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Abstract
Various generalizations of Boolean algebras are being studied in algebraic quantum

logic, including orthomodular lattices, orthomodular posets, orthoalgebras and effect
algebras. This paper contains a systematic study of the structure in and between cate-
gories of such algebras. It does so via a combination of totalization (of partially defined
operations) and transfer of structure via coreflections.

1 Introduction
The algebraic study of quantum logics focuses on structures like orthomodular lattices,
orthomodular posets, orthoalgebras and effect algebras, see for instance [3, 4, 8]. This
paper takes a systematic categorical look at these algebraic structures, concentrating on
(1) relations between these algebras in terms of adjunctions, and (2) categorical structure
of the categories of these algebras. Typical of these algebraic structures is that they involve
a partially defined sum operation > that can be interpreted either as join of truth values (in
orthomodular lattices/posets) or as sum of probabilities (in effect algebras).

The leading example of such a partially defined sum > is addition on the (real) unit
interval [0, 1] of probabilities: for x, y ∈ [0, 1] the sum x > y = x + y is defined only if
x+y ≤ 1. Because this operation > is so fundamental, the paper takes the notion of partial
commutative monoid (PCM) as starting point. An effect algebra, for instance, can then be
understood as an orthosupplemented PCM, in which for each element x there is a unique
element x⊥ with x> x⊥ = 1.

The paper studies algebraic quantum logics via a combination of:

• totalization of the partially defined operation > into a richer algebraic structure,
forming a coreflection with the original (partial) structures. Such a coreflection is
an adjunction where the left adjoint is a full and faithful functor;

• transfer of structure along these coreflections. It is well-known (see [1, I, prop.
3.5.3]) that limits and colimts can be transferred from one category to another if there
is a coreflection between them. Here we extend this result to include also transfer of
adjunctions and of monoidal structure.
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The paper concentrates on the following sequence of categories and inclusion functors,
starting with Boolean algebras and ending with partial commutative monoids.

BA � � // OML � � // OMP � � // OA � � // EA � � // PCM (1)

The main results of this paper include the existence of:

• left adjoints to all these inclusion functors. Due to the page limit the constructions
are ommited from this version of the paper.

• all limits and colimits in these categories

• symmetric monoidal structure in the categories OA, EA and PCM

Not all these results are new. Tensors for effect algebras are constructed explicitly
in [2, 5]. Here they simply arise from a transfer result based on coreflections. We should
add that the category OML of orthomodular lattices does not have a proper tensor [8].

2 Partial commutative monoids and effect algebras
Before introducing the main objects of study in this paper we first recall some basic notions
about commutative monoids and fix notation.

The free commutative monoid on a setA is written asM(A). It consists of finite multi-
sets n1a1+· · ·+nkak of elements ai ∈ A, with multiplicity ni ∈ N. Such multisets may be
seen as function ϕ : A→ N with finite support, i.e. the set sup(ϕ) = {a ∈ A | ϕ(a) 6= 0}
is finite. The commutative monoid structure onM(A) is then given pointwise by the struc-
ture in N, with addition (ϕ + ψ)(a) = ϕ(a) + ψ(a) and zero element 0(a) = 0. These
operations can be understood as join of multisets, with 0 as empty multiset.

The mappingA 7→ M(A) yields a left adjoint to the forgetful functor CMon→ Sets
from commutative monoids to sets. For a function f : A → B we have a homomorphism
of monoids M(f) : M(A) → M(B) given by (

∑
i niai) 7→ (

∑
i nif(ai)), or more

formally, byM(f)(ϕ)(b) =
∑

a∈f−1(b) ϕ(a). The unit ι : A →M(A) of the adjunction
may be written as ι(a) = 1a. If M = (M,+, 0) is a commutative monoid we can interpret
a multiset ϕ ∈ M(M) over M as an element [[ϕ ]] =

∑
x∈sup(ϕ) ϕ(x) · x, where n · x

is x + · · · + x, n times. In fact, this map [[− ]] is the counit of the adjunction mentioned
before. Each monoid M carries a preorder � given by: x � y iff y = x + z for some
z ∈M . In free commutative monoidsM(A) we get a poset order ϕ � ψ iff ϕ(a) ≤ ψ(a)
for all a ∈ A. Homomorphisms of monoids are monotone functions wrt. this order�. This
applies in particular to interpretations [[− ]] :M(M)→M .

Definition 2.1. A partial commutative monoid, or PCM, is a triple (M,>, 0) consisting of
a set M , an element 0 ∈ M and a partially defined binary operation > such that the three
axioms below are satisfied. We let the expression ‘x ⊥ y’ mean ‘x> y is defined’, and call
such elements x, y orthogonal.

1. x ⊥ y implies y ⊥ x and x> y = y > x.

2. y ⊥ z and x ⊥ (y>z) implies x ⊥ y and (x>y) ⊥ z and x>(y>z) = (x>y)>z.
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3. 0 ⊥ x and 0 > x = x.

An effect algebra is a PCM with a special element 1 and an additional unary operator
(−)⊥ called the orthosupplement such that

1. x⊥ is the unique element such that x> x⊥ = 1.

2. x ⊥ 1 implies x = 0.

An orthoalgebra is further required to satisfy the relation x ⊥ x implies x = 0.

In some texts (e.g. [3, 5]) it is required that 0 6= 1 however we allow {0} as an effect
algebra since it will be the final object in the category EA.

An obvious example of a PCM is the unit interval [0, 1] of real numbers, with x > y
defined, and equal to x+ y, iff this sum x+ y fits in [0, 1]. It even forms an effect algebra
with x⊥ = 1− x but it’s not an orthoalgebra since 1

2 ⊥
1
2 .

Definition 2.2. We organize partial commutative monoids into a category PCM as fol-
lows. The objects are PCMs and homomorphisms f : (M,>, 0) → (N,>, 0) are (total)
functions from M to N such that f(0) = 0, and for x, y ∈M , x ⊥ y implies f(x) ⊥ f(y)
and f(x> y) = f(x) > f(y).

We also form the category EA of effect algebras. An effect algebra homomorphism
is a PCM homomorphism such that f(1) = 1. This condition implies that effect algebra
homomorphsims preserve the orthosuplement. The orthoalgebras form a full subcategory
OA of the category of effect algebras.

Remark 2.3. Recall the interpretation [[
∑

i nixi ]] =
∑

i ni · xi of a multiset (
∑

i nixi) ∈
M(M) in a monoid M . In case M is a PCM, such an interpretation need not always exist.
Over a PCM M we call a multiset ϕ an orthogonal multiset in M if the interpretation
[[ϕ ]] = >x∈sup(ϕ)ϕ(x) · x exists in M . Here we write n · x for the n-fold sum x> · · ·> x,
assuming it exists.

Such orthogonal multisets may be seen as (multiset version of) ‘tests’ from [7]. A non-
multiset version of a ‘test’ for M is a multiset test ϕ with ϕ(x) ≤ 1 for each x ∈M . Such
a test can thus be identified with a finite subset {x1, . . . , xn} ⊆M for which x1 > · · ·>xn

exists.
We shall write Or(M) ↪→M(M) for the subsets of orthogonal multisets in M . This

subset is downclosed (ϕ � ψ ∈ Or(M) implies ϕ ∈ Or(M)), and forms a PCM itself,
with the interpretations [[− ]] forming homomorphisms of PCMs [[− ]] : Or(M)→M .

Notice that 1x ∈ Or(M), for x ∈ M , so that
⋃

ϕ∈Or(M) sup(ϕ) = M . For a map
f : M → N in PCM, if ϕ = (

∑
i nixi) ∈ Or(M) then M(f)(ϕ) = (

∑
i nif(xi)) ∈

Or(N), by definition of ‘morphism in PCM’, and:

[[M(f)(ϕ) ]] = [[
∑

i nif(xi) ]] = >i ni · f(xi) = f(>i ni · xi) = f([[ϕ ]]). (2)

The following (standard) notion of ‘partial equality’ for partially defined operations is
useful. We write:

ϕ 'M ψ for


if [[ϕ ]] is defined, also [[ψ ]] is defined and [[ϕ ]] = [[ψ ]],

and

if [[ψ ]] is defined, so is [[ϕ ]] and [[ψ ]] = [[ϕ ]].

(3)
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The subscript ‘M ’ in 'M is sometimes omitted when M is clear from the context.

Lemma 2.1. Partial equality 'M ⊆ M(M)×M(M), for a PCM M , is an equivalence
and a congruence relation.

3 Coreflections
We now turn to some technical results on coreflections which will be used for various
constructions with PCMs and effect algebras.

Recall that a coreflection is an adjunction F a G where the left adjoint F : A → B is
full and faithful, or equivalently, the unit η : id→ GF is an isomorphism. It is well-known
(see [1]) that in this situation A is as complete and cocomplete as B, see theorem 3.1.
Below we shall see that A not only inherits limits and colimits from B but also adjunctions
and a (symmetric) monoidal structure under some mild conditions.

Assume we have a coreflection (F,G, η, ε) : A→ B

Theorem 3.1. Suppose D : J → A is a diagram in A and that lj : L → FDj (resp.
cj : FDj → C) is a limit (resp. colimit) of F ◦ D in B then η−1

Dj
◦ G(lj) : G(L) → Dj

(G(cj) ◦ ηDj
: Dj → G(C)) is a limit (colimit) of D in A.

Next suppose that B comes equipped with a (possibly symmetric) monoidal structure
(⊗, I). We wish to use the coreflection to define this same structure on A. To do so we
must assume that the functor FG : B→ B is monoidal and that the counit ε is a monoidal
natural transformation. We then define a bifunctor ⊗A : A×A→ A by

X ⊗A Y := G(FX ⊗B FY ) (4)

and also define IA := G(IB).

Theorem 3.2. In the situation sketched above:

1. The tensor (4) yields (symmetric) monoidal structure on the category A in such a
way that the functor G : B→ A is automatically monoidal.

2. The functor F : A→ B is strongly monoidal.

3. If B is monoidal closed, then so is A via B(A C = G(FB(B FC).

Now suppose we have a second coreflection (F ′, G′, η′, ε′) : A′ → B′ as well as a map
of adjunctions (H : A→ A′,K : B → B′) and set J = G ◦K ◦ F ′.

B

Ga

		

K

33 B′

G′a

		

M
ss

A

F

II

H

33 A′

F ′

II

J
ss WZ_dg

Theorem 3.3. If M is a left (resp. right) adjoint to K then J is a left (right) adjoint to H .
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4 The categorical structure of PCM and EA

4.1 Totalization
In this section we’ll embed PCMs and effect algebras into algebraic structures with total
operations which are easier to work with. Categorically this will take the form of a core-
flection so that we can use the results from the previous section. The first construction
presented below is similar to the unigroups of Foulis, Greechie and Bennet [6]. However
we use monoids instead of groups. While unigroups essentialy only work for interval effect
algebras our barred commutative monoids (BCMs) works for all effect algebras. Also the
products BCMs is just the cartesian product, unlike for unigroups [6].

Definition 4.1. Define a category DCM of downsets in commutative monoids as follows.
Its objects consist of pairs (M,U) where M is a commutative monoid and U ⊆ M is a
nonempty downclosed subset of M : 0 ∈ U , and a ∈ U and b � a implies b ∈ U . The
morphisms f : (M,U) → (N,V ) consist of monoid homomorphisms f : M → N such
that f(U) ⊆ V .

Definition 4.2. Define a totalization functor To : PCM → DCM as follows. Let M =
(M,>, 0) be a partial commutative monoid and put

To(M) := (M(M)/∼, {[1x]∼ | x ∈M} )

where ∼ is the smallest congruence such that 1x + 1y ∼ 1(x > y), for all x, y ∈ M
with x ⊥ y, and 0M(M) ∼ 1(0M ). Thus, ϕ ∼ 1[[ϕ ]], for each ϕ ∈ Or(M). Note that
[1x]∼ + [1(0M )]∼ = [1x] = [1(x> 0M )]∼ in To(M).

For f : M → N a homomorphism of partial commutative monoids define To(f) by
To(f)([

∑
i nixi]) = [

∑
i nif(xi)].

We’ll usually omit the square brackets when denoting elements of To(M), so we simply
write 1x instead of [1x]∼, and [[ϕ ]] instead of [[ [ϕ]∼ ]]. To see that To is indeed a well-
defined functor note that ∼⊆' where ' is as described in Remark 2.3 so that {1x | x ∈
M} is indeed a downset in To(M). To see that To(f) is well-defined note:

To(f)(1x+ 1y) = To(f)(1x) + To(f)(1y) = 1f(x) + 1f(y)
= 1(f(x) > f(y)) = 1(f(x> y)) = To(f)(1(x> y))

whenever x ⊥ y.

Definition 4.3. Define a functor Pa : DCM → PCM by Pa(M,U) = U , for (M,U) a
monoid with downset; clearly 0 ∈ U , and for x, y ∈ U we set x ⊥ y iff x+y ∈ U , and then
x>y = x+y. For a homomorphism f : (M,U)→ (N,V ) define Pa(f) = f |U : U → V .

We use the fact that U is a downset in M to show that Pa(M,U) is a PCM. Commu-
tativity is obvious because M is commutative. Furthermore if x > (y > z) is defined then
x+ y + z ∈ U and because U is a downset x+ y ∈ U and so (x> y) > z is also defined
and equal to x> (y > z).

Theorem 4.1. The totalization functor To : PCM → DCM is a (full and faithful) left
adjoint to Pa. Hence we have a coreflection.
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We now turn to a similar construction for effect algebras and orthoalgebras.

Definition 4.4. A barred commutative monoid (or BCM) (M,+, 0, u) is a commutative
monoid (M,+, 0) that is positive i.e. a + b = 0 implies a = b = 0 together with an
element u ∈M called the unit such that a+ b = a+ c = u implies b = c.

An orthobarred commutative monoid (or OBCM) is a barred commutative monoid such
that a+ a � u implies a = 0.

The name barred commutative monoid comes from the fact that the unit forms a bar,
below which certain properties must hold. However beyond this bar those porperties need
not hold, for example the cancelation law holds for elements below the bar but it generally
need not hold for arbitrary elements in a barred commutative monoid.

Definition 4.5. We form the category BCM of barred commutative monoids as follows.
Let the objects be the BCMs (M,+, 0, u) and let the homomorphisms f : (M,+, 0, u)→
(M ′,+, 0, u′) be monoid homomorphisms M →M ′ such that f(u) = u′.

We also construct the full subcategory OBCM of orthobarred commutative monoids.

We view the category BCM as a (non full) subcategory of DCM by taking the unit
interval {a ∈M | a � u} as the required downset. Similarly we view EA as a subcategory
of PCM.

Proposition 4.2. We can restrict the functors To and Pa to EA and BCM and then to OA
and OBCM and keep having coreflections. Thus we have the following row of coreflec-
tions.

DCM

Pa

��

BCM

Pa

��

oo OBCM

Pa

��

oo

PCM

To a

HH

EA

To a

HH

oo OA

To a

HH

oo

4.2 Limits and colimits
The categories PCM, EA, DCM and BCM will all turn out to be both complete and
cocomplete. Products, coproducts and equalizers can be described directly in all categories.
But coequalizers in PCM and EA are a different story. However thanks to theorem 3.1 it
suffices to describe them in DCM and BCM. We start with limits and colimits in DCM.
They are basically obtained as for commutative monoids.

Proposition 4.3. Let I be some set and let {(Mi, Ui) | i ∈ I} be a family of monoids with
downsets, indexed by I .

(a) The product of this family in DCM is:

(
∏

i∈I Mi, {φ ∈
∏

i∈I Mi | ∀i∈I . φ(i) ∈ Ui} ),

where
∏

i∈I Mi is the product of monoids. It consists of functions φ : I →
⊔

i∈I Mi

with φ(i) ∈ Mi for all i, with the operation defined pointwise. Here
⊔

denotes the
disjoint union of the underlying sets.
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(b) The coproduct is given by

(
∐

i∈I Mi, {φ ∈
∐

i∈I Mi | ∃i∈I . φ(i) ∈ Ui and ∀j . i 6= j ⇒ φ(j) = 0} )

where
∐

i∈I Mi is the monoid coproduct. It consists of functions φ : I →
⊔

i∈I Mi

with φ(i) ∈Mi and {i ∈ I | φ(i) 6= 0} is finite. �

Next, let f, g : (M,U)→ (N.V ) be two arrows in DCM.

(c) The equalizer of f and g is (E,W ) where E = {m ∈ M | f(m) = g(m)} and
W = E ∩ U .

(d) The coequalizer of f and g is (N/∼, {[v] | v ∈ V }) where ∼ is the smallest monoid
congruence such that f(m) ∼ g(m). �

Since DCM has all products and coproducts as well as equalizers and coequalizers we
see that DCM is both complete and cocomplete.

Proposition 4.4. Let I be a set and let {Mi | i ∈ I} be a family of PCMs.

(a) The product of this family is given by the Cartesian product
∏

i∈I Mi.

(b) The coproduct is given by the disjoint union (
⊔

i∈I Mi \ {0}) ∪ {0} with all the 0
elements identified.

Now let f, g : M → N be two PCM homomorphisms.

(c) The equalizer of f and g is E = {m ∈M | f(m) = g(m)}.

(d) The coequalizer of f and g is Pa(h) ◦ ηN where h : To(N) → To(N)/∼ is the
coequalizer of To(f) and To(g) (cf. theorem 3.1).

We now turn to EA and BCM. Products and equalizers in EA and BCM are con-
structed in the same way as in PCM and DCM. The products are just the Cartesian
products with pointwise operations and the equalizers are just the set-theoretic ones.

Before tackling colimits we first study congruences on BCMs and see what conse-
quences this has for effect algebras.

Definition 4.6. A congruence ∼ on a BCM E is an equivalence relation such that the
following conditions hold:

(i) a1 ∼ a2 and b1 ∼ b2 implies a1 + b1 ∼ a2 + b2;

(ii) a+ b ∼ 0 implies a ∼ 0 and b ∼ 0;

(iii) a+ b ∼ u and a+ c ∼ u implies b ∼ c.

We’ll denote the set of all congruences on E with Cong(E).
When the following condition also holds we call ∼ an orthocongruence:

(iv) a+ a+ b ∼ u implies a ∼ 0.
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Definition 4.7. If M is some monoid and u ∈M is an element and ∼ is a monoid congru-
ence on M then we call ∼ a bar congruence with respect to u if it satisfies conditions (ii)
and (iii) from definition 4.6. If it also satisfies condition (iv) then we call it an orthocon-
gruence with respect to u.

Proposition 4.5. (a) If (E,+, 0, u) is a BCM and ∼ is a congruence on E then E/∼ is
a BCM with unit [u]∼. There exists a canonical surjective homomorphism π : E →
E/∼ that sends x to [x]∼.

(c) When ∼ is an orthocongruence then E/∼ is a OBCM.

(d) When M is a monoid and ∼ is a bar congruence with respect to u then M/∼ is an
BCM with unit [u]∼.

The main advantage of BCM over EA (and of DCM over PCM) is that the inter-
section of congruences is again a congruence. So it makes sense to talk about the smallest
congruence containing a given relation.

We now move on to the construction of coproducts and coequalizers in BCM and EA.

Proposition 4.6. Let I be a nonempty set and let (Ei)i∈I be a collection of barred commu-
tative monoids. Let C :=

∐
i∈I Ei be the monoid coproduct of the Ei and let κi : Ei → C

be the inclusions. Choose some i ∈ I and let∼ be the smallest bar congruence with respect
to κi(u) such that for all j ∈ I we have κj(u) ∼ κi(u). The coproduct of the Ei in BCM
is given by C/∼. The choice of i doesn’t make a difference.

The empty coproduct also exists and is the initial object (N,+, 0, 1).

Proposition 4.7. Let I be a set and let (Ei)i∈I be a collection of effect algebras. Their
coproduct is given by their disjoint union with zeros and units identified.∐

i∈I Ei = (
⊔

i∈I Ei \ {0, 1}) ∪ {0, 1}

The operations are defined like for PCMs.

Proposition 4.8. (a) If f, g : E → F are two BCM maps then their coequalizer is given
by π : F → F/∼ where ∼ is the smallest congruence containing {(f(a), g(a)) | a ∈ E}.

(b) For two effect algebra maps f, g : E → F their coequalizer is given by To(h) ◦ ηE

where h : To(F )→ To(F )/∼ is the coequalizer of To(f) and To(g) in BCM.

4.3 tensor products
Definition 4.8. Let M,N be two partial commutative monoids. A bimorphism (of PCMs)
f is a function f : M ×N → L such that

f(m,n1 > n2) = f(m,n1) > f(m,n2) whenever n1⊥n2

f(m1 >m2, n) = f(m1, n) > f(m2, n) whenever m1⊥m2

f(m, 0) = 0 = f(0, n)

for all m,m1,m2 ∈ M and n, n1, n2 ∈ N . An effect algebra bimorphism is a PCM
bimorphism such that f(1, 1) = 1.
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Let (M,U), (N,V ), (L,W ) be commutative monoids with downsets. A bimorphism
(of monoids with downsets) f is a function f : M ×N → L such that

f(m,n1 + n2) = f(m,n1) + f(m,n2)
f(m1 +m2, n) = f(m1, n) + f(m2, n)

f(m, 0) = 0 = f(0, n)
f(u, v) ∈W

for all m,m1,m2 ∈ M , n, n1, n2 ∈ N , u ∈ U and v ∈ V . A bimorphism of barred
commutative monoids is a bimorphism of monoids with downsets such that f(u, u) = u.

We recall the usual definition of tensor products in terms of bimorphisms.

Definition 4.9. Let M and N be PCMs (or effect algebras, monoids with downsets or
BCMs). A tensor product of M and M is a pair (T, t) consisting of a PCM (effect algebra,
. . . ) T and a universal bimorphism t : M × N → T such that for every bimorphism
f : M ×N → L there is a unique homomorphism g : T → L such that f = g ◦ t.

Of course the tensor product is unique up to isomorphism should it exist. We will now
construct the tensor product for all four categories DCM, PCM, BCM, EA.

We will write� for the tensor product in the category CMon of commutative monoids,
with the universal bimorphism M ×N →M �N given by (m,n) 7→ m� n.

Definition 4.10. Let (M,U), (N,V ) ∈ DCM, define:

(M,U)⊗ (N,V ) = (M �N, ↓ {u� v | u ∈ U, v ∈ V })

Theorem 4.9. Let (M,U), (N,V ) ∈ DCM, (M,U) ⊗ (N,U) together with the map
χ : (m,n) 7→ m� n forms the tensor product of (M,U) and (N,V ).

The category DCM is symmetric monoidal. The tensor unit is (N, {0, 1}) and the
coherence isomorphisms are inherited from CMon. We want to apply proposition 3.2 to
create a monoidal structure on PCM. So we must show that To ◦ Pa is a monoidal functor.

Since ε : ToPa(N, {0, 1}) → (N, {0, 1}) is an isomorphism we set ζ = ε−1. To
construct ξ : ToPa(M,U)⊗ToPa(N,V )→ ToPa((M,U)⊗(N,V )) we use the bimorphism

ToPa(M,U)× ToPa(N,V )→ ToPa((M,U)⊗ (N,V ))
(
∑
niui,

∑
mjvj) 7→

∑
nimj(ui ⊗ vj)

It’s easy to check that this is natural and that ε is a monoidal natural transformation.
Thus we get a symmetric monoidal structure on PCM given byM⊗N = Pa(To(M)⊗

To(N)). This construction is in fact a tensor product in the sense of definition 4.9.

Theorem 4.10. If M and N are PCMs then Pa(To(M) ⊗ To(N)) together with the map
(x, y) 7→ 1x� 1y is the tensor product of M and N .

Definition 4.11. Let E,F be two barred commutative monoids. Define E ⊗ F := (E �
F )/∼, where � is the commutative monoid tensor product and ∼ is the smallest bar con-
gruence with respect to u� u. We’ll denote the ∼ equivalence class of e� f by e⊗ f .
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Theorem 4.11. Let E,F be BCMs, E⊗F together with the map χ : (e, f) 7→ e⊗f forms
the tensor product of E and F .

Like DCM the category BCM is also symmetric monoidal and the functor ToPa is
monoidal. So EA is also symmetric monoidal and just like before this monoidal structure
on EA is in fact a tensor.

Theorem 4.12. If E and F are effect algebras then Pa(To(E) ⊗ To(F )) together with the
map (x, y) 7→ 1x⊗ 1y is the tensor product of E and F .

If we modify the construction in definition 4.11 slighty by using orthocongruences
instead of bar congruences then we also find a tensor for the categories OBCM and OA.

The categories DCM and PCM are in fact closed symmetric monoidal categories as
we will see in a moment. BCM and EA are not. One can’t give Hom(E,F ) an effect
algebra structure for arbitrary effect algebras E and F . If one tries to define > and ⊥
pointwise, the following problem pops up f⊥(1) = f(1⊥) = f(0) = 0. This problem
doesn’t occur in PCM and DCM.

Definition 4.12. Let (M,U), (N,V ) ∈ DCM define an exponent:

(M,U)( (N,V ) := (HomCMon(M,N),HomDCM((M,U), (N,V )))

This exponent is again a commutative monoid with a downset in the obvious way.
For M,N ∈ PCM define M ( N := HomPCM(M,N), where the PCM structure

on M ( N is as follows. For f, g : M → N we define f > g : M → N by (f > g)(m) =
f(m) > g(m). Of course f > g is only defined when f(m)⊥g(m) for all m ∈M .

We view( as a bifunctor in the usual way.

Theorem 4.13. For M ∈ PCM (or DCM) the functor M ( (−) is a right adjoint to
the functor (−)⊗M .

References
[1] F. Borceux. Handbook of Categorical Algebra, volume 50, 51 and 52 of Encyclopedia

of Mathematics. Cambridge Univ. Press, 1994.
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