘Urine Test’ channels P→ B and P→ U
in (7.19) can be extracted via disintegration.

• We get c B τ
[
0, 1, 0

∣∣∣ 1, 0, 0] = τ[1, 1, 0][0, 1 ∣∣∣ 1, 0] : P→ B with:

c(p) =
τ(p, b, u) + τ(p, b, u⊥)

τ(p, b, u) + τ(p, b, u⊥) + τ(p, b⊥, u) + τ(p, b⊥, u⊥)

∣∣∣b〉
+

τ(p, b⊥, u) + τ(p, b⊥, u⊥)
τ(p, b, u) + τ(p, b, u⊥) + τ(p, b⊥, u) + τ(p, b⊥, u⊥)

∣∣∣b⊥ 〉
=

1/5 + 3/10

1/5 + 3/10 + 1/4 + 1/20
|b⟩ +

1/4 + 1/20

1/5 + 3/10 + 1/4 + 1/20
|b⊥ ⟩

= 5
8 |b⟩ +

3
8 |b

⊥ ⟩.

c(p⊥) = · · · = 1
2 |b⟩ +

1
2 |b

⊥ ⟩.

We see that a pregnant cow has a slightly higher probability than a non-
pregnant cow of getting a positive blood test.

• In the same way we get d B τ
[
0, 0, 1

∣∣∣ 1, 0, 0] = τ[1, 0, 1][0, 1 ∣∣∣ 1, 0] : P→ U
with:

d(p) = 9
16 |u⟩ +

7
16 |u

⊥ ⟩ and d(p⊥) = 3
4 |u⟩ +

1
4 |u

⊥ ⟩.

Apparantly, the urine test is more likely to be positive for a non-pregnant
cow.

These channels c and d coincide with the conditional probabilities computed
in [102], without explicitly using disintegration.

7.4.2 Learning with missing data, with prior

In the previous example we used a uniform distribution for the missing data
items — corresponding to the fact that we assumed no prior knowledge. Here
we look into an example, taken from [37, §17.3.1], where we do have prior
information, namely in the form of a Bayesian network, involving four sets
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A = {a, a⊥}, B = {b, b⊥}, C = {c, c⊥} and D = {d, d⊥}, in the string diagram:

ω

f g

h

A

B

D

C
with



ω = 1
5 |a⟩ +

4
5 |a

⊥ ⟩

f (a) = 3
4 |b⟩ +

1
4 |b

⊥ ⟩

f (a⊥) = 1
10 |b⟩ +

9
10 |b

⊥ ⟩

h(b) = 1
5 |d ⟩ +

4
5 |d

⊥ ⟩

h(b⊥) = 7
10 |d ⟩ +

3
10 |d

⊥ ⟩

g(a) = 1
2 |c⟩ +

1
2 |c

⊥ ⟩

g(a⊥) = 1
4 |c⟩ +

3
4 |c

⊥ ⟩

(7.21)

We first turn this Bayesian network into a joint distribution τ ∈ D
(
A×B×C×D

)
,

as interpretation of the accessible string diagram on the left below — obtained
from the string diagram in (7.21).

τ B
(
(id ⊗ id ⊗ swap) ◦· (id ⊗ id ⊗ h ⊗ id )

◦· (id ⊗ ∆2 ⊗ id ) ◦· (id ⊗ f ⊗ g) ◦· ∆3

)
=≪ω

That is:

τ =

ω

f g

h

A B DC

=

3
200 |a, b, c, d ⟩ +

3
50 |a, b, c, d

⊥ ⟩ +
3

200 |a, b, c
⊥, d ⟩ + 3

50 |a, b, c
⊥, d⊥ ⟩ +

7
400 |a, b

⊥, c, d ⟩ + 3
400 |a, b

⊥, c, d⊥ ⟩ +
7

400 |a, b
⊥, c⊥, d ⟩ + 3

400 |a, b
⊥, c⊥, d⊥ ⟩ +

1
250 |a

⊥, b, c, d ⟩ + 2
125 |a

⊥, b, c, d⊥ ⟩ +
3

250 |a
⊥, b, c⊥, d ⟩ + 6

125 |a
⊥, b, c⊥, d⊥ ⟩ +

63
500 |a

⊥, b⊥, c, d ⟩ + 27
500 |a

⊥, b⊥, c, d⊥ ⟩ +
189
500 |a

⊥, b⊥, c⊥, d ⟩ + 81
500 |a

⊥, b⊥, c⊥, d⊥ ⟩.

This distribution τ will be used as prior.
The table with data provided in [37] is:

case A B C D

1 ? b c⊥ ?
2 ? b ? d⊥

3 ? b⊥ c d
4 ? b⊥ c d
5 ? b ? d⊥

(7.22)

At this stage we do not use uniform distributions as fill-in. Instead, we use the
Bayesian network to infer probabilities for the missing data. For instance, in
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the first case we have point predicates 1b and 1c⊥ . From the crossover update
result Theorem 6.3.1 we know that this inference can also be done via the joint
state τ, namely as:

τ1 B τ
∣∣∣
1⊗1b⊗1c⊥⊗1.

The missing probabilities for A,D are then obtained via the marginal, as:

τ1
[
1, 0, 0, 1

]
= 1

9 |a, d ⟩ +
4
9 |a, d

⊥ ⟩ + 4
45 |a

⊥, d ⟩ + 16
45 |a

⊥, d⊥ ⟩
= 0.1111|a, d ⟩ + 0.4444|a, d⊥ ⟩ + 0.08889|a⊥, d ⟩ + 0.3556|a⊥, d⊥ ⟩.

This distribution appears in [37, Fig. 17.4 (a)].
In a similar way we define:

τ2 B τ
∣∣∣
1⊗1b⊗1⊗1d⊥

τ3 B τ
∣∣∣
1⊗1b⊥⊗1c⊗1d

τ4 B τ3 τ5 B τ2.

These five states τ1, . . . , τ5 are combined in a convex combination, like in the
previous subsection, giving a new joint state:

τ′ B 1
5 · τ1 +

1
5 · τ2 +

1
5 · τ3 +

1
5 · τ4 +

1
5 · τ5 =

1
5 · τ1 +

2
5 · τ2 +

2
5 · τ3.

From τ′ we can obtain a newly learned interpretation of the Bayesian net-
work (7.21), via marginalisation and disintegration. In detail, the new distribu-
tion ω′ on A is:

ω′ B τ′
[
1, 0, 0, 0

]
= 3571

8487 |a⟩ +
4916
8487 |a

⊥ ⟩

≈ 0.4208|a⟩ + 0.5792|a⊥ ⟩.
(7.23)

We get as newly learned channels:

f ′ B τ′
[
0, 1, 0, 0

∣∣∣ 1, 0, 0, 0]


f ′(a) = 3157
3571 |b⟩ +

414
3571 |b

⊥ ⟩

≈ 0.8841|b⟩ + 0.1159|b⊥ ⟩
f ′(a⊥) = 2419

6145 |b⟩ +
3726
6145 |b

⊥ ⟩

≈ 0.3937|b⟩ + 0.6063|b⊥ ⟩

g′ B τ′
[
0, 0, 1, 0

∣∣∣ 1, 0, 0, 0]


g′(a) = 1521
3571 |c⟩ +

2050
3571 |c

⊥ ⟩

≈ 0.4259|c⟩ + 0.5741|c⊥ ⟩
g′(a⊥) = 819

1229 |c⟩ +
410

1229 |c
⊥ ⟩

≈ 0.6664|c⟩ + 0.3336|c⊥ ⟩

h′ B τ′
[
0, 0, 0, 1

∣∣∣ 0, 1, 0, 0]


h′(b) = 1
15 |d ⟩ +

14
15 |d

⊥ ⟩

≈ 0.06667|d ⟩ + 0.9333|d⊥ ⟩
h′(b⊥) = 1|d ⟩.

These outcomes are as in [37, Fig. 17.5] — up to some small differences, prob-
ably due to rounding.
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Interestingly, Table (7.22) gives no information about A, but still we learn a
new distribution ω′ on A, basically from the prior information τ.

Exercises

7.4.1 Check that the pregnancy distribution in Subsection 7.4.1, obtained
from Table (7.20), is 4

5 | p⟩ +
1
5 | p

⊥ ⟩.
7.4.2 Calculate in detail that, in Subsection 7.4.2,

τ1
[
1, 0, 0, 1

]
= 1

9 |a, d ⟩ +
4
9 |a, d

⊥ ⟩ + 4
45 |a

⊥, d ⟩ + 16
45 |a

⊥, d⊥ ⟩.

7.4.3 Check that the new state ω′ in (7.23) can also be obtained as:

ω′ = 1
5 · ω|( f ≫= 1b) & (g ≫= 1c⊥ )

+ 2
5 · ω|( f ≫= 1b) & (h ≫= 1d⊥ )

+ 2
5 · ω|( f ≫= (1b⊥ & (h ≫= 1c))) & (g ≫= 1c).

Argue why this works.

7.5 Disintegration and inversion in machine learning

This section illustrates the role of disintegration and Bayesian inversion in two
fundamental techniques in machine learning, namely in naive Bayesian classi-
fication and in decision tree learning. These applications will be explained via
examples from the literature.

7.5.1 Naive Bayesian classification

We illustrate the use of both disintegration and Bayesian inversion in an ex-
ample of ‘naive’ Bayesian classification from [181]; we follow the analysis
of [24]. Instead of trying to explain what a naive Bayesian classification is
or does, we demonstrate via this example how it works. In the end, in Re-
mark 7.5.1 we give a more general description.

Consider the table in Figure 7.1. It collects data about certain weather condi-
tions and whether or not there is playing (outside). The question asked in [181]
is: given this table, what can be said about the probability of playing if the out-
look is sunny, the temperature is cold, the humidity is high and it is windy?
This is a typical Bayesian update question, starting from (point) evidence. We
will first analyse the situation in terms of channels.

We start by extracting the underlying spaces for the columns / categories in
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Outlook Temperature Humidity Windy Play

sunny hot high false no
sunny hot high true no

overcast hot high false yes
rainy mild high false yes
rainy cool normal false yes
rainy cool normal true no

overcast cool normal true yes
sunny mild high false no
sunny cool normal false yes
rainy mild normal false yes
sunny mild normal true yes

overcast mild high true yes
overcast hot normal false yes

rainy mild high true no

Figure 7.1 Weather and play data, copied from [181, Table 1.2].

the table in Figure 7.1. We choose obvious abbreviations for the entries in the
table:

O = {s, o, r} T = {h,m, c} H = {h, n}. W = {t, f } P = {y, n}

These sets are joined into a single product space:

S B O × T × H ×W × P.

It combines the five columns in Figure 7.1. The table itself can now be consid-
ered as a multiset inM(S ) with 14 elements, each with multiplicity one. We
will turn it immediately into an empirical distribution — formally via frequen-
tist learning. It yields a distribution τ ∈ D(S ), with 14 entries, each with the
same probability, written as:

τ = 1
14 | s, h, h, f , n⟩ + 1

14 | s, h, h, t, n⟩ + · · · +
1
14 |r,m, h, t, n⟩.

We use a ‘naive’ Bayesian model in this situation, which means that we
assume that all weather features are independent. This assumption can be vi-
sualised via the following string diagram:

Play

TemperatureOutlook Humidity Windy

(7.24)

This model with separate channels oversimplifies the situation, but still it often
leads to good (enough) outcomes.
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We take the above perspective on the distribution τ, that is, we ‘factorise’ τ
according to this string diagram (7.24). Obviously, the play state π ∈ D(P) is
obtained as the last marginal:

π B τ
[
0, 0, 0, 0, 1

]
= 9

14 |y⟩ +
5
14 |n⟩.

Next, we extract four channels cO, cT , cH , cW via appropriate disintegrations,
from the Play column to the Outlook / Temperature /Humidity /Windy columns.

cO B τ
[
1, 0, 0, 0, 0

∣∣∣ 0, 0, 0, 0, 1] : P ◦ // O

cT B τ
[
0, 1, 0, 0, 0

∣∣∣ 0, 0, 0, 0, 1] : P ◦ // T

cH B τ
[
0, 0, 1, 0, 0

∣∣∣ 0, 0, 0, 0, 1] : P ◦ // H

cW B τ
[
0, 0, 0, 1, 0

∣∣∣ 0, 0, 0, 0, 1] : P ◦ // W

(7.25)

For instance the ‘outlook’ channel cO : P→ O looks as follows.

cO(y) = 2
9 | s⟩ +

4
9 |o⟩ +

3
9 |r ⟩ cO(n) = 3

5 | s⟩ +
2
5 |r ⟩. (7.26)

It is analysed in greater detail in Exercise 7.5.1 below.
Now we can form the tuple channel of these extracted channels, called c in:

P ◦
cB ⟨cO,cT ,cH ,cW ⟩ // O × T × H ×W

Recall the question that we started from: what is the probability of playing
if the outlook is sunny, the temperature is Cold, the humidity is High and it
is Windy? These features can be translated into an element (s, c, h,w) of the
codomain O×T×H×W of this tuple channel — and thus into a point predicate.
Hence our answer can be obtained by Bayesian inversion of the tuple channel,
as:

c†π
(
s, c, h, t

) (7.1)
= π

∣∣∣
c ≫= 1(s,c,h,t)

= 125
611 |y⟩ +

486
611 |n⟩

≈ 0.2046|y⟩ + 0.7954|n⟩.

This corresponds to the probability 20.5% calculated in [181] — without any
disintegration or Bayesian inversion.

The classification that we have just performed works via what it called a
naive Bayesian classifier. In our set-up this classifier is the dagger channel:

O × T × H ×W ◦
c†π // P

It predicts playing for a 4-tuple in O × T × H ×W.
In the end one can reconstruct a joint state with space S via the extracted

channel, as graph:

⟨cO, cT , cH , cW , id ⟩ =≪π.
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This state differs considerably from the original table / state τ. It shows that the
shape (7.24) does not really fit the data that we have in Figure 7.1. But recall
that this approach is called naive. We shall soon look closer into such matters
of shape in Section 7.8.

Remark 7.5.1. Now that we have seen the above illustration we can give a
more abstract recipe of how to obtain a Bayesian classifier. The starting point
is a joint distribution ω ∈ D

(
X1 × · · · × Xn × Y

)
where X1, . . . , Xn are the

sets describing the ‘input features’ and Y is the set of ‘target features’ that are
used in classification: its elements represent the different classes. The recipe
involves the following steps, in which disintegration and Bayesian inversion
play a prominent role.

1 Compute the prior classification probability π B ω
[
0, . . . , 0, 1

]
∈ D(Y).

2 Extract n-channels ci : Y → Xi via disintegration:

c1 B ω
[
1, 0, . . . , 0

∣∣∣ 0, . . . , 0, 1] : Y → X1

c2 B ω
[
0, 1, 0 . . . , 0

∣∣∣ 0, . . . , 0, 1] : Y → X2
...

cn B ω
[
0, . . . , 0, 1, 0

∣∣∣ 0, . . . , 0, 1] : Y → Xn.

3 Form the tuple channel c B ⟨c1, . . . , cn⟩ : Y → X1 × · · · × Xn.

4 Take the Bayesian inversion (dagger channel) c†π : X1 × · · · × Xn → Y , as
classifier. It gives for each n-tuple of input features x1, . . . , xn a distribution
c†π(x1, . . . , xn) ∈ D(Y) on the set Y of classes (or target features). The distri-
bution gives the probability of the tuple belonging to class y ∈ Y .

Graphically, these steps can be described via the shaded box notation from
Remark 7.3.4. First take:

ω

Y

π = · · ·

ω

Y

Xi

ci

Xi

Y

=

The classification channel X1 × · · · × Xn → Y is then obtained via the dagger
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Author Thread Length Where read User action

known new long home skip
unknown new short work read
unknown follow-up long work skip

known follow-up long home skip
known new short home read
known follow-up long work skip

unknown follow-up short work skip
unknown new short work read

known follow-up long home skip
known new long work skip

unknown follow-up short home skip
known new long work skip
known follow-up short home read
known new short work read
known new short home read
known follow-up short work read
known new short home read

unknown new short work read

Figure 7.2 Data about circumstances for reading or skipping of articles, copied
from [154].

construction:
Y

naive Bayesian classifier =

c1 cn

· · ·

X1 Xn· · ·

π

The twisting at the bottom happens implicitly when we consider the product
X1 × · · · × Xn as a single set and take the dagger wrt. this set.

7.5.2 Decision tree learning

We proceed as before, by first going trough an example from the literature, and
then taking a step back to describe more abstractly what is going on. We start
with a table of data in Figure 7.2, from [154, Fig. 7.1]. It describes user actions
(read or skip) for articles that are “posted to a threaded discussion website
depending on whether the author is known or not, whether the article started a
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new thread or was a follow-up, the length of the article, and whether it is read
at home or at work.”

We formalise the table in Figure 7.2 via the following five sets, with ele-
ments corresponding in an obvious way to the entries in the table: k = known,
u = unknown, etc..

A = {k, u} T = {n, f } L = {l, s} W = {h,w} U = {s, r}.

We interprete the table as a joint distribution ω ∈ D(A × T × L ×W × U) with
the same probability for each of the 18 entries in the table:

ω = 1
18

∣∣∣k, n, l, h, s〉 + 1
18

∣∣∣u, n, s,w, r 〉 + · · · + 1
18

∣∣∣u, n, s,w, r 〉. (7.27)

So far there is no real difference with the naive Bayesian classification example
in the previous subsection. But the aim now is not classification but deciding:
given a 4-tuple of input features (x1, x2, x3, x4) ∈ A × T × L × W we wish to
decide as quickly as possible whether this tuple leads to a read or a skip action.

The way to take such a decision is to use a decision tree as described in
Figure 7.3. It puts Length as dominant feature on top and tells that a long article
is skipped immediately. Indeed, this is what we see in the table in Figure 7.2:
we can quickly take this decision without inspecting the other features. If the
article is short, the next most relevant feature, after Length, is Thread. Again
we can see in Figure 7.2 that a short and new article is read. Finally, we see in
Figure 7.3 that if the article is short and a follow-up, then it is read if the author
is known, and skipped if the author is unkown. Apparently the location of the
user (the Where feature) is irrelevant for the read / skip decision.

We see that such decision trees provide a (visually) clear and efficient method
for reaching a decision about the target feature, starting from input features.
The question that we wish to address here is: how to learn (derive) such a
decision tree (in Figure 7.3) from the table (in Figure 7.2)?

The recipe (algorithm) for learning the tree involves iteratively going through
the following three steps, acting on a joint state σ.

1 Check if we are done, that is, if the U-marginal (for User action) of the
current joint state σ is a point state; if so, we are done and write this point
state 1| x⟩ in a box as leaf in the tree.

2 If we are not done, determine the ‘dominant’ feature X for σ, and write X as
a circle in the tree.

3 For each element of x ∈ X, update (and marginalise) σ with the point predi-
cate 1x and re-start with step 1.

We shall describe these steps in more detail, starting from the stateω in (7.27),
corresponding to the table in Figure 7.2.
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Figure 7.3 Decision tree for reading (r) or skipping (s) derived from the data in
Figure 7.2.

1.1 The U-marginal ωU B ω
[
0, 0, 0, 0, 1

]
∈ D(U) equals 1

2 |r ⟩ +
1
2 | s⟩, be-

cause there are equal numbers of read and skip actions in Figure 7.2. Since
this is not a point state, we are not done.

1.2 We need to determine the dominant feature in ω. This is where disinte-
gration comes in. We first extract four channels and states:

cA B ω
[
0, 0, 0, 0, 1

∣∣∣ 1, 0, 0, 0, 0] : A→ U
ωA B ω

[
1, 0, 0, 0, 0

]
∈ D(A)

cT B ω
[
0, 0, 0, 0, 1

∣∣∣ 0, 1, 0, 0, 0] : T → U
ωT B ω

[
0, 1, 0, 0, 0

]
∈ D(T )

cL B ω
[
0, 0, 0, 0, 1

∣∣∣ 0, 0, 1, 0, 0] : L→ U
ωL B ω

[
0, 0, 1, 0, 0

]
∈ D(L)

cW B ω
[
0, 0, 0, 0, 1

∣∣∣ 0, 0, 0, 1, 0] : W → U
ωW B ω

[
0, 0, 0, 1, 0

]
∈ D(W).

Note that these channels go in the opposite direction with respect to the
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approach for naive Bayesian classification. It is not hard to see that:

cA(k) = 1
2 | s⟩ +

1
2 |r ⟩ cA(u) = 1

2 | s⟩ +
1
2 |r ⟩ ωA =

2
3 |k ⟩ +

1
3 |u⟩

cT (n) = 3
10 | s⟩ +

7
10 |r ⟩ cT ( f ) = 3

4 | s⟩ +
1
4 |r ⟩ ωT =

5
9 |n⟩ +

4
9 | f ⟩

cL(l) = 1| s⟩ cL(s) = 2
11 | s⟩ +

9
11 |r ⟩ ωL =

7
18 | l⟩ +

11
18 | s⟩

cW (h) = 1
2 | s⟩ +

1
2 |r ⟩ cW (w) = 1

2 | s⟩ +
1
2 |r ⟩ ωW =

4
9 |h⟩ +

5
9 |w⟩.

In order to determine which of the input features A,T, L,W is most
dominant we compute the expected entropy — sometimes called intrinsice
value — for each of these features. Recall the Shannon entropy function
H : D(X) → R≥0 from Exercise 4.1.11. Post-composing it with the above
channels gives a factor, like H ◦ cA : A → R≥0. It computes the entropy
H(cA(x)) for each x ∈ A. Hence we can compute its validity in the marginal
state ωA ∈ D(A), giving the expected entropy. Explicitly:

ωA |= H ◦ cA =
∑
x∈A

ωA(x) · H(cA(x))

= ωA(k) · H(cA(k)) + ωA(u) · H(cA(u))
= 2

3 ·
( 1

2 · − log( 1
2 ) + 1

2 · − log( 1
2 )

)
+ 1

3 ·
( 1

2 · − log( 1
2 ) + 1

2 · − log( 1
2 )

)
= 2

3 +
1
3

= 1.

In the same way one computes the other expected entropies as:

ωT |= H ◦ cT = 0.85 ωL |= H ◦ cL = 0.42 ωW |= H ◦ cW = 1.

One then picks the lowest entropy value, which is 0.42, for feature / com-
ponent L. Hence L = Length is the dominant feature at this first stage.
Therefore it is put on top in the decision tree in Figure 7.3.

1.3 The set L has two elements, l for long and s for short. We update the
current state ω with each of these, via suitably weakened point predicates
1l and 1s, and marginalise out the L component. This gives new states for
which we use the following ad hoc notation.

ω/l B ω
∣∣∣
1⊗1⊗1l⊗1⊗1

[
1, 1, 0, 1, 1

]
∈ D(A × T ×W × U)

ω/s B ω
∣∣∣
1⊗1⊗1s⊗1⊗1

[
1, 1, 0, 1, 1

]
∈ D(A × T ×W × U).

We now go into a recursive loop and repeat the previous steps for both these
states ω/l and ω/s. Notice that they are ‘shorter’ than ω, since they only
have 4 components instead of 5, since we marginalised out the dominant
component L.
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2.1.1 In the l-branch we are now done, since the U-marginal of the l-update
is a point state:

ω/l
[
0, 0, 0, 1

]
= 1| s⟩.

It means that a long article is skipped immedately. This is indicated via the
the l-box as (left) child of the Length node in the decision tree in Figure 7.3.

2.1.2 We continue with the s-branch. The U-marginal of ω/s is not a point
state.

2.2.2 We will now have to determine the dominant feature in ω/s. We com-
pute the three expected entropies for A,T,W as:

ω/s
[
1, 0, 0, 0

]
|= H ◦ ω/s

[
0, 0, 0, 1

∣∣∣ 1, 0, 0, 0] = 0.44
ω/s

[
0, 1, 0, 0

]
|= H ◦ ω/s

[
0, 0, 0, 1

∣∣∣ 0, 1, 0, 0] = 0.36
ω/s

[
0, 0, 1, 0

]
|= H ◦ ω/s

[
0, 0, 0, 1

∣∣∣ 0, 0, 1, 0] = 0.68.

The second value is the lowest, so that T = Thread is now the dominant fea-
ture. It is added as codomain node of the s-edge out Length in the decision
tree in Figure 7.3.

2.3.2 The set T has two elements, n for new and f for follow-up. We take
the corresponding updates:

ω/s/n B ω/s
∣∣∣
1⊗1n⊗1⊗1

[
1, 0, 1, 1

]
∈ D(A ×W × U)

ω/s/ f B ω/s
∣∣∣
1⊗1 f⊗1⊗1

[
1, 0, 1, 1

]
∈ D(A ×W × U).

Then we enter new recursions with both these states.

3.1.1 In the n-branch we are done, since we find a point state as U-marginal:

ω/s/n
[
0, 0, 1

]
= 1|r ⟩.

This settles the left branch under the Thread node in Figure 7.3.

3.1.2 The f -branch is not done, since the U-marginal of the state ω/s/ f is
not a point state.

3.2.2 We thus start computing expected entropies again, in order to find out
which of the remaining input features A,T is dominant.

ω/s/ f
[
1, 0, 0

]
|= H ◦ ω/s/ f

[
0, 0, 1

∣∣∣ 1, 0, 0] = 0
ω/s/ f

[
0, 1, 0

]
|= H ◦ ω/s/ f

[
0, 0, 1

∣∣∣ 0, 1, 0] = 1.

Hence the A feature is dominant, so that the Author node is added to the
f -edge out of Thread in Figure 7.3.
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3.3.2 The set A has two elements, k for known and and u for unknown. We
form the corresponding two updates of the current state ω/s/ f .

ω/s/ f /k B ω/s/ f
∣∣∣
1k⊗1⊗1

[
0, 1, 1

]
∈ D(W × U)

ω/s/ f /u B ω/s/ f
∣∣∣
1u⊗1⊗1

[
0, 1, 1

]
∈ D(W × U).

The next cycle continues with these two states.

4.1.1 In the k-branch we are done since:

ω/s/ f /k
[
0, 1

]
= 1|r ⟩.

4.1.2 Also in the u-branch we are done since:

ω/s/ f /u
[
0, 1

]
= 1| s⟩.

This gives the last two boxes, so that the decision tree in Figure 7.3 is
finished.

There are many variations on the above learning algorithm for decision trees.
The one that we just described is sometime called the ‘classification’ version,
as in [102], since it works with discrete distributions. There is also a ‘regres-
sion’ version, for continuous distributions. The key part of the the above al-
gorithm is deciding which feature is dominant (in step 2). We have described
the so-called ID3 version from [156], which uses expected entropies (intrinsic
values). Sometimes it is described in terms of ‘gains’, see [135], where in the
above step 1.2 we can define for feature X ∈ {A,T, L,W},

gain(X) B H(ωU) −
(
ωX |= H ◦ cX

)
.

One then looks for the feature with the highest gain. But one may as well look
for the lowest expected entropy — given by the valdity expression after the
minus sign — as we do above. There are alternatives to using gain, such as
what is called ‘gini’, but that is out of scope.

To conclude, running the decision tree learning algorithm on the distribution
associated with the weather and play table from Figure 7.1 — with Play as
target feature — yields the decision tree in Figure 7.4, see also [181, Fig. 4.4].

Exercises

7.5.1 Write σ ∈ M(O × T × H × W × P) for the weather-play table in
Figure 7.1, as multidimensional multiset.

1 Compute the marginal multiset σ
[
1, 0, 0, 0, 1

]
∈ M(O × P).
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Figure 7.4 Decision tree for playing (y) or not (n) derived from the data in Fig-
ure 7.1.

2 Reorganise this marginalised multiset as a 2-dimensional table with
only Outlook (horizontal) and Play (vertical) data, as given below,
and check how this ‘marginalised’ table relates to the original one
in Figure 7.1.

Sunny Overcast Rainy

yes 2 4 3
no 3 0 2

3 Deduce a channel P → O from this table, and compare it to the
description (7.26) of the channel cO given in Subsection 7.5.1 —
see also Lemma 2.2.4.

4 Do the same for the marginal tables σ
[
0, 1, 0, 0, 1

]
, σ

[
0, 0, 1, 0, 1

]
,

σ
[
0, 0, 0, 1, 1

]
, and the corresponding channels cT , cH , cW in Sub-

section 7.5.1.

7.5.2 Continuing with the weather-play table σ, notice that instead of tak-
ing the dagger of the tuple of channels ⟨cO, cT , cH , cW⟩ : P → O ×
T × H ×W in Example 7.5.1 we could have used instead the ‘direct’
disintegration:

O × T × H ×W ◦
σ[0,0,0,0,1 | 1,1,1,1,0]

// P

Check that this gives a division-by-zero error.
7.5.3 Naive Bayesian classification, as illustrated in Subsection 7.5.1, is

often used for classifying email messages as either ‘spam’ or ‘ham’
(not spam). One then looks for words which are typical for spam or
ham. This exercise elaborates a standard small example.
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Consider the following table of six words, together with the likeli-
hoods of them being spam or ham.

spam ham

review 1/4 1
send 3/4 1/2

us 3/4 1/2

your 3/4 1/2

password 1/2 1/2

account 1/4 0

Lets write S = {s, h} for the probability space for spam and ham, and,
as usual 2 = {0, 1}.

1 Translate the above table into six channels:

review, send, us, your, password, account : S → 2.

Write c : S → 26 = 2 × 2 × 2 × 2 × 2 × 2 for the tuple channel:

c B ⟨review, send, us, your, password, account⟩.

2 We wish to classify the message “review us now”. Explain how it
gets translated to the point predicate 1(1,0,1,0,0,0) on 26.

3 Show that:

c ≫= 1(1,0,1,0,0,0) = (review ≫= 11) & (send ≫= 10)
& (us ≫= 11) & (your ≫= 10)
& (password ≫= 10) & (account ≫= 10)

= 9
2048 · 1s +

1
16 · 1h

4 Let’s assume a prior spam distribution ω = 2
3 | s⟩ +

1
3 |h⟩. Show that

the posterior spam distribution for our message is:

c†ω(1, 0, 1, 0, 0, 0) = ω|c ≫= 1(1,0,1,0,0,0) =
9
73 | s⟩ +

64
73 |h⟩

≈ 0.1233| s⟩ + 0.8767|h⟩.

7.5.4 Here is another example in naive Bayesian classification that is com-
monly used as illustration1. The aim is to classify fruit as ‘banana’,
‘orange’, or ‘other’ (neither), for which we use the space {b, o, n}.
Three attributes are considered: ‘long’, ‘sweet’, and ‘yellow’, for which
we have three spaces {l, l⊥}, {s, s⊥} and {y, y⊥}. The training data is
summarised in the following table.

1 See e.g. https://www.machinelearningplus.com/predictive-modeling/
how-naive-bayes-algorithm-works-with-example-and-full-code/
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long not
long sweet not

sweet yellow not
yellow

banana 400 100 350 150 450 50
orange 0 300 150 150 300 0
other 100 100 150 50 50 150

1 Turn this table first into three channels:

{b, o, n} ◦ // {l, l⊥} {b, o, n} ◦ // {s, s⊥} {b, o, n} ◦ // {y, y⊥},

and then combine them into a single channel

{b, o, n} ◦ // {l, l⊥} × {s, s⊥} × {y, y⊥}.

2 Assume a base rate distribution ω = 1
2 |b⟩ +

3
10 |o⟩ +

1
5 |n⟩. We are

confronted with an item that is long and sweet and yellow. Show
that it is 93% certain that it is a banana.

7.5.5 Show in detail that we get point states in items 2.1.1 , 3.1.1 , 4.1.1
and 4.1.2 in Subsection 7.5.2.

7.5.6 In Subsection 7.5.1 we classified the play distribution as 125
611 |y⟩ +

486
611 |n⟩, given the input features (s, c, h, t). Check what the play de-
cision is for these inputs in the decision tree in Figure 7.4.

7.5.7 As mentioned, the table in Figure 7.2 is copied from [154]. There the
following two questions are asked: what can be said about reading /
skipping for the two queries:

Q1 = (unknown, new, long, work)
Q2 = (unknown, follow-up, short, home).

1 Answer Q1 and Q2 via the decision tree in Figure 7.3.
2 Compute the distributions on U for both queries Q1 and Q2 via

naive Bayesian classification.

(The outcome for Q2 obtained via Bayesian classification is 3
5 |r ⟩ +

2
5 | s⟩; it gives reading the highest probability. This does not coincide
with the outcome via the decision tree. Thus, one should be careful to
rely on such classification methods for important decisions.)

7.6 Sufficient statistics

It sometimes happens in an update c(x)|q, for a channel c, that the input x
drops out, in the sense that the updated distribution c(x)|q no longer depends
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on x. This phenomenon lies at the heart of the concept of sufficient statistics,
introduced and studied in the 1920s by Ronald Fisher, see [53]. It is the topic
of the current section. We have already encountered several examples of a suf-
ficient statistics situation, without making this fact explicit. Only now we have
the tools — updating, daggers and disintegration — to describe this sufficiency
at the appropriate level of abstraction, following the string-diagrammatic ap-
proach of [57]. Various examples are given below, based partly on [88, 83].
Continuous probability also forms a rich source of examples, see e.g. Exam-
ple ??.

Let’s first look at an example where the input of a channel drops out. We use
the iid channel iid [K] : D(X)→ XK , given by iid [K] = ωK = ω ⊗ · · · ⊗ ω. We
fix a multiset φ ∈ N[K](X) and start calculating the update (dagger):

iid [K](ω)
∣∣∣
acc ≫= 1φ

=
∑

x⃗∈acc−1(φ)

ωK(x⃗)
D(acc)(ωK)(φ)

∣∣∣ x⃗〉
by Lemma 7.1.3 (2)

=
∑

x⃗∈acc−1(φ)

ωK(x⃗)
mn[K](ω)(φ)

∣∣∣ x⃗〉
by Theorem 2.6.7

=
∑

x⃗∈acc−1(φ)

ωK(x⃗)
(φ ) ·

∏
x∈X ω(x)φ(x)

∣∣∣ x⃗〉
=

∑
x⃗∈acc−1(φ)

1
(φ )

∣∣∣ x⃗〉
since acc(x⃗) = φ

(2.27)
= arr(φ).

In the latter expression the distribution ω has disappeared. This depends on
the fact that sequences x⃗, y⃗ ∈ XK with acc(x⃗) = φ = acc(⃗y) have the same
probability ωK(x⃗) =

∏
z∈X ω(z)φ(z) = ωK (⃗y), see Theorem 3.3.1 (1). Thus, it

‘suffices’ to know φ: if we condition iid [K](ω) = ωK to those sequences that
accumulate to φ, the outcome no longer depends on ω.

The axiomatisation of this phenomenon uses (surjective) functions s : X →
Y , not channels, to identify elements in X, resulting in abstractions in Y . This Y
may give numerical information, e.g. when Y is the set of natural or real num-
bers. Such a map is also called a statistic. A statistic s is called sufficient for a
channel, as statistical model depending on a parameter / input, when the depen-
dence on the parameter disappears via updating through s, as illustrated above.
Sufficency refers to being adequate as a summary of essential aspects of the
elements in X. Sufficiency involves the existence of a reversal of the function
s : X → Y to a channel Y → X. This channel d can be used to reconstruct a dis-
tribution X, form its summary given by s. We first give a string diagrammatic
description, following [57, Defn. 14.3]. Subsequently we explain the relation
to disintegration.
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Definition 7.6.1. Let c : A→ X be a channel, where we think of A as the space
of parameters.

1 A statistic for the channel c is a function s : X → Y .
2 Such a statistic s is sufficient if there is a channel d : Y → X such that:

c

s
d= so that

c

s

c

d

= s
(7.28)

This means that d = s†c(a), for each a ∈ A.

We shall soon look at examples, and non-examples too, but the shape on the
right-hand-side of (7.28) may look familiar already since it occurred at several
earlier stages in this book.

Remark 7.6.2.

1 The channel d on the right-hand-side in (7.28) results in a special way from
disintegration, namely disintegration of the composite channel ⟨s, id ⟩ ◦· c on
the left-hand-side in (7.28). If we write D : Y × A→ X for its disintegration
channel, as in (7.14), then, we should get an equation as given on the left
below. The distinguishing property of a sufficient statistic is that the dashed
line is absent.

c

s

c

= s

D

D = d (7.29)

The situation on the left can be expressed by the equation on the right.
2 The fact that the dashed wire is missing in (7.29) corresponds to the phe-

nomenon that we started with in this section, namely that the dependence
on an input may disappear after conditioning. This can now be made more
precise. The box / channel D in (7.29) can be calculated — in discrete prob-
ability — as a distribution D(a, y) ∈ D(X), for a ∈ A and y ∈ Y , via a dagger
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(see Subsection 4.2.3). Explicitly, via Lemma 7.1.3 (2), since the statistic s
is a function, not a channel:

D(a, y) = s†c(a)(y) = c(a)|s ≫= 1y =
∑

x∈s−1(y)

c(a)(x)
D(s)(c(a))(y)

∣∣∣ x〉
. (7.30)

The absence of the dashed arrow in (7.29) corresponds to the non-depen-
dence of the latter expressions on a. This is the essence of the Fisher-Neyman
factorisation theorem, see [57, Thm. 14.5] and [14, Prop 4.10] or [172, §3.3].
Thus, what we can do to find out if a function s is a sufficient statistic for a
channel c is to compute the right-hand-side of 7.30 and check if the param-
eter a drops out.

Examples 7.6.3.

1 We have already seen several sufficient statistics situations:

• The bitsum function sum : 2K → {0, . . . ,K} is a sufficient statistic for the
K-ary tuple channel ⟨flip, . . . ,flip⟩ : [0, 1] → 2K , see Theorem 2.5.1. A
related situation occurs in Exercise 7.6.1 below.

• The function size : N(X) → N is a sufficient statistic for the multiset
Poisson channel mpois from Example 2.1.7 (2), see Exercise 4.3.3.

• The accumulation function acc : XK → N[K](X) is a sufficient statistic
for the K-fold tensor channel iid [K] : D(X) → XK , see Theorem 3.3.1.
Accumulation is also a sufficient statistic for the Poisson-iid channel, see
Theorem 3.9.6.

• The sum of two multisets sum : N[K](X) × N[L](X) → N[K+L](X)
is a sufficient statistic for the tuple channel ⟨mn[K],mn[L]⟩ : D(X) →
N[K](X) × N[L](X) of two multinomials, see Theorem 3.4.4.

• Decoupling dcpl = ⟨N(π1),N(π2)⟩ : N[K](X×Y)→ N[K](X)×N[K](Y)
is a sufficient statistic for the channel mn[K] ◦ ⊗ : D(X) × D(Y) →
N[K](X × Y), see Theorem 3.3.4.

2 As listed above, accumulation acc : XK → N[K](X) is a sufficient statistic
for iid [K]. What about matching mat : XK → SP(K), see Definition 1.5.8?
It turns out not to be sufficient. We compute the relevant dagger (7.30), for
a distribution ω ∈ D(X) and P ∈ SP(K),

mat†iid [K](ω)(P) =
∑

x⃗∈mat−1(P)

ωK(x⃗)
D(mat)(ωK)(P)

∣∣∣ x⃗〉
=

∑
x⃗∈mat−1(P)

ωK(x⃗)∑
y⃗∈mat(P) ω

K (⃗y)

∣∣∣ x⃗〉
.

What we would now need is a result saying: mat(x⃗) = mat (⃗y) implies
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ωK(x⃗) = ωK (⃗y). But this does not hold. Take for instance ω = 1
2 |a⟩ +

1
3 |b⟩ +

1
6 |c⟩ and K = 2. Then sequence (a, b) and (a, c) satisfy mat(a, b) ={

{1}, {2}
}
= mat(a, c), but ω2(a, b) = 1

2 ·
1
3 ,

1
2 ·

1
6 = ω

2(a, c).

We include a formulation of the Fisher-Neyman factorisation theorem (see
e.g. [14, Prop 4.10] or [172, §3.3]) in diagrammatic form in [57, Thm. 14.5]
and in [88, Lem. 3.4]. It uses that Kℓ(D) is a positive Markov category, justi-
fying the last equation below, see [57, Rem.11.23].

Lemma 7.6.4. Consider a channel together with a split idempotent in Kℓ(D),
consisting of a deterministic section (a function) followed by a retraction. This
retraction can then be a sufficient statistic for the channel:

chan

retraction

chan

section

=
retraction

split
idempotent

chan

= chan implies

A typical example of a retraction is a composite f †ω ◦· f , for a function f , see
Lemma 7.1.3 (2).

Proof. When we abbreviate ‘retraction’ to ‘ret’, ‘section’ to ‘sec’ and ‘split
idempotent’ to ‘idem’. The result now follows from the following sequence of
equations between string diagrams.

chan chan

idem
= =

chan

ret

sec

ret chan

sec

=
ret

chan

sec

=

ret

ret

sec
ret

ret

Notice that we use that the section is a function, and thus commutes with the
copier, see Remark 2.5.3.

The following result can be seen as a special case of Proposition 7.6.4, in-
volving the probabilistic inverse f ∼1 from Definition 2.4.6, given by f ∼1(y) =
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x∈ f −1(y)

1
| f −1(y) | | x⟩. We recall that we write ker( f ) = {(x, x′) | f (x) = f (x′)} for

the kernel relation, for a function f .

Proposition 7.6.5. Let c : A → X be a channel and f : X → Y a surjective
function with finite inverse images, satisfying ker( f ) ⊆ ker

(
c(a)

)
, for each

a ∈ A, then f is a sufficient statistic, with its probabilistic inverse f ∼1 : Y → X
as associated channel, in a situation:

c

f

c

f ∼1

= f

Proof. For each a ∈ A we have:

⟨ f , id ⟩ =≪ c(a)

=
∑
x∈X

∑
y∈Y

‹ f ›(x)(y) · c(a)(x)
∣∣∣y, x〉

=
∑
y∈Y

∑
x∈ f −1(y)

c(a)(x)
∣∣∣y, x〉

=
∑
y∈Y

∑
x∈ f −1(y)

∑
z∈ f −1(y)

c(a)(z)
| f −1(y) |

∣∣∣y, x〉
since ker( f ) ⊆ ker

(
c(a)

)
=

∑
x∈X

∑
y∈Y

f ∼1(y)(x) · D( f )(c(a))(y)
∣∣∣y, x〉

= ⟨id , f ∼1⟩ =≪( f ◦· c)(a).

Theorem 3.3.1 is an instance of this result. We present one more, involving
the size count function sc : SP(K) → MP(K) from Definition 1.9.2 (2). It
records the size of blocks in a partition P as a multiset partition, namely as
sc(P) =

∑
B∈P 1

∣∣∣ |B |〉.
Proposition 7.6.6.

1 For a distribution ω ∈ D(X),

ker
(
sc

)
⊆ ker

(
cd [K](ω)

)
.

This means, for all set partitions P,Q ∈ SP(K),

sc(P) = sc(Q) =⇒ cd [K](ω)(P) = cd [K](ω)(Q),

where cd [K](ω) = D(mat)(ωK) is the coincidence distribution from Defini-
tion 2.3.7 (1).
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2 This size count function sc : SP(K)→ MP(K) is a sufficient statistic for the
coincidence channel cd [K] : D(X)→ SP(K), in a situation:

cd [K]

sc

cd [K]

sc∼1

= sc

By Lemma 1.9.7, the probabilistic inverse channel sc∼1 : MP(K) → SP(K)
on the right-hand-side can be described on α ∈ MP(K) as:

sc∼1(α) =
∑

P∈sc−1(α)

α

(α)p

∣∣∣P〉
.

Proof. By Proposition 7.6.5 it suffices to do the first item. We give an exem-
plaric proof, for K = 4. Consider P,Q ∈ SP(4) of the form:

P =
{
{1}, {2, 4}, {3}

}
and Q =

{
{1, 3}, {2}, {4}

}
.

Clearly they have the same size count: two blocks of size 1, and one block of
size 2. Each sequence of elements s = ⟨x1, x2, x3, x4⟩ that matches P must have
x2 = x4. Then it can be easily transposed into a sequence s′ = ⟨x2, x4, x1, x3⟩

that matches Q, so that ω4(s) = ω4(s′). Thus, in general, when sc(P) = sc(Q),

cd [K](ω)(P) =
∑

x⃗∈mat−1(P)

ωK(x⃗) =
∑

x⃗∈mat−1(Q)

ωK(x⃗) = cd [K](ω)(Q).

Exercises

7.6.1 Prove that the K-fold sum sum : NK → N is a sufficient statistic for
the K-tuple of Poisson channels ⟨pois, . . . , pois⟩ : R>0 → NK in a
situation:

pois[K−]

=

d

pois pois· · ·

sum
· · · · · ·

Define yourself what this channel d : N→ NK does.
Hint: Use Exercise 1.7.7.
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7.6.2 Check that Proposition 7.6.6 (1) does not hold for multiplicity count
mc, see Definition 1.9.2 (1), and the multinomial distribution, that is,
in general:

mc(φ) = mc(ψ) ⇏ mn[K](ω)(φ) = mn[K](ω)(ψ).

7.7 Pearl’s and Jeffrey’s update rules

In Chapter 6, and especially in Section 6.2, we have seen many demonstrations
showing that backward inference is a useful reasoning technique. The general
situation involves a prior distribution σ ∈ D(X), on the domain X of a channel
c : X → Y , that we wish to update in the light of evidence on the codomain Y
of the channel. The evidence is given in the form of a predicate (or factor) on
Y . This backward inference is also called Pearl’s update rule.

It turns out that there is an alternative update mechanism in this situation,
where the evidence is not given by a predicate on the codomain of the chan-
nel, but by distribution. This alternative was introduced by Jeffrey [101], see
also [21, 37, 43, 176], or [19] for a recent application in physics. Jeffrey’s rule
can be formulated conveniently (see [79]) in terms of the Bayesian inverse
(dagger) c† of the channel — as introduced in the beginning of this chapter.

As we shall see below, the update rules of Pearl and Jeffrey can give quite
different outcomes. Hence the question arises: when to use which rule? What
is the difference? There is a clear difference, which can be summarised as fol-
lows: Pearl’s rule increases validity and Jeffrey’s rule decreases divergence.
This will be made technically precise, in Theorem 7.7.3 below. The proof in
Pearl’s case is easy, but the proof in Jeffrey’s case is remarkably difficult. We
postpone it to ??, where it arises in a broader analysis of (statistical) learning.

In general terms, one can learn by reinforcing what goes well, or by steering
away from what goes wrong. In the first case one improves a positive evalua-
tion and in the second case one reduces a negative outcome, as a form of cor-
rection. Thus, Jeffrey’s update rule is a correction mechanism, for correcting
errors. As such it is used in ‘predictive coding’, a theory in cognitive science
that views the human brain as a Bayesian prediction and correction engine,
see [157, 56, 70, 26].

This section introduces and illustrates Jeffrey’s update rule, especially in
contrast to Pearl’s rule, that is, to backward inference. We repeat Pearl’s rule
from Definition 6.2.1 (2), for convenience and clarity.

Definition 7.7.1. Let c : X → Y be channel with a prior state σ ∈ D(X).
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1 Pearl’s rule is backward inference: it involves updating of the prior σ with
evidence in the form of a factor q ∈ Fact(Y) to the posterior:

σ|c ≫= q ∈ D(X).

2 Jeffrey’s rule involves update of the prior σ with evidence in form of a dis-
tribution τ ∈ D(Y) to the posterior:

c†σ =≪τ ∈ D(X).

We illustrate the difference between Pearl’s and Jeffreys’s rules in a standard
medical test situation.

Example 7.7.2. Consider the situation from Exercise 6.2.1 with set D = {d, d⊥}
for disease (or not) and T = {p, n} for a positive or negative test outcome, with
a test channel c : D→ T given by:

c(d) = 9
10 | p⟩ +

1
10 |n⟩ c(d⊥) = 1

20 | p⟩ +
19
20 |n⟩.

The test thus has a sensitivity of 90% and a specificity of 95%. We assume a
prevalence of 10% via a prior state ω = 1

10 |d ⟩ +
9

10 |d
⊥ ⟩.

The test is performed, under unfavourable circumstances, like bad light, and
so we are only 80% sure that the test is positive. With Pearl’s update rule we
thus use as evidence predicate q = 4

5 · 1p +
1
5 · 1n. It gives as posterior disease

probability:

ω|c ≫= q =
74
281 |d ⟩ +

207
281 |d

⊥ ⟩ ≈ 0.26|d ⟩ + 0.73|d⊥ ⟩.

This gives a disease likelihood of 26%.
When we decide to use Jeffrey’s rule we translate the 80% certainty of a

positive test into a distribution τ = 4
5 | p⟩ +

1
5 |n⟩. Then we compute:

c†σ =≪τ = 4
5 · c

†
σ(p) + 1

5 · c
†
σ(n)

(7.1)
= 4

5 · ω|c ≫= 1p +
1
5 · ω|c ≫= 1n

= 4
5 ·

(
2
3 |d ⟩ +

1
3 |d

⊥ ⟩
)
+ 4

5 ·
(

2
173 |d ⟩ +

171
173 |d

⊥ ⟩
)

= 278
519 |d ⟩ +

241
519 |d

⊥ ⟩

≈ 0.54|d ⟩ + 0.46|d⊥ ⟩.

The disease likelihood is now 54%, more than twice as high as with Pearl’s up-
date rule. This is a serious difference, which may have serious consequences.
Should we start asking our doctors: does your computer use Pearl’s or Jeffrey’s
rule to calculate likelihoods, in order to produce an advice about medical treat-
ment?
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The following theorem (from [81]) captures the essences of the update rules
of Pearl and Jeffrey: validity increase or divergence decrease. For convenience
we (again) repeat the Pearl case.

Theorem 7.7.3. Consider the situation in Definition 7.7.1, with a prior state
σ ∈ D(X) and a channel c : X → Y.

1 For a factor q on Y Pearl’s update rule gives an increase of validity:

c =≪σP |= q ≥ c =≪σ |= q for the updated state σP B σ|c ≫= q.

2 For an evidence distribution τ ∈ D(Y), Jeffrey’s update rule gives a decrease
of Kullback-Leibler divergence:

DKL
(
τ, c =≪σJ

)
≤ DKL

(
τ, c =≪σ

)
for σJ B c†σ =≪τ.

We assume that the predicted state c =≪ σ has fulll support, so that the
dagger c†σ is well-defined.

In this sitation c =≪σ is the predicted distribution, which is used to evaluate
the evidence.

• In Pearl’s case we look at the validity c =≪ σ |= q of the evidence q in
this predicted state. The above theorem tells that by switching to the Pearl-
update σP that we get a higher validity c =≪σP |= q of the evidence, in the
newly predicted state c =≪σP.

• In Jeffrey’s case we look at the divergence / mismatch DKL
(
τ, c =≪ σ

)
be-

tween the evidence distribution τ and the prediction c =≪σ. By changing to
the Jeffrey-update σJ we get a lower divergence DKL

(
τ, c =≪σJ

)
. Thus, via

Jeffrey’s rule one reduces ‘prediction errors’, in the terminology of predic-
tive coding theory.

Proof. Item (1) is a repetition of Theorem 6.2.2. A proof of item (2) is given
in [81] using rather heavy machinery (the Gelfand spectral radius theorem).
We give a more elementary proof in the next chapter, in ??.

We review an earlier illustration, now with Jeffrey’s approach emphasising
the decrease of divergence between the predication and the evidence distribu-
tion.

Example 7.7.4. Recall the situation of Example 2.4.3, with a teacher predict-
ing the performance of pupils, depending on the teacher’s mood. The evidence
q from Example 6.2.5 is used for Pearl’s update. It can be translated into a
distribution τ on the set G of grades:

τ = 1
10 |1⟩ +

3
10 |2⟩ +

3
10 |3⟩ +

2
10 |4⟩ +

1
10 |5⟩.
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There is an a priori divergence DKL (τ, c =≪σ) ≈ 1.336. With some effort one
can prove that the Jeffrey-update of σ is:

σ′ = c†σ =≪τ = 972795
3913520 | p⟩ +

1966737
3913520 |n⟩ +

973988
3913520 |o⟩

≈ 0.2486| p⟩ + 0.5025|n⟩ + 0.2489|o⟩.

The divergence has now dropped to: DKL (τ, c =≪σ′) ≈ 1.087.
In the end it is interesting to compare the orinal (prior) mood with its Pearl-

and Jeffrey-updates. In both cases we see that after the bad marks of the pupils
the teacher has become less optimistic — as expressed via the third bar.

prior mood

Pearl-update Jeffrey-update

The prior mood is reproduced from Example 2.4.3 for easy comparison. The
Pearl and Jeffrey updates differ only slightly in this case.

The fact that Jeffrey’s rule involves correction of prediction errors, as stated
in Theorem 7.7.3 (2), supports the view that Jeffrey’s update rule should be
used in situations where one is confronted with ‘surprises’ [45] or with ‘unan-
ticipated knowledge’ [44] that one has to adapt to, as a form of correction. Here
we include an example from [45] (also used in [79]) that involves such error
correction after a ‘surprise’.

Example 7.7.5. Ann must decide about hiring Bob, whose characteristics are
described in terms of a combination of competence (c or c⊥) and experience (e
or e⊥). The prior, based on experience with many earlier candidates, is a joint
distribution on the product space C × E, for C = {c, c⊥} and E = {e, e⊥}, given
as:

ω = 4
10 |c, e⟩ +

1
10 |c, e

⊥ ⟩ + 1
10 |c

⊥, e⟩ + 4
10 |c

⊥, e⊥ ⟩.

The first marginal of ω is the uniform distribution 1
2 |c⟩+

1
2 |c

⊥ ⟩. It is the neutral
base rate for Bob’s competence.

We use the two projection functions C
π1
←− C × E

π2
−→ E as deterministic

channels along which we reason, using both Pearl’s and Jeffrey’s rules.
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When Ann would learn that Bob has relevant work experience, given by
point evidence 1e, her strategy is to factor this in via Pearl’s rule / backward
inference: this gives as posterior ω|π2 ≫= 1e = ω|1⊗1e , whose first marginal is
4
5 |c⟩ +

1
5 |c

⊥ ⟩. It is then more likely that Bob is competent.
Ann reads Bob’s letter to find out if he actually has relevant experience. We

quote from [45]:

Bob’s answer reveals right from the beginning that his written English is poor. Ann no-
tices this even before figuring out what Bob says about his work experience. In response
to this unforeseen learnt input, Ann lowers her probability that Bob is competent from
1
2 to 1

8 . It is natural to model this as an instance of Jeffrey revision.

Bob’s poor English is a new state of affairs: a surprise that causes Ann to switch
to error reduction mode, via Jeffrey’s rule. Bob’s poor command of the English
language translates into a competence distribution ρ = 1

8 |c⟩+
7
8 |c

⊥ ⟩. Ann wants
to adapt to this new surprising situation, so she uses Jeffrey’s rule, giving a new
joint state:

ω′ = (π1)†ω =≪ρ = 1
10 |c, e⟩ +

1
40 |c, e

⊥ ⟩ + 7
40 |c

⊥, e⟩ + 7
10 |c

⊥, e⊥ ⟩.

If the letter now tells that Bob has work experience, Ann will factor this in, in
this new situation ω′, giving, like above, via Pearl’s rule followed by margina-
lisation,

ω′|π2 ≫= 1e

[
1, 0

]
= 4

11 |c⟩ +
7
11 |c

⊥ ⟩.

The likelihood of Bob being competent is now lower than in the prior state,
since 4

11 <
1
2 . This example reconstructs the illustration from [45] in channel-

based form, with the associated formulations of Pearl’s and Jeffrey’s rules from
Definition 7.7.1, and produces exactly the same outcomes as in loc. cit.

We briefly discuss some further commonalities and differences between the
rules of Pearl and Jeffrey. We have seen some of these results before, but now
they are put in the context of Pearl’s and Jeffrey’s update rule.

Proposition 7.7.6. Let c : X → Y be a channel with a prior state σ ∈ D(X).

1 Pearl’s rule and Jeffrey’s rule agree on point predicate / states: for y ∈ Y,
with associated point predicate 1y and point state 1|y⟩, one has:

σ|c ≫= 1y = c†σ(y) = c†σ =≪1|y⟩.

2 Pearl’s updating with a constant predicate (no information) does not change
the prior state ω:

σ|c ≫= r ·1 = σ, for r > 0.
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Jeffrey’s update does not change anything when we update with what we
already predict:

c†σ =≪
(
c =≪σ

)
= σ.

3 For a factor q ∈ Fact(Y) we can both update the prior distribution σ, ac-
cording to Pearl, and also the channel c, so that the updated predicted state
is predicted:

c|q =≪(σ|c ≫= q) =
(
c =≪σ

)
|q.

In Jeffrey’s case, with an evidence state τ ∈ D(Y), we can update both the
state and the channel, via a double-dagger, so that the evidence state τ is
predicted: (

c†σ
)†
τ

=≪
(
c†σ =≪τ

)
= τ.

4 Multiple updates with Pearl’s rule commute, but multiple updates with Jef-
frey’s rule do not commute.

Proof. These items follow from earlier results.

1 Directly by Definition 7.7.1.
2 The first equation follows from Lemma 6.1.6 (1) and (4); the second one is

Equation 7.3.
3 The first claim is Theorem 6.3.4 and the second one is Lemma 7.1.8 (4).
4 By Lemma 6.1.6 (3) we have:

σ|c ≫= q1 |c ≫= q2 = σ|(c ≫= q1) & (c ≫= q2) = σ|c ≫= q2 |c ≫= q1 .

However, in general, for evidence states τ1, τ2 ∈ D(Y),

c†
c†σ =≪τ1

=≪τ2 , c†
c†σ =≪τ2

=≪τ1.

Exercise 7.7.5 contains a concrete example.

Item (2) presents different views on ‘learning’, where learning is now used
in an informal sense: according to Pearl’s rule you learning nothing when you
get no information; but according to Jeffrey you learn nothing when you are
presented with what you already know. Both interpretations make sense.

Probabilistic updating may be used as a model for what is called priming in
cognitive science, see e.g. [65, 70]. It is well-known that the human mind is
sensitive to the order in which information is processed, that is, to the order
of priming / updating. Thus, the last item (4) above suggests that Jeffrey’s
rule might be more appropriate in such a setting. This strengthens the view
in predictive coding that the human mind learns from error correction, as in
Jeffrey’s update rule.
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There are translations back-and-forth between Pearl’s and Jeffrey’s rules,
due to [21]; they are translated here to the current setting.

Proposition 7.7.7. Let c : X → Y be a channel with a prior state σ ∈ D(X) on
its domain, such that the predicted state c =≪σ has full support.

1 Pearl’s updating can be expressed as Jeffrey’s update, by turning a factor
q : Y → R≥0 into a state (c =≪ σ)|q ∈ D(Y), so that it can be used as
evidence in:

c†σ =≪
(
(c =≪σ)

∣∣∣
q

)
= σ|c ≫= q.

2 Jeffrey’s updating can also be expressed as Pearl’s updating: for an evidence
state τ ∈ D(Y) write τ/(c =≪σ) for the factor y 7→ τ(y)

(c =≪σ)(y) ; then:

c†σ =≪τ = σ|c ≫= τ/(c =≪σ).

Proof. The first item is exactly Theorem 7.1.7 (1). For the second item we
first note that the fraction τ/(c =≪σ) is a well-defined factor, since c =≪σ has full
support. Further, its validity (c =≪σ) |= τ/(c =≪σ) is one, since τ is a distribution:

(c =≪σ) |= τ/(c =≪σ) =
∑
y∈Y

(c =≪σ)(y) ·
τ(y)

(c =≪σ)(y)
=

∑
y∈Y

τ(y) = 1. (7.31)

But then, for x ∈ X,(
c†σ =≪τ

)
(x) =

∑
y∈Y

τ(y) · c†σ(y)(x)

(7.1)
=

∑
y∈Y

τ(y) ·
σ(x) · c(x)(y)

(c =≪σ)(y)

= σ(x) ·
∑
y∈Y

c(x)(y) ·
τ(y)

(c =≪σ)(y)

=
σ(x) · (c ≫= τ/(c =≪σ))(x)

c =≪σ |= τ/(c =≪σ)
as just shown

=
σ(x) · (c ≫= τ/(c =≪σ))(x)
σ |= c ≫= τ/(c =≪σ)

= σ|c ≫= τ/(c =≪σ)(x).

Combination of Theorem 7.7.3 and Proposition 7.7.7 tells us how Pearl’s
rule can also lead to a decrease of divergence. The situation is quite subtle and
will be discussed further in the subsequent remarks.

Corollary 7.7.8. Let c : X → Y be a channel with a prior state σ ∈ D(X) and
a factor q on Y. Then:

DKL

(
(c =≪σ)|q, c =≪

(
σ|c ≫= q

))
≤ DKL

(
(c =≪σ)|q, c =≪σ

)
.
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This result can be interpreted as follows. With my prior state σ I can predict
c =≪σ. I can update this prediction with evidence q to (c =≪σ)|q. The divergence
between this update and my prediction is bigger than the divergence between
the update and the prediction from the Pearl / Bayes posterior σ|c ≫= q. Thus, the
posterior gives a correction.

Proof. Take τ = (c =≪σ)|q. Theorem 7.7.3 (2) says that:

DKL

(
τ, c =≪

(
c†σ =≪τ

))
≤ DKL

(
τ, c =≪σ

)
.

But Proposition 7.7.7 (1) tells that c†σ =≪τ = σ|c ≫= q.

Lemma 7.7.9. Consider a channel c : X → Y with states ω ∈ D(X) and
ρ ∈ D(Y) on its domain and codomain, such that c =≪ω has full support. Then
there are inequalities:

DKL

(
c†ω =≪ρ, ω

)
≤ DKL

(
ρ, c =≪ω

)
DKL

(
ω, c†ω =≪ρ

)
≤ DKL

(
c =≪ω, ρ

)
.

Proof. Both inequalities are obtained via Equation 7.3 and Proposition 2.8.4 (2):

DKL

(
c†ω =≪ρ, ω

)
= DKL

(
c†ω =≪ρ, c†ω =≪

(
c =≪ω

))
≤ DKL

(
ρ, c =≪ω

)
DKL

(
ω, c†ω =≪ρ

)
= DKL

(
c†ω =≪

(
c =≪ω

)
, c†ω =≪ρ

)
≤ DKL

(
c =≪ω, ρ

)
.

Remarks 7.7.10.

1 In Corrolary 7.7.8 we use that Pearl’s rule can be expressed as Jeffrey’s,
see point (1) in Proposition 7.7.7. The other way around, Jeffrey’s rule is ex-
pressed via Pearl’s in point (2). This leads, in principle, to a validity increase
property for Jeffrey’s rule: let c : X → Y be a channel with states σ ∈ D(X)
and τ ∈ D(Y). Assuming that c =≪σ has full support we can form the factor
q = τ/(c =≪σ). We then get an inequality:

c =≪
(
c†σ =≪τ

)
|= q = c =≪

(
σ|c ≫= q

)
|= q ≥ c =≪σ |= q

(7.31)
= 1.

This is not very useful.
2 We have emphasised the message “Pearl increases validity” and “Jeffrey

decreases divergence”. But Corollary 7.7.8 seems to nuance this message,
since it describes a divergence decrease for Pearl too, and the previous item
gives a validity increase for Jeffrey. What is going on? We try to clarify the
situation via an example, demonstrating that the validity increase of Pearl’s
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rule fails for Jeffrey’s rule and that the divergence decrease of Jeffrey’s rule
fails for Pearl’s rule.

Take sets X = {0, 1} and Y = {a, b, c}with uniform priorσ = 1
2 |0⟩+

1
2 |1⟩ ∈

D(X). We use the channel c : X → Y given by:

c(0) = 1
9 |a⟩ +

2
3 |b⟩ +

2
9 |c⟩ and c(1) = 7

25 |a⟩ +
7
25 |b⟩ +

11
25 |c⟩.

The predicted state is then c =≪ σ = 44
225 |a⟩ +

71
150 |b⟩ +

149
450 |c⟩. We use as

‘equal’ evidence predicate and state:

q = 1
2 · 1a +

1
3 · 1b +

1
6 · 1c and τ = 1

2 |a⟩ +
1
3 |b⟩ +

1
6 |c⟩.

We then get the following updates, according to Pearl and Jeffrey, respec-
tively:

σP = σ|c ≫= q σJ = c†σ =≪τ

= 425
839 |0⟩ +

414
839 |1⟩ and = 805675

1861904 |0⟩ +
1056229
1861904 |1⟩

≈ 0.5066|0⟩ + 0.4934|1⟩ ≈ 0.4327|0⟩ + 0.5673|1⟩.

The validities are summarised in the following table.

description formula value

prior validity c =≪σ |= q 0.31074
after Pearl c =≪σP |= q 0.31079

after Jeffrey c =≪σJ |= q 0.31019

The differences are small, but relevant. Pearl’s updating increases validity, as
Theorem 7.7.3 (1) dictates, but Jeffrey’s updating does not, in this example.

The divergences in this example are as follows.

description formula value

prior divergence DKL (τ, c =≪σ) 0.238
after Pearl DKL (τ, c =≪σP) 0.240

after Jeffrey DKL (τ, c =≪σJ) 0.221

Jeffrey’s rule decreases divergence, in line with Theorem 7.7.3 (2), but Pearl’s
updating does not. Is there a contradiction with Corollary 7.7.8, which does
involve a divergence decrease? No, since there the state τ has a very particu-
lar shape, namely (c =≪σ)|q. We conclude that for that particular state Pearl’s
rule gives a divergence decrease, but there is no such decrease in general.

Thus, we conclude that, in general, validity increase works exclusively for
Pearl’s rule, and divergence decrease works exclusively for Jeffrey’s rule.
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Exercises

7.7.1 Check for yourself the claimed outcomes in Example 7.7.5:

1 ω|π2 ≫= 1e

[
1, 0

]
= 4

5 |c⟩ +
1
5 |c

⊥ ⟩;
2 ω′ B (π1)†ω =≪ρ = 1

10 |c, e⟩ +
1
40 |c, e

⊥ ⟩ + 7
40 |c

⊥, e⟩ + 7
10 |c

⊥, e⊥ ⟩;
3 ω′|π2 ≫= 1e

[
1, 0

]
= 4

11 |c⟩ +
7

11 |c
⊥ ⟩.

7.7.2 This example is taken from [43], where it is attributed to Whitworth:
there are three contenders A, B,C for winning a race with a prori dis-
tribution ω = 2

11 |A⟩ +
4

11 |B⟩ +
5
11 |C ⟩. Surprising information comes

in that A’s chances have become 1
2 . What are the adapted chances of

B and C?

1 Split up the sample space X = {A, B,C} into a suitable two-element
partition via a function f : X → 2.

2 Use the uniform distribution unif = 1
2 |1⟩+

1
2 |0⟩ on 2 and show that

Jeffrey’s rule gives as adapted distribution:

f †ω =≪unif = 1
2 · ω|1{A} +

1
2 · ω|1{B,C} =

1
2 |A⟩ +

2
9 |B⟩ +

5
18 |C ⟩.

7.7.3 The next illustration is attributed to Jeffrey, and is reproduced for in-
stance in [21, 37]. We consider three colors: green (g), blue (b) and
violet (v), which are combined in a space C = {g, b, v}. These colors
apply to cloths, which can additionally be sold or not, as represented
by the space S = {s, s⊥}. There is a prior joint distribution τ on C × S ,
namely:

ω = 3
25 |g, s⟩ +

9
50 |g, s

⊥ ⟩ + 3
25 |b, s⟩ +

9
50 |b, s

⊥ ⟩ + 8
25 |v, s⟩ +

2
25 |v, s

⊥ ⟩.

A cloth is inspected by candlelight and the following likelihoods are
reported per color: 70% certainty that it is green, 25% that it is blue,
and 5% that it is violet.

1 Compute the two marginals ω1 B ω
[
1, 0

]
∈ D(C) and ω2 B

ω
[
0, 1

]
∈ D(S ) and show that we can write the joint state ω in

two ways as:

⟨c, id ⟩ =≪ω2 = ω = ⟨id , d⟩ =≪ω1

for channels c B ω
[
1, 0

∣∣∣ 0, 1] : S → C and d B ω
[
0, 1

∣∣∣ 1, 0] : C →
S , given by: c(s) = 3

14 |b⟩ +
3
14 |b⟩ +

8
14 |v⟩

c(s⊥) = 9
22 |b⟩ +

9
22 |b⟩ +

2
11 |v⟩


d(g) = 2

5 | s⟩ +
3
5 | s

⊥ ⟩

d(b) = 2
5 | s⟩ +

3
5 | s

⊥ ⟩

d(v) = 4
5 | s⟩ +

1
5 | s

⊥ ⟩.

These channels c, d are each other’s daggers, see Theorem 7.2.1 (2).
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2 Capture the above inspection evidence as a predicate q on C and
show that Pearl’s rule gives:

ω2|c ≫= q =
(
ω|q⊗1

)[
0, 1

]
= d =≪

(
ω1|q

)
= 26

61 | s⟩ +
35
61 | s

⊥ ⟩.

3 Describe the evidence now as a state τ on C and show that Jeffrey’s
rule gives:

d =≪τ =
((
π1

)†
ω =≪τ

)[
0, 1

]
= 21

50 | s⟩ +
29
50 | s

⊥ ⟩.

4 Check also that:

⟨id , c⟩ =≪τ =
(
π1

)†
ω =≪τ = 7

25 |g, s⟩ +
21
50 |g, s

⊥ ⟩
)
+ 1

10 |b, s⟩
+ 3

20 |b, s
⊥ ⟩

)
+ 1

25 |v, s⟩ +
1

100 |v, s
⊥ ⟩.

The latter outcome is given in [37].

7.7.4 The following alarm example is in essence due to Pearl [145], see
Example 6.1.2 (2) and also [37, §3.6]; we have adapted the numbers
in order to make the calculations a little bit easier. There is an ‘alarm’
set A = {a, a⊥} and a ‘burglary’ set B = {b, b⊥}, with the following a
priori joint distribution on A × B.

ω = 1
200 |a, b⟩ +

7
500 |a, b

⊥ ⟩ + 1
1000 |a

⊥, b⟩ + 98
100 |a

⊥, b⊥ ⟩.

Someone reports that the alarm went off, but with only 80% certainty
because of deafness.

1 Translate the alarm information into a predicate p : A→ [0, 1] and
show that crossover updating leads to a burglary distribution:

ω|p⊗1
[
0, 1

]
= 3

151 |b⟩ +
148
151 |b

⊥ ⟩

≈ 0.02|b⟩ + 0.98|b⊥ ⟩.

2 Compute the extracted channel c B ω
[
1, 0

∣∣∣ 0, 1] : B→ A as in The-
orem 7.2.1, and express the answer in the previous item in terms of
Pearl’s update rule / backward inference using c.

3 Use the Bayesian inversion / dagger d B c†ω[0,1] : A → B of this
channel c to calculate the outcome of Jeffrey’s update rule as:

d =≪
( 4

5 |a⟩ +
1
5 |a

⊥ ⟩
)
= 19639

93195 |b⟩ +
73556
93195 |b

⊥ ⟩

≈ 0.21|b⟩ + 0.79|b⊥ ⟩.

(Notice again the considerable difference in outcomes between Pearl
and Jeffrey.)

536



7.7. Pearl’s and Jeffrey’s update rules 5377.7. Pearl’s and Jeffrey’s update rules 5377.7. Pearl’s and Jeffrey’s update rules 537

7.7.5 Recall from Example 7.7.2 the Jeffrey update:

σ1 B c†σ =≪ρ = 278
519 |d ⟩ +

278
519 |d

⊥ ⟩.

Suppose we have another evidence state ρ = 3
5 | p⟩ +

2
5 |n⟩. Compute:

1 c†σ1 =≪ρ;
2 σ2 B c†σ =≪ρ;
3 c†σ2 =≪τ.

The first and third items produce different results, which proves Propo-
sition 7.7.6 (4).

7.7.6 Consider a channel c : X → Y with prior σ ∈ D(X) and evidence
distribution τ ∈ D(Y). Assume that τ is a point state 1|z⟩, for some
z ∈ Y . Write ω B ⟨id , c⟩ =≪σ ∈ D(X × Y).

1 Show that the Jeffrey-updated joint state ω′ B (π2)†ω =≪τ ∈ D(X ×
Y) is of the form:

ω′ = σ|c ≫= 1z ⊗ 1|z⟩.

2 Verify that the double-dagger channel c′ B
(
c†σ

)†
τ : X → Y is ex-

tremely trivial, namely a ‘constant-point’ channel, that is, of the
form c′(x) = 1|z⟩ for all x ∈ X.

7.7.7 Jeffrey’s rule is frequently formulated (notably in [66], to which we
refer for details) and used (like in Exercise 7.7.2), in situations where
the channel involved is deterministic, see Lemma 7.1.3. Consider an
arbitrary function f : X → I, giving a partition of the set X via subsets
Ui B f −1(i) = {x ∈ X | f (x) = i}. Let ω ∈ D(X) be a prior.

1 Show that applying Jeffrey’s rule to a new state of affairs ρ ∈ D(I)
gives as posterior:

f †ω =≪ρ =
∑
i∈I

ρ(i) · ω|1Ui
satisfying f =≪

(
f †ω =≪ρ

)
= ρ.

2 Prove the following minimal-distance result:

d
(
f †ω =≪ρ, ω) =

∧
{d(ω,ω′) | ω′ ∈ D(X) with f =≪ω′ = ρ},

where d is the total variation distance from Section 4.5.

7.7.8 Prove that for a general, not-deterministic channel c : X → Y with
prior state ω ∈ D(X) and state ρ ∈ D(Y), there is an inequality:

d
(
c†ω =≪ρ, ω) ≤

∧
ω′∈D(X)

d(ω,ω′) + d(c =≪ω′, ρ).
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7.8 Factorisation of joint states

Earlier, in Subsection 2.3.2, we have called a binary joint distribution non-
entwined when it is the product of its marginals. This can be seen as an intrinsic
property of the distribution, which we will now express in terms of a string
diagram, called its shape. For instance, the state:

ω = 1
4 |a, b⟩ +

1
2 |a, b

⊥ ⟩ + 1
12 |a

⊥, b⟩ + 1
6 |a

⊥, b⊥ ⟩

is non-entwined: it is the product of its marginals ω
[
1, 0

]
= 3

4 |a⟩ +
1
4 |a

⊥ ⟩ and
ω
[
0, 1

]
= 1

3 |b⟩ +
2
3 |b

⊥ ⟩. We will formulate this as:

ω has shape
or as:

ω factorises as
and write this as: ω |≈ .

We shall give a formal definition of |≈ below, but at this stage it suffices to read
σ |≈ S , for a distribution σ and a string diagram S , as: there is an interpretation
of the boxes in S that produces σ.

In the above case of ω |≈ we obtain ω = ω1 ⊗ω2, for some state ω1 that
interpretes the box on the left, and some ω2 interpreting the box on the right.
But then:

ω
[
1, 0

]
=

(
ω1 ⊗ ω2

)[
1, 0

]
= ω1.

Similarly, ω
[
0, 1

]
= ω2. Thus, in this case the interpretations of the boxes are

uniquely determined, namely as first and second marginal of ω.
We conclude that non-entwinedness of an arbitrary binary joint state ω can

be expressed as: ω |≈ . Here we are interested in similar intrinsic ‘shape’
properties of states and channels that can be expressed via string diagrams.
These matters are often discussed in the literature in terms of (conditional)
independencies. Here we prefer to use shapes instead of independencies since
they are more expressive.

In general there may be several interpretations of a string diagram (as shape).
Consider for instance the statement:

14
25 |H ⟩ +

11
25 |T ⟩ |≈

The distribution on the left-hand-side matches the shape on the right-hand-side
in multiple ways, for instance as:

c1 =≪σ1 =
14
25 |H ⟩ +

11
25 |T ⟩ = c2 =≪σ2
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for:

σ1 =
1
5 |1⟩ +

4
5 |0⟩ σ2 =

2
5 |1⟩ +

3
5 |0⟩

c1(1) = 4
5 |H ⟩ +

1
5 |T ⟩ and c2(1) = 1

2 |H ⟩ +
1
2 |T ⟩

c1(0) = 1
2 |H ⟩ +

1
2 |T ⟩ c2(0) = 3

5 |H ⟩ +
2
5 |T ⟩.

We note that is not an ‘accessible’ string diagram: the wire inbetween the

two boxes cannot be accessed from the outside. If these wires are accessible,
then we can access the individual boxes of a string diagram and use disintegra-
tion to compute them. We illustrate how this works.

Example 7.8.1. Consider two-element sets A = {a, a⊥}, B = {b, b⊥}, C = {c, c⊥}
and D = {d, d⊥} and an (accessible) string diagram S of the form:

S =

σ

gf

A BC D

(7.32)

Now suppose we have a joint distribution ω ∈ D(A ×C × D × B) given by:

ω = 1
25 |a, c, d, b⟩ +

9
50 |a, c, d, b

⊥ ⟩ + 3
50 |a, c, d

⊥, b⟩ + 1
50 |a, c, d

⊥, b⊥ ⟩
+ 1

25 |a, c
⊥, d, b⟩ + 9

50 |a, c
⊥, d, b⊥ ⟩ + 3

50 |a, c
⊥, d⊥, b⟩

+ 1
50 |a, c

⊥, d⊥, b⊥ ⟩ + 3
125 |a

⊥, c, d, b⟩ + 9
500 |a

⊥, c, d, b⊥ ⟩
+ 9

250 |a
⊥, c, d⊥, b⟩ + 1

500 |a
⊥, c, d⊥, b⊥ ⟩ + 12

125 |a
⊥, c⊥, d, b⟩

+ 9
125 |a

⊥, c⊥, d, b⊥ ⟩ + 18
125 |a

⊥, c⊥, d⊥, b⟩ + 1
125 |a

⊥, c⊥, d⊥, b⊥ ⟩

We ask ourselves: does ω |≈ S hold? More specifically, can we somehow ob-
tain interpretations of the boxes σ, f and g in S so that ω emerges? We shall
show that by appropriately using marginalisation and disintegration we can
‘factorise’ this joint state according to the above string diagram.

First we can obtain the state σ ∈ D(A× B) by discarding the C,D outputs in
the middle, as in:

σ

gf

σ

σ
= =
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We can thus compute σ as:

σ = ω
[
1, 0, 0, 1

]
=

 ∑
u∈C, v∈D

ω(a, u, v, b)

 |a, b⟩ +
 ∑

u∈C, v∈D

ω(a, u, v, b⊥)

 |a, b⊥ ⟩
+

 ∑
u∈C, v∈D

ω(a⊥, u, v, b)

 |a⊥, b⟩ +
 ∑

u∈C, v∈D

ω(a⊥, u, v, b⊥)

 |a⊥, b⊥ ⟩
=

( 1
25 +

3
50 +

1
25 +

3
50

)
|a, b⟩ +

( 9
50 +

1
50 +

9
50 +

1
50

)
|a, b⊥ ⟩

+
( 3

125 +
9

250 +
12
125 +

18
125

)
|a⊥, b⟩ +

( 9
500 +

1
500 +

9
125 +

1
125

)
|a⊥, b⊥ ⟩

= 1
5 |a, b⟩ +

2
5 |a, b

⊥ ⟩ + 3
10 |a

⊥, b⟩ + 1
10 |a

⊥, b⊥ ⟩.

Next we concentrate on the channels f and g, from A to C and from B to D.
We first illustrate how to restrict the string diagram to the relevant part via
marginalisation. For f we concentrate on:

σ

f

σ

f
= =

σ

gf

The string diagram on the right tells us that we can obtain f via disintegration
from the marginal ω

[
1, 1, 0, 0

]
, using that extracted channels are unique, in dia-

grams of this form, see (7.8). In the same way one obtains g from the marginal
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ω
[
0, 0, 1, 1

]
. Thus:

f = ω
[
0, 1, 0, 0

∣∣∣ 1, 0, 0, 0]
=


a 7→

∑
v,y ω(a, c, v, y)∑

u,v,y ω(a, u, v, y)
|c⟩ +

∑
v,y ω(a, c⊥, v, y)∑
u,v,y ω(a, u, v, y)

|c⊥ ⟩

a⊥ 7→

∑
v,y ω(a⊥, c, v, y)∑

u,v,y ω(a⊥, u, v, y)
|c⟩ +

∑
v,y ω(a⊥, c⊥, v, y)∑
u,v,y ω(a⊥, u, v, y)

|c⊥ ⟩

=

 a 7→ 1
2 |c⟩ +

1
2 |c

⊥ ⟩

a⊥ 7→ 1
5 |c⟩ +

4
5 |c

⊥ ⟩

g = ω
[
0, 0, 1, 0

∣∣∣ 0, 0, 0, 1]
=


b 7→

∑
x,u ω(x, u, d, b)∑

x,u,v ω(x, u, v, b)
|d ⟩ +

∑
x,u ω(x, u, d⊥, b)∑
x,u,v ω(x, u, v, b)

|d⊥ ⟩

b⊥ 7→
∑

x,u ω(x, u, d, b⊥)∑
x,u,v ω(x, u, v, b⊥)

|d ⟩ +
∑

x,v ω(x, u, d⊥, b⊥)∑
x,u,v ω(x, u, v, b⊥)

|d⊥ ⟩

=

 b 7→ 2
5 |d ⟩ +

3
5 |d

⊥ ⟩

b⊥ 7→ 9
10 |d ⟩ +

1
10 |d

⊥ ⟩.

At this stage one can check that the joint distribution ω can be reconstructed
from these extracted state and channels, namely as:

ω = (id ⊗ f ⊗ g ⊗ id ) =≪
(
(∆ ⊗ ∆) =≪σ

)
=

(
⟨id , f ⟩ ⊗ ⟨g, id ⟩

)
=≪σ.

This proves ω |≈ S .

The following illustration is a classical one, showing how seemingly differ-
ent shapes are related. It is often used to describe conditional independence —
in this case of A,C, given B.

Theorem 7.8.2. Let a state ω ∈ D(A × B ×C) have full support.

1 There are equivalences:

ω |≈ ⇐⇒ ω |≈ ⇐⇒ ω |≈

2 These equivalences can be extended as:

ω |≈ ⇐⇒
(
ω|1⊗1b⊗1

)[
1, 0, 1

]
|≈ for all b ∈ B.

The string diagrams on the left in item (1) is often called a fork; the other
two are called a chain. In item (2) this shape is related to non-entwinedness,
pointwise.
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Proof. 1 Sinceω has full support, so have all its marginals, see Exercise 2.3.1.
This allows us to perform all disintegrations below. We start on the left-hand
side, and assume an interpretation ω = ⟨c, id , d⟩ =≪ τ, consisting of a state
τ = ω

[
0, 1, 0

]
∈ D(B) and channels c : B → A and d : B → C. We write

σ = c =≪τ = ω
[
1, 0, 0

]
and take the Bayesian inversion c†τ : A→ B. We now

have an interpretation of the string diagram in the middle, which is equal to
ω, since by (7.2):

σ

c†τ

d

c

c†τ

d

=

τ

=

τ

d

=c

τ

d
=

c
ω

Similarly one obtains an interpretation of the string diagram on the right via
ρ = d =≪τ = ω

[
0, 0, 1

]
and the inversion d†τ : C → B.

In the direction (⇐) one uses Bayesian inversion in a similar manner to
transform one interpretation into another one.

2 The direction (⇒) is easy and is left to the reader. In fact, Proposition 7.8.3 (1)
below gives a slightly stronger result.

We concentrate on (⇐). By assumption, for b ∈ B we can write:(
ω|1⊗1b⊗1

)[
1, 0, 1

]
= σb ⊗ τb for σb ∈ D(A), τb ∈ D(C).

In a next step we define channels f : B → A and g : B → C and a state
ρ ∈ D(B) as:

f (b) B σb g(b) B τb ρ B ω
[
0, 1, 0

]
.

Then, for x ∈ A and z ∈ C,

f (b)(x) · g(b)(z) =
(
f (b) ⊗ g(b)

)
(x, z) =

(
σb ⊗ τb

)
(x, z)

=
(
ω|1⊗1b⊗1

)[
1, 0, 1

]
(x, z)

=
∑

y

ω(x, y, z) · 1b(y)
ω |= 1 ⊗ 1b ⊗ 1

=
ω(x, b, z)

ω
[
0, 1, 0

]
|= 1b

=
ω(x, b, z)
ρ(b)

.
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Now we see that ω has a fork shape:

ω(y, b, z) = f (b)(x) · g(b)(z) · ρ(b) =
(
⟨ f , id , g⟩ =≪ρ

)
(y, b, z).

What the first item of this result shows is that (sub)shapes of the form:

can be changed into

and vice-versa. We knew this already from Theorem 7.2.1. By applying these
transformations directly to the shapes in Theorem 7.8.2 the equivalences ⇔
can be obtained.

We have seen that a distribution can have a certain shape. An interesting
question that arises is: what happens to such a shape when the distribution is
updated? The result below answers this question, much like in [97], for three
basic shapes, called fork, chain and collider,

Proposition 7.8.3. Let ω ∈ D(X × Y × Z) be an arbitrary distribution and let
q ∈ Fact(Y) be a factor on its middle component Y. We write a ∈ Y for an
arbitrary element with associated point predicate 1a.

1 Let ω have fork shape:

ω |≈ then also ω|1⊗q⊗1 |≈ .

In the special case of conditioning with a point predicate we get:

ω|1⊗1a⊗1 |≈ .

where the middle box is 1|a⟩.
2 If ω has a chain shape:

ω |≈ then also ω|1⊗q⊗1 |≈ .

3 Let ω have collider shape:

ω |≈ then ω|1⊗q⊗1 |≈

For this shape it does not matter if q is a point predicate or not.

Proof. 1 Let’s assume we have an interpretation ω = ⟨c, id , d⟩ =≪ σ, for
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c : Y → X, d : Y → Z and σ ∈ D(Y). Then:

ω|1⊗q⊗1 =
(
⟨c, id , d⟩ =≪σ

)
|1⊗q⊗1

= ⟨c, id , d⟩|1⊗q⊗1 =≪σ|⟨c,id ,d⟩ ≫= (1⊗q⊗1)
)

by Corrolary 6.3.5 (2)
= ⟨c, id , d⟩ =≪σ|q by Exercises 6.1.12

and Lemma 4.3.2 (7).

Hence we see the same shape that ω has.
In the special case when q = 1a we can extend the above calculation and

obtain a parallel product of states:

ω|1⊗1a⊗1 = ⟨c, id , d⟩ =≪(σ|1a ) as just shown
=

(
(c ⊗ id ⊗ d) ◦· ∆3

)
=≪1|a⟩ by Lemma 6.1.6 (2)

= (c ⊗ id ⊗ d) =≪
(
∆3 =≪1|a⟩

)
= (c ⊗ id ⊗ d) =≪

(
1|a⟩ ⊗ 1|a⟩ ⊗ 1|a⟩

)
= (c =≪1|a⟩) ⊗ 1|a⟩ ⊗ (d =≪1|a⟩)
= c(a) ⊗ 1|a⟩ ⊗ d(a).

2 By the previous point and Theorem 7.8.2.
3 Let’s assume as interpretation of the collider shape:

ω =
(
id ⊗ c ⊗ id

)
=≪
(
(∆ ⊗ ∆) =≪(σ ⊗ τ)

)
,

for states σ ∈ D(X) and τ ∈ D(Z) and channel c : X × Z → Y . Then:

ω|1⊗q⊗1

=
((

id ⊗ c ⊗ id
)

=≪
(
(∆ ⊗ ∆) =≪(σ ⊗ τ)

))∣∣∣
1⊗q⊗1

=
(
id ⊗ c|q ⊗ id

)
=≪
((

(∆ ⊗ ∆) =≪(σ ⊗ τ)
)∣∣∣

1⊗(c ≫= q)⊗1

)
by Corrolary 6.3.5 (3)

=
(
id ⊗ c|q ⊗ id

)
=≪
(
(∆ ⊗ ∆)|1⊗(c ≫= q)⊗1 =≪

(
(σ ⊗ τ)

∣∣∣
(∆⊗∆) ≫= (1⊗(c ≫= q)⊗1)

)
by Theorem 6.3.4

=
(
id ⊗ c|q ⊗ id

)
=≪
(
(∆ ⊗ ∆) =≪

(
(σ ⊗ τ)

∣∣∣
(∆⊗∆) ≫= (1⊗(c ≫= q)⊗1)

)
by Exercise 6.1.11.

The updated state (σ⊗ τ)
∣∣∣
(∆⊗∆) ≫= (1⊗(c ≫= q)⊗1) is typically entwined, even if q is

a point predicate, see also Exercise 6.1.9.

The fact that conditioning with a point predicate destroys the shape is an
important phenomenon since it allows us to break entwinedness / correlations.
This is relevant in statistical analysis, esp. w.r.t. causality [147, 148], see the
causal surgery procedure in Section ??. In such a context, conditioning on a
point predicate is often expressed in terms of ‘controlling for’. For instance, if
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there is a gender component G = {m, f } with elements m for male and f for
female, then conditioning with a point predicate 1m or 1 f , suitably weakenend
via tensoring with truth 1, amounts to controlling for gender. Via restriction to
one gender value one fragments the shape and thus controls the influence of
gender in the situation at hand.

Exercises

7.8.1 Check the aim of Exercise 2.3.2 really is to prove the shape statement

ω |≈

for the (ternary) state ω defined there.
7.8.2 Prove that a collider shape leads to non-entwinedness:

ω |≈ =⇒ ω
[
1, 0, 1

]
|≈

7.8.3 Prove the following items, which are known as the ‘semigraphoid’
properties, see [179, 60]; they are seen as the basic rules of conditional
independence.

1 Symmetry: ω |≈ implies ⟨π3, π2, π1⟩ =≪ω |≈ .

2 Decomposition: ω |≈ implies ω
[
0, 1, 1, 1

]
|≈

3 Weak union: ω |≈ implies ω |≈

Hint: Apply disintegration to the upper-left box.

4 Contraction: if ω |≈ and also ω
[
1, 1, 1, 0

]
|≈ then

ω |≈ .

Hint: Form a suitable combination of the two upper-right boxes in
the assumptions.

7.9 Categorical aspects of Bayesian inversion

As mentioned in the beginning of this chapter the ‘dagger’ of a channel —
i.e. its Bayesian inversion — can also be described categorically. It turns out
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to be a special ‘dagger’ functor. Such reversal is quite common for non-deter-
ministic computation, see Example 7.9.1 below. The fact that this same ab-
stract structure exists for probabilistic computation demonstrates once again
that Bayesian inversion is a canonical operation — and that category theory
provides a useful language for making such similarities explicit.

This section goes a bit deeper into the category-theoretic aspects of proba-
bilistic computation in general and of Bayesian inversion in particular. It is not
essential for the rest of this book, but provides deeper insight into the underly-
ing structures.

Example 7.9.1. Recall the category Chan(P) of non-deterministic compu-
tations. Its objects are sets X and its morphisms f : X → Y are functions
f : X → P(Y). The identity morphism unit X : X → X in Chan(P) is the sin-
gleton function unit(x) = {x}. Composition of f : X → Y and g : Y → Z is the
function g ◦· f : X → Z given by:(

g ◦· f
)
(x) =

{
z ∈ Z

∣∣∣ ∃y ∈ Y. y ∈ f (x) and z ∈ g(y)
}
.

It is not hard to see that ◦· is associative and has unit as identity element. In
fact, this has already been proven more generally, in Lemma 1.10.3.

There are two aspects of the category Chan(P) that we wish to illustrate,
namely (1) that it has an ‘inversion’ operation, in the form of a dagger functor,
and (2) that it is isomorphic to the category Rel of sets with relations between
them (as morphisms). Probabilistic analogues of these two points will be de-
scribed later.

1 We start from a very basic observation, namely that morphisms in Chan(P)
can be reversed. There is a bijective correspondence, indicated by the double
lines, between morphisms in Chan(P):

X ◦ // Y
============
Y ◦ // X

that is, between functions:
X

f
// P(Y)

===============
Y g

// P(X)

This correspondence sends f : X → P(Y) to the function f † : Y → P(X)
with f †(y) B {x | y ∈ f (x)}. Hence y ∈ f (x) iff x ∈ f †(y). Similarly one
sends g : Y → P(X) to g† : X → P(Y) via g†(x) B {y | x ∈ g(y)}. Clearly,
f †† = f and g†† = g.

It turns out that this dagger operation (−)† interacts nicely with compo-
sition: one has unit† = unit and also (g ◦· f )† = f † ◦· g†. This means that
the dagger is functorial. It can be described as a functor (−)† : Chan(P) →
Chan(P)op, which is the identity on objects: X† = X. The opposite (−)op

category is needed for this functor since it reverses arrows.
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2 We write Rel for the category with sets X as objects and relations R ⊆ X ×Y
as morphisms X → Y . The identity X → X is given by the equality relation
EqX ⊆ X × X, with EqX = {(x, x) | x ∈ X}. Composition of R ⊆ X × Y and
S ⊆ X × Z is the ‘relational’ composition S • R ⊆ X × Z given by:

S • R B
{
(x, z)

∣∣∣ ∃y ∈ Y.R(x, y) and S (y, z)
}
.

It is not hard to see that we get a category in this way.
There is a ‘graph’ functor G : Chan(P) → Rel, which is the identity

on objects: G(X) = X. On a morphism f : X → Y , that is, on a function
f : X → P(Y), we define G( f ) ⊆ X×Y to be G( f ) = {(x, y) | x ∈ X, y ∈ f (x)}.
Then: G(unit X) = EqX and G(g ◦· f ) = G( f ) • G( f ).

In the other direction there is also a functor F : Rel → Chan(P), which
is again the identity on objects: F(X) = X. On a morphism R : X → Y
in Rel, that is, on a relation R ⊆ X × Y , we define F(R) : X → P(Y) as
F(R)(x) = {y | R(x, y)}. This F preserves identities and composition.

These two functors G and F are each other’s inverses, in the sense that:

F ◦ G = id : Chan(P)→ Chan(P) and G ◦ F = id : Rel→ Rel.

This establishes an isomorphism Chan(P) � Rel of categories.
Interestingly, Rel is also a dagger category, via the familar operation of

reversal of relations: for R ⊆ X × Y one can form R† ⊆ Y × X via R†(y, x) =
R(x, y). This yields a functor (−)† : Rel→ Relop, obviously with (−)†† = id .

Moreover, the above functors G and F commute with the daggers of
Chan(P) and Rel, in the sense that:

G( f †) = G( f )† and F(R†) = F(R)†.

We shall prove the first equation and leave the second one to the interested
reader. The proof is obtained by carefully unpacking the right definition at
each stage. For a function f : X → P(Y) and elements x ∈ X, y ∈ Y ,

G( f †)(y, x) ⇔ x ∈ f †(y) ⇔ y ∈ f (x) ⇔ G( f )(x, y) ⇔ G( f )†(y, x).

We now move from non-deterministic to probabilistic computation. Our aim
is to obtain analogous results, namely inversion in the form of a dagger functor
on a category of probabilistic channels, and an isomorphism of this category
with a category of probabilistic relations. One may expect that these results
hold for the category Chan(D) of probabilistic channels. But the situation is
a bit more subtle. Recall from the previous section that the dagger (Bayesian
inversion) c†ω : Y → X of a probabilistic channel c : X → Y requires a ‘prior’
distributionω ∈ D(X) on the domain — with side-condition that c =≪ω has full
support. In order to conveniently deal with this situation we incorporate these
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distributions ω into the objects of our category. We follow [27] and denote this
category as Krn; its morphisms are ‘kernels’.

Definition 7.9.2. The category Krn of kernels has:

• objects: pairs (X, σ) where X is a finite set and σ ∈ D(X) is a distribution on
X with full support;

• morphisms: f : (X, σ) → (Y, τ) are probabilistic channels f : X → Y with
f =≪σ = τ.

Identity maps (X, σ) → (X, σ) in Krn are identity channels unit : X → X,
given by unit(x) = 1| x⟩, which we write simply as id . Composition in Krn is
ordinary composition ◦· of channels.

Theorem 7.9.3. Bayesian inversion forms a dagger functor (−)† : Krn →
Krnop which is the identity on objects and which sends:(

(X, σ)
f
−→ (Y, τ)

)
7−→

(
(Y, τ)

f †σ
−→ (X, σ)

)
This functor is its own inverse: f †† = f .

Proof. We first have to check that the dagger functor is well-defined, i.e. that
the above mapping yields another morphism in Krn.

f †σ =≪τ = f †σ =≪( f =≪σ)
(7.3)
= σ.

Aside: this does not mean that f † ◦· f = id .
Identities and composition in Krn are preserved by Lemma 7.1.8 (3) and (2).

Finally we have
(
f †σ

)†
τ = f by Lemma 7.1.8 (4).

We now turn to probabilistic relations, with the goal of finding a category of
such relations that is isomorphic to Krn. For this purpose we use couplings.
For more information on such couplings, see e.g. [12].

Definition 7.9.4. We introduce a category Cpl of couplings with the same
objects as Krn. A morphism (X, σ)→ (Y, τ) in Cpl is a joint state φ ∈ D(X×Y)
with φ

[
1, 0

]
= σ and φ

[
0, 1

]
= τ. Such a distribution which marginalises to σ

and τ is called a coupling between σ and τ, see Definition 3.1.5.
Composition of φ : (X, σ) → (Y, τ) and ψ : (Y, τ) → (Z, ρ) is the distribution

ψ • φ ∈ D(X × Z) defined as:

ψ • φ B ⟨φ
[
1, 0

∣∣∣ 0, 1], ψ[0, 1 ∣∣∣ 1, 0]⟩ =≪τ

=
∑

x∈X, z∈Z

∑
y∈Y

φ(x, y) · ψ(y, z)
τ(y)

 ∣∣∣ x, z〉. (7.33)

The identity coupling Eq(X,σ) : (X, σ)→ (X, σ) is the distribution ∆ =≪σ.
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The essence of the following result is due to [27], but there it occurs in
slightly different form, namely in a setting of continuous probability. Here it is
transferred to the discrete situation.

Theorem 7.9.5. Couplings as defined above indeed form a category Cpl.

1 This category carries a dagger functor (−)† : Cpl → Cplop which is the
identity on objects; on morphisms it is defined via swapping:(

(X, σ)
φ
−→ (Y, τ)

)†
B

(
(Y, τ)

⟨π2,π1⟩ =≪φ
−−−−−−−→ (X, σ)

)
.

More concretely, this dagger is defined by swapping arguments, as in: φ† =∑
x,y φ(x, y)|y, x⟩.

2 There is an isomorphism of categories Krn � Cpl, in one direction by taking
the graph of a channel, and in the other direction by disintegration. This
isomorphism commutes with the daggers on the two categories.

Proof. We first need to prove that ψ • φ is a distribution:∑
x∈X, z∈Z

(ψ • φ)(x, z) =
∑

x∈X, y∈Y, z∈Z

φ(x, y) · ψ(y, z)
τ(y)

=
∑

y∈Y, z∈Z

(∑
x∈X φ(x, y)

)
· ψ(y, z)

τ(y)

=
∑

y∈Y, z∈Z

φ
[
0, 1

]
(y) · ψ(y, z)
τ(y)

=
∑

y∈Y, z∈Z

τ(y) · ψ(y, z)
τ(y)

=
∑

y∈Y, z∈Z

ψ(y, z) = 1.

We leave it to the reader to check that Eq(X,σ) = ∆ =≪σ is neutral element for
•. We do verify that • is associative — and thus that Cpl is indeed a category.
Let φ : (X, σ) → (Y, τ), ψ : (Y, τ) → (Z, ρ), χ : (Z, ρ) → (W, κ) be morphisms in
Cpl. Then:(

χ • (ψ • φ)
)
(x,w) =

∑
z∈Z

(ψ • φ)(x, z) · χ(z,w)
ρ(z)

=
∑

y∈Y, z∈Z

φ(x, y) · ψ(y, z) · χ(z,w)
τ(y) · ρ(z)

=
∑
y∈Y

φ(x, y) · (χ • ψ)(y,w)
τ(y)

=
(
(χ • ψ) • φ

)
(x,w).

We turn to the dagger. It is obvious that (−)†† is the identity functor, and also
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that (−)† preserves identity maps. It also preserves composition in Cpl since:(
ψ • φ

)†(z, x) =
(
ψ • φ

)
(x, z) =

∑
y∈Y

φ(x, y) · ψ(y, z)
τ(y)

=
∑
y∈Y

ψ†(z, y) · φ†(y, x)
τ(y)

=
(
φ† • ψ†

)
(z, x).

The graph operation on channels gives rise to an identity-on-objects ‘graph’
functor G : Krn→ Cpl via:

G
(
(X, σ)

f
−→ (Y, τ)

)
B

(
(Y, τ)

⟨id , f ⟩ =≪σ
−−−−−−−→ (X, σ)

)
.

This yields a functor since:

G
(
id (X,σ)

)
= ⟨id , id ⟩ =≪σ

= Eq(X,σ)

G
(
g ◦· f

)
(x, z) =

(
⟨id , g ◦· f ⟩ =≪σ

)
(x, z)

= σ(x) · (g ◦· f )(x)(z)

=
∑
y∈Y

σ(x) · f (x)(y) · g(y)(z)

=
∑
y∈Y

σ(x) · f (x)(y) · τ(y) · g(y)(z)
τ(y)

=
∑
y∈Y

(⟨id , f ⟩ =≪σ)(x, y) · (⟨id , g⟩ =≪τ)(y, z)
τ(y)

=
(
(⟨id , g⟩ =≪τ) • (⟨id , f ⟩ =≪σ)

)
(x, z)

=
(
G(g) • G( f )

)
(x, z).

In the other direction we define a functor F : Cpl → Krn which is the
identity on objects and uses disintegration on morphisms: for φ : (X, σ) →
(Y, τ) in Cpl we get a channel F(φ) B φ

[
0, 1

∣∣∣ 1, 0] : X → Y which satisfies, by
construction (7.8):

φ = ⟨id , φ
[
0, 1

∣∣∣ 1, 0]⟩ =≪φ
[
1, 0

]
= ⟨id , F(φ)⟩ =≪σ = GF(φ).

Moreover, F(φ) is a morphism (X, σ)→ (Y, τ) in Krn since:

F(φ) =≪σ = φ
[
0, 1

∣∣∣ 1, 0] =≪φ
[
1, 0

]
=

(
⟨id , φ

[
0, 1

∣∣∣ 1, 0]⟩ =≪φ
[
1, 0

])[
0, 1

] (7.8)
= φ

[
0, 1

]
= τ.

We still need to prove that F preserves identities and composition. This fol-
lows by uniqueness of disintegration. We get F(Eq(X,σ)) = id F(X,σ) from:

⟨id , F(Eq(X,σ))⟩ =≪σ = Eq(X,σ) = ∆ =≪σ = ⟨id , id ⟩ =≪σ.
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Next, the equation F(ψ • φ) = F(ψ) ◦· F(φ) follows from:

⟨id , F(ψ • φ)⟩ =≪σ

= ψ • φ by definition
(7.33)
= ⟨φ

[
1, 0

∣∣∣ 0, 1], ψ[0, 1 ∣∣∣ 1, 0]⟩ =≪τ

= (id ⊗ ψ
[
0, 1

∣∣∣ 1, 0]) =≪
(
⟨φ

[
1, 0

∣∣∣ 0, 1], id ⟩ =≪
(
φ
[
1, 0

∣∣∣ 0, 1] =≪σ
))

= (id ⊗ F(ψ)) =≪
(
⟨F(φ)†, id ⟩ =≪

(
F(φ) =≪σ

))
by Exercise 7.2.7

(7.8)
= (id ⊗ F(ψ)) =≪

(
⟨id , F(φ)⟩ =≪σ

)
= ⟨id , F(ψ) ◦· F(φ)⟩ =≪σ.

We have seen that, by construction, G ◦ F is the identity functor on the
category Cpl. In the other direction we also have F ◦ G = id : Krn → Krn.
This follows directly from uniqueness of disintegration.

In the end we like to show that the functors G and F commute with the dag-
gers, on kernels and couplings. This works as follows. First, for f : (X, σ) →
(Y, τ) we have:

G
(
f †

)
(y, x) =

(
⟨id , f †⟩ =≪τ

)
(y, x) = τ(y) · f †σ(y)(x)

(7.1)
= ( f =≪σ)(y) ·

σ(x) · f (x)(y)
( f =≪σ)(y)

= σ(x) · f (x)(y)
=

(
⟨id , f ⟩ =≪σ

)
(x, y)

= G( f )(x, y) = G( f )†(y, x).

Next, for φ : (X, σ)→ (Y, τ) in Cpl,

F
(
φ†

)
(y)(x) = φ†

[
0, 1

∣∣∣ 1, 0](y)(x)
(7.9)
=

φ†(y, x)
φ†

[
1, 0

]
(y)

=
φ(x, y)
φ
[
0, 1

]
(y)

= φ
[
1, 0

∣∣∣ 0, 1](y)(x)
=

(
φ
[
0, 1

∣∣∣ 1, 0])†(y)(x) by Exercise 7.2.7
= F(φ)†(y)(x).

We have done a lot of work in order to be able to say that Krn and Cpl are
isomorphic dagger categories, or, more informally, that there is a one-one cor-
respondence between probabilistic computations (channels) and probabilistic
relations.
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Exercises

7.9.1 Prove in the context of the powerset channels of Example 7.9.1 that:

1 unit† = unit and (g ◦· f )† = f † ◦· g†.
2 G(unit X) = EqX and G(g ◦· f ) = G( f ) • G( f ).
3 F(EqX) = unit X and F(S • R) = F(S ) ◦· F(R).
4 (S • R)† = R† • S †.
5 F(R†) = F(R)†.

7.9.2 1 Define tensors ⊗ on the category of kernels, as a functor Krn ×
Krn→ Krn.

2 Prove that the dagger functor on Krn preseves these tensors: ( f ⊗
g)† = f † ⊗ g†.

7.9.3 Prove the equation = in the definition (7.33) of composition • in the
category Cpl. Give also a string diagrammatic description of •.
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